Please use this identifier to cite or link to this item:
https://www.arca.fiocruz.br/handle/icict/47689
Type
ArticleCopyright
Open access
Sustainable Development Goals
03 Saúde e Bem-EstarCollections
Metadata
Show full item record
SYSTEMS BIOLOGY ANALYSIS OF THE RADIATION-ATTENUATED SCHISTOSOME VACCINE REVEALS A ROLE FOR GROWTH FACTORS IN PROTECTION AND HEMOSTASIS INHIBITION IN PARASITE SURVIVAL
Radiation-attenuated vaccine
Systems biology
Immune response
Protection mechanism
Mouse model
Author
Farias, Leonardo Paiva
Souza, Juliana Vitoriano
Cardozo, Lucas Esteves
Gama, Leonardo Dos Reis
Singh, Youvika
Miyasato, Patrícia Aoki
Almeida, Giulliana Tessarin
Rodriguez, Dunia
Barbosa, Mayra Mara Ferrari
Fernandes, Rafaela Sachetto
Barbosa, Tereza Cristina
Silva Neto, Almiro Pires da
Nakano, Eliana
Ho, Paulo Lee
Almeida, Sergio Verjovski
Nakaya, Helder Imoto
Wilson, Robert Alan
Leite, Luciana Cezar de Cerqueira
Souza, Juliana Vitoriano
Cardozo, Lucas Esteves
Gama, Leonardo Dos Reis
Singh, Youvika
Miyasato, Patrícia Aoki
Almeida, Giulliana Tessarin
Rodriguez, Dunia
Barbosa, Mayra Mara Ferrari
Fernandes, Rafaela Sachetto
Barbosa, Tereza Cristina
Silva Neto, Almiro Pires da
Nakano, Eliana
Ho, Paulo Lee
Almeida, Sergio Verjovski
Nakaya, Helder Imoto
Wilson, Robert Alan
Leite, Luciana Cezar de Cerqueira
Affilliation
Instituto Butantan. Laboratório de Desenvolvimento de Vacinas. São Paulo, SP, Brasil / Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Laboratório de Inflamação e Biomarcadores. Salvador, BA, Brasil.
Instituto Butantan. Laboratório de Desenvolvimento de Vacinas. São Paulo, SP, Brasil.
Universidade de São Paulo. Faculdade de Ciências Farmacêuticas. São Paulo, SP, Brasil.
Universidade de São Paulo. Faculdade de Ciências Farmacêuticas. São Paulo, SP, Brasil.
Universidade de São Paulo. Faculdade de Ciências Farmacêuticas. São Paulo, SP, Brasil.
Instituto Butantan. Laboratório de Parasitologia. São Paulo, SP, Brasil.
Instituto Butantan. Laboratório de Parasitologia. São Paulo, SP, Brasil / Universidade de São Paulo. Instituto de Química. São Paulo, SP, Brasil.
Instituto Butantan. Laboratório de Desenvolvimento de Vacinas. São Paulo, SP, Brasil.
Instituto Butantan. Laboratório de Desenvolvimento de Vacinas. São Paulo, SP, Brasil / Universidade de São Paulo. Programa de Pós-Graduação Interunidades em Biotecnologia. São Paulo, SP, Brasil.
Instituto Butantan. Laboratório de Desenvolvimento de Vacinas. São Paulo, SP, Brasil / Universidade de São Paulo. Programa de Pós-Graduação Interunidades em Biotecnologia. São Paulo, SP, Brasil.
Instituto Butantan. Laboratório de Desenvolvimento de Vacinas. São Paulo, SP, Brasil.
Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Laboratório de Inflamação e Biomarcadores. Salvador, BA, Brasil.
Instituto Butantan. Laboratório de Parasitologia. São Paulo, SP, Brasil.
Instituto Butantan. Centro Bioindustrial. São Paulo, SP, Brasil.
Instituto Butantan. Laboratório de Parasitologia. São Paulo, SP, Brasil / Universidade de São Paulo. Instituto de Química. São Paulo, SP, Brasil.
Universidade de São Paulo. Faculdade de Ciências Farmacêuticas. São Paulo, SP, Brasil.
University of York. York Biomedical Research Institute. York, United Kingdom.
Instituto Butantan. Laboratório de Desenvolvimento de Vacinas. São Paulo, SP, Brasil.
