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Abstract
A challenge faced while monitoring the COVID-19 pandemic in Brazil is the identification of patterns of incidence and
mortality, which can help prioritize interventions to avoid excessive disease transmission and associated deaths. This study
aimed to identify epidemiological patterns concerning the evolution of the pandemic among Brazilian federal units (states).
The proposed methodology is based on a combination of non-hierarchical k-means clustering and dynamic time warping
(DTW), used to measure distances among time series, with the subsequent use of the DTW Barycenter Averaging (DBA)
algorithm to calculate cluster centroids for time series of variable lengths. The dataset used is a time series consisting of
the number of new cases and deaths per epidemiological week, and the number of cumulative cases and deaths until a
given epidemiological week for each of the 27 Brazilian federal units. Six groups of Brazilian federation units were formed
based on the similarities between the prevalence and incidence curves. The results demonstrate efficiency with respect to the
characterization of both COVID-19 cases and rates of mortality.
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1 Introduction

In Brazil, the COVID-19 pandemic began on February 26,
2020, following the first case notification in state of São
Paulo [1]. During the first 105 epidemiological weeks fol-
lowing the introduction of SARS-CoV2, approximately three
waves occurred, characterized by periods of growth, fol-
lowed by stabilization and then decreasing numbers of cases
and deaths [2, 3]. The first wave associated with the vari-
ant of concern Alpha occurred between epidemiological
weeks 9 (23/02/2020 to 29/02/2020) and 45 (01/11/2020
to 07/11/2020). The second wave, more pronounced than
its predecessor, as a result of the Gama variant, the intro-
duction of the Delta variant and more frequent social
gatherings coinciding with end-of-year celebrations and
relaxed masking mandates, occurred between epidemiologi-
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cal weeks 46 (08/11/2020 to 14/11/2020) and 51 (19/12/2021
to 25/12/2021). A thirdwavewas observed between epidemi-
ological weeks 52 (26/12/2021 a 01/01/2022) in 2021 and 8
(20/02/2022 a 26/02/2022) in 2022, during which time the
Omicron variant predominated [2, 4]. The greater transmis-
sion capability of this variant caused an alarming impact in
the number of cases and deaths within the context of belated
vaccination efforts around the country, which were initiated
on January 17, 2021.

The present study considers the COVID-19 pandemic
period between 25/02/2020 and 01/01/2022, during which
more than 22.2 million cases were confirmed in Brazil, lead-
ing to approximately 620,000 deaths, according to available
data by [5]. The study aims to identify epidemiological pat-
terns among the states in an attempt to better understand
related factors and provide support for the adoption of timely
preventive measures by health authorities. More comprehen-
sive knowledge on the impact of the COVID-19 pandemic is
of great interest to both government as well as civil society
notorious. Multivariate clustering methods, also known as
unsupervised machine learning algorithms, are an important
tool to aid in the grouping of similar data. In particular, the
aggregation of observations in accordancewith characteristic
similarities, as well as the identification of differences among
groups [6], are both procedures that can help depict behaviors
in different geographic regions with respect to COVID-19
cases and deaths. To this end, the patterns exhibited during
thepandemic canbe characterizedby classifying anddescrib-
ing groupings among the cases and deaths that occurred
in each Brazilian federation unit (FU). Clustering methods
employ measures of distances and/or (dis)similarities among
data. The literature contains several reports on distance mea-
sures, with Euclidean distance being the most prevalent [7].
However, this distance measurement method is sensitive to
distortions along the time axis, and, when using this met-
ric to measure distance between two time series, temporal
effects may not be recognized. To address this limitation,
some studies such as [8–10] have employed dynamic time
warping (DTW), a widely used metric capable of measuring
distances between time series for classification and clustering
purposes.

Introduced by a community of researchers working on
voice processing in the 1970s, and originally described in
[11, 12], DTW is a dynamic programming algorithm for
time-series analysis that provides results as a function of
dissimilarity, which can be used for distance measures in
both unsupervised and supervised machine learning algo-
rithms. Thus, distance is capable of capturing temporal
dependencies in analyzed data, as well as enabling the cal-
culation of distance between two time series with differing
lengths. However, this approach requires greater computa-
tional power compared to Euclidean distance calculation,
which is easier to implement and implies lower computa-

