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Abstract. Chagas disease (CD) is caused by the protozoan Trypanosoma cruzi, which leads to a spectrum of clinical
presentations that range from asymptomatic to severe cardiac involvement. The host immune response plays a pivotal
role in disease progression. Ig isotypes may contribute to disease pathogenesis. Investigating these components can
provide insights into the immunopathogenic mechanisms underlying CD. This cross-sectional study aims to establish a
correlation between the Ig profile of individuals infected with T. cruziwith the clinical forms of chronic CD. Serum samples
were collected from partner institutions in different states of Brazil. Individuals diagnosed with chronic CD were catego-
rized based on the clinical form of the disease. The indirect ELISA method using the recombinant chimeric Molecular
Biology Institute of Paran�a membrane protein 8.4 as the antigen was used to determine the Ig profile, including total IgG,
IgG1, IgG2, IgG3, and IgG4. Ninety-seven serum samples from patients classified as negative (NEG, n 5 38), indetermi-
nate (IND, n 5 24), mild cardiac (MC, n 5 20), and severe cardiac (SC, n 5 15) forms were analyzed. IgG1 exhibited
greater levels compared with the other isotypes, showing a significant difference between the MC and IND groups. IgG3
levels were greater in individuals from the MC group compared with the SC group. IgG1 and IgG3 isotypes can serve as
biomarkers to evaluate the progression of CD because they exhibit variations across clinical groups. Additional longitudi-
nal studies are necessary to explore the relationship between antibody kinetics and the development of tissue damage.

INTRODUCTION

Chagas disease (CD) is a vector-borne, neglected tropical
condition caused by a hemoflagellated protozoan parasite
Trypanosoma cruzi. This parasite imposes a significant
health burden in 21 Latin American countries, with approxi-
mately 6–7 million cases and 7,500 deaths annually.1,2 An
estimated 75 million people are at risk of contracting the dis-
ease worldwide.2 In endemic regions, T. cruzi is transmitted
primarily through contact with feces or urine of infected
bloodsucking triatomine insects, which carry the parasite in
their intestines. Other modes of transmission include inges-
tion of contaminated food and beverages, organ transplan-
tation, mother-to-child transmission, blood transfusion, and,
less commonly, laboratory accidents. Human migration has
played a role in the global expansion of CD during the past
few decades, reaching nonendemic countries in Europe,
North America, Asia, and Oceania.3–5

Chagas disease is characterized by two distinct phases.
The initial phase, which occurs shortly after infection and
lasts up to 2 months, is typically asymptomatic but is
accompanied by high parasitemia. Symptoms, when pre-
sent, are nonspecific and manifest as a self-limiting febrile ill-
ness.6 Following the acute phase, infected individuals enter
in the chronic phase, which may be in different clinical forms:

a long-lasting asymptomatic form known as the indetermi-
nate form. In this form, which can last for years or even
decades, there are no apparent clinical manifestations. How-
ever, approximately 20–30% of affected individuals eventu-
ally progress to a symptomatic form, characterized by
severe complications in the heart (cardiac form) or digestive
tract (megaesophagus or megacolon), or both.6 The diverse
clinical manifestations and varying severity of symptoms
observed in CD have been attributed by some researchers
to differences in the host’s immune response and the differ-
ential expression of proteins by different strains of T. cruzi.7,8

The immune response to T. cruzi infection is intricate, and
involves both innate and adaptive immunity.9 The pathogen
has developed multiple mechanisms to evade the host
immune response.10–12 One such mechanism is the induc-
tion of diverse Ig isotypes, which can either contribute to
host resistance against infection or promote tissue damage
by enhancing inflammatory responses.13 Studies investigat-
ing isotypes in individuals with CD and cardiac involvement
have produced conflicting findings. Some studies14,15 have
reported greater IgG1 titers in severe cardiac forms, whereas
others7,16,17 have found elevated IgG2 titers. These discrep-
ancies can be attributed to factors such as the genetic
profiles of the populations studied, geographic location, var-
iations in serological methods, parasite strain, and antigen
preparation.18 Various antigen preparations have been used,
including epimastigote extracts from Tulahuen and Y
strains,15–17 cytosolic acidic antigen fractions,14 and recom-
binant cytoplasmic and flagellar antigens.7 To reduce this
variability, chimeric recombinant antigens have emerged as
a strategy, because they can be produced consistently in
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large quantities using bioreactors. Chimeric molecules incor-
porate conserved and repetitive amino acid sequences from
different parasite proteins, which enables the detection of
IgG isotypes even at low expression levels.19

