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ABSTRACT Ticks harbor and transmit many different pathogens. While some species 
are competent vectors of a single pathogen, mono-competent vectors (MCV), other 
species are proven to be competent vectors of several pathogens, pluri-competent 
vectors (PCV). Such a difference in vector competence might be related to the micro
biome. To better comprehend its influence on the vector competence of ticks for one 
or several pathogens, a data-driven approach using publicly available databases was 
applied on bacterial 16S rRNA from MCV and PCV tick species. Alpha and beta diversity, 
co-occurrence networks, and functional profiles were analyzed. A differential analysis 
was performed to identify bacterial genera associated with PCV ticks. These tick species 
presented higher richness, and the bacterial composition showed a significant difference 
between MCV and PCV ticks. The bacteria genera of PCV ticks demonstrated fewer 
correlations within each other in comparison with MCV ticks. The differential analysis 
revealed 14 bacteria genera related to PCV tick species, such as Rickettsia, Staphylococcus, 
and Corynebacterium. Using 24 differently abundant genera, tick samples from another 
data set could be classified into either PCV or MCV with high accuracy and concord
ance. Moreover, pathway regulation related to reactive oxygen species detoxification, 
β-Lactam resistance, and dTDP-L-rhamnose biosynthesis could be participating in the 
competence of PCV ticks for several tick-borne pathogens. These findings enlighten 
our understanding of the bacteria community’s role on some tick species’ broad vector 
competence.

IMPORTANCE Some tick species are competent to transmit more than one pathogen 
while other species are, until now, known to be competent to transmit only one single 
or any pathogen. Such a difference in vector competence for one or more pathogens 
might be related to the microbiome, and understanding what differentiates these two 
groups of ticks could help us control several diseases aiming at the bacteria groups 
that contribute to such a broad vector competence. Using 16S rRNA from tick species 
that could be classified into these groups, genera such as Rickettsia and Staphylococcus 
seemed to be associated with such a broad vector competence. Our results highlight 
differences in tick species when they are divided based on the number of pathogens 
they are competent to transmit. These findings are the first step into understanding the 
relationship between one single tick species and the pathogens it transmits.

KEYWORDS vector competence, tick-borne diseases, microbiome, pathogen 
transmission

V ector-borne diseases are responsible for more than 700,000 deaths per year, and 
around 80% of the world’s population are at risk of infection (1). Among the 
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arthropod vectors, ticks and mosquitoes are responsible for the majority of the vector-
borne disease transmission (2). Ticks are obligatory hematophagous arthropods 
that have a broad host spectrum and are spread worldwide, being an important vector 
linking pathogens to vertebrates. These characteristics assign them as an important 
public health problem. Several tick species such as Ixodes scapularis, Ixodes ricinus, 
Haemaphysalis longicornis, and Rhipicephalus microplus are known to be vectors to many 
pathogens from distinct domains, i.e., virus, bacteria, and protozoa (3). Furthermore, they 
also impair the society’s economy and public health (4, 5).

Usually, vector-pathogen studies on ticks focus on single-pathogen infections, 
despite co-infections cases being a commonly noted occurrence on field ticks (6). 
Although co-infected with many pathogens, these ticks should not be always considered 
responsible for their transmission. Vector competence represents the arthropod’s ability 
to acquire a pathogen infection, maintain it with replication, and further transmission 
to a susceptible host leading to disease development (7). Thus, the incrimination as 
a vector should be empirically determined to avoid misclassification regarding patho
gen transmission (8). Some species, such as I. scapularis and I. ricinus, were empirically 
described transmitting bacterial, protozoan, and viral pathogens (9–12). On the other 
hand, other tick species like Ixodes holocyclus and Hyalomma dromedarii were incrimina
ted as vectors of many pathogens while having little empirical evidence for most of 
these pathogens. This classification regarding the number of transmitted pathogens 
was assumed in studies based on molecular detection, which does not prove vector 
competence (8). However, until now, empirical experiment-based studies suggested that 
they are competent in transmitting only one single pathogen (13–16).

The vector competence of a given tick species to transmit multiple pathogens 
appears to be related to its microbiome. It was demonstrated that pathogen-microbiome 
interaction could influence the infection establishment and transmission. The study of 
tick microbiome enlightened researchers on the tick-pathogen relationship’s complexity, 
in which symbiont bacteria play an important role in tick fitness and vector competence 
(17). This type of discovery with the aid of high-throughput approaches enables the 
development of new control methods focused on the pathogen-microbiome-vector 
relationship (18). Moreover, a point of view from tick species that are competent to 
transmit several pathogens in comparison with those that have a narrower vector 
competence could bring us insights into control mechanisms to decrease such a broad 
competence. For instance, the introduction of modified symbiont Sphingomonas in tick 
microbiota has been demonstrated to reduce Anaplasma phagocytophilum infection in I. 
scapularis ticks (19). Along these lines, the first group of ticks could be assigned as being 
pluri-competent vectors (PVC) while the second group of ticks as being mono-compe
tent vectors (MCV).

Thus, the aim of the present work was to explore the microbiome data from tick 
species identified as PCV in comparison with those that are, up to date, considered as 
MCV. This exploratory approach can help us investigate what tick microbiome can tell us 
about such a broad vector competence.

RESULTS

For the literature review on vector competence of ticks that have 16S data deposited in 
Sequence Read Archive (SRA), 2,651 papers have been screened and 226 empirical vector 
competence-related studies were fully read, Fig. 1. The majority of these tick species 
with 16S data in SRA, 32 out of 58, could not be classified into MCV (competent to 
transmit one or any pathogen) or PCV (competent to transmit more than one pathogen) 
as only one or no papers have been found that have evaluated its vector competence 
for any pathogen. Among the 26 species that could be classified based on 226 studies, 
17 species had samples with the inclusion criteria for the microbiome analysis herein 
proposed, i.e., 16S V3-V4 or V4 region, paired-end sequences, 250 to 300 bases, field 
collected, washed with ethanol, whole body tissue, and free of pathogens. Among the 
1,480 samples meeting the inclusion criteria, 352 samples were divided into two data 
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sets. This sample number was selected in order to balance the number of samples of 
each tick species within each group as some species were overrepresented.

