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Betulinic acid (BA) is a lupane-type triterpene with a number of biological activities already reported. While
potent anti-HIV and antitumoral activities were attributed to BA, it is considered to have a moderate anti-
inflammatory activity. Here we evaluated the effects of BA in a mouse model of endotoxic shock. Endotoxemia
was induced through intraperitoneally LPS administration, nitric oxide (NO) and cytokines were assessed by
Griess method and ELISA, respectively. Treatment of BALB/c mice with BA at 67 mg/kg caused a 100% survival
against a lethal dose of lipopolysaccharide (LPS). BA treatment caused a reduction in TNF-α production induced
by LPS but did not alter IL-6 production.Moreover, BA treatment increased significantly the serum levels of IL-10
compared to vehicle-treated, LPS-challenged mice. To investigate the role of IL-10 in BA-induced protection,
wild-type and IL-10−/− mice were studied. In contrast to the observations in IL-10+/+ mice, BA did not protect
IL-10−/− mice against a lethal LPS challenge. Addition of BA inhibited the production of pro-inflammatory
mediators by macrophages stimulated with LPS, while promoting a significant increase in IL-10 production.
BA-treated peritoneal exudate macrophages produced lower concentrations of TNF-α and NO and higher con-
centrations of IL-10 upon LPS stimulation. Similarly, macrophages obtained from BA-treated mice produced
less pro-inflammatory mediators and increased IL-10 when compared to non-stimulated macrophages obtained
from vehicle-treatedmice. In conclusion, we have shown that BA has a potent anti-inflammatory activity in vivo,
protecting mice against LPS by modulating TNF-α production by macrophages in vivo through a mechanism
dependent on IL-10.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Betulinic acid (3β-hydroxy-lup-20(29)-en-28-oic acid; BA), a C-30
carboxylic acid derivative of the ubiquitous triterpene betulin, is a
member of the class of lupane-type triterpenes. The molecule is
abundant in the plant kingdom and has been isolated from several
plant species, including Zizyphus joazeiro [1], Syzigium clariflorum [2],
andDoliocarpus schottianus [3]. A number of reports have showndiverse
biological activities of BA, such as anticancer [4], anti-HIV, anti-HSV-1 [5],
anti-HBV [6], antihelmintic [6], antinociceptive [7], and antiplasmodial
[1,8]. Of particular interest, in view of the large prevalence of chronic
inflammatory-degenerative diseases, is the BA anti-inflammatory
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activity [9,10]. However, in a number of in vitro and in vivo models of
inflammation, the intensity of the BA anti-inflammatory activity has
been considered only moderate (reviewed by [5]).

Sepsis is one of the most frequent complications in surgical patients
and one of the leading causes of mortality in intensive care units. Severe
sepsis is an important cause ofmortality worldwide, and is estimated as
directly responsible for 9% of all deaths in the United States [11]. It is de-
fined as an infection-induced syndrome characterized by a generalized
inflammatory state and can be caused by infection with Gram-
negative or Gram-positive bacteria, fungi, or viruses. Sepsis can also
occur in the absence of detectable bacterial invasion and, in these
cases, microbial toxins (lipopolysaccharide; LPS) and endogenous
cytokines have been implicated as initiators and mediators of the
condition [12].

Macrophage activation by LPS results in the release of several
inflammatory mediators, including proinflammatory cytokines such as
tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6, IL-8, and IL-12,
ctivity of betulinic acid treatment in amodel of lethal endotoxemia, Int
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Fig. 1. Molecular structure of betulinic acid.
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as well as nitric oxide. The exacerbated production of these mediators
by activated macrophages are the main cause of the deleterious conse-
quences of septicemia or endotoxemia, and may lead to hypotension,
disseminated intravascular coagulation, neutrophil extravasation to tis-
sues, tissue hypoxia, and death. Conversely, IL-4, IL-10 and IL-13 may
function as anti-inflammatory cytokines, modulating macrophage and
monocyte responses and inhibiting the production of TNF-α, IL-1, and
IL-8 [11–13]. The discovery of new agents capable of down-modulating
the production of the inflammatory mediators that play key roles in
the installation of sepsis is therefore of great interest for the development
of effective treatments. Since BA has been shown to inhibit the TNF-α-
induced activation of NF-κB [14], in this workwe investigated the effects
of BA in a mouse model of endotoxic shock and on the production of
cytokines by activated macrophages.
2. Materials and methods

