Please use this identifier to cite or link to this item:
https://www.arca.fiocruz.br/handle/icict/41213
Type
ArticleCopyright
Open access
Sustainable Development Goals
04 Educação de qualidadeCollections
Metadata
Show full item record
SCANNING ELECTRON MICROSCOPY AND MACHINE LEARNING REVEAL HETEROGENEITY IN CAPSULAR MORPHOTYPES OF THE HUMAN PATHOGEN CRYPTOCOCCUS SPP
Factores de Virulencia
Aprendizaje Automático
Author
Affilliation
Universidade Federal do Rio Grande do Sul. Centro de Biotecnologia. Porto Alegre, RS, Brasil.
BiomeHub. Florianópolis, SC, Brasil.
Fundação Oswaldo Cruz. Instituto Carlos Chagas. Curitiba, PR, Brasil. / Universidade Federal do Rio de Janeiro. Instituto de Microbiologia Paulo Góes. Rio de Janeiro, RJ, Brasil.
Universidade Federal do Rio Grande do Sul. Instituto de Física. Departamento de Física. Porto Alegre, RS, Brasil.
Universidade Federal do Rio Grande do Sul. Centro de Biotecnologia. Porto Alegre, RS, Brasil.
Universidade Federal do Rio Grande do Sul. Centro de Biotecnologia. Porto Alegre, RS, Brasil.
Universidade Federal do Rio Grande do Sul. Centro de Biotecnologia. Porto Alegre, RS, Brasil.
Universidade Federal do Rio Grande do Sul. Centro de Biotecnologia. Porto Alegre, RS, Brasil.
BiomeHub. Florianópolis, SC, Brasil.
Fundação Oswaldo Cruz. Instituto Carlos Chagas. Curitiba, PR, Brasil. / Universidade Federal do Rio de Janeiro. Instituto de Microbiologia Paulo Góes. Rio de Janeiro, RJ, Brasil.
Universidade Federal do Rio Grande do Sul. Instituto de Física. Departamento de Física. Porto Alegre, RS, Brasil.
Universidade Federal do Rio Grande do Sul. Centro de Biotecnologia. Porto Alegre, RS, Brasil.
Universidade Federal do Rio Grande do Sul. Centro de Biotecnologia. Porto Alegre, RS, Brasil.
Universidade Federal do Rio Grande do Sul. Centro de Biotecnologia. Porto Alegre, RS, Brasil.
Universidade Federal do Rio Grande do Sul. Centro de Biotecnologia. Porto Alegre, RS, Brasil.
Abstract
Phenotypic heterogeneity is an important trait for the development and survival of many microorganisms including the yeast Cryptococcus spp., a deadly pathogen spread worldwide. Here, we have applied scanning electron microscopy (SEM) to define four Cryptococcus spp. capsule morphotypes, namely Regular, Spiky, Bald, and Phantom. These morphotypes were persistently observed in varying proportions among yeast isolates. To assess the distribution of such morphotypes we implemented an automated pipeline capable of (1) identifying potentially cell-associated objects in the SEM-derived images; (2) computing object-level features; and (3) classifying these objects into their corresponding classes. The machine learning approach used a Random Forest (RF) classifier whose overall accuracy reached 85% on the test dataset, with per-class specificity above 90%, and sensitivity between 66 and 94%. Additionally, the RF model indicates that structural and texture features, e.g., object area, eccentricity, and contrast, are most relevant for classification. The RF results agree with the observed variation in these features, consistently also with visual inspection of SEM images. Finally, our work introduces morphological variants of Cryptococcus spp. capsule. These can be promptly identified and characterized using computational models so that future work may unveil morphological associations with yeast virulence.
Keywords in Portuguese
CryptococcusKeywords in Spanish
Microscopía Electrónica de RastreoFactores de Virulencia
Aprendizaje Automático
Share