The training data set was used to characterize the microbiota and identify differen
tially abundant bacteria while the validation data set provided samples to assess the 
accuracy of the bacteria associated with any of the groups to distinguish them. For the 
training data set, 225 samples of seven species have been chosen, being the MCV group 
composed of Dermacentor silvarum, Dasymutilla occidentalis, and I. holocyclus while 
the PCV group of Amblyomma cajennense, Ha. longicornis, I. ricinus, and Rhipicephalus 
sanguineus. The remaining samples, 127, were used for the validation data set being 
the MCV group composed of D. occidentalis, D. silvarum, Haemaphysalis leporispalustris, I. 
holocyclus, and Ixodes persulcatus. The validation data set’s PCV group was composed of 
Dermacentor marginatus, Dermacentor reticulatus, Dermacentor variabilis, Ha. longicornis, 
Haemaphysalis punctata, Ixodes pacificus, I. ricinus, and R. sanguineus. A second validation 
data set, 16S V1-V2 region, was composed of 100 samples from four tick species, being 
Haemaphysalis humerosa and I. holocyclus assigned to the MCV group while I. ricinus and 

FIG 1 Flowchart of microbiome data search in NCBI’s Sequence Read Archive followed by literature in PubMed review on tick species containing 16S rRNA 

data. The light-blue area represents the search in the SRA database. The light-yellow area represents the literature review and classification into MCV and 

PCV tick species. The purple area represents the data sets prepared for the microbiome analysis. VC, vector competence; MCV, mono-competent vector; PCV, 

pluri-competent vector.
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R. sanguineus to the PCV group. For each data set, samples were randomly selected in 
order to balance the number of samples per tick species within each group. Differences 
of the sample number among groups were not statistically significant when compared 
with the other data sets by χ2 test. The whole classification results and list of tick species 
and pathogen pairs that have been evaluated can be seen in Table S1.

The bacterial community of ticks from each studied group (MCV and PCV) was 
composed of similar families and genera, however, with different centered log-ratio 
(CLR) abundances among the groups (Fig. 2A). For instance, Rickettsiaceae, Moraxellaceae, 
Staphylococcaceae, and Corynebacteriaceae families were more abundant in the PCV 
group. On the other hand, Enterobacteriaceae, Streptococcaceae, Rhizobiaceae, Flavobac
teriaceae, Sphingomonadaceae, and Comamonadaceae were more present in the MCV 
group when comparing both groups in the heatmap, Fig. 2A. In the beta diversity 
analysis using Phylogenetic Isometric Log-Ratio Transformation (PhILR) followed by an 
Euclidean distance matrix, MCV and PCV groups presented different bacterial communi
ties as seen in the principal coordinate analysis (PCoA), Fig. 2B. This separation between 
groups was statistically significant (PERMANOVA, F = 93.04, R2 = 0.294, P < 0.001). 
According to the PERMANOVA test, 29.4% (R2) of the distance between groups could be 
explained by their vector competence grouping (MCV and PCV). There was no statisti
cally significant difference in multivariate dispersion in the comparison between groups, 
F = 0.18 and P > 0.674. Thus, P-value inflation in the PERMANOVA test should not be 
expected.

In order to evaluate how bacteria genera correlated with each other within groups, 
networks using Sparse Correlations for Compositional data (SparCC) have been built for 
each group separately. The co-occurrence network of PCV tick species was less modular, 
with lower overall centrality and density as shown in Fig. 3. Due to this result, the alpha 
diversity has been evaluated using rarefied counts to see if the smaller and less-dense 
network seen in PCV tick species was related to a lower diversity of bacteria. Contrasting 
this previous idea, alpha diversity was higher in PCV ticks as measured by both Shannon 
and inverse Simpson metrics with Mann-Whitney P < 0.0001, Fig. 3D.

Among the 408 pathways predicted with PICRUSt2’s functional analysis, 197 were 
associated to any of the groups, MCV or PCV, with log2 fold change > 1 and BH adjusted 
P < 0.05, according to linear models for differential abundance (LinDA). The pathways 
predicted to be more active in PCV tick species were related to the biosynthesis of 
dTDP-L-rhamnose, mycothiol, peptidoglycan, and methyl ketone. On the other hand, the 

FIG 2 Microbial composition and beta diversity highlighting differences in the bacterial community of mono-competent vectors (MCV) and pluri-competent 

vectors (PCV). In A, a heatmap using mean CLR transformed abundances by group is represented. Z-score has been applied in order to reduce color scale range. 

In B, a PCoA from an Euclidean matrix of PhILR transformed counts between groups is represented.
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pathways which were predicted to be upregulated in MCV tick species were L-trypto
phan biosynthesis, sulfoglycolysis, and degradation of D-galactarate and D-glucarate. A 
complete table of all differentially regulated pathways can be seen in Table S2.