2.1. General experimental procedures

Meltingpointswere determinedusing aGeahakamodel PF1500 ver-
sion 1.0 apparatus and were not corrected. The NMR spectra were ac-
quired on a Varian System 500 spectrometer, equipped with a
XW4100 HP workstation. High-resolution mass spectra were recorded
on a microTOF spectrometer (LC-ITTOF model 225–07 100–34, Bruker)
with positive ionization modes of the ESI source. Silica gel 60 (Merck)
was used for column chromatography, and Si gel 60 PF254 (Merck)
Fig. 2. Survival curve of mice treated with betulinic acid and submitted to endotoxic shoc
vehicle (5% DMSO in saline) and challenged with LPS 90 min later, intraperitoneally adminis
experiment of two replicates performed. *P b 0.05 compared to vehicle group. Statistical analy
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was used for purification of compounds by preparative TLC. All solvents
used were analytical grade (Merck).

2.2. Plant material

Tabebuia aurea (Manso) S.Moorewas collected inMarch 2002 in the
surroundings of São João do Cariri, State of Paraíba, Brazil, and identified
by botanist Dr. Maria de Fátima Agra of the Universidade Federal da
Paraíba. A Voucher specimen (Agra 2337) is deposited at the Herbarium
Prof. Lauro Pires Xavier (JPB), Universidade Federal da Paraíba.

2.3. Extraction and isolation of betulinic acid

Five kg of air-dried ground bark of Tabebuia aurea (Manso) S. Moore
were exhaustively extracted with 95% ethanol. The solvent was
evaporated to yield a dark syrup residue (167 g, 3.3%), which was
partitioned with water and successively treated with hexane, chloro-
form, ethyl acetate and n-butanol, yielding 8.5 g (0.2%), 4.1 g (0.08%),
6.2 g (0.13%) and 74 g (1.5%), respectively. The chloroform residue was
also subjected to column chromatography over silica gel, and eluted
with a chloroform-hexane gradient. Seventy five 100-mL fractions
were collected, after analysis by TLC silica gel-60 F254 developed with
either I2 reagent. Combined fractions 41–50 were rechromatographed
on CC column silica gel (with a chloroform-methanol gradient) to afford
pure betulinic acid (BA) (0.015 g, 0.0003%; Fig. 1). Identification of the
betulinic acid was performed by analyzing 1H e 13C NMR spectral data
and high-resolution mass spectra compared with those published in
the literature [1,15].

2.4. Animals

Male 4- to 6-week old BALB/c, wild-type C57BL/6, and IL-10−/−

C57BL/6micewere used. Allmicewere raised andmaintained at the an-
imal facilities of the GonçaloMoniz Research Center, Fundação Oswaldo
Cruz, Salvador, Brazil, in roomswith controlled temperature (22±2 °C)
and humidity (55 ± 10%) and continuous air renovation. Animals were
housed in a 12 h light/12 h dark cycle (6 am–6 pm) and provided with
rodent diet and water ad libitum. All mice, when necessary, were sub-
jected to euthanasia and treated according to theOswaldo Cruz Founda-
tion guidelines for laboratory animals. The work had prior approval by
the institutional Ethics Committee in Laboratory Animal Use.