tional cost. Some approaches have been developed to reduce
the processing time associated with the DTW algorithm
by introducing restrictions on the diagonal of the distance
matrix in which the DTW algorithm is executed, such as the
Itakura parallelogram [13], the SakoeChiba band [12] and the
Ratanamahatana-Keogh band [14]. DTW makes it possible
to implement unsupervised learningmethods to classify time
series into groups, such as hierarchical or k-medoids cluster-
ing. For time-series means calculations, which may serve as
centroids, and thus permit the use of the k-means method,
several proposals have been developed. Niennattrakul and
Ratanamahatana [15, 16] demonstrated that these approaches
may generate imprecise averaging, which impacts conver-
gence. Petitjean et al. [17] proposed DBA (DTWBarycenter
Average), which provides a global average from a time series
based on DTW, thereby constituting a more consistent alter-
native to previous methods. In their paper, Petitjean et al
[18] used DBA to implement the k-means algorithm but did
not investigate the impact of the initial series selection on
the centroid calculation, nor consider the behavior of their
method in time series with different lengths. Jang et al. [19]
proposed the use of the k-means clustering algorithm based
on DTW to generate reliable reference patterns in the appli-
cation of accelerometer-based gesture recognition. Anh and
Thanh [20] evaluated the performance of methods to assess
clustering using k-means for time-series data using DTW
distance analysis, proposing an efficient method based on
Barycenter Averaging (DBA) to calculate time-series means,
as well as medians to determine initial centroids for k-means
clustering.

More recently, [18] studied the effect of using DBA in a
nearest centroid algorithm by adapting the nearest-neighbor
classification algorithm to employ DTW distance with less
computational cost. Forestier et al. [21] used DBA to gen-
erate time-series means to augment sparse data sets. Cuturi
and Blondel [22] proposed a method denominated soft-dtw,
which provides differentiable loss function that is essential
to machine learning algorithms, such as neural networks.
Leodolter et al. [23] proposed an incremental way of calcu-
lating DTW distances for different sets of time-series pairs
with significantly reduced computational cost. Furthermore,
[24] employed a type of unsupervised artificial neural net-
work, self-organizing Kohonen maps (SOM).

The present investigation utilized a variation on the tradi-
tional, non-hierarchical clusteringmethod k-means, inwhich
DTWis employed to definedistances between time series and
DTW Barycenter Averaging (DBA) to define the centroids
of the identified groups, so that the units of analysis originate
from a longitudinal rather than cross-sectional perspective.
In addition, we used a variant of the traditional metric of
internal dispersion, herein calculated using DTW and DBA,
to assess the homogeneity of the groups and the efficacy of
grouping, as well as to select k number of groups. It is worth
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Fig. 1 Alignment of two time series using Euclidean distance and
dynamic time warping (DTW) [14]

mentioning that herein k-means clustering was performed
based on DTW and DBA in a set of time-series data with
differing lengths.

Accordingly, our objective was to present the epidemi-
ological curves of the COVID-19 pandemic grouped by
Brazilian federation units using the DTW-DBA cluster-
ing method. This article is organized as follows. Section2
describes the clustering proposed method. Section3 presents
a simulation study, in which the clustering method is applied
to artificially generate labeled time-series data sets in order to
evaluate the performance of the employed method. Section4
describes the application of themethod on COVID-19 curves
among the Brazilian Federation Units. Section5 closes the
paper with the final comments.

2 K -means DTW Barycenter Averaging

Most clusteringmethods require the use of a similaritymetric
to compare instances, which in this case are time series. The
alignment of two time series usingEuclideandistance implies
one-to-one point scanning, while DTW distance employs
many-to-many. Consequently, DTW is able to capture tem-
poral dependencies even when these occur at different times
during the analyzed series,making it also possible tomeasure
similarity between series of different lengths, as illustrated
in Fig. 1.

Considering X = X1, X2, ..., X p and Y = Y1,Y2, ..., Yq
as two distinct series, the DTW algorithm uses a matrix of
order p×q,Mp×q , inwhich each element [[m(i, j)]] is defined
by the distance δ(Xi ,Y j ) between the points Xi and Y j ,

i = 1, ..., p and j = 1, ..., q. The distance adopted for the
construction of the matrix can be a variation of Minkowski
distance, also known as Lα , while Euclidean distance has
been particularly and widely used in cases when α = 2,
or Manhattan distance when α = 1. It is worth noting that
for matrix construction in univariate time series, the distance
between any two points Xi and Y j can be summarized as:

δ(Xi ,Y j ) =| Xi − Y j | .

Using the distance matrix, a path is generated from the
starting point (1, 1) to point (p, q), modified in relation to
the diagonal - which would be the same path followed by
Euclidean distance if there were a square matrix of order
p. The path W = w1, w2, ..., wk, ..., wr , with wk corre-
sponding to each position (i, j)k in the matrix, is chosen
in order to minimize the DTW distance between the time
series X = X1, X2, ..., X p and Y = Y1,Y2, ..., Yq ,

DTW(X,Y) = minW [
r∑

k=1

δ(wk)].

DTW calculations are performed through the dynamic
programming of γ (i, j), which represents the cumulative
sum of the distance at point (i, j) of the matrix, such that

γ (i, j) = δ(i, j)

+ min[γ (i − 1, j), γ (i − 1, j − 1), γ (i, j − 1)].