Several bacteria genera were associated with each of the studied tick groups, 
presenting LinDA’s log2 fold change > 0.5 and BH adjusted P < 0.05 (Fig. 4A). Genera 
such as Candidatus Midichloria, Escherichia-Shigella, Francisella, and Acidiphilum were 
related to the MCV group. To the same degree, Rickettsia, Staphylococcus, Methylobacte
rium-Methylorubrum, and Corynebacterium were associated with the PCV group. In order 
to validate LinDA analysis results, a PCoA with PhILR and Euclidean distance matrix 
was used to assess if separation was better using only the genera associated with each 
group. As seen in Fig. 4B, the clustering separation between the groups was greater 
than that observed before the filter. In both situations, there was a statistically significant 
difference in centroid positions from both groups (PERMANOVA, P < 0.001), while there 
was an increased R2 value in the abovementioned validation data set from 0.294 to 
0.445. In both cases, the homogeneity dispersion of samples within each group showed 
no statistically significant differences, F = 0.18 and P > 0.674; F = 3.60 and P = 0.057, 
respectively. Using the train data set, i.e., the same data set used for the differential 
analysis, ticks were classified using a principal component regression followed by a 
receiver operating curve (ROC) which showed an area under the curve (AUC) of 0.859. 
When another data set with new samples that sequenced the same 16S variable region, 

FIG 3 Co-occurrence networks of mono-competent vectors (MCV) (A) and pluri-competent vectors (PCV) (B) tick species. The node diameter was measured 

by each node degree. The color of nodes is related to the genera that were differently associated with each of the groups in the linear models for differential 

abundance analysis. Color of edges represents (red) positive and (blue) negative correlations > 0.4 between genera. In C and D, boxplots of network performance 

metrics and alpha diversity metrics are shown. Comparisons between groups were done using Mann-Whitney test with P < 0.0001.
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V3-V4, was used, a similar AUC of 0.878 was obtained. Such comparison could not be 
performed for the second validation data set using samples that have sequenced the 16S 
V1-V2 region as the 24 differently associated bacteria genera by LinDA analysis were not 
present in this data set. The model using the 24 genera most associated with MCV or PCV 
ticks demonstrated a high accuracy of 0.95 (95%CI 0.90–0.98) with a non-informative rate 
of 0.57 and high concordance, kappa coefficient of 0.90.

DISCUSSION

The tick species herein evaluated were selected based on the presence of laboratory 
confirmation and its vector competence being classified as MCV and PCV. Only species 
assessed under experimental conditions were used. This evaluation was performed by 
a comprehensive literature review of vector competence studies which highlighted a 
publication bias in such kind of studies. For instance, some tick species such as I. ricinus, 
I. scapularis, and H. longicornis, have more studies on their vector competence for any 
pathogen. These species are most likely to be part of the PCV group as more information 
regarding their competence to transmit a broader range of pathogens is available in 
the literature. Regardless of such limitations, several tick species with microbiome data 
deposited in NCBI’s SRA could be classified as being MCV or PCV allowing us to further 
evaluate differences in their microbiota.

The alpha diversity results showed a higher richness in PCV tick species. Such 
observation contrasts what has been seen under empirical condition where I. scapularis 
co-infected with three pathogens, Borrelia burgdorferi, A. phagocytophilum, and Babesia 
microti, did not show differences in alpha diversity’s Shannon index when compared 
with pathogen-free ticks (20). Considering our network analysis, the richer PCV group 
had a network with less correlations among the genera. Such contrast demonstrates that 
although the microbiota composition of PCV ticks being richer, less correlated micro
biota might be important before co-infection for multiple pathogen vector competence, 
since the samples herein evaluated were free of infection. The microbiota’s beta diversity 
of MCV and PCV ticks differed in terms of phylogenetic distance as shown in the beta 
diversity evaluation, PERMANOVA P < 0.001, and as multivariate dispersion has not been 
observed, the P-value tends not be overinflated. Such a difference in beta diversity 
suggests unique microbial composition related to competence in transmitting several 
pathogens which was further evaluated with LinDA.

FIG 4 Differential analysis to identify to which group bacteria genera were associated with and validation of using these genera to measure the accuracy of 

using them to separate samples from another data set into MCV or PCV ticks. In A, LinDA analysis of the microbiota from both mono-competent vectors (MCV) 

and pluri-competent vectors (PCV) groups. Only taxa with log2 fold change > 0.5 and Benjamini-Hochberg adjusted P < 0.05 are shown. In B, principal coordinate 

analysis of the beta diversity, with PhILR and Euclidean distance, when only this group of bacteria was kept. In C, receiver operating curves (ROC) and the area 

under the curve (AUC) in the train and validation (V3-V4) data sets based on principal component regression.
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Considering the bacteria genera with LinDA’s log2 > 0.5 and BH adjusted P < 0.05, 
the Francisella genus was associated with the MCV group, suggesting that bacteria 
belonging to this genus should direct tick species toward transmitting less pathogens. 
This genus is composed of pathogenic species as well as endosymbionts that have 
been identified in many tick species (21). In particular, the latter which are detected 
in all life stages both in colony-reared and in fieldcollected ticks (21). High prevalence 
of Francisella was associated with decreased Rickettsia genus, which impairs tick borne 
pathogen transmission by outcompeting other bacterial genera (22, 23). In our analysis, 
no direct correlation was observed between these two genera.

Candidatus Midichloria was also associated with the MCV group. This bacterial genus 
is closely related to symbionts such as Midichloria mitochondrii. This species has been 
recently demonstrated to be positively associated with B. burgdorferi and Neoehrlichia 
mikurensis while being negatively associated with A. phagocytophilum (24). However, a 
method has been used which modeled co-occurrence of bacteria based on the chance 
of these bacteria being present together with M. mitochondrii. As it is a symbiont 
bacteria present in many ixodid tick species (25), co-occurrence with pathogens does 
not mean that it plays a role in infection or transmission. In our analysis the genus Ca. 
Midichloria was positively correlated with environmental genera such as Staphylococcus, 
Enterobacter, and Acinetobacter (26) as well as some symbiont bacteria such as Arseno
phonus sp. and Rickettsia sp. (27). Such correlation with environmental and symbiont 
bacteria might be indicating a bridge role of Ca. Midichloria as environmental bacteria 
are acquired from habitat and blood meal shaping tick microbiota (26). Some of these 
genera were also associated in the present work with PCV tick species indicating that 
Ca. Midichloria should be important for both evaluated tick groups as it showed positive 
correlations in both networks.