In light of this scenario, our team synthesized and purified
four recombinant chimeric T. cruzi antigens (Molecular Biol-
ogy Institute of Paran�a [IBMP-8.1, IBMP-8.2, IBMP-8.3, and
IBMP-8.4) and investigated their diagnostic potential for
detecting anti-T. cruzi IgG in humans19–28 and dogs.29 The
antigen IBMP-8.4 exhibited superior sensitivity, specificity,
and accuracy across endemic and nonendemic regions,
including Spain,22 Brazil,20,21 and other Latin American
countries.23 Based on these findings and the larger reper-
toire of epitopes present in its protein composition,19,30,31

we selected the IBMP-8.4 molecule for this study. Because
there is a dearth of studies examining the involvement of IgG
isotypes in the presence of this type of antigen among char-
acterized clinical patients, our aim was to examine the profile
of Ig isotypes across various clinical forms of chronic CD,
with the potential to identify immunological markers associ-
ated with the progression of cardiac disease.

MATERIALS AND METHODS

Serum samples. Ninety-seven sera were obtained from
T. cruzi–positive (n 5 59) and T. cruzi–negative individuals
(n5 38) (Figure 1). Samples from T. cruzi–positive individuals
were confirmed by serological tests (indirect hemagglutina-
tion assay, indirect immunofluorescence test, ELISA, and
chemiluminescence) and classified by partner institutions
into different clinical stages of infection: indeterminate (IND)
form of CD (n 5 24), mild cardiac (MC) form of CD (n 5 20),
and severe cardiac (SC) form of CD (n 5 15). Following the
“SBC Guideline on the Diagnosis and Treatment of Patients
with Cardiomyopathy of Chagas Disease,”32 the IND form
(stage A) exhibited no symptoms or signs, with normal find-
ings in electrocardiographs, chest radiographs, and gastro-
intestinal examinations. The MC form (stage B1) presented
electrocardiographic changes (conduction abnormalities or
arrhythmias) and mild echocardiographic changes (regional
contractility abnormalities) without ventricular dysfunction.

The SC form (stage C) was characterized by electrocardio-
graphic and echocardiographic changes, along with ventric-
ular dysfunction. Detailed clinical and sociodemographic
information, including age, gender, and geographic origin,
was recorded during the blood collection process. Trypano-
soma cruzi–negative sera were sourced from volunteer blood
donors at the Foundation for Hematology and Hemotherapy
of Bahia and Foundation for Hematology and Hemotherapy
of Pernambuco, and were confirmed as negative through
chemiluminescence assays. In addition, these samples tested
negative for HIV-1/2, human T-lymphotrophic virus 1/2, and
syphilis, hepatitis B, and hepatitis C viruses.
Evaluation of total IgG and IgG isotypes against T.