Instituto Butantan. Laboratório de Desenvolvimento de Vacinas. São Paulo, SP, Brasil.
Universidade de São Paulo. Faculdade de Ciências Farmacêuticas. São Paulo, SP, Brasil.
Universidade de São Paulo. Faculdade de Ciências Farmacêuticas. São Paulo, SP, Brasil.
Universidade de São Paulo. Faculdade de Ciências Farmacêuticas. São Paulo, SP, Brasil.
Instituto Butantan. Laboratório de Parasitologia. São Paulo, SP, Brasil.
Instituto Butantan. Laboratório de Parasitologia. São Paulo, SP, Brasil / Universidade de São Paulo. Instituto de Química. São Paulo, SP, Brasil.
Instituto Butantan. Laboratório de Desenvolvimento de Vacinas. São Paulo, SP, Brasil.
Instituto Butantan. Laboratório de Desenvolvimento de Vacinas. São Paulo, SP, Brasil / Universidade de São Paulo. Programa de Pós-Graduação Interunidades em Biotecnologia. São Paulo, SP, Brasil.
Instituto Butantan. Laboratório de Desenvolvimento de Vacinas. São Paulo, SP, Brasil / Universidade de São Paulo. Programa de Pós-Graduação Interunidades em Biotecnologia. São Paulo, SP, Brasil.
Instituto Butantan. Laboratório de Desenvolvimento de Vacinas. São Paulo, SP, Brasil.
Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Laboratório de Inflamação e Biomarcadores. Salvador, BA, Brasil.
Instituto Butantan. Laboratório de Parasitologia. São Paulo, SP, Brasil.
Instituto Butantan. Centro Bioindustrial. São Paulo, SP, Brasil.
Instituto Butantan. Laboratório de Parasitologia. São Paulo, SP, Brasil / Universidade de São Paulo. Instituto de Química. São Paulo, SP, Brasil.
Universidade de São Paulo. Faculdade de Ciências Farmacêuticas. São Paulo, SP, Brasil.
University of York. York Biomedical Research Institute. York, United Kingdom.
Instituto Butantan. Laboratório de Desenvolvimento de Vacinas. São Paulo, SP, Brasil.
Abstract
In spite of several decades of research, an effective vaccine against schistosomiasis remains elusive. The radiation-attenuated (RA) cercarial vaccine is still the best model eliciting high protection levels, although the immune mechanisms have not yet been fully characterized. In order to identify genes and pathways underlying protection we investigated patterns of gene expression in PBMC and skin draining Lymph Nodes (LN) from mice using two exposure comparisons: vaccination with 500 attenuated cercariae versus infection with 500 normal cercariae; one versus three doses. Vaccinated mice were challenged with 120 normal parasites. Integration of PBMC and LN data from the infected group revealed early up-regulation of pathways associated with Th2 skewing and polarization of IgG antibody profiles. Additionally, hemostasis pathways were downregulated in infected mice, correlating with platelet reduction, potentially a mechanism to assist parasite migration through capillary beds. Conversely, up regulation of such mechanisms after vaccination may explain parasite blockade in the lungs. In contrast, a single exposure to attenuated parasites revealed early establishment of a Th1 bias (signaling of IL-1, IFN-g; and Leishmania infection). Genes encoding chemokines and their receptors were more prominent in vaccinated mice, indicating an enhanced capacity for inflammation, potentially augmenting the inhibition of intravascular migration. Increasing the vaccinations from one to three did not dramatically elevate protection, but there was a clear shift towards antibody-mediated effectors. However, elements of the Th1 bias were still evident. Notable features after three vaccinations were markers of cytotoxicity (including IL-6 and NK cells) together with growth factors and their receptors (FGFR/VEGF/EGF) and the apoptosis pathway. Indeed, there is evidence for the development of anergy after three vaccinations, borne out by the limited responses detected in samples after challenge. We infer that persistence of a Th1 response puts a limit on expression of antibody-mediated mechanisms. This feature may explain the failure of multiple doses to drive protection towards sterile immunity. We suggest that the secretions of lung stage parasites would make a novel cohort of antigens for testing in protection experiments.
Keywords
Schistosoma mansoniRadiation-attenuated vaccine
Systems biology
Immune response
Protection mechanism
Mouse model
Share