2.5. Endotoxic shock model

Groups of 11 BALB/c or C57BL/6 mice were used for the lethality as-
says and groups of 6 BALB/c mice were used for in vivo cytokine studies.
k. Male BALB/c mice (n = 11) were treated with betulinic acid (33 and 67 mg/kg) or
tered. Survival was monitored during 96 hours after LPS challenge. Results are from one
sis was carried out using Logrank (Mantel Cox).
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Fig. 3. Assessment of cytokine production after bacterial lipopolysaccharide (LPS) chal-
lenge. BALB/c mice (6 animals per group) were injected intraperitoneally with betulinic
acid (BA, 67 mg/kg), dexamethasone (Dexa, 0.5 mg/kg) or vehicle (5% DMSO in saline),
90 min prior to intraperitoneal LPS administration. The mice were sacrificed 90 min
later, to collect sera for assessment of TNF-α (A), IL-10 (B), and IL-6 (C), by ELISA. Values
represent the means ± SEM of six determinations obtained in one of two experiments
performed. *P b 0.05, ***P b 0.001 compared to untreated group stimulated with LPS.
ANOVA followed by Newman-Keuls multiple comparison test.

Fig. 4. Survival curve of IL-10+/+ and IL-10−/− mice treated with betulinic acid and
submitted to endotoxic shock. Groups of male IL-10+/+ and IL-10−/− C57BL/6 mice
(n = 11) were treated with betulinic acid (67 mg/kg) or vehicle (5% DMSO in saline)
and challenged with intraperitoneal LPS administration 90 min later. Survival was
monitored during 96 hours after LPS challenge. Results are from one of two experiments
performed. *P b 0.05 compared to IL-10+/+ vehicle group. Statistical analysis was carried
out using Logrank (Mantel Cox).
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Micewere treated with BA at different doses (see figure legends), dexa-
methasone (0.5 mg/kg, Sigma-Aldrich, St. Louis, MO) or vehicle (5% of
DMSO in saline), by the intraperitoneal (i.p.) route. Ninety minutes
later, animals were challenged with 600 μg of LPS (LPS from serotype
0111:B4 Escherichia coli, Sigma-Aldrich; previously determined
LD90–100 = 42.8 mg/kg) in saline by the i.p route. Mice weremonitored
daily for 4 days. To evaluate the serum cytokine levels, mice were anes-
thetized with a combination of ketamine (100 mg/kg) and xilazine
(10 mg/kg), 60 min after injection of 600 μg of LPS, for blood collection
via the brachial plexus. Serum samples were immediately used or
stored at−80 ° C until use.
Please cite this article as: Oliveira Costa JF, et al, Potent anti-inflammatory a
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2.6. Macrophage cell cultures

Peritoneal exudate cells were obtained by washing, with cold
Dulbecco's modified Eagle's medium (DMEM; Life Technologies,
GIBCO-BRL, Gaithersburg, MD), the peritoneal cavity of mice 4–5 days
after injection of 3% thioglycolate in saline (1.5 mL per mouse). Cells
were washed twice with DMEM, resuspended in DMEM supplemented
with 10% fetal bovine serum (Cultilab, Campinas, Brazil) and 50 μg/mL
of gentamycin (Novafarma, Anápolis, Brazil), and plated in 96-well tis-
sue culture plates at 2 × 105 cells per 0.2 mL per well. After 2 hours of
incubation at 37 ° C, non-adherent cells were removed by two washes
with DMEM. Macrophages were then treated with LPS (500 ng/mL) in
the absence or presence of BA (10 or 20 μM) or dexamethasone
(20 μM), and incubated at 37 ° C. Cell-free supernatants were collected
4 or 24 h after incubation and kept at −80 ° C for cytokine and nitric
oxide determinations.

To assess cytokine production by resident macrophages, groups of
male BALB/c mice were injected with BA (67 mg/kg), dexamethasone
(0.5 mg/kg) or 5% of DMSO in saline, by the i.p. route. After 90 min,
the mice were subjected to euthanasia for macrophage collection by
means of peritoneal wash using cold DMEM. Cells were washed twice
with DMEM, resuspended in DMEM supplemented with 10% fetal
bovine serum and 50 μg/ml of gentamycin, and plated in 96-well tissue
culture plates at 2 × 105 cells per 0.2 mL per well. After 2-hour incuba-
tion at 37 ° C, non-adherent cells were removed by twomedium chang-
es. Macrophages were then stimulated or not with LPS (500 ng/mL), as
indicated in the text and figure legends and further incubated at 37 ° C
and 5% CO2. Cell-free supernatants were collected 4 and 24 h after incu-
bation for cytokines and nitric oxide measurement.