Recently, M. mitochondrii’s pathways and tissue tropism have been studied showing 
that it may play a role helping the tick by supplying nutrients, increasing its survival 
as well as maintaining homeostasis and antioxidant defenses (28). Thus, this symbiont 
might be beneficial for the survival of many bacteria that favor correlations of genera. 
Altogether, it should be promoting an environment associated with both mono- and 
pluri-competence as suggested by the results of the present work. The other bacteria 
genera associated with the MCV group have not been related to vectorial competence 
or any kind of influence on microbial composition yet. Nonetheless, as demonstrated by 
the results of the present work, they might be somehow affecting bacterial composition 
leaning vectorial competence for several pathogens.

The Staphylococcus and Corynebacterium genera are known environmental bacteria 
that can be acquired by ticks and might interact with tick’s microbiota (26, 29). These 
genera were associated with uninfected PCV ticks and might, directly or indirectly, 
favor the colonization of several pathogens in one single tick. The genus Bacillus was 
also associated with PCV ticks and correlated positively with other bacteria related to 
this same group such as Staphylococcus and Cutibacterium. In recent work, Bacillus has 
been negatively associated with ticks infected by the pathogen R. helvetica while being 
positively associated with the genus Rickettsia (30). In the present work, such a positive 
correlation with Rickettsia was not observed, at least not directly in the PCV network. 
However, its positive correlation with other genera also related to PCV ticks indicates that 
it somehow should be helping to promote a favorable environment for the competence 
to transmit some pathogens.

Although the genus Rickettsia has been associated with PCV ticks, it showed more 
correlations with other genera in the MCV network demonstrating positive correlations 
with other bacteria related to both groups. Since pathogen-infected samples were 
removed from the analysis and most of the species belonging to Rickettsia are non-
pathogenic (31), we believe that this genus detected in our analysis refers to non-
pathogenic symbionts. Rickettsial endosymbionts like Rickettsia peacockii and Rickettsia 
buchneri have been strongly related to rickettsial pathogens such as Rickettsia rickett
sii and Rickettsia monacensis, respectively (32, 33). However, little is known about the 
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influence of these endosymbionts in tick vector competence (34). Based on the results 
of the present work, these bacteria should be somehow related to the transmission of 
several pathogens by one single tick species.

Although geographically distinct populations of a given tick species have micro
biomes with different composition, the functional profile is conserved and redundant 
within tick species (35). The results from the functional analysis showed a higher 
predicted regulation of mycothiol biosynthesis in PCV ticks which is associated with 
reactive oxygen species (ROS) detoxification as well as protection against electrophilic 
compounds (36). Such a defensive mechanism in PCV ticks against ROS and electrophilic 
compounds might be contributing with the broader vector competence of these tick 
species as it facilitates pathogen replication and transmission (37).

Biosynthesis of dTDP-L-rhamnose is an important pathway for viability or virulence 
of many bacterial pathogens such as Group B Streptococcus, Enterococcus faecalis, and 
Pseudomonas spp. (38). This pathway was associated with PCV ticks, and since it is absent 
in mammals (39), it might be an interesting aim to modulate vector competence of this 
tick group in order to make it less competent to transmit many pathogens.

It has been shown that Rickettsia and Corynebacterium genera were related to 
penicillin degradation pathways (40). Thus, these genera might be related to the higher 
β-lactam resistance predicted by PICRUSt2 analysis in PCV ticks, i.e., higher peptidogly
can biosynthesis V β-lactam (MetaCyc). Both of these genera have been associated with 
PCV ticks and together with the higher β-lactam resistance might represent an important 
mechanism to promote many pathogen development.

Most of the studies evaluating functional differences in the host-pathogen relation
ship test one single pathogen versus one single host. Our results alongside these 
one-to-one host-pathogen interactions from previous studies have shown important 
shared pathways that contribute with higher β-lactam resistance regulation and tick’s 
redox balance mechanisms. Altogether, these pathways might be related to the 
competence to transmit several pathogens.

After selecting the bacterial genera associated with any of the tested groups, beta 
diversity results differed in terms of R2 being about 1.5 times higher after picking taxa 
with LinDA’s log2 > 0.5 and BH adjusted P < 0.05. This demonstrates that these bacteria 
are better able to distinguish MCV and PCV tick groups by PhILR and Euclidean distance. 
However, this performance should be applicable only to other tick samples that had 
sequenced the 16S rRNA V3-V4 region as it had high accuracy, 0.95 (95% confidence 
interval 0.90–0.98) when validated with another set of samples from this same variable 
region. Validation with V1-V2 data set could not be tested as none of the 24 genera 
indicated by LinDA analysis were present in this data set. This difference in bacterial 
composition should be associated with the lower comparability between data sets from 
different 16S variable regions due to specificities in bacteria classification of each region 
(41).

Several bacteria groups related to PCV tick species are commonly found in the 
environment which might be related to the sequenced tick tissue and pre-washing step. 
Samples herein analyzed had the tick’s whole body sequenced and were surface washed 
with ethanol. Such a cleaning method is known to be the least effective for surface 
decontamination when compared with other methods, such as 5% sodium hypochlorite 
(42). However, if samples that had been previously washed with 5% sodium hypochlorite 
were chosen as selection criteria for the analysis, most of the tick samples would have 
been Australian ticks which sequenced the V1-V2 16S rRNA region. This criterion would 
have decreased the influence of environmental bacteria in the analysis; nevertheless, it 
would have inserted a geographical bias as well as diminished the number of tick species 
from both groups.