cruzi IBMP-8.4 by indirect ELISA.We performed the detec-
tion of IgG anti-T. cruzi in duplicate using an indirect ELISA
method with a recombinant chimeric T. cruzi protein (IBMP-
8.4) as the antigen, according to a previously described pro-
tocol,19 with some modifications. Checkerboard titration
was conducted to determine optimal dilutions of antigen
coating, antibody-peroxidase conjugate (horseradish peroxi-
dase [HRP]), and serum concentrations for detecting of IgG
isotypes (anti-IgG1, -IgG2, -IgG3, and -IgG4). The selected
conditions were based on the greatest signal-to-noise ratio
(SNR), representing the ratio of mean optical density (OD)
values between positive and negative samples. Flat-bottom,
high-binding, transparent Maxisorp 96-well microplates
(Nunc, Rochester, NY) were used for coating with the IBMP-
8.4 antigen (12.5, 25, and 50ng) in carbonate-bicarbonate
buffer (50mM; pH, 9.6). After blocking with Well Champion
reagent (lot 130703; Kem-En-Tec Diagnostics A/S, Taastrup,
Denmark), 100 mL of each serum sample (diluted 1:100 and
1:200 in phosphate-buffered saline; pH, 7.4) was added to
the designated well, followed by a 60-minute incubation at
37�C. Subsequently, the microplates were washed with
phosphate-buffered saline–0.05% Tween 20, and 100 mL of
HRP-conjugated mouse anti-human IgG1 (A-10648; Thermo
Scientific, Rockford, IL), IgG2 (MH1722, Thermo Scientific),
IgG3 (MH1732, Thermo Scientific), and IgG4 (A-10654,
Thermo Scientific) diluted at 1:500, 1:1,000, 1:2,000, 1:10,000,
1:20,000, and 1:40,000 ratios in phosphate-buffered saline
were added to the respective wells. The microplates were

FIGURE 1. Geographic location of sample collection sites in this study. Source base layer and credit base layer: https://data.humdata.org/ pub-
lished under creative commons attribution for intergovernmental organizations and https://data.humdata.org/dataset/geoboundaries-admin-
boundaries-for-brazil. Reprinted with permission.
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then incubated at 37�C for 30minutes. After another washing
cycle, 100 mL of 3,39,5,59-Tetramethylbenzidine substrate
(lot 111011; Kem-En-Tec, Taastrup, Denmark) was added to
each well, and the microplates were incubated in the dark at
room temperature for 10minutes. The colorimetric reactions
were stopped by adding 50 mL of 0.3M sulfuric acid to
each well, and the OD was measured using a 450-nm filter
(Sunrise,TM Tecan, Switzerland).

STATISTICAL ANALYSES

Data analysis was conducted using scatterplot software
(GraphPad Prism Software, version 10.0.0, San Diego, CA).
Descriptive statistics included frequencies for qualitative
variables (gender and geographic origin) and median6 inter-
quartile range (IQR) (or arithmetic mean 6 SD for ELISA
standardization) for quantitative variables (age, OD, and
reactivity indices [RIs]). Normality of the data sets was
assessed using the Shapiro-Wilk test. In cases in which vari-
ance homogeneity assumptions were not met, the Mann-
Whitney test was used. All analyses were two tailed, and sta-
tistical significance was defined as P,0.05. To establish rel-
evant cutoff values for the IBMP-8.4 antigen, 10T. cruzi–
positive and 10T. cruzi–negative samples were analyzed
alongside each microtiter plate. These samples were charac-
terized previously as positive or negative using two serologi-
cal tests according to international guidelines.33,34 Cutoff
point analysis was performed to identify the optimal OD
value that distinguishes negative from positive samples. The
threshold value was defined by measuring the largest dis-
tance from the diagonal line formed by the end points of the
receiver–operating characteristic curve: [Sensitivity 3 (1 –

Specificity)]. All results are expressed by plotting the values
as an index format, representing the ratio between a given
sample’s OD and the threshold OD pertaining to each micro-
plate. This index is referred to as a reactivity index, and all
results$1.00 were considered positive.

