Please use this identifier to cite or link to this item:
https://www.arca.fiocruz.br/handle/icict/42426
Type
ArticleCopyright
Open access
Sustainable Development Goals
04 Educação de qualidadeCollections
- IOC - Artigos de Periódicos [12791]
Metadata
Show full item record
IN SILICO STRATEGIES TO SUPPORT FRAGMENT-TO-LEAD OPTIMIZATION IN DRUG DISCOVERY
Descoberta de drogas
Descoberta de chumbo
Em métodos silico
Aprendizado de máquina
Otimização
Drug discovery
Lead discovery
in silico methods
Machine learning
De novo design
Optimization
Hot spot analysis
Author
Affilliation
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Bioquímica Experimental e Computacional de Fármacos. Rio de Janeiro, RJ, Brasil..
Universidade Federal de Goiás. Faculdade de Farmácia. LabMol-Laboratório de Modelagem Molecular e Design de Drogas. Goiânia, GO, Brasil.
Universidade Federal de Goiás. Faculdade de Farmácia. LabMol-Laboratório de Modelagem Molecular e Design de Drogas. Goiânia, GO, Brasil / Centro Universitário de Anápolis. Laboratory of Cheminformatics. Anápolis, GO, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Bioquímica Experimental e Computacional de Fármacos. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Genômica Funcional e Bioinformática. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Genômica Funcional e Bioinformática. Rio de Janeiro, RJ, Brasil.
London School of Hygiene and Tropical Medicine. Department of Infection Biology. London, United Kingdom.
Universidade Federal de Goiás. Faculdade de Farmácia. LabMol-Laboratório de Modelagem Molecular e Design de Drogas. Goiânia, GO, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Bioquímica Experimental e Computacional de Fármacos. Rio de Janeiro, RJ, Brasil..
Universidade Federal de Goiás. Faculdade de Farmácia. LabMol-Laboratório de Modelagem Molecular e Design de Drogas. Goiânia, GO, Brasil.
Universidade Federal de Goiás. Faculdade de Farmácia. LabMol-Laboratório de Modelagem Molecular e Design de Drogas. Goiânia, GO, Brasil / Centro Universitário de Anápolis. Laboratory of Cheminformatics. Anápolis, GO, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Bioquímica Experimental e Computacional de Fármacos. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Genômica Funcional e Bioinformática. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Genômica Funcional e Bioinformática. Rio de Janeiro, RJ, Brasil.
London School of Hygiene and Tropical Medicine. Department of Infection Biology. London, United Kingdom.
Universidade Federal de Goiás. Faculdade de Farmácia. LabMol-Laboratório de Modelagem Molecular e Design de Drogas. Goiânia, GO, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Bioquímica Experimental e Computacional de Fármacos. Rio de Janeiro, RJ, Brasil..
Abstract
Fragment-based drug (or lead) discovery (FBDD or FBLD) has developed in the last two decades to become a successful key technology in the pharmaceutical industry for early stage drug discovery and development. The FBDD strategy consists of screening low molecular weight compounds against macromolecular targets (usually proteins) of clinical relevance. These small molecular fragments can bind at one or more sites on the target and act as starting points for the development of lead compounds. In developing the fragments attractive features that can translate into compounds with favorable physical, pharmacokinetics and toxicity (ADMET-absorption, distribution, metabolism, excretion, and toxicity) properties can be integrated. Structure-enabled fragment screening campaigns use a combination of screening by a range of biophysical techniques, such as differential scanning fluorimetry, surface plasmon resonance, and thermophoresis, followed by structural characterization of fragment binding using NMR or X-ray crystallography. Structural characterization is also used in subsequent analysis for growing fragments of selected screening hits. The latest iteration of the FBDD workflow employs a high-throughput methodology of massively parallel screening by X-ray crystallography of individually soaked fragments. In this review we will outline the FBDD strategies and explore a variety of in silico approaches to support the follow-up fragment-to-lead optimization of either: growing, linking, and merging. These fragment expansion strategies include hot spot analysis, druggability prediction, SAR (structure-activity relationships) by catalog methods, application of machine learning/deep learning models for virtual screening and several de novo design methods for proposing synthesizable new compounds. Finally, we will highlight recent case studies in fragment-based drug discovery where in silico methods have successfully contributed to the development of lead compounds.
Keywords in Portuguese
FragmentosDescoberta de drogas
Descoberta de chumbo
Em métodos silico
Aprendizado de máquina
Otimização
Keywords
Fragment-basedDrug discovery
Lead discovery
in silico methods
Machine learning
De novo design
Optimization
Hot spot analysis
Share