2.7. Measurement of cytokines and nitric oxide concentrations

TNF-α, IL-6, and IL-10 concentrations in serumsamples or in superna-
tants frommacrophage cultures, were determined by enzyme-linked im-
munosorbent assay (ELISA), using the DuoSet kit from R&D Systems
(Minneapolis, MN), according to the manufacturer's instructions. After
incubation with a streptoavidin-peroxidase conjugate (Sigma-Aldrich),
the reactionwas developed usingH2O2 and 3,3,5,5-tetramethylbenzidine
(Sigma-Aldrich) and the absorbance to 450 nm-wave length light read in
a spectrophotometer. Quantification of nitric oxide was done indirectly
through determination of nitrite concentrations 24 h after incubation,
using the Griess method [16].
ctivity of betulinic acid treatment in amodel of lethal endotoxemia, Int
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2.8. Statistical analyses

The statistical analysis of the differences in survival curveswasmade
using the Logrank test. Comparisons among the experimental groups
were performed by one-way analysis of variance and Newman-Keuls
multiple comparison tests using Graph Pad Prism version 5.01 (Graph
Pad Software, San Diego, CA). Differences were considered significant
when the values of P were b 0.05.

3. Results

To investigate the effects of BA on endotoxic shock, groups of BALB/c
mice were treated with the compound or vehicle (5% of DMSO in saline)
and challengedwith a lethal dose of LPS. Treatmentwith 67mg of BA per
kg induced protection to 100% of the animals (Fig. 2). BA at a lower dose
(33 mg/kg) did not protect mice against the lethal LPS challenge and at
the end of the observed period (four days), only 18% of animals were
alive, similar to the vehicle-treated group. Dexamethasone, a control
antiinflammatory drug, protected 83% at 0.5 mg/kg. Animals from all
groups displayed signs of shock, such as piloerection, shivering, and
lethargy.

To further investigate the effects of BA administration on endotoxemia,
we measured the serum levels of cytokines in BA-treated animals after
LPS challenge. Treatment with 67 mg of BA per kg decreased the TNF-α
concentration significantly, when compared to treatment with vehicle,
in LPS challenged mice, although less than dexamethasone, the refer-
ence drug (Fig. 3A). In contrast, the IL-10 concentrationwas significant-
ly higher in animals treated with BA and challenged with LPS (Fig. 3B)
than in vehicle-treated, LPS-challenged mice. The dexamethasone
Fig. 5. Assessment of nitric oxide and cytokine production by peritoneal macrophages treated i
were determined in peritoneal macrophages treated or not with BA (10 or 20 μM) or dexameth
were then collected for nitrite quantification by the Griessmethod and cytokinemeasurement b
experiments performed. **P b 0.01, ***P b 0.001 compared to untreated cultures stimulated w
comparison test.
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treatment did not increase the production of IL-10 when compared to
vehicle-treated mice (Fig. 3B). The concentration of IL-6 following LPS
challenge was significantly reduced only by treatment with dexameth-
asone (Fig. 3C).

To evaluate the role of IL-10 in the BA-induced protection against
LPS challenge, we carried out a lethality experiment using IL-10-
deficient and wild-type C57BL/6 mice. IL-10−/− mice treated with BA
had an elevated mortality rate after LPS challenge, similar to vehicle-
treated IL-10−/− mice. In contrast, the IL-10+/+ control mice were
significantly protected against the LPS challenge by the BA treatment
(Fig. 4).