RESULTS

Optimal assay conditions were determined by maximizing
the SNR between the mean OD values of positive and

negative samples. As a result, dilution rates of 1:40,000 and
1:500 were established for HRP-labeled anti-total IgG and
HRP-labeled anti-IgG isotypes, respectively. The greatest
SNR values were achieved with a serum dilution of 1:100
and a coating of 25ng of IBMP-8.4 on the plates. With these
optimized conditions, we analyzed the Ig isotype profiles in
different clinical forms of chronic CD using sera from 97 indi-
viduals (Figure 1; negative, n 5 38; IND form, n 5 24; MC
form, n 5 20; SC form, n 5 15) who had been tested previ-
ously for T. cruzi infection. Individuals who were negative for
T. cruzi had a mean age of 33.5 years (IQR, 28–40.3 years)
and a female-to-male ratio of 1:2.8. In contrast, T. cruzi-
positive individuals had a mean age of 47 years (IQR,
36–55 years) and a female-to-male ratio of 0.8:1 (P ,000.1).
Individuals who were positive for T. cruzi with the IND form
had a mean age of 36.5 years (IQR, 33–41years), with a
female-to-male ratio of 0.6:1. Among those T. cruzi–positive
individuals classified exclusively with the MC form, the mean
age was 53.5 years (IQR, 48–61.75 years) with an equal
female-to-male ratio of 1:1, whereas infected individuals
classified as having the SC form had a mean age of 53 years
(IQR, 47–61years) with a female-to-male ratio of 0.88:1.
Figure 1 illustrates that the majority of patients were from
Pernambuco (63.9%), followed by Bahia (30.9%), and Goi�as
(5.2%). Figure 1 illustrates the geographic origin of both
T. cruzi–positive and –negative individuals included in our
study.
We assessed initially the median RIs measuring total IgG

for samples from T. cruzi–negative individuals and different
clinical presentations of T. cruzi–positive individuals (individ-
ual data points are provided in Supplemental Table 1). As
depicted in Figure 2, the highest median RI was observed in
individuals with the MC form (RI, 3.00; IQR, 2.71–3.39), fol-
lowed by the SC form (RI, 2.60; IQR, 2.01–3.02), the IND
form (RI, 2.20; IQR, 1.94–2.86), and, last, the panel of
T. cruzi–negative samples (RI, 0.20; IQR, 0.14–0.32). Signifi-
cant differences were found between the median RIs of
T. cruzi–negative samples and all clinical presentations of
T. cruzi–positive samples. A significant difference was
observed in the sera from T. cruzi–positive individuals, speci-
fically between samples from individuals with the IND form
and those with the MC form.

FIGURE 2. Graphical analysis of the reactivity index (RI) obtained with serum samples of Trypanosoma cruzi–positive and T. cruzi–negative
(NEG) samples against total IgG against the T. cruzi IBMP-8.5 antigen. The cutoff value is RI 5 1.0. The shaded area represents the gray zone (RI,
1.0 6 0.10). IND 5 samples from T. cruzi–positive individuals with indeterminate form; IQR 5 interquartile range; MC 5 samples from T. cruzi–
positive individuals with mild cardiac form; SC5 samples from T. cruzi–positive individuals with severe cardiac form.
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Figure 3 illustrates the median RIs for IgG isotypes based
on the clinical presentation of T. cruzi–positive individuals
(individual data points are provided in Supplemental
Table 1). Among the four IgG isotypes, IgG1 exhibited the
highest median RIs, followed by IgG2, IgG3, and IgG4
across all clinical presentations. Consistent with the total
IgG analysis, individuals with the MC form showed the
highest median RIs, particularly for IgG1 (RI, 14.72; IQR,
7.49–18.25), IgG2 (RI, 1.16; IQR, 0.87–2.67), and IgG3 (RI,
1.57; IQR, 0.60–1.99). Significant differences were observed
for IgG1 between individuals with the IND and MC forms.
Although samples from individuals with the MC form had the
highest median RI for IgG2, no differences were observed
among other clinical presentations. In the case of IgG3, the
median RI signal for samples from individuals with the MC
form was significantly higher than that of samples from indi-
viduals with the SC form. There were no differences among
the three clinical manifestations of T. cruzi–positive indivi-
duals for the IgG4 isotype. Notably, significant differences
were found between samples from T. cruzi–negative indivi-
duals and those from T. cruzi–positive individuals, regardless
of clinical presentation, except for IgG4, which exhibited no
differences specifically in T. cruzi–positive individuals with
the IND form.