It is noteworthy that the relationship between environmental bacteria and tick 
microbiota has been proposed affecting its composition (43, 44). Thus, these bacteria 
may play a role in the tick microbiota indirectly affecting the tick’s vectorial competence 
for many pathogens. Silva’s 16S rRNA database presents limitations to accurately identify 
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bacteria to the species level (45). Therefore, the analysis of the present study was limited 
to the bacteria family and genera level. Such accuracy level bewilders the separation 
of species that could be actually part of the environment from those that had already 
established a co-evolutionary relationship in the tick microbiome and thus play a role 
in the vector competence of PCV tick species. Although environmental bacteria could 
not be removed from our analysis, assuming the influence of such bacteria in microbial 
composition of ticks, changes in the environment could help us modulate the tick 
microbiome (46). Thus, the bacteria genera herein appointed as associated with the 
MCV group, such as Escherichia-Shigella and Francisella, could help us, until a certain 
point, diminish the vectorial competence for several pathogens of a PCV tick species. 
As an example, such an approach can be performed as recently proposed by Mazuecos 
and collaborators (19) where modified symbiont Sphingomonas promoted a reduction 
of A. phagocytophilum in I. scapularis ticks. Thus, changing the tick’s microbiota using 
the abovementioned bacteria associated with mono-competent vector ticks could be 
a method to reduce such a broad vector competence. Naturally, due to the abovemen
tioned limitations regarding the samples, predictions, and mechanisms, the results of the 
present work should be empirically validated in the future for better comprehension of 
the mechanisms related to PCVs.

Conclusion

Based on our exploratory approach on the microbiome of uninfected PCV versus MCV 
ticks, the bacteria genera Rickettsia, Staphylococcus, and Corynebacterium and Arsenopho
nus among others are related to a broader vector competence. Additionally, pathways 
related to ROS detoxification, dTDP-L-rhamnose biosynthesis, and β-lactam resistance 
regulation could be participating in the infection of several tick-borne pathogens in ticks. 
These findings could be used in the future to regulate the permissiveness of PCV ticks 
in order to reduce their vector competence or even block the transmission of several 
pathogens by one single tick species. As we used and integrated publicly available data, 
it was not possible to determine the species level for all amplicon sequence variants 
(ASVs). Due to this limitation, the genus level was used for the major analysis. Deeper 
insights would be found evaluating each bacteria species on those ticks. Despite these 
limitations, we were able to provide understanding on the bacteria community role on 
the vector competence of tick species studied.

MATERIALS AND METHODS

Vector competence literature review

For this analysis, tick species that have 16S rRNA gene sequencing data in the SRA 
and NCBI’s BioProject, between January and April 2023, were selected. Following, a 
literature review was performed, assessing studies which evaluated the tick species’ 
vector competence for one or more pathogens. Thus, all 58 tick species with 16S 
rRNA microbiota data deposited in SRA were reviewed for their vector competence 
for pathogens of medical and veterinary importance. Reviews were carried out for each 
species through systematic searches, using the species name and terms related to vector 
competence (i.e., “Vectorial competence” OR “Vector competence” OR “Vector capabil
ity”) as well as pathogen transmission pathways (vertical OR horizontal OR transstadial 
OR transovarial AND transmi*). The searches were performed on the NCBI’s PubMed. 
When less than 15 studies were found, only the species name was used for the search 
and all result titles and abstracts were filtered to find works that evaluated the vector 
competence of the species in a laboratory setting.

To assess the vector competence of each species, tick species and pathogen pairs 
were classified according to the degree of evidence presented, which used adaptations 
of the criteria previously outlined in the literature (8). Thus, the criteria to determine 
vector competence were experimental demonstration of the following: (i) acquisition of 
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pathogens when feeding uninfected ticks on experimental infective hosts, (ii) mainte
nance of pathogens during the seedlings of experimentally infected tick life stages 
(vertical transmission and/or transstadial passage), and (iii) transmission of pathogens to 
a susceptible host in a subsequent blood meal.

Each study was evaluated, focused on demonstration of any of these criteria, and a 
tick/pathogen pair was classified according to the level of evidence presented by the 
applied method. The criteria were as follows:

• Grade 1 when there was only detection of the pathogen in the tick collected in 
endemic areas;

• Grade 2 when ticks collected from the field were evaluated in the laboratory for 
transmission of pathogens to susceptible hosts or to other life stages (vertical 
or transstadial transmission) as well as laboratory experiments using artificial 
infections;

• Grade 3 when there was experimental demonstration of at least one of the 
aforementioned criteria using colony-reared ticks;

• Grade 4 when all vector competence criteria have been demonstrated in the 
laboratory.

Species were classified as competent to transmit a given pathogen only when there 
were studies that evaluated vector competence with evidence degrees 3 or 4 and 
empirically demonstrated such competence. Despite existing works declaring vector 
competence for certain pathogens, if they were based only on pathogen detection in 
ticks or on citations of another published work without enough vector competence 
evidence, the tick species was still classified as an incompetent vector for such patho
gens. When tick species presented vector competence for more than one pathogen with 
a grade 3 or 4 evidence degree, it was classified as being PCV. On the other hand, if it 
showed vector competence for only one or any pathogen with grade 3 or 4 evidence 
degree, it was classified as MCV. A table summarizing the findings and classification of 
the review can be found in Table S1.

Data selection and tick classification

From the data on each tick sample with bacterial 16S-rRNA sequencing deposited at the 
NCBI, a metadata was assembled containing information such as life stage, pre-sequenc
ing washing method, variable region of the 16S gene, tick collection location, and tick 
species. A new variable was added regarding the number of pathogens that each tick 
species is competent to transmit as the aforementioned classification. In order to reduce 
the heterogeneity between samples and retain the highest number of tick species, only 
samples from data sets containing fieldcollected ticks by flagging, ticks’ whole body, 
ticks without previous detection of infection of any pathogen, and ticks with prewash 
using alcohol or alcohol plus some other reagent in the methodology were included. In 
addition, the sequencing was filtered for V3-V4 or V4 regions with a paired-end layout 
and 250 or 300 bases as a higher number of samples was attained in comparison with 
other variable regions.

