Use este identificador para citar ou linkar para este item:
https://www.arca.fiocruz.br/handle/icict/29906
Tipo de documento
ArtigoDireito Autoral
Acesso aberto
Coleções
- IOC - Artigos de Periódicos [12840]
Metadata
Mostrar registro completo
MAYARO VIRUS INFECTION IN AMAZONIA: A MULTIMODEL INFERENCE APPROACH TO RISK FACTOR ASSESSMENT
Autor(es)
Afiliação
Fiocruz Amazônia. Instituto Leônidas e Maria Deane. Manaus, AM, Brasil.
Fiocruz Amazônia. Instituto Leônidas e Maria Deane. Manaus, AM, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ. Brasil.
Universidade de São Paulo. Faculdade de Medicina de Ribeirão Preto. Ribeirão Preto, SP, Brasil.
Fundação de Medicina Tropical do Estado do Amazonas.Manaus, AM, Brasil.
Fiocruz Amazônia. Instituto Leônidas e Maria Deane. Manaus, AM, Brasil.
Fiocruz Amazônia. Instituto Leônidas e Maria Deane. Manaus, AM, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ. Brasil.
Universidade de São Paulo. Faculdade de Medicina de Ribeirão Preto. Ribeirão Preto, SP, Brasil.
Fundação de Medicina Tropical do Estado do Amazonas.Manaus, AM, Brasil.
Fiocruz Amazônia. Instituto Leônidas e Maria Deane. Manaus, AM, Brasil.
Resumo em Inglês
Background: Arboviral diseases are major global public health threats. Yet, our understanding of infection risk factors is,
with a few exceptions, considerably limited. A crucial shortcoming is the widespread use of analytical methods generally not
suited for observational data – particularly null hypothesis-testing (NHT) and step-wise regression (SWR). Using Mayaro virus
(MAYV) as a case study, here we compare information theory-based multimodel inference (MMI) with conventional analyses
for arboviral infection risk factor assessment.
Compartilhar