DISCUSSION

Despite the discovery of CD more than 114years ago, sig-
nificant questions remain unanswered, particularly regarding
the identification of a biological marker to assess disease
progression from asymptomatic to organ-specific symptom-
atic manifestations. Research groups worldwide have made
numerous attempts to find biomarkers for this purpose.
Some investigations have focused on specific targets for
anti-T. cruzi antibodies,35–37 production of cytokines and
chemokines,38–40 and correlations between seropositivity
and electrocardiographic alterations41; or have explored
alternative pathways such as immunoproteomics,42 Th17
cells,43 or cardiac injury markers.44 However, a consensus
on a definitive marker has not yet been reached. In our
study, we investigated the efficacy of a recombinant chime-
ric T. cruzi antigen used widely as a diagnostic tool to detect
anti-T. cruzi antibody levels in different clinical presentations
of CD, including the IND, MC, and SC forms. Notably, we
observed a significant difference in RIs between samples
from T. cruzi–positive individuals with the IND form and
those with the MC form when testing total IgG or IgG1 iso-
type anti-T. cruzi with IBMP-8.4.
IgG1 is the predominant isotype of antibodies in the

human body, constituting approximately 70% of total circu-
lating antibodies.45 Our study revealed increased levels of
IgG1 in the sera of patients with MC disease. This finding
aligns with previous reports highlighting the high titers of
IgG1 and its involvement in proinflammatory mechanisms,
including lytic activity and complement system activation.
This suggests the potential for using IgG1 levels to differenti-
ate between T. cruzi–positive and –negative individuals.7,46

However, the precise inflammatory role of these antibodies
in cardiac fibers remains complex, and there is limited
information regarding the progression of cardiac damage
from mild to severe or the maintenance of cardiac integ-
rity.47,48 Notably, a retrospective longitudinal cohort study15

demonstrated a correlation between elevated IgG1 levels
and left ventricular ejection fraction dysfunction. The authors
suggested a potential association with cardiomyopathies, as
the kinetics of anti-T. cruzi antibodies indicate a progression
toward SC damage, which could have prognostic implica-
tions for cardiac diseases. It is important to note that our
study used clinically precharacterized samples without
patient follow-up, thus limiting our ability to assess disease
progression.
Regarding the anti-T. cruzi IgG3 isotype, we found a signif-

icant difference in RIs between the MC and SC forms. This
finding could suggest a potential role in cardiac injury; a reg-
ulatory function could potentially mitigate the severity of tis-
sue damage. Indeed, these regulatory mechanisms may be
influenced by factors produced and released by the parasite.
In addition, the progression of SC lesions might involve the
cytotoxic profile of TCD81 cells,49 although this aspect was
not explored in our study.
As for the IgG2 and IgG4 isotypes, we did not observe any

significant differences between the clinical groups. However,
previous studies have indicated a potential association
between IgG2 and the cardiac form.7 In fact, high maternal
IgG1 and IgG2 levels have been demonstrated to be highly
predictive of congenital transmission of CD, highlighting their
importance in this context.50 In our study, we found low RIs
for IgG4, without any significant differences among the clini-
cal groups. Conversely, elevated levels of IgG4 have been
reported in individuals with the digestive form of CD.51–53

