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Novel methods of malaria vector control - Malaria 
is a mosquito-borne infectious disease caused by Plas-
modium parasites transmitted by the bite of infected 
Anopheles mosquitoes. The disease is responsible for 
approximately 800,000 deaths each year with more than 
200 million annual cases (WHO 2010). Vector control 
for malaria has focused primarily on the adult mosquito 
through insecticides and bednets. Residual house spray-
ing with chemical insecticides such as DDT has been 
used but is logistically and economically demanding in 
many developing countries (Curtis & Mnzava 2000). 
When used widely in a community, insecticide treated 
nets treated with pyrethroid insecticides such as per-
methrin can provide a safe and simple method of control 
against night biting Anopheles mosquitoes (Hawley et al. 
2003). However, both methods are dependent on a single 
class of insecticides (pyrethroids) leading to widespread 
development of insecticide-resistance (WHO 2010). As 
these current methods of malaria control may not be 
sustainable for long periods due to the increase in in-
secticide resistance and environmental concerns, evalu-
ation of novel control strategies need to be undertaken. 
A novel biocontrol approach has been proposed recently 
that uses maternally inherited endosymbiotic Wolbachia 
bacteria transinfected into mosquitoes in order to inter-
fere with pathogen transmission. 

Wolbachia’s phenotypic effects in insect hosts - Wol-
bachia are Gram-negative, intracellular, endosymbiotic 
bacteria that manipulate host reproduction to enhance 

their vertical transmission (Sinkins et al. 1997). Wolba-
chia bacteria were first reported within the reproduc-
tive tissues of Culex pipiens mosquitoes by Hertig and 
Wolbach in 1924 and the species was named Wolbachia 
pipientis (Werren 1997). Infections are extremely wide-
spread within arthropods (Werren et al. 1995, O’Neill et 
al. 1997, Jeyaprakash & Hoy 2000) and Wolbachia are 
present in numerous mosquito genera including Aedes, 
Culex, Coquillettidia and Mansonia (Kittayapong et al. 
2000, Ricci et al. 2002, Dean & Dobson 2004, Tsai et al. 
2006). Wolbachia are maternally transmitted through the 
egg cytoplasm and are responsible for several reproduc-
tive disorders in their insect hosts such as cytoplasmic 
incompatibility (CI) (Yen & Barr 1971), parthenogenesis 
(Stouthamer et al. 1999), feminization (Rousset et al. 
1992) and male killing (Hurst et al. 2000). CI results in 
the generation of unviable offspring when an uninfected 
female mates with a Wolbachia-infected male (McGraw 
et al. 2001). In contrast, Wolbachia-infected females can 
produce viable progeny when they mate with both infected 
and uninfected males resulting in a selective reproductive 
advantage over uninfected females (Hoffmann & Turelli 
1997). This CI phenotype, shown in Figure, is induced by 
Wolbachia in mosquito species and allows the maternally 
transmitted Wolbachia to efficiently invade host popu-
lations without being infectious or moving horizontally 
between individuals (Hoffmann & Turelli 1997). 

Although Wolbachia usually form non-virulent as-
sociations with their hosts (Sinkins et al. 1997), a viru-
lent strain of Wolbachia, wMelPop, has been described 
that reduces the adult life span of its natural fruit fly 
host Drosophila melanogaster (Min & Benzer 1997). 
This Wolbachia infection appears to be quiescent in the 
developing immature stages of the fruit fly but enters 
into a stage of massive over replication once adult flies 
emerge. The life-shortening phenotype induced by the 
wMelPop strain was predicted to have potential use in 
the control of mosquito-borne diseases. As most patho-
gens need to develop within the mosquito vector for 8-21 
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Malaria is a mosquito-borne infectious disease caused by Plasmodium parasites transmitted by the infectious 
bite of Anopheles mosquitoes. Vector control of malaria has predominantly focused on targeting the adult mosquito 
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based approach to reduce human malaria transmission through transinfection of Anopheles mosquitoes. 

Key words: malaria - Anopheles - Plasmodium - Wolbachia - transinfection



Wolbachia to control malaria • Thomas Walker, Luciano Andrade Moreira 213

days post-infection, removal of older mosquitoes from 
the population, which are responsible for the majority 
of transmission, may result in substantial reductions in 
disease transmission (Sinkins & O’Neill 2000, Brown-
stein et al. 2003, Rasgon et al. 2003, Cook et al. 2008). 
However, the major vectors of human diseases such as 
Anopheles species (malaria) and Aedes aegypti (dengue) 
do not harbour natural Wolbachia infections. Therefore, 
the primary aim of using Wolbachia for human disease 
control is the stable transinfection of the bacteria into 
medically important mosquito vectors. 

