Use este identificador para citar ou linkar para este item:
https://www.arca.fiocruz.br/handle/icict/39607
PROPENSITY SCORE METHODS IN HEALTH TECHNOLOGY ASSESSMENT: PRINCIPLES, EXTENDED APPLICATIONS, AND RECENT ADVANCES
Confusão
Eficácia
Avaliação de tecnologias em saúde
Escore de propensão
Segurança
Secundário
Bonfounding
Effectiveness
Health technology assessment
Propensity score
Safety
Secondary
Autor(es)
Afiliação
London School of Hygiene and Tropical Medicine. Faculty of Epidemiology and Population Health. London, United Kingdom / University of Oxford. Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences. Center for Statistics in Medicine. Oxford, United Kingdom / Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Centro de Integração de Dados e Conhecimentos para Saúde. Salvador, BA, Brasil.
Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Centro de Integração de Dados e Conhecimentos para Saúde. Salvador, BA, Brasil / Universitat Autònoma de Barcelona. Research Group (Idiap Jordi Gol) and Musculoskeletal Research Unit (Fundació IMIM-Parc Salut Mar). Barcelona, Spain.
University of Sorocaba. Sorocaba, SP, Brazil.
Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Centro de Integração de Dados e Conhecimentos para Saúde. Salvador, BA, Brasil.
Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Centro de Integração de Dados e Conhecimentos para Saúde. Salvador, BA, Brasil.
Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Centro de Integração de Dados e Conhecimentos para Saúde. Salvador, BA, Brasil / University of Bahia. Institute of Public Health. Salvador, BA, Brasil.
Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Centro de Integração de Dados e Conhecimentos para Saúde. Salvador, BA, Brasil.
London School of Hygiene and Tropical Medicine. Faculty of Epidemiology and Population Health. London, United Kingdom.
London School of Hygiene and Tropical Medicine. Faculty of Epidemiology and Population Health. London, United Kingdom / University of Oxford. Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences. Center for Statistics in Medicine. Oxford, United Kingdom
Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Centro de Integração de Dados e Conhecimentos para Saúde. Salvador, BA, Brasil / University of Bahia. Institute of Public Health. Salvador, BA, Brasil / Federal University of Bahia. Department of Statistics. Salvador, BA, Brazil.
London School of Hygiene and Tropical Medicine. Faculty of Epidemiology and Population Health. London, United Kingdom / Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Centro de Integração de Dados e Conhecimentos para Saúde. Salvador, BA, Brasil.
Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Centro de Integração de Dados e Conhecimentos para Saúde. Salvador, BA, Brasil / Universitat Autònoma de Barcelona. Research Group (Idiap Jordi Gol) and Musculoskeletal Research Unit (Fundació IMIM-Parc Salut Mar). Barcelona, Spain.
University of Sorocaba. Sorocaba, SP, Brazil.
Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Centro de Integração de Dados e Conhecimentos para Saúde. Salvador, BA, Brasil.
Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Centro de Integração de Dados e Conhecimentos para Saúde. Salvador, BA, Brasil.
Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Centro de Integração de Dados e Conhecimentos para Saúde. Salvador, BA, Brasil / University of Bahia. Institute of Public Health. Salvador, BA, Brasil.
Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Centro de Integração de Dados e Conhecimentos para Saúde. Salvador, BA, Brasil.
London School of Hygiene and Tropical Medicine. Faculty of Epidemiology and Population Health. London, United Kingdom.
London School of Hygiene and Tropical Medicine. Faculty of Epidemiology and Population Health. London, United Kingdom / University of Oxford. Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences. Center for Statistics in Medicine. Oxford, United Kingdom
Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Centro de Integração de Dados e Conhecimentos para Saúde. Salvador, BA, Brasil / University of Bahia. Institute of Public Health. Salvador, BA, Brasil / Federal University of Bahia. Department of Statistics. Salvador, BA, Brazil.
London School of Hygiene and Tropical Medicine. Faculty of Epidemiology and Population Health. London, United Kingdom / Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Centro de Integração de Dados e Conhecimentos para Saúde. Salvador, BA, Brasil.
Resumo em Inglês
Randomized clinical trials (RCT) are accepted as the gold-standard approaches to measure effects of intervention or treatment on outcomes. They are also the designs of choice for health technology assessment (HTA). Randomization ensures comparability, in both measured and unmeasured pretreatment characteristics, of individuals assigned to treatment and control or comparator. However, even adequately powered RCTs are not always feasible for several reasons such as cost, time, practical and ethical constraints, and limited generalizability. RCTs rely on data collected on selected, homogeneous population under highly controlled conditions; hence, they provide evidence on efficacy of interventions rather than on effectiveness. Alternatively, observational studies can provide evidence on the relative effectiveness or safety of a health technology compared to one or more alternatives when provided under the setting of routine health care practice. In observational studies, however, treatment assignment is a non-random process based on an individual's baseline characteristics; hence, treatment groups may not be comparable in their pretreatment characteristics. As a result, direct comparison of outcomes between treatment groups might lead to biased estimate of the treatment effect. Propensity score approaches have been used to achieve balance or comparability of treatment groups in terms of their measured pretreatment covariates thereby controlling for confounding bias in estimating treatment effects. Despite the popularity of propensity scores methods and recent important methodological advances, misunderstandings on their applications and limitations are all too common. In this article, we present a review of the propensity scores methods, extended applications, recent advances, and their strengths and limitations.
Palavras-chave
ViésConfusão
Eficácia
Avaliação de tecnologias em saúde
Escore de propensão
Segurança
Secundário
Palavras-chave em inglês
BiasBonfounding
Effectiveness
Health technology assessment
Propensity score
Safety
Secondary
Compartilhar