Use este identificador para citar ou linkar para este item:
https://www.arca.fiocruz.br/handle/icict/42414
Tipo de documento
PreprintDireito Autoral
Acesso aberto
Coleções
- IOC - Preprint [146]
Metadata
Mostrar registro completo
COMPUTATIONAL SCREENING FOR POTENTIAL DRUG CANDIDATES AGAINST SARS-COV-2 MAIN PROTEASE
Protease
Triagem virtual
Farmacopropário
Inibidores
Compostos naturais
COVID-19
Protease
Virtual screening
Pharmacophore
Natural compounds
COVID-19
Autor(es)
Andrade, Bruno Silva
Ghosh, Preetam
Barh, Debmalya
Tiwari, Sandeep
Silva, Raner José Santana
Soares, Wagner Rodrigues de Assis
Melo, Tarcisio Silva
Freitas, Andria dos Santos
Grande, Patrícia González
Palmeira, Lucas Sousa
Alcantara, Luiz Carlos Junior
Giovanetti, Marta
Góes Neto, Aristóteles
Azevedo, Vasco Ariston de Carvalho
Ghosh, Preetam
Barh, Debmalya
Tiwari, Sandeep
Silva, Raner José Santana
Soares, Wagner Rodrigues de Assis
Melo, Tarcisio Silva
Freitas, Andria dos Santos
Grande, Patrícia González
Palmeira, Lucas Sousa
Alcantara, Luiz Carlos Junior
Giovanetti, Marta
Góes Neto, Aristóteles
Azevedo, Vasco Ariston de Carvalho
Afiliação
Universidade Estadual do Sudoeste da Bahia. Departamento de Ciências Biológicas. Laboratório de Bioinformática e Química Computacional. Jeuié, BA, Brasil.
Virginia Commonwealth University. Department of Computer Science. Richmond, VA, USA.
Centre for Genomics and AppliedCentre for Genomics and Applied Gene Technology. Institute of Integrative Omics and Applied Biotechnology (IIOAB), Purba Medinipur, India.
Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Biologia Geral. Laboratório de Genética Celular e Molecular. Belo Horizonte, MG, Brasil.
Universidade Estadual de Santa Cruz. Programa de Pós-graduação em Genética e Biologia Molecular. Ilhéus, BA, Brasil.
Universidade Estadual do Sudoeste da Bahia. Departamento de Saúde II. Jequié, BA, Brasil.
Universidade Estadual do Sudoeste da Bahia. Departamento de Ciências Biológicas. Laboratório de Bioinformática e Química Computacional. Jeuié, BA, Brasil.
Universidade Estadual de Santa Cruz. Programa de Pós-graduação em Genética e Biologia Molecular. Ilhéus, BA, Brasil.
Universidade Estadual de Santa Cruz. Programa de Pós-graduação em Genética e Biologia Molecular. Ilhéus, BA, Brasil.
Universidade Estadual do Sudoeste da Bahia. Departamento de Ciências Biológicas. Laboratório de Bioinformática e Química Computacional. Jeuié, BA, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brasil.
Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Biologia Geral. Laboratório de Genética Celular e Molecular. Belo Horizonte, MG, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brasil.
Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Microbiologia. Laboratório de Biologia Molecular e Computacional de Fungos. Belo Horizonte, MG, Brasil.
Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Biologia Geral. Laboratório de Genética Celular e Molecular. Belo Horizonte, MG, Brasil.
Virginia Commonwealth University. Department of Computer Science. Richmond, VA, USA.
Centre for Genomics and AppliedCentre for Genomics and Applied Gene Technology. Institute of Integrative Omics and Applied Biotechnology (IIOAB), Purba Medinipur, India.
Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Biologia Geral. Laboratório de Genética Celular e Molecular. Belo Horizonte, MG, Brasil.
Universidade Estadual de Santa Cruz. Programa de Pós-graduação em Genética e Biologia Molecular. Ilhéus, BA, Brasil.
Universidade Estadual do Sudoeste da Bahia. Departamento de Saúde II. Jequié, BA, Brasil.
Universidade Estadual do Sudoeste da Bahia. Departamento de Ciências Biológicas. Laboratório de Bioinformática e Química Computacional. Jeuié, BA, Brasil.
Universidade Estadual de Santa Cruz. Programa de Pós-graduação em Genética e Biologia Molecular. Ilhéus, BA, Brasil.
Universidade Estadual de Santa Cruz. Programa de Pós-graduação em Genética e Biologia Molecular. Ilhéus, BA, Brasil.
Universidade Estadual do Sudoeste da Bahia. Departamento de Ciências Biológicas. Laboratório de Bioinformática e Química Computacional. Jeuié, BA, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brasil.
Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Biologia Geral. Laboratório de Genética Celular e Molecular. Belo Horizonte, MG, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brasil.
Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Microbiologia. Laboratório de Biologia Molecular e Computacional de Fungos. Belo Horizonte, MG, Brasil.
Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Departamento de Biologia Geral. Laboratório de Genética Celular e Molecular. Belo Horizonte, MG, Brasil.
Resumo em Inglês
Background: SARS-CoV-2 that are the causal agent of a current pandemic are enveloped, positive-sense, single-stranded RNA viruses of the Coronaviridae family. Proteases of SARS-CoV-2 are necessary for viral replication, structural assembly and pathogenicity. The ~33.8KDa Mpro protease of SARS-CoV-2 is a non-human homologue and highly conserved among several coronaviruses indicating Mpro could be a potential drug target for Coronaviruses.Methods: Here we performed computational ligand screening of four pharmacophores (OEW, Remdesivir, Hydroxycholoquine and N3) that are presumed to have positive effects against SARS-CoV-2 Mpro protease (6LU7) and also screened 50,000 molecules from the ZINC Database dataset against this protease target.Results: We found 40 pharmacophore-like structures of natural compounds from diverse chemical classes that exhibited better affinity of docking as compared to the known ligands. The 10 best selected ligands namely, ZINC1845382, ZINC1875405, ZINC2092396, ZINC2104424, ZINC44018332, ZINC2101723, ZINC2094526, ZINC2094304, ZINC2104482, ZINC3984030, and ZINC1531664, are mainly classified as β-carboline, Alkaloids and Polyflavonoids, and all of them displayed interactions with dyad CYS145 and HIS41 from the protease pocket in a similar way as with other known ligands.Conclusion: Our results suggest that these 10 molecules could be effective against SARS-CoV-2 protease and may be tested in vitro and in vivo to develop novel drugs against this virus.
Palavras-chave
SARS-CoV-2Protease
Triagem virtual
Farmacopropário
Inibidores
Compostos naturais
COVID-19
Palavras-chave em inglês
SARS-CoV-2Protease
Virtual screening
Pharmacophore
Natural compounds
COVID-19
Compartilhar