Our findings reveal elevated levels of IgG1 and IgG3 iso-
types in individuals with the cardiac form of CD, suggesting
their potential involvement in the antibody-mediated immune
response within the myocardium and their potential associa-
tion with disease severity. Remarkably, a previous study54

has already recognized these isotypes as markers for both
pre- and end-stage heart failure. Furthermore, investiga-
tions55,56 focusing on patients before and after benznidazole
treatment have demonstrated that monitoring IgG1 and IgG3
levels in individuals with cardiac CD may indicate the pro-
gression of cardiomyopathy and may serve as valuable
prognostic biomarkers. Consequently, comprehensive stud-
ies encompassing additional antibodies, cytokines, chemo-
kines, and cell markers in the presence and absence of the
parasite within cardiac fibers could provide additional
insights into the interaction between T. cruzi and the immune
system, particularly within representative and comparable
clinical groups. It is important to highlight that the levels of
anti-T. cruzi IgG3 and IgG1 isotypes did not demonstrate
significant differences when comparing samples from
patients with the MC and SC forms. However, the low
P-value suggests that an increase in the sample size in
future studies might be sufficient for these isotypes to distin-
guish antibody levels between these groups.
A significant limitation of our study is its cross-sectional

design, which precludes patient follow-up. Considering the
slow progression of cardiac injury, a long-term prospective
cohort study is required. Despite this constraint, our findings
highlight the promising capacity of the IBMP-8.4 molecule in
distinguishing between clinical groups based on the form of
CD. Future investigations should consider incorporating
other IBMP proteins (IBMP-8.1, IBMP-8.2, and IBMP-8.3).19

This study aimed to characterize the IgG isotypes present
in different clinical forms of chronic CD using the IBMP-8.4
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FIGURE 3. Graphical analysis of the reactivity index (RI) obtained with serum samples of Trypanosoma cruzi–positive and T. cruzi–negative
(NEG) samples against IgG isotypes against the T. cruzi IBMP-8.4 antigen. The cutoff value is RI 5 1.0. The shaded area represents the gray zone
(RI, 1.06 0.10). IND5 samples from T. cruzi–positive individuals with indeterminate form; IQR5 interquartile range; MC5 samples from T. cruzi–
positive individuals with mild cardiac form; SC5 samples from T. cruzi–positive individuals with severe cardiac form.
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molecule as an antigen. Our findings demonstrate increased
reactivity of IgG1 compared with other isotypes, particularly
in individuals with the MC form in comparison to those with
the IND form. Moreover, higher levels of IgG3 were elevated
in individuals with the MC form in contrast to those with the
SC form. These results highlight the necessity for further
investigation into the relationship between antibody levels,
tissue damage, and clinical progression to identify prognos-
tic biomarkers for CD.
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Gonçalo Moniz Institute, Oswaldo Cruz Foundation–Bahia, Salvador,
Brazil, Integrated Translational Program in Chagas Disease, Oswaldo
Cruz Foundation, Rio de Janeiro, Brazil, Faculty of Medicine, Federal
University of Bahia, Salvador, Brazil, and Department of Epidemiology
of Microbial Diseases, Yale School of Public Health, Yale University,
New Haven, CT, E-mail: mitermayer.reis@fiocruz.br.

This is an open-access article distributed under the terms of the
Creative Commons Attribution (CC-BY) License, which permits
unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

REFERENCES

1. World Health Organization, 2015. Chagas disease in Latin Amer-
ica: an epidemiological update based on 2010 estimates.
Wkly Epidemiol Rec 90: 33–43.

2. World Health Organization, 2023. Chagas Disease (American
Trypanosomiasis). Available at: https://www.who.int/health-
topics/chagas-disease. Accessed October 21, 2023.

3. Schmunis GA, Yadon ZE, 2010. Chagas disease: a Latin Ameri-
can health problem becoming a world health problem. Acta
Trop 115: 14–21.

4. Conners EE, Vinetz JM, Weeks JR, Brouwer KC, 2016. A global
systematic review of Chagas disease prevalence among
migrants. Acta Trop 156: 68–78.

5. Manne-Goehler J, Reich MR, Wirtz VJ, 2015. Access to care for
Chagas disease in the United States: a health systems analy-
sis. Am J Trop Med Hyg 93: 108–113.

6. Rassi AJ, Rassi AJ, Marcondes de Rezende J, 2012. American
trypanosomiasis (Chagas disease). Infect Dis Clin North Am
26: 275–291.
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