In the context of DTW, the function of the components of
matrix γ (i, j) traces a modified path in relation to Euclidean
distance, but generally does not stray far from the diagonal.
The most commonly used global constraints in the literature
are the Sakoe–Chiba band [12] and the Itakura parallelogram
[13]. Ratanamahatana and Keogh [14] reviewed the various
constraints available and also proposed theRatanamahatana–
Keogh band. These three constraints are illustrated in Fig. 2.

The present investigation utilized the Sakoe–Chiba uni-
form band, which historically, according to [14], is assumed
to provide awindow (band) size corresponding to nearly 10%
of the length of the series.

Thus, as proposed by [17], DTW Barycenter Averaging
was used to determine centroids, in which, based on DTW,
provides a consistent way of calculating time-series means.
By definition,DBA is a global averagingmethod that consists
of iteratively improving an initial sequence (selected among
the set of series from which the centroid will be calculated)
with the aim of minimizing the within-cluster (group) sum of
square sum of squares (WCSS), i.e., DTWdistances between
the time-seriesmean and the set of time series being analyzed
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Fig. 2 aRatanamahatana–KeoghBand;bSakoe–ChibaBand; c Itakura
Parallelogram [14]

[25]. In thisway, the updated time-seriesmean is definedonce
all barycenters are calculated.

As demonstrated by [17], it is more efficient to use an ele-
ment of the time series set to start the calculation of the mean
rather than to randomly generate a series. In each iteration of
the DBA algorithm, two actions are performed:

1. Calculation of the DTWbetween each time series and the
temporary series mean to be updated in order to identify
associations between their coordinates.

2. Update each coordinate of the time-series mean using the
barycenter of the coordinates associatedwith it during the
first step

It is important to mention that as the size of the resulting
time-series mean is equal to the size of the initial series, it
is therefore recommended to select the reference series as
the one with the longest length in the dataset. As an exam-
ple, Fig. 3a represents the DBA calculated for the series of
accumulated COVID-19 cases per 100,000 inhabitants in the
FUs of Bahia and Acre, while Fig. 3b represents the DBA

calculated for deaths per 100,000 inhabitants in the FUs of
Rio Grande do Sul and Santa Catarina.

In general, with the objective of grouping a set of time
series into k homogeneous groups, with k number of groups
constituting a hyperparameter that must be defined a priori
by the researcher, the k-means method was used with DTW
distance measuring and DBA to determine the centroids of
each group in accordance with the pseudo-code described
below in Algorithm 1.

Algorithm 1 Dynamic Time Warping K-means
Input: k // number of groups;
Input: ε // stop criteria;
Input: S = S1,S2, . . . ,Sn, in which S j = {S j

1 , ..., S j
Tj

},∀ j =
(1, ..., n)// time series;

Output: partition G of data
1: Cglobal ← DBA(S1,S2, . . . ,Sn)
2: WCSSbef ore ← 0
3: for j ← 1 to n do
4: WCSSbef ore ← WCSSbef ore + [DTW(S j ,Cglobal)]2
5: end for
6: for i → 1 to k do
7: j ← sample(1 : n)

8: Ci ← S j

9: Gi ← ∅
10: end for
11: while φ ≥ ε do
12: for m ← 1 to n do
13: for i ← 1 to k do
14: di ← DTW(Sm ,Ci )

15: end for
16: w ← argmini (di )
17: Gw ← Sm

18: end for
19: WCSSa f ter ← 0
20: for i ← 1 to k do
21: Ci ← DBA(Gi )

22: for j ← 1 to n do
23: if S j ∈ Gi then
24: WCSSa f ter ← WCSSa f ter + [DTW(S j ,Ci )]2
25: end if
26: end for
27: end for
28: φ ← | (WCSSbef ore ÷ WCSSa f ter ) − 1 |
29: WCSSbef ore ← WCSSa f ter
30: end while

Accordingly, k instances of the time series set under anal-
ysis must initially be chosen, which will be used as initial
centroids. Next, the distance from each observation in the
dataset to each of the k centroids is calculated. Then, for
each series, the closest centroid (i.e., the one with the short-
est DTW distance between the series and the centroid) is
verified, and the series is then allocated to this group. After
the groups are formed, their centroid is calculated based on
the observations allocated to these k groups. Iteratively, the
steps of calculating the distance of the observations to the
centroid are repeated, while reallocating the observations in
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Fig. 3 Representation of DTW
Barycenter Averaging
considering COVID-19
indicator curves in Brazilian
Federative Units. a Total cases
per 100k inhabitants in BA and
AC calculated using DBA. b
New deaths per 100k inhabitants
in RS and SC with DBA

groups where the distance to the centroid was the smallest
and recalculating the centroid a finite number of times until
the most homogeneous groups possible are formed.