Wolbachia transinfection of Ae. aegypti mosquitoes - 
Successful transinfection of Wolbachia between distantly 
related insect species is dependent on the ability of the Wol-
bachia strain to adapt to new intracellular environments 
(Braig et al. 1994, Xi et al. 2005a). The wAlbB strain of 
Wolbachia was successfully established in Ae. aegypti us-
ing embryo cytoplasm transfer from closely related Aedes 
albopictus mosquitoes (Xi et al. 2005b). However, to facil-
itate the transfer of Wolbachia strains from more distantly 
related insect hosts, mosquito cell line adaptation appears 
to be critical for transinfection success. In order to facili-
tate the transfer of wMelPop from D. melanogaster fruit 
flies into Ae. aegypti mosquitoes, the bacteria was first 
transferred into mosquito cell lines to allow adaptation 
to the mosquito intracellular environment (McMeniman 
et al. 2008). After continuous serial passage in mosquito 
cell culture for over three years, the mosquito cell line-
adapted Wolbachia strain, wMelPop-CLA, was stably 
introduced into Ae. aegypti using embryo microinjection 
(McMeniman et al. 2009). Two Wolbachia-infected lines 
were generated after a period of experimental selection in 
early generations and both lines remain highly infected 
four years after establishment. 

The wMelPop-CLA strain results in approximately 
50% reduction in the adult lifespan of Ae. aegypti mos-
quitoes (McMeniman et al. 2009, Yeap et al. 2011). 
This reduction in adult lifespan of female mosquitoes is 
predicted to result in a significant reduction in dengue 
transmission, if the capacity for life-shortening under 
laboratory conditions can be translated into field set-
tings. Mosquito age is a critical factor for pathogen trans-

mission (Dye 1992) as pathogens such as Plasmodium 
parasites undergoes an extrinsic incubation period (EIP) 
within the mosquito. The EIP is the time required from 
the ingestion of the pathogen until it is transmitted to the 
next vertebrate host. The speed of Plasmodium devel-
opment within Anopheles mosquitoes depends on host, 
parasite and environmental factors such as temperature 
(Paaijmans et al. 2009). A typical incubation period of 
10-14 days is relatively long compared to the longevity 
of adult mosquitoes (Charlwood et al. 1997, Killeen et 
al. 2000). In addition, there is typically at least two days 
from adult eclosion until adult female mosquitoes take 
their first bloodmeal. Adult mosquitoes also experience 
a high daily mortality rate resulting in only a small per-
centage of the total population actually surviving long 
enough to transmit malaria (Brownstein et al. 2003). 
Therefore, a reduction in the daily survival rates is likely 
to remove a large proportion of the mosquito population 
capable of transmitting malaria. Currently the most ef-
fective malaria vector control strategies, including indoor 
residual insecticide sprays and long-lasting insecticide-
treated net, reduce the daily survival rates of Anopheles 
mosquitoes (Enayati & Hemingway 2010). Reducing the 
survival of mosquitoes leads to an approximately expo-
nential decline in transmission intensity (Bellan 2010). 
Consequently, transinfection of life-shortening strains 
of Wolbachia into Anopheles would be predicted to sig-
nificantly impact malaria transmission. 

Wolbachia-induced pathogen interference - In Droso-
phila, the wMelPop and closely related Wolbachia strains 
have the capability of protecting against RNA virus in-
fection by delaying the mortality of flies infected with a 
range of pathogenic viruses (Hedges et al. 2008, Teixeira 
et al. 2008). Wolbachia strains also provide significant 
pathogen protection in mosquitoes (Table). Infection of the 
wMelPop-CLA strain in Ae. aegypti also provides direct 
resistance against dengue infection (Moreira et al. 2009). 
When dengue serotype-2 (DENV-2) was introduced into 
wMelPop-CLA infected Ae. aegypti mosquitoes by either 
intrathoracic injection or oral feeding, an almost complete 
protection against viral infection was observed. The abil-
ity of wMelPop-CLA to interfere with viral replication 
also appears to occur with other arboviruses transmit-
ted by Ae. aegypti, with similar virus interference effects 
for Chikungunya virus in oral feeding experiments of 
wMelPop-CLA infected Ae. aegypti (Moreira et al. 2009). 
There is also further evidence that the wMelPop-CLA 
strain provides protection against both filarial nematodes 
(Kambris et al. 2009) and avian malaria parasites (Mo- 
reira et al. 2009) suggesting some Wolbachia strains may 
inhibit a broad range of human pathogens. 