Data processing

All samples were downloaded using SRA toolkit’s fastq-dump (github.com/ncbi/
sra-tools) and quality checked by Trimmomatic v0.32 (47) to remove the sequencing 
adapter, small and unspecific reads, and those with Phred quality score lower than 
30. After performing the data quality control, all forward and reverse reads have been 
joined and processed on the QIIME2 2022.11 (48) pipeline, removing chimeric sequences 
and building ASVs using the Deblur algorithm (49). Then, all ASVs have been classified 
using the SILVA v138.1 16S database (50) assuming 97% identity. Before usage, the 

Research Article Microbiology Spectrum

November/December 2023  Volume 11  Issue 6 10.1128/spectrum.02156-23 10

https://doi.org/10.1128/spectrum.02156-23


database was filtered to remove sequences that could be associated with fungi, filtering 
out Eukaryota, plants, removing Mitochondria and Chloroplast, and sequences with 
unspecified species classification such as unkown, uncultured, NA, metagenome, and 
unidentified. After classification, a phylogenetic tree was built using MAFFT (multiple 
alignment using fast Fourier transform (51) and fasttree (52) methods. For the analysis, 
all of these data generated on QIIME2, i.e., ASV table, ASV taxonomic classification, and 
phylogenetic tree, have been imported in R environment v4.2.3 using Qiime2R package 
(53). This package creates a phyloseq object that can be further analyzed by the Phyloseq 
package (54) to measure diversity indices.

Batch effect correction

Before any analysis, a batch correction has been performed to reduce the technical bias 
variation that could have been caused by batch, e.g., each project being sequenced and 
performed by different research groups and sequencing machines. Such correction was 
performed by the ConQuR_libsize function (55), from the ConQuR package v2.0. After 
batch correction, the corrected ASV table was incorporated in a phyloseq object. For 
future analysis, samples with less than 100 reads and taxa with less than 10 counts have 
been removed.

Compositional and diversity analysis

To visualize the microbial composition of MCV and PCV tick species, heatmaps using 
the batch-corrected mean counts transformed by centered log-ratio were created. CLR 
transformed counts were scaled using Z-scores in order to reduce the range of values for 
better visualization of differences between groups. As the alpha diversity metric could 
not be measured using CLR transformed counts, the rarefied batch-corrected counts 
have been used for such analysis, rarefying for 1,000 counts and using Shannon and 
Inverse Simpson indices. Beta diversity was assessed by means of ASV count transforma
tion using PhILR (56), followed by a Euclidean distance matrix. Such an approach takes 
into account the data’s compositionality characteristic together with the phylogenetic 
distance from taxa present in samples. Principal coordinate analysis was applied to 
evaluate group distances in terms of beta diversity followed by PERMANOVA test (57), in 
order to determine statistically significant differences in each group centroid according 
to the Euclidean distance matrix. The multivariate dispersion has been tested through 
the vegan’s package v2.6.4 betadisper function to assess the homogeneity of each 
sample distance in relation to its group centroid. If groups are equally homogeneous, 
then the P-value from the PERMANOVA test is not inflated.

Co-occurrence network

Co-occurrence networks have been built using Sparse Correlations for Compositional 
data between samples from each group, MCV and PCV. In order to compare networks 
from both groups, 100 bootstrap replicates of SparCC correlation matrices were made 
to extract network performance metrics such as betweenness centrality, modularity, 
and density. After collecting these metrics from 100 bootstrapped networks, they 
were compared between MCV and PCV groups with the Mann-Whitney test. The 
package ggClusterNet v0.1.0 has been used to measure SparCC correlation matrices, 
and networks were built using igraph v1.4.1.

Functional analysis

In order to further describe PCV ticks, a functional analysis was performed using 
PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruction of Unobserved 
States), predicting metagenome functions that are regulated by a given bacterial 
community based on 16S-rRNA sequencing (58). Predicted pathways were described 
according to the MetaCyc database and further hierarchically classified into superclasses 
as provided by the file2meco R package v0.5.1. Differently abundant pathways were 
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identified using Linear models for Differential Abundance (59) with a cutoff of 1 log2 fold 
change and Benjamini-Hochberg false discovery rate (BH) adjusted P < 0.05.

Differential analysis and validation of differentially abundant bacteria

To determine groups of bacteria with higher probability to explain differences among 
groups (MCV vs PCV), LinDA has been applied as it takes into account the data’s 
compositionality. Differently abundant genera related to MCV or PCV were determined 
when log2 fold change was >0.5 with an BH adjusted P < 0.05. Tick life stages have been 
used in the LinDA model to adjust the vector competence variable.

The bacteria identified as differentially abundant between MCV and PCV ticks in 
LinDA were used in a principal component regression approach to assess if these 
bacterial genera accurately separate tick species as MCV or PCV. Thus, only bacterial 
genera with the abovementioned fold change and P-value criteria were used to run a 
PCA. The first two components were modeled in a logistic regression to determine if 
samples belonged to any of the studied tick groups. A validation was performed on a 
data set, composed of other tick samples which sequenced V1-V2 and V3-V4 16S rRNA 
regions and were unused in the differential analysis as well as samples from other tick 
species in both groups. The performance of the logistic model built from the train data 
set was measured using the abovementioned validation data sets containing only the 
differently abundant bacterial genera. Receiver operating characteristic curves, package 
pROC v1.18.0, and the confusion matrix method, package caret v6.0.94, have been used 
to measure the accuracy, non-informative rate, and concordance kappa between train 
and test data sets.

ACKNOWLEDGMENTS

This research received no specific grant from any funding agency in the public, 
commercial, or notforprofit sectors. We declare that we have no competing interests.

