Use este identificador para citar ou linkar para este item:
https://www.arca.fiocruz.br/handle/icict/11782
Tipo de documento
ArtigoDireito Autoral
Acesso aberto
Coleções
- ENSP - Artigos de Periódicos [2363]
- INI - Artigos de Periódicos [3516]
- IOC - Artigos de Periódicos [12835]
Metadata
Mostrar registro completo
CLINICAL AND LABORATORY FEATURES THAT DISCRIMINATE DENGUE FROM OTHER FEBRILE ILLNESSES: A DIAGNOSTIC ACCURACY STUDY IN RIO DE JANEIRO, BRAZIL
Signs and symptoms
Sensitivity and specificity
Fever/diagnosis
Autor(es)
Afiliação
Fundação Oswaldo Cruz. Escola Nacional de Saúde Pública Rio de Janeiro, RJ, Brasil. Centro de Saúde Escola Germano Sinval Faria (CSEGSF). Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto de Pesquisa Clínica Evandro Chagas. Laboratório de Epidemiologia Clínica. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto de Pesquisa Clínica Evandro Chagas. Laboratório de Epidemiologia Clínica. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Departamento de Virologia. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto de Pesquisa Clínica Evandro Chagas. Serviço de Imunologia. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto de Pesquisa Clínica Evandro Chagas. Laboratório de Epidemiologia Clínica. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto de Pesquisa Clínica Evandro Chagas. Laboratório de Epidemiologia Clínica. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Departamento de Virologia. Rio de Janeiro, RJ, Brasil.
Fundação Oswaldo Cruz. Instituto de Pesquisa Clínica Evandro Chagas. Serviço de Imunologia. Rio de Janeiro, RJ, Brasil.
Resumo em Inglês
Background: Dengue is an acute febrile illness caused by an arbovirus that is endemic in more than 100 countries.
Early diagnosis and adequate management are critical to reduce mortality. This study aims to identify clinical and
hematological features that could be useful to discriminate dengue from other febrile illnesses (OFI) up to the third
day of disease.
Methods: We conducted a sectional diagnostic study with patients aged 12 years or older who reported fever
lasting up to three days, without any evident focus of infection, attending an outpatient clinic in the city of Rio de
Janeiro, Brazil, between the years 2005 and 2008. Logistic regression analysis was used to identify symptoms,
physical signs, and hematological features valid for dengue diagnosis. Receiver-operating characteristic (ROC) curve
analyses were used to define the best cut-off and to compare the accuracy of generated models with the World
Health Organization (WHO) criteria for probable dengue.
Results: Based on serological tests and virus genome detection by polymerase chain reaction (PCR), 69 patients
were classified as dengue and 73 as non-dengue. Among clinical features, conjunctival redness and history of rash
were independent predictors of dengue infection. A model including clinical and laboratory features (conjunctival
redness and leukocyte counts) achieved a sensitivity of 81% and specificity of 71% and showed greater accuracy
than the WHO criteria for probable dengue.
Conclusions: We constructed a predictive model for early dengue diagnosis that was moderately accurate and
performed better than the current WHO criteria for suspected dengue. Validation of this model in larger samples
and in other sites should be attempted before it can be applied in endemic areas.
Palavras-chave em inglês
Dengue/diagnosisSigns and symptoms
Sensitivity and specificity
Fever/diagnosis
Compartilhar