To assess the variability of the formed groups, we adapted
a measure previously established in the literature [25] that
is widely used in cluster analysis applications: the within-
cluster sum of square distance (WCSS) display in Eq. 1.

WGSS = ∑k
i=1

∑
S j∈Ci

DTW(S j ,Ci ) (1)

which S j = {S j
1 , ..., S j

Tj
} represents a time series of length

Tj and DTW(S j ,Ci ) is the DTW value between the time
series S j e centroid of the ith group Ci .

A study by [26], in which DTW was utilized to hierarchi-
cally group time series, with 70 different time-series data sets
used for benchmarking, demonstrated that WCSS, despite
being defined in Euclidean space, could be adapted to incor-
porate distance and centroid measures different from those
originally conceived by [25]. Moreover, this measure was
found to be efficient when used as a criterion for defining k
number of groups.
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The algorithm was implemented in R programming lan-
guage [27], using the dtw package [28] to calculate distances
among time series, dtwclust [29] to calculate DBA centroids,
and tidyverse [30] for data reading, cleaning, processing and
visualization. The computational equipment utilized was a
4th generation Intel®CoreTM i7 processor with 16GB of
RAM. The R code is available at GitHub https://github.com/
cidacslab/Ids-cluster.

3 Simulation studies

3.1 Scenario 1

To evaluate our method’s effectiveness, we first conducted a
simulation study by generating 100 time series from Gaus-
sian auto-regressive moving average (ARMA) models (1,1),
X1, ...,X100; these were divided into five groups of 20 series
(a, b, c, d, e) with each series containing 100 observations:

Xt = εt + φXt−i + θεt−1 (2)

with t = 1, ..., 100, and theφ and θ parameters fixed for each
of the five groups. The series was generated via simulations
of the models described herein, with implementation in R
language using the arima.sim function of the package stats,
part of the core R library [27].

For group a, φ = 0.1 and θ = 0.3; for group b, φ = 0.1
and θ = 0.6; for group c, φ = 0.5 and θ = 0.3; for group d,
φ = 0.5 and θ = 0.6; for group e, φ = 0.6 and θ = 0.5.

Thus, the obtained groups had homogeneous series within
each individual group, but the series were also heterogeneous
considering the five groups. This heterogeneity between
groups refers not only to variability, but also to the mean
corresponding to each series, as shown in Fig. 4.

Next, we applied the clustering method described in Sec-
tion , inwhich the simulated serieswere submitted to k-means
clustering with DTW distances and centroids obtained by
DBA, with stop criterion equal to 0.0001, providing conver-
gence with only five interactions. As expected, as illustrated
in Fig. 5, the method correctly grouped all 100 time series,
forming 5 clusters in which each cluster contained the time
series from just one group originally generated in the simu-
lation, thereby demonstrating the method’s efficacy.

3.2 Scenario 2

To further evaluate the method using a new set of time-series
datawith different behavior and complexity than the first sim-
ulation, 100 series were generated around zero, with a length
of 100, divided into four different groups in relation to the
different parameterizations. Each group contained 25 series
generated with the same structure, thus ensuring similarity

within each group. In the first group, series withAR(2) struc-
ture were generated, while the second employedMA(1). The
series in the third group were generated using ARMA(2,1),
while the fourth group used ARMA(2,2):

• AR(2): A second-order autoregressive model, with |
φ1 |< 1 and | φ2 |< 1.

Xt = ∑2
i=1 φi Xt−i + εi (3)

• MA(1): A model with first-order moving averages, with
| θ1 |< 1.

Xt = μ + εt + θ1εt−1 (4)

• ARMA(2,1): A model of autoregressive terms equal to
2 and moving average terms equal to 1.

Xt = εt + ∑2
i=1 φi Xt−i + θ1εt−1 (5)

• ARMA(2,2): A model with autoregressive terms equal
to 2 and moving average terms equal to 2:

Xt = εt + ∑2
i=1 φi Xt−i + ∑2

i=1 θiεt−i (6)

The fixed φ and θ parameters for each group and the vec-
tors of the parameters were combined among themselves,
always in conformity with the unit root pross [31].

For AR(2) models, φ1 = 0.1 and φ2 = 0.3; for MA(1),
θ1 = 0.6; for ARMA(2,1), φ1 = 0.5, φ2 = 0.1 and θ1 = 0.6;
for ARMA(2,2), φ1 = 0.3, φ2 = 0.2, θ1 = 2.5 and θ2 = 0.6.

The behavior of the simulated series is shown in Fig. 6.
Figure6b presents each group separately, clearly illustrating
the differences between the groups, despite values varying
close to zero. Figure6a presents a composite image of the
simulated series centered around zero.