AUTHOR AFFILIATIONS

1Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
2Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United 
Kingdom
3Faculdade de Medicina Veterinária da União Metropolitana de Educação e Cultura 
(UNIME), Lauro de Freitas, Bahia, Brazil

AUTHOR ORCIDs

Tiago F. Mota  http://orcid.org/0000-0001-6575-8208

FUNDING

Funder Grant(s) Author(s)

Instituto Gonçalo Moniz PhD Scholarship Tiago F. Mota

AUTHOR CONTRIBUTIONS

Tiago F. Mota, Conceptualization, Data curation, Formal analysis, Investigation, Meth
odology, Visualization, Writing – original draft | Eduardo R. Fukutani, Methodology, 
Writing – review and editing | Kelsilandia A. Martins, Conceptualization, Data curation, 
Investigation, Methodology, Writing – review and editing | Vanessa R. Salgado, Data 
curation, Methodology, Writing – review and editing | Bruno B. Andrade, Writing – review 
and editing | Deborah B. M. Fraga, Conceptualization, Supervision, Writing – review 
and editing | Artur T. L. Queiroz, Conceptualization, Project administration, Supervision, 
Visualization, Writing – review and editing

Research Article Microbiology Spectrum

November/December 2023  Volume 11  Issue 6 10.1128/spectrum.02156-23 12

https://doi.org/10.1128/spectrum.02156-23


DATA AVAILABILITY

Raw sequences were obtained from NCBI’s SRA under the following BioProjects: 
PRJEB36903, PRJNA574713, PRJNA577275, PRJNA631062, PRJNA661974, PRJNA664219, 
PRJNA732915, PRJNA733831, PRJNA766341, PRJNA801881, PRJNA352452, 
PRJNA401547, PRJNA438789, PRJNA494526, PRJNA523509, PRJNA530927, 
PRJNA548395, PRJEB46006, PRJNA640465, and PRJNA559059. Metadata and code are 
available upon request.

ADDITIONAL FILES

The following material is available online.

Supplemental Material

Supplemental tables (Spectrum02156-23-s0001.xlsx). Results from the literature review 
and differential functional analysis.

REFERENCES

1. WHO. 2017. Global vector control response 2017–2030. World Health 
Organization, Geneva.

2. Franklinos LHV, Jones KE, Redding DW, Abubakar I. 2019. The effect of 
global change on mosquito-borne disease. Lancet Infect Dis 19:e302–
e312. https://doi.org/10.1016/S1473-3099(19)30161-6

3. Eisen L. 2022. Tick species infesting humans in the United States. Ticks 
Tick Borne Dis 13:102025. https://doi.org/10.1016/j.ttbdis.2022.102025

4. Singh K, Kumar S, Sharma AK, Jacob SS, RamVerma M, Singh NK, Shakya 
M, Sankar M, Ghosh S. 2022. Economic impact of predominant ticks and 
tick-borne diseases on Indian dairy production systems. Exp Parasitol 
243:108408. https://doi.org/10.1016/j.exppara.2022.108408

5. Johnson N, Phipps LP, Hansford KM, Folly AJ, Fooks AR, Medlock JM, 
Mansfield KL. 2022. One health approach to tick and tick-borne disease 
surveillance in the United Kingdom. Int J Environ Res Public Health 
19:5833. https://doi.org/10.3390/ijerph19105833

6. Moutailler S, Valiente Moro C, Vaumourin E, Michelet L, Tran FH, Devillers 
E, Cosson J-F, Gasqui P, Van VT, Mavingui P, Vourc’h G, Vayssier-Taussat 
M. 2016. Co-infection of ticks: the rule rather than the exception. PLoS 
Negl Trop Dis 10:e0004539. https://doi.org/10.1371/journal.pntd.
0004539

7. Wu VY, Chen B, Christofferson R, Ebel G, Fagre AC, Gallichotte EN, 
Sweeny AR, Carlson CJ, Ryan SJ. 2022. A minimum data standard for 
vector competence experiments. Sci Data 9:634. https://doi.org/10.
1038/s41597-022-01741-4

8. Eisen L. 2020. Vector competence studies with hard ticks and borrelia 
burgdorferi sensu lato spirochetes: A review. Ticks Tick Borne Dis 
11:101359. https://doi.org/10.1016/j.ttbdis.2019.101359

9. Hajnická V, Kúdelová M, Štibrániová I, Slovák M, Bartíková P, Halásová Z, 
Pančík P, Belvončíková P, Vrbová M, Holíková V, Hails RS, Nuttall PA. 
2017. Tick-borne transmission of murine gammaherpesvirus 68. Front 
Cell Infect Microbiol 7:458. https://doi.org/10.3389/fcimb.2017.00458

10. Król N, Militzer N, Stöbe E, Nijhof AM, Pfeffer M, Kempf VAJ, Obiegala A. 
2021. Evaluating transmission paths for three different bartonella spp. in 
ixodes ricinus ticks using artificial feeding. Microorganisms 9. https://doi.
org/10.3390/microorganisms9050901

11. Levin ML, Stanley HM, Hartzer K, Snellgrove AN. 2021. Incompetence of 
the Asian Longhorned tick (Acari: Ixodidae) in transmitting the agent of 
human granulocytic anaplasmosis in the United States. J Med Entomol 
58:1419–1423. https://doi.org/10.1093/jme/tjab015

12. Sharma R, Cozens DW, Armstrong PM, Brackney DE. 2021. Vector 
competence of human-biting ticks Ixodes scapularis, amblyomma 
americanum and dermacentor variabilis for powassan virus. Parasit 
Vectors 14:466. https://doi.org/10.1186/s13071-021-04974-1

13. Smith DJW. 1942. Studies in the epidemiology of Q fever. Aust J Exp Biol 
Med Sci20:213–217. https://doi.org/10.1038/icb.1942.37

14. Piesman J, Stone BF. 1991. Vector competence of the australian paralysis 
tick, Ixodes holocyclus, for the lyme disease spirochete borrelia 

burgdorferi. Int J Parasitol 21:109–111. https://doi.org/10.1016/0020-
7519(91)90127-s

