Please use this identifier to cite or link to this item:
https://www.arca.fiocruz.br/handle/icict/9720
Type
ArticleCopyright
Restricted access
Embargo date
2030-12-31
Collections
- IFF - Artigos de Periódicos [1287]
- IOC - Artigos de Periódicos [12843]
- PR - ICC - Artigos de Periódicos [738]
Metadata
Show full item record
PROTEOMIC PROFILING OF NIPPLE ASPIRATE FLUID (NAF): EXPLORING THE COMPLEMENTARITY OF DIFFERENT PEPTIDE FRACTIONATION STRATEGIES
Author
Affilliation
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Toxinologia. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Carlos Chagas. Laboratório de Proteômica e Proteína Engenharia. Paraná, PR, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Toxinologia. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Toxinologia. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Toxinologia. Rio de Janeiro, RJ, Brasil.
Universidade do Estado do Rio de Janeiro. Laboratório de Biologia Molecular de Tumores. Departamento de Genética. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Fernandes Figueira. Laboratório de Biologia Molecular Aplicada. Departamento de Ginecologia. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Carlos Chagas. Laboratório de Proteômica e Proteína Engenharia. Paraná, PR, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Toxinologia. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Toxinologia. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Toxinologia. Rio de Janeiro, RJ, Brasil.
Universidade do Estado do Rio de Janeiro. Laboratório de Biologia Molecular de Tumores. Departamento de Genética. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Fernandes Figueira. Laboratório de Biologia Molecular Aplicada. Departamento de Ginecologia. Rio de Janeiro, RJ, Brasil.
Abstract
NAF is a breast fluid that is closely related to the tumor microenvironment and a valuable sample for studying breast cancer. To performan in-depth proteomic analysis of this sample, aliquots of a single NAF digest were analyzed by the following peptide-centric fractionation strategies: a) 30-cm reversed-phase (RP) column on-line with an LTQ-Orbitrap XL; b) off-line strong cation-exchange (SCX) column; and c) pI-based OFFGEL fractionation. All fractions from approaches (b) and (c) were further analyzed on a 10-cm RP column hyphenated to the same mass spectrometer. The RP-30 cm, SCX/RP-10 cm, and OFFGEL/RP-10 cm approaches identified 1676, 2930, and 3240 peptides, which corresponded to 193, 390 and 528 proteins, respectively. In our cumulative dataset, 4466 distinct NAF peptides corresponded to a total of 557 proteins, of which only 34% were identified by all three approaches. No exclusive protein identification was associated to the RP-30 cm approach, while SCX/RP-10 cm and OFFGEL/ RP-10 cm contributed to 28 and 166 exclusive identifications, respectively. Each approach provided additional information related to energy metabolism (fermentation process/ carbohydrate biosynthesis). In conclusion, the pre-fractionation platforms used were complementary for the comprehensive characterization of NAF and our work provides methodological information for future quantitative cancer-related NAF sample studies.
Share