Despite the increased degree of difficulty due to over-
lapping series values around zero, the clustering method
identified four distinct groups that correctly corresponded
to the original groups of series (Fig. 7).

3.3 Discussion on simulation studies

The simulation studies consider two different scenarios gen-
erated by Monte Carlo sampling with ARMA structures.
Each scenario considered 100 time series that were clustered
into different numbers of groups. In the both cases, the val-
idation was effective in the sense that the real cluster was
correctly classified for each time series. The same result was
found to other generated ARMA structures.
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Fig. 4 Simulation involving five
groups of series, presented both
jointly (a) and separately (b)

4 Real data application

The present study analyzed the following time series: Total
cases per 100k inhabitants (number of cumulative cases of
COVID-19 in a Brazilian federation unit, divided by its
total population multiplied by 100), denominated herein as
prevalence; total cases per 100k inhabitants (number of new
COVID-19 cases in a Brazilian federation unit, divided by
its total population multiplied by 100), herein referred to as
incidence; a time series of indicators of COVID-19 mortality
in Brazilian federation units (states and the Federal District):
New deaths per 100k inhabitants (number of new deaths due
to COVID-19 in an epidemiological week occurring in a fed-
eration unit, divided by its total population multiplied by

100); Total deaths per 100k inhabitants (number of cumula-
tive deaths due to COVID-19 until a given epidemiological
week in a federation unit, divided by its total population mul-
tiplied by 100).

These time series were constructed using data extracted
from the COVID-19 repository made available by [5].

For each of the variables of interest, there were 27 time
series, one corresponding to each Brazilian FU. Each point
of the time series is the observation of the variable of interest
in a given epidemiological week, with the first confirmed
case of COVID-19 occurring in the state of São Paulo on
February 25, 2020. However, the first case of COVID-19
was only confirmed on March 5, 2020, in the state of Rio
de Janeiro, and on March 6, 2020, in the state of Bahia. The
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Fig. 5 Clustering of the time-series curves simulated with different parameterizations

first death related to COVID-19 was recorded in the state of
São Paulo on March 17, 2020, on March 18 in the Rio de
Janeiro, and on March 24, 2020, in the state of Amazonas.
Thus, the time series corresponding to each FU began in
different epidemiological weeks, regardless of COVID-19
case prevalence and incidence, or even mortality.

In addition to the behavior of the curves across all epidemi-
ological weeks, the levels of the prevalence and cumulative
mortality curves, as well as the peaks of the incidence and
mortality rate series, constitute relevant information in deter-
mining similarity among the observations under analysis.

Accordingly, recognizing the importance of the initial
centroid selection step, we employed the following crite-
ria: firstly the maximum values of each series were selected,
and k percentiles were then selected from this vector, e.g.,
if k = 3, the 10th, 50th and 90th percentiles were selected.
Hence, the curves of the Brazilian FUs associated with the
selected quantiles were used as initial centroids.

Next, DTW distance was calculated among the 27 time
series and k centroid curves. Then, each of the 27 curves was
allocated to the closest group based on the shortest DTWdis-
tance between the curve and the k centroids. Finally, for each
of the k groups, using the corresponding series, DBA values
were calculated, which then served as the new centroids of
the group. Through an iterative process of calculating DTW
distances between the curves and the centroids, the curves
were regrouped and new DBAs were calculated. We used a
Sakoe–Chiba band of size 10. The stopping criteria adopted

for the k-means algorithmwas aWCSS percentage reduction
less than ε = 10−16 between one iteration and the next.

4.1 Incidence rate of COVID-19 cases in Brazilian
Federal Units

Data corresponding to two COVID-19 case indicators,
weekly numbers of total cases and new cases per 100k inhab-
itants, were analyzed for each Brazilian Federation Unit. For
each of these two indicators, clustering analysis was per-
formed with k ranging from 2 to 10, with the optimal number
of groups selected so that any increase in this number would
not significantly reduce WCSS. Thus, in accordance with
these criteria and the results presented in Fig. 8a, b, six groups
were considered.

Upon analysis of the results depicted in Fig. 9, it becomes
evident that the first cluster is formed by Brazilian FUs pre-
senting lower levels of COVID-19 case prevalence at the end
of the analyzed period, while the others increase in terms of
intensity until the final group consists solely of the State of
Roraima, with prevalence rates exceeding 20,000 cases per
100K inhabitants.