To assess the effects of BA on macrophages, we first measured nitric
oxide levels in cultures of peritoneal exudate macrophages. Incubation
of macrophages with BA (10 or 20 μM), or with dexamethasone
(20 μM), significantly inhibited nitric oxide production induced by LPS
stimulation, compared to LPS-stimulated untreated cultures (Fig. 5A).
We next evaluated the effects of BA on TNF-α, IL-6 and IL-10 produc-
tion. BA significantly decreased the production of TNF-α and modestly
of IL-6, whereas dexamethasone significantly inhibited both cytokines
(Fig. 5B and C). In contrast, a significant increase in IL-10 concentration
was observed in BA-treated cultures (20 μM) compared to LPS-
stimulated untreated cultures (Fig. 5D)whichwas not observed inmac-
rophage cultures treated with dexamethasone.

Finally, the effects of in vivo treatment with BA on macrophages
were evaluated. For this purpose, nitric oxide and TNF-α, IL-6 and IL-10
were measured on resident macrophages from animals previously
treated with BA. As revealed in Fig. 6, treatment with 67 mg/Kg of BA
significantly reduced nitric oxide (Fig. 6A) and TNF-α (Fig. 6B) relative
to the LPS-stimulated vehicle-treated cultures. A reduction of IL-6 levels
n vitrowith betulinic acid. Concentrations of nitrite (A), TNF-α (B), IL-6 (C) and IL-10 (D)
asone (20 μM) in the presence of LPS (500 ng/mL) during 4 or 24 h. Cell-free supernatants
y ELISA. Values represent themeans± SEM of four determinations obtained in one of two
ith LPS. # P b 0.01 compared to BA 20 μM; ANOVA followed by Newman-Keuls multiple
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Fig. 6. In vivo treatmentwith betulinic acid (BA) decreases nitric oxide and TNF-α production and increases IL-10 production by LPS-stimulatedmacrophages. BALB/c mice (6 animals per
group) were treated with BA (67 mg/kg), dexamethasone (Dexa; 0.5 mg/kg) or vehicle (5% DMSO in saline) and, after 90 min, were euthanized to harvest resident peritoneal
macrophages. Cells were cultured in 96-well plates in the presence or absence of LPS (500 ng/mL) and, after 4 or 24 h, cell-free supernatants were collected. Concentrations of nitrite
(A), TNF-α (B), IL-6 (C) and IL-10 (D) were obtained throw Griess method and cytokines measurement by ELISA respectively. Values represent the means ± SEM of six determinations ob-
tained in 1 of 2 experiments performed. *** Pb 0.001 compared tomacrophages stimulatedwith LPS fromvehicle-treated group; ANOVA followed byNewman-Keulsmultiple comparison test.
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was observed in macrophages derived from dexamethasone-treated,
but not from BA-treated mice (Fig. 6C). In contrast, IL-10 production
was significantly increased inmacrophages obtained frommice treated
with BA or dexamethasone.

4. Discussion

Sepsis, a life-threatening clinical condition, is associated with an
overproduction of cytokines, including tumor necrosis factor and
interleukins, as well as increased expression of adhesion molecules, as
a result of stimulation by pathogenic agents or endotoxins [17]. Interac-
tion between these various cytokines results in the activation of a cas-
cade reaction that triggers an excessive inflammation, being a major
cause of organ failure [18]. Recent studies have made considerable
progress on antibiotic therapies and critical care techniques for sepsis
treatment [19]. However, little progress was done about the anti-
inflammatory treatment of sepsis.

Here we demonstrated the protective effects of BA, a triterpenoid
found inmany plant species, in amousemodel of endotoxemia. Admin-
istration of BA (67 mg/kg) prevented themortality against a lethal dose
of LPS. This protection followed the suppression of TNF-α production,
one of the main soluble mediators involved in several aspects of the
pathophysiology of endotoxemia. Altogether, our data demonstrate a
potent in vivo anti-inflammatory activity of BA.