As viral interference is not ubiquitous among Wolba-
chia strains (Moreira et al. 2009, Osborne et al. 2009) the 
mechanisms behind the ability of Wolbachia to provide 
resistance against pathogens are unknown. Although 
immune effector genes are upregulated in wMelPop-
CLA infected Ae. aegypti mosquitoes, key components 
of the currently accepted signalling pathways for these 
effectors do not appear to be transcriptionally modu-
lated by Wolbachia (Moreira et al. 2009, Kambris et al. 
2010). Previous studies also revealed that some genes 

Wolbachia-induced cytoplasmic incompatibility in mosquitoes. The 
crossing patterns result in unhatched eggs when a Wolbachia-infected 
male mosquito mates with an uninfected female mosquito. Wolba-
chia-infected females produce infected progeny in all matings allow-
ing the infection to rapidly spread through mosquito populations.
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from the Toll, Imd and Jak-STAT pathways, implicated 
in the control of RNA virus infection in insects (Huszar 
& Imler 2008) are differentially regulated in Ae. aegypti 
mosquitoes infected with dengue (Xi et al. 2008). The 
ability of the wMelPop-CLA strain to provide dengue 
virus protection may also be dependent on competition 
for essential host cell components, as DENV-2 infection 
was only observed in cells of wMelPop-CLA infected 
mosquitoes that did not harbour Wolbachia (Moreira et 
al. 2009). Interestingly, cholesterol is a key fatty acid 
that is obtained from the insect host cell by both Wolba-
chia (Lin & Rikihisa 2003, Wu et al. 2004) and arbovi-
ruses (Lu et al. 1999, Mackenzie et al. 2007). In addition, 
Plasmodium is dependent on host lipids in the mosquito 
stage (Atella et al. 2009), suggesting cholesterol could be 
a critical host nutrient required by both Wolbachia and 
mosquito-borne pathogens. 

The density and tissue distribution of Wolbachia infec-
tions in insect hosts may be an important determinant of 
their ability to interfere with pathogens. Wolbachia strains 
that provide protection in Drosophila simulans are closely 
related to the wMelPop strain in D. melanogaster and are 
found at comparatively high densities in flies (Osborne 
et al. 2009). The closely-related non-virulent wMel strain 
also provides significant protection against DENV-2 in 
transinfected Ae. aegypti mosquitoes resulting in com-
plete blockage of dengue transmission under experimen-
tal conditions (unpublished observations). Interestingly, 
strains of Wolbachia that naturally reside in mosquitoes 
show no or very limited capability for virus protection. 
Ae. albopictus mosquitoes are infected with non-virulent 
wAlbA and wAlbB strains of Wolbachia (Sinkins et al. 
1995) yet are competent vectors of dengue virus (Kyle & 
Harris 2008). Similarly, Armigeres subaltatus mosquitoes 

are infected with a Wolbachia strain but no evidence is 
seen for interference with Japanese encephalitis virus 
(Tsai et al. 2006). Aedes fluviatillis mosquitoes are in-
fected with a strain of Wolbachia, named wFlu, despite 
being competent laboratory vectors of Plasmodium gal-
linaceum (Moreira et al. 2009). Recently the native wPip 
strain of Wolbachia in Culex quinquefasciatus was shown 
to have some protective effect against West Nile virus 
(Glaser & Meola 2010). However, this effect was much 
less pronounced when compared to the effects on dengue 
virus for transinfected fruit fly Wolbachia strains in Ae.  
aegypti (T Walker et al., unpublished observations). Over-
all it appears that the ability of Wolbachia to generate 
pathogen interference is likely to be restricted to Wolba-
chia strains that grow to high densities and have a wide 
tissue tropism in their insect host. 

Wolbachia transinfection of Anopheles mosquitoes - 
The use of Wolbachia for malaria control will require a 
stable infection that is transmitted vertically to offspring, 
as occurs with fruit fly Wolbachia strains transinfected 
into Ae. aegypti mosquitoes (McMeniman et al. 2009,  
T Walker et al., unpublished observations). Natural Wol-
bachia infections had never previously been detected in 
any species of Anopheles (Curtis & Sinkins 1998, Kit-
tayapong et al. 2000, Ricci et al. 2002, Tsai et al. 2004, 
Slotman et al. 2005). However, Wolbachia-positive in-
dividuals have recently been found in some species of 
Anopheles from the Amazon region (RA Passos & WP 
Tadei, personal communication). Further studies on this 
finding can greatly open the potential use of this meth-
odology for malaria control.