Also of note is the similarity among the curveswithin each
group. The obtainment of heterogeneous groups with homo-
geneity observable within each groupwas the expected result
when applying the clustering method. As seen in Fig. 10, the
first cluster, that containing the FUs with the lowest levels of
COVID-19 case records per 100K inhabitants, is formed by
the states of Alagoas, Maranhão, Pará, Pernambuco and Rio
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Fig. 6 Second simulated series
of four groups, presented jointly
(a) and separately (b)

de Janeiro; the second is formed by Bahia and São Paulo,
while the third group consists of the states of Acre, Ama-
zonas, Ceará, Minas Gerais, Paraíba, Piauí and Rio Grande
do Norte. The fourth is composed of Goiás, Mato Grosso do
Sul, Paraná, Rio Grande do Sul and Sergipe. The fifth clus-
ter comprises Amapá, the Federal District, Espírito Santo,
Mato Grosso, Rondônia, Santa Catarina and Tocantins. Iso-
lated from the other states in Brazil, Roraima alone forms
the sixth group, with the highest level of recorded COVID-
19 cases in Brazil.

Figure11 illustrates curves corresponding to new weekly
cases per 100K inhabitants, demonstrating the evolution of
COVID-19 case records among the Brazilian FUs. These
curves are more susceptible to alterations due to external
factors that affect the evolution of the disease, such as data

source. The fact that the data used herein originates from
official disclosures by regional Health Secretariats, with data
registered according to date of publication, produces signif-
icant distortions, such as what is observed in Rio Grande
do Norte. Due to a system change, 36,374 new cases were
recorded in just one day, June 22, 2021, which produced a
marked leptokurtic deformation corresponding to a peak of
more than 100 cases per 100K inhabitants in the respective
epidemiological week. It is worth mentioning that this event
occurred because the data source did not consider the date on
which symptoms first appeared as a criterion, but rather the
date on which the number of confirmed cases was released.

Figure12 illustrates clustering among the Brazilian FUs
in terms of new weekly cases per 100K inhabitants. The first
cluster is formed by the states of Alagoas, Bahia, Maranhão,
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Fig. 7 Grouping of simulated time-series curves with different parameterization

Pará, Pernambuco and Rio de Janeiro, while the second is
formed by Acre, Ceará, Goiás, Mato Grosso do Sul, Minas
Gerais, Paraíba, Piauí, Rio Grande do Sul and São Paulo. The
third cluster contains the states of Amazonas, Espírito Santo,
Mato Grosso, Rondônia, Santa Catarina and Sergipe, and
the fourth cluster consists of Amapá, the Federal District and
Tocantins. The fifth group contains only Paraná andRoraima,
while RioGrande doNorte is the only state in the sixth group.

4.2 COVID-19mortality per 100k inhabitants in
Brazilian Federal Units

With respect to COVID-19 mortality, we also analyzed the
temporal behavior of two indicators, both relativized to the
size of each FU’s population: New deaths per 100k inhab-
itants and total deaths per 100k inhabitants. In accordance
with the curves illustrated in Fig. 13a, b, six groups were
selected to carry out clustering analysis.

Figure14 shows that, in the analysis of COVID-19 mor-
tality, similarly to case prevalence, the adopted method was
capable of efficiently separating theBrazilianFUs into homo-
geneous groups formed by curves with similar levels of
COVID-19 mortality.

As seen in Fig. 15, the first group consists solely of the
state of Maranhão, with the lowest level of COVID-19 mor-
tality recorded during the analyzed period. The second group
contains the states of Acre, Alagoas, Amapá, Bahia, Pará,
Paraíba, Pernambuco, Piauí and Rio Grande do Norte. In
the third group, the states of Ceará, Minas Gerais, Santa
Catarina, Sergipe and Tocantins clustered together, while the
fourth group contains Amazonas, Espírito Santo, Roraima,
Rio Grande do Sul and São Paulo. In the fifth cluster, the
Federal District, Goiás, Mato Grosso do Sul, Paraná and
Rondônia were grouped together, while the sixth cluster con-
sists of Mato Grosso and Rio de Janeiro.

Setting aside the perspective of accumulated deaths to
examine mortality in terms of the evolution of new deaths
recorded in each epidemiological week, as shown in Fig. 16,
two waves of COVID-19 become evident in Brazil. The first
occurs in mid-2020, while the second takes place around the
end of the first quarter of 2021, with some peaks in FUs being
evident.

The clustering map shown in Fig. 17 reveals that the
first cluster is formed by the states of Alagoas, Bahia and
Maranhão, while the second is composed of Amapá, Paraíba,
Pernambuco, Piauí and Tocantins. The third contains Acre,
Ceará, Pará, Rio Grande do Norte and Sergipe. The fourth
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Fig. 8 WCSS of clustering
simulations of incidence and
prevalence curves for Brazilian
FUs. a New cases per 100k
inhabitants. b Total cases per
100k inhabitants
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Fig. 9 Prevalence curves pertaining to total number of COVID-19 cases in each Brazilian FU, grouped by clustering analysis

cluster consists of the Federal District, Espírito Santo, Goiás,
MinasGerais,MatoGrosso,MatoGrosso do Sul, Paraná, Rio
de Janeiro, Roraima, SantaCatarina andSãoPaulo,whileRio
Grande do Sul and Rondônia make up the fifth cluster. The
sixth contains only the state of Amazonas.