IL-10, a cytokine with potent anti-inflammatory properties, inhibits
LPS-induced TNF-α release in vitro [20] and in vivo, and protects mice
against lethal endotoxemia [21]. An increase in the levels of serum IL-10
was observed in mice treated with BA, suggesting an important role of
Please cite this article as: Oliveira Costa JF, et al, Potent anti-inflammatory a
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this cytokine in BA-induced protection. To confirm this hypothesis, we
carried out an experiment using wild-type and IL-10−/− C57BL/6
subjected to LPS-induced endotoxemia. Differing from wild-type mice,
IL-10−/− mice treated with BA had an elevated mortality rate after
LPS challenge, suggesting a role for IL-10 in the protection against lethal
endotoxemia conferred by BA. However, the fact that BA modulates
IkBα phosphorylation [22] suggests that its action on TNF-α inhibition
may also be related to alterations in signaling pathways, such as
NF-kB activation.

A previous report has shown that BA inhibits the expression of cyclo-
oxygenase 2 (COX-2) expression in cultures of human peripheral blood
mononuclear cells, leading to a decrease in PGE2 production [22]. The
increase in IL-10 induced by BA described in our study may be related
to the inhibition of PGE2 production, another inflammatory mediator
in LPS-challengedmice, since IL-10 is known to inhibit COX2 expression
by LPS-stimulated monocytes [23]. Thus, we are establishing the role of
another molecule involved in the anti-inflammatory activity produced
by BA.

Since lethal endotoxemia results from an undesirable overproduc-
tion of cytokines by activated mononuclear phagocytes, we carried out
in vitro experiments aiming to observe the effects of BA treatment in
LPS-activated macrophages. Thus, addition of BA to macrophage cul-
tures inhibited the production of inflammatory mediators, such as NO
and TNF-α, and increased IL-10 production, in agreement with to our
in vivo findings. These data were also confirmed using macrophages
harvested from mice previously treated with BA. Altogether, our data
indicate that BA-induced IL-10 production by macrophages suggests a
role of this anti-inflammatory cytokine in the protection against lethal
ctivity of betulinic acid treatment in amodel of lethal endotoxemia, Int
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LPS challenge. The mechanisms leading to the increase in IL-10 produc-
tion induced by BA remain still to be determined.

In contrast to the inhibition of TNF-α, BA did not significantly affect
IL-6 production induced by LPS. IL-6 is a pleiotropic cytokine with both
pro and anti-inflammatory actions. Although a number of agents, in-
cluding dexamethasone, cause the down-modulation of both TNF-α
and IL-6, selective inhibition of TNF-αmay occur. In fact, a previous re-
port has shown that a vasoactive sandfly peptide (maxadilan) exerts its
anti-inflammatory action by a mechanism dependent on IL-6 [24].

A number of natural compounds have immunomodulatory activity
in experimental models of LPS-induced endotoxemia, where TNF-α
plays an important effector role [25,26]. Plant-derived polyphenols,
alkaloids, terpenes, sterols, and fatty acids are reported in literature as
inhibitors of TNF-α signaling [26], and may exert protective effects in
endotoxemia. Physalins B, F and G, which are seco-steroids isolated
from Physalis angulata, are examples of natural compounds with TNF-
α suppressing activity which are able to prevent LPS-induced lethality
[13]. BA, however, is a well-studied molecule that has originated a
new class of antiretroviral drugs, named inhibitors of maturation and
which has been evaluated in phase II clinical studies [27]. In addition,
BA is a very well tolerated drug and its use is safe in doses higher than
500 mg/kg, according to studies on antineoplastic activity [5,28,29].
Indeed, the anti-inflammatory activity of BA should be taken into
consideration in the context of the antineoplastic therapy.

4.1. Conclusion

The present findings reinforce the potential of BA, a natural com-
pound as an anti-inflammatory drug candidate consider the role of
IL-10 as another important mediator involved in the immune regula-
tion produced by the drug and indicate the carrying out of future clinical
evaluations involving BA effect on severe sepsis.
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