The challenging nature of mosquito microinjection 
has hampered the progress in transferring Wolbachia 
between mosquito species. The transfer of Wolbachia 

TABLE
Wolbachia-induced pathogen protection in mosquitoes

Wolbachia strain Mosquito species Pathogen inhibited

wMelPop-CLA Anopheles gambiaea Plasmodium berghei
Kambris et al. (2010)

Plasmodium falciparum
Hughes et al. (2011)

wMelPop-CLA Aedes aegypti Plasmodium gallinaceum
Dengue

Chikungunya
Moreira et al. (2009)

Brugia pahangi
Kambris et al. (2009)

wAlbB Aedes aegypti Dengue
Bian et al. (2010) 

wMel Aedes aegypti Dengue
T Walker et al., unpublished observations

wPip Culex quinquefasciatus West Nile virus
Glaser and Meola (2010)

a: adult female mosquitoes were transiently infected through intrathoracic injection of Wolbachia. Transinfected (wMelPop-CLA,  
wMel and wAlbB) and a natural strain (wPip) of Wolbachia have been shown to directly inhibit pathogens in mosquitoes includ-
ing two strains of Plasmodium parasites. 
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into mosquito embryos is intrinsically more difficult 
than transfer into Drosophila, since mosquito embryos 
are less amenable to inoculation, especially Anopheles 
embryos. Factors such as the age at the time of injec-
tion and desiccation level are especially critical for both 
injectability and survival of Anopheles embryos. Using 
Wolbachia-infected mosquito cell lines, the generation 
of a stably infected line was not been possible despite 
microinjection of approximately 10,000 embryos of the 
malaria vectors Anopheles stephensi and Anopheles fa-
rauti (unpublished observations). 

Wolbachia strains can be maintained in vitro in im-
munocompetent Anopheles gambiae cell lines (Rasgon 
et al. 2006, McMeniman et al. 2008), suggesting there is 
no intrinsic genetic mechanism preventing the infection 
of Anopheles cells with Wolbachia. In addition, when the 
wMelPop strain was injected into the hemolymph of An. 
gambiae adult females, the bacteria were able to survive 
and replicate in somatic tissues (Jin et al. 2009). Howev-
er, the infection was not present in germline tissue (ova-
ries) so a stable transinfection could not be established 
using this methodology. The reason why Wolbachia 
does neither naturally infect Anopheles species nor form 
a stable infection is unknown. The ability to generate 
transient somatic infections through injection of adult 
mosquitoes (Jin et al. 2009, Kambris et al. 2010, Hughes 
et al. 2011) suggests the possibility that Wolbachia may 
be unable to colonize the germline tissue (ovaries). Suc-
cessful transinfection requires infection of the germline 
prior to pole-cell formation in the pre-blastoderm stage 
of embryo development. Maternal transmission of Wol-
bachia to resulting progeny is dependent on establish-
ing infections in the ovaries of adult females. Ultimately 
this barrier to germline infection must be overcome to 
establish stably infected lines that could be deployed for 
malaria vector control strategies. A recent additional 
study shows Plasmodium falciparum development in 
An. gambiae is surpressed by transient somatic infec-
tions of wMelPop-CLA (Hughes et al. 2011).

Wolbachia’s effect on Plasmodium - Several studies 
present evidence that Wolbachia is likely to provide some 
protection against human malaria Plasmodium parasites 
if stable transinfection of Anopheles is achieved. The ef-
fect of the wMelPop-CLA strain on P. gallinaceum was 
tested as this species of malaria parasite is known to be 
able to infect Ae. aegypti mosquitoes in the laboratory. 
The P. gallinaceum oocyst load was reduced by 67-88% 
for wMelPop-CLA infected Ae. aegypti mosquitoes 
compared to Wolbachia-uninfected mosquitoes seven 
days after feeding on an infected chicken (Moreira et 
al. 2009). In An. gambiae females transiently infected 
with wMelPop using adult injection, mean Plasmodium 
berghei levels were reduced by 75-84% (Kambris et al. 
2010). Although this combination of vector/parasite does 
not occur in nature, these results do highlight the ability 
of Wolbachia to significantly reduce the levels of ma-
laria parasites in Anopheles mosquitoes. 