4.3 Discussion on real application

In general, when analyzing the present clustering results, the
seven FUs that grouped into the first two clusters of COVID-
19 prevalence curves, i.e., those with the lowest numbers of
cases per 100K inhabitants, six also formed the first cluster of
incidence curves. Of these six states, four are located in the

Northeast, while Pará is in the North and Rio de Janeiro lies
in southeastern Brazil. Of note are the pairs and trios of states
that clustered together both in terms of case prevalence and
incidence: Minas Gerais and Acre, Pernambuco and Rio de
Janeiro, the Federal District and Tocantins; regarding trios,
the first was Espírito Santo, Santa Catarina and Rondônia,
while the second was Alagoas, Pará and Maranhão.

An examination of the 10FUs that formed the first and sec-
ond clusters pertaining tomortality, sevenwere present in the
first and second clusters formed by the cumulative mortality
indicator. It is noteworthy that, with the exception of Amapá,
all of the states in these two clusters are all located in north-
eastern Brazil. It is also possible to observe groups of two,
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Fig. 10 Clustering of Brazilian
FUs according to COVID-19
case prevalence

three and four FUs within the same groups of weekly deaths
and cumulative mortality: Minas Gerais and Santa Catarina,
Alagoas and Bahia; Espírito Santo, Roraima and São Paulo;
and finally, Amapá, Paraíba, Pernambuco and Piauí.

Also of note is the group of nine Brazilian FUs (all in the
Northeast, except Pará, in addition to Rio de Janeiro, Minas
Gerais and São Paulo in the Southeast/South) that grouped
together in lower intensity clusters of both cumulative cases
and deaths per 100K inhabitants. The duo of Rondônia and
Mato Grosso was also in another cluster of case prevalence,
as well as in the last two clusters with the highest numbers of
cumulative deaths per 100K inhabitants. It is alsoworthmen-
tioning that the state of Rio de Janeiro, despite being present
in the cluster with the lowest numbers of cases per 100K
inhabitants, this federation unit also grouped into the cluster
corresponding to the highest cumulative mortality recorded.

5 Final comments

The clustering method applied herein was found to reliably
group Brazilian federal units considering the criteria estab-
lished for analysis. In the context of simulation studies, the

scenarios in which the simulated series exhibited within-
grouphomogeneity andheterogeneity betweengroups, under
equal or different mean distances, unanimous classification
and distinction between all clusters were observed.

It is worth noting that initially a hierarchical strategy was
used for clustering time series, employing DTW distance.
This approach is functional for small samples, such as the
27 time series, one for each Brazilian federative unit. How-
ever, if we consider other geographic segments such as health
regions, municipalities, census tracts, etc., the number of
time series would be considerably higher, and the processing
would be computationally costly. While the time complexity
of a hierarchical clustering algorithm is generally quadratic,
the k-means algorithmhas linear time complexity. Therefore,
for time-series clustering, k-means with DTW distance and
DBA centroid becomes a more efficient clustering strategy
than the hierarchical one.
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Fig. 11 Incidence curves corresponding to numbers of new weekly COVID-19 cases per 100K inhabitants in each Brazilian FU, grouped by
clustering analysis
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Fig. 12 Clustering of Brazilian
FUs according to COVID-19
case incidence
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Fig. 13 WCSS of clustering
simulations of new and total
deaths per 100k inhabitants in
all Brazilian Federal Units. a
New deaths per 100k
inhabitants. b Total deaths per
100k inhabitants
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Fig. 14 Curves corresponding to numbers of cumulative COVID-19 deaths per 100K inhabitants in each Brazilian FU, grouped by clustering
analysis

123



International Journal of Data Science and Analytics

Fig. 15 Clustering of Brazilian
FUs according to cumulative
number of COVID-19 deaths
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Fig. 16 Curves corresponding to numbers of new weekly COVID-19 deaths per 100K inhabitants in each Brazilian FU, grouped by clustering
analysis
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Fig. 17 Clustering of Brazilian
FUs according to number of
new weekly COVID-19 deaths

With regard to the strategies to group curves correspond-
ing toCOVID-19 cases anddeaths among theBrazilian feder-
ation units, the combination of k-means grouping employing
DTW and DBA proved effective for characterizing both
cases and mortality. The method was found to be efficient in
both COVID-19 case and mortality scenarios, capably incor-
porating similarities among the curves to accurately form
homogeneous groups. Future perspectives include expanding
this method’s applicability to cover the country’s network of
municipalities, which presents a significant challenge due to
the need for additional computational resources, considering
that Brazil is divided into over 5,500 municipalities. The use
of additional data sources constitutes an additional challenge
that would enable the use of other markers of COVID-19
cases and deaths, such as the date of symptom onset or date
of positive test result.
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25. Caliński, T., Harabasz, J.: A dendrite method for cluster anal-
ysis. Commun. Stat. 3(1), 1–27 (1974). https://doi.org/10.1080/
03610927408827101