Wolbachia invasion of wild Anopheles mosquito popu-
lations - An introduced Wolbachia infection in Anopheles 
mosquitoes would require induction of the CI phenotype 

and high rates of maternal transmission to successfully 
invade wild populations. The wMelPop and wMel strains 
induce CI in transinfected Ae. aegypti mosquitoes (Mc- 
Meniman et al. 2009, T Walker et al., unpublished obser-
vations), suggesting this phenotype would be induced in 
stably infected Anopheles lines. The maternal transmis-
sion rate of wMelPop-CLA in Ae. aegypti is estimated 
to be above 99% in laboratory lines (McMeniman et al. 
2009), suggesting a high infection frequency could be 
achieved in transinfected Anopheles lines. The potential 
of Wolbachia to rapidly spread through insect popula-
tions under the action of CI was spatially described by 
Turelli and Hoffmann (1991) in wild D. simulans popula-
tions in California with the wRi strain rapidly spreading 
at a rate of 100 km per year. This rapid spread of Wolba-
chia through wild Drosophila populations was described 
as a “Bartonian wave” (Turelli & Hoffmann 1991). The 
ability of any Wolbachia strain to successfully invade 
wild Anopheles mosquito populations will depend on an 
unstable threshold infection level. This unstable point de-
pends on the negative selection imposed by fitness costs 
of Wolbachia infection and positive selection associated 
with CI induction (Hoffmann & Turelli 1997, Turelli 
2010). If the threshold infection frequency is reached 
through introduction at an initial prevalence greater than 
the unstable equilibrium value, the Wolbachia infection 
is expected to spread to fixation over subsequent genera-
tions (Hoffmann & Turelli 1997, Turelli 2010). 

Any fitness costs imposed by Wolbachia will raise 
the unstable point slowing the spread of infection through 
the “Bartonian wave” of invasion. The likely fitness costs 
associated with the stable introduction of the wMelPop-
CLA strain into Anopheles will make this strain relative-
ly weak at spreading into mosquito populations. Alterna-
tive Wolbachia strains such as wMel that are predicted to 
impose less of a fitness cost to transinfected Anopheles 
mosquitoes are likely to be more successful at invasion of 
wild mosquito populations. The minimal fitness costs of 
Wolbachia infection are critical given the importance of 
mosquito fitness on the ability of released mosquitoes to 
compete with wild populations. A major advantage of a 
Wolbachia-based biocontrol approach for malaria is that 
CI acts as a self-spreading mechanism for Wolbachia to 
rapidly invade populations from the release of relatively 
small numbers of individuals. The predicted direct in-
hibition of human Plasmodium parasites by Wolbachia 
may also augment CI as a broad based mechanism for 
population invasion to provide a positive fitness benefit 
to Anopheles mosquitoes carrying Wolbachia. This may 
overlay the traditional “Bartonian” view of CI based in-
vasion dynamics and provide an additional driving force 
for Wolbachia depending on the extent of fitness advan-
tages conferred to field populations.

Ultimately the use of Wolbachia for malaria con-
trol will require stably infected lines of major malaria 
vectors such as An. gambiae s.l. (Africa), An. stephensi 
(India) and An. darlingi (Central and South America) 
and a comprehensive assessment of the protective effect 
against human malaria parasites such as P. falciparum 
and P. vivax. The applied use of Wolbachia for malaria 
control would also require significant characterization 
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of Wolbachia’s phenotypic effects in diverse genetic 
background of these Anopheles vector species. In reality, 
widespread control of malaria using Wolbachia-based 
methods is not likely achievable. For example, the diffi-
culties of colonizing An. darlingi (and therefore transin-
fecting this species with Wolbachia) would prevent the 
applied use of Wolbachia for control of malaria in parts 
of the Amazonian region. In that case, transinfection 
of colonisable species such as Anopheles aquasalis (Da 
Silva et al. 2006) would provide applicability in areas 
where this species has vectorial importance. 

Lastly, one has to be aware that the complexity of 
malaria vector populations (Lanzaro et al. 1998, Don-
nelly et al. 2002) would be a major complicating fac-
tor in the applied use of Wolbachia for malaria control. 
However, this novel approach may provide an effective 
mechanism of malaria control in some malaria endemic 
areas in which a single, vector species is present. 
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