26. da Silva, P.L.P.: Um estudo sobre o agrupamento de séries tem-
porais e sua aplicação em curvas de carga residenciais. Master’s
thesis, Universidade Federal de Minas Gerais (2016). https://
repositorio.ufmg.br/bitstream/1843/BUOS-APWMJD/1/versao_
final_dissertacao_impressao_capa_dura_pedro_pazzini.pdf

27. R Core Team.: R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Aus-
tria. R Foundation for Statistical Computing (2021). https://www.
R-project.org/

28. Giorgino, T.: Computing and visualizing dynamic time warping
alignments inR: the dtwpackage. J. Stat. Softw.31(7), 1–24 (2009).
https://doi.org/10.18637/jss.v031.i07

29. Sardá-Espinosa, A.: Time-series clustering in r using the dtwclust
package. Roy J. (2019). https://doi.org/10.32614/RJ-2019-023

30. Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L.D.,
François,R.,Grolemund,G.,Hayes,A.,Henry, L.,Hester, J.,Kuhn,
M., Pedersen, T.L., Miller, E., Bache, S.M., Müller, K., Ooms, J.,
Robinson, D., Seidel, D.P., Spinu, V., Takahashi, K., Vaughan, D.,
Wilke, C., Woo, K., Yutani, H.: Welcome to the tidyverse. J. Open
Source Softw. 4(43), 1686 (2019). https://doi.org/10.21105/joss.
01686

31. Box, G., Jenkins, G.M.: Time Series Analysis: Forecasting and
Control. Holden-Day (1970)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://doi.org/10.1590/scielopreprints.362
https://doi.org/10.1016/j.eswa.2020.114374
https://doi.org/10.24136/oc.2021.018
https://doi.org/10.24136/oc.2021.018
https://doi.org/10.1016/j.patcog.2010.09.022
https://doi.org/10.1109/TASSP.1978.1163055
https://doi.org/10.1109/TASSP.1978.1163055
https://doi.org/10.1109/TASSP.1975.1162641
https://doi.org/10.1109/TASSP.1975.1162641
https://doi.org/10.1007/978-3-540-72584-8_68
https://doi.org/10.1109/MUE.2007.165
https://doi.org/10.1109/MUE.2007.165
https://doi.org/10.1016/j.patcog.2010.09.013
https://doi.org/10.1016/j.patcog.2010.09.013
https://doi.org/10.1109/ICDM.2014.27
https://doi.org/10.1109/ICDM.2014.27
https://doi.org/10.1007/978-3-642-21332-8_3
https://doi.org/10.1504/IJBIDM.2015.071311
https://doi.org/10.1504/IJBIDM.2015.071311
https://doi.org/10.1109/ICDM.2017.106
http://arxiv.org/abs/1703.01541
https://doi.org/10.48550/arXiv.1703.01541
https://doi.org/10.48550/arXiv.1703.01541
https://doi.org/10.18637/jss.v099.i09
http://arxiv.org/abs/2108.11523
https://doi.org/10.48550/arXiv.2108.11523
https://doi.org/10.1080/03610927408827101
https://doi.org/10.1080/03610927408827101
https://repositorio.ufmg.br/bitstream/1843/BUOS-APWMJD/1/versao_final_dissertacao_impressao_capa_dura_pedro_pazzini.pdf
https://repositorio.ufmg.br/bitstream/1843/BUOS-APWMJD/1/versao_final_dissertacao_impressao_capa_dura_pedro_pazzini.pdf
https://repositorio.ufmg.br/bitstream/1843/BUOS-APWMJD/1/versao_final_dissertacao_impressao_capa_dura_pedro_pazzini.pdf
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.18637/jss.v031.i07
https://doi.org/10.32614/RJ-2019-023
https://doi.org/10.21105/joss.01686
https://doi.org/10.21105/joss.01686

	K-means DTW Barycenter Averaging: a clustering analysis of COVID-19 cases and deaths on the Brazilian federal units
	Abstract
	1 Introduction
	2 K-means DTW Barycenter Averaging
	3 Simulation studies
	3.1 Scenario 1
	3.2 Scenario 2
	3.3 Discussion on simulation studies

	4 Real data application
	4.1 Incidence rate of COVID-19 cases in Brazilian Federal Units
	4.2 COVID-19 mortality per 100k inhabitants in Brazilian Federal Units
	4.3 Discussion on real application

	5 Final comments
	Acknowledgements
	References