15. Soares JF, Soares HS, Barbieri AM, Labruna MB. 2012. Experimental 
infection of the tick Amblyomma cajennense, cayenne tick, with 
Rickettsia rickettsii, the agent of rocky mountain spotted fever. Med Vet 
Entomol 26:139–151. https://doi.org/10.1111/j.1365-2915.2011.00982.x

16. Horta MC, Sabatini GS, Moraes-Filho J, Ogrzewalska M, Canal RB, 
Pacheco RC, Martins TF, Matushima ER, Labruna MB. 2010. Experimental 
infection of the opossum didelphis aurita by rickettsia felis, rickettsia 
bellii, and rickettsia parkeri and evaluation of the transmission of the 
infection to ticks amblyomma cajennense and amblyomma dubitatum. 
Vector Borne Zoonotic Dis 10:959–967. https://doi.org/10.1089/vbz.
2009.0149

17. Hussain S, Perveen N, Hussain A, Song B, Aziz MU, Zeb J, Li J, George D, 
Cabezas-Cruz A, Sparagano O. 2022. The symbiotic continuum within 
ticks: opportunities for disease control. Front Microbiol 13:854803. https:
//doi.org/10.3389/fmicb.2022.854803

18. de la Fuente J, Antunes S, Bonnet S, Cabezas-Cruz A, Domingos AG, 
Estrada-Peña A, Johnson N, Kocan KM, Mansfield KL, Nijhof AM, Papa A, 
Rudenko N, Villar M, Alberdi P, Torina A, Ayllón N, Vancova M, 
Golovchenko M, Grubhoffer L, Caracappa S, Fooks AR, Gortazar C, Rego 
ROM. 2017. Tick-pathogen interactions and vector competence: 
identification of molecular drivers for tick-borne diseases. Front Cell 
Infect Microbiol 7:114. https://doi.org/10.3389/fcimb.2017.00114

19. Mazuecos L, Alberdi P, Hernández-Jarguín A, Contreras M, Villar M, 
Cabezas-Cruz A, Simo L, González-García A, Díaz-Sánchez S, Neelakanta 
G, Bonnet SI, Fikrig E, de la Fuente J. 2023. Frankenbacteriosis targeting 
interactions between pathogen and symbiont to control infection in the 
tick vector. iScience 26:106697. https://doi.org/10.1016/j.isci.2023.
106697

20. Gil JC, Helal ZH, Risatti G, Hird SM. 2020. Microbiome correlates with life 
stage, not the presence of human pathogens. PeerJ 8. https://doi.org/10.
7717/peerj.10424

21. Kumar D, Sharma SR, Adegoke A, Kennedy A, Tuten HC, Li AY, Karim S. 
2022. Recently evolved -Like endosymbiont outcompetes an ancient 
and evolutionarily associated -Like endosymbiont in the lone Star tick () 
linked to the alpha-gal syndrome. Front Cell Infect Microbiol 12:787209. 
https://doi.org/10.3389/fcimb.2022.787209

22. Budachetri K, Browning RE, Adamson SW, Dowd SE, Chao CC, Ching WM, 
Karim S. 2014. An insight into the Microbiome of the Amblyomma 
maculatum (Acari: Ixodidae). J Med Entomol 51:119–129. https://doi.org/
10.1603/me12223

23. Choubdar N, Karimian F, Koosha M, Oshaghi MA. 2021. An integrated 
overview of the bacterial flora composition of hyalomma anatolicum, 
the main vector of cchf. PLoS Negl Trop Dis 15:e0009480. https://doi.org/
10.1371/journal.pntd.0009480

24. Krawczyk AI, Röttjers S, Coimbra-Dores MJ, Heylen D, Fonville M, Takken 
W, Faust K, Sprong H. 2022. Tick microbial associations at the crossroad 

Research Article Microbiology Spectrum

November/December 2023  Volume 11  Issue 6 10.1128/spectrum.02156-23 13

https://www.ncbi.nlm.nih.gov/bioproject/PRJEB36903/
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA574713
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA577275/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA631062/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA661974/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA664219/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA732915/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA733831/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA766341/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA801881/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA352452/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA401547/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA438789/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA494526/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA523509/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA530927/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA548395/
https://www.ncbi.nlm.nih.gov/bioproject/PRJEB46006/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA640465/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA559059/
https://doi.org/10.1128/spectrum.02156-23
https://doi.org/10.1016/S1473-3099(19)30161-6
https://doi.org/10.1016/j.ttbdis.2022.102025
https://doi.org/10.1016/j.exppara.2022.108408
https://doi.org/10.3390/ijerph19105833
https://doi.org/10.1371/journal.pntd.0004539
https://doi.org/10.1038/s41597-022-01741-4
https://doi.org/10.1016/j.ttbdis.2019.101359
https://doi.org/10.3389/fcimb.2017.00458
https://doi.org/10.3390/microorganisms9050901
https://doi.org/10.1093/jme/tjab015
https://doi.org/10.1186/s13071-021-04974-1
https://doi.org/10.1038/icb.1942.37
https://doi.org/10.1016/0020-7519(91)90127-s
https://doi.org/10.1111/j.1365-2915.2011.00982.x
https://doi.org/10.1089/vbz.2009.0149
https://doi.org/10.3389/fmicb.2022.854803
https://doi.org/10.3389/fcimb.2017.00114
https://doi.org/10.1016/j.isci.2023.106697
https://doi.org/10.7717/peerj.10424
https://doi.org/10.3389/fcimb.2022.787209
https://doi.org/10.1603/me12223
https://doi.org/10.1371/journal.pntd.0009480
https://doi.org/10.1128/spectrum.02156-23


of horizontal and vertical transmission pathways. Parasit Vectors 15:380. 
https://doi.org/10.1186/s13071-022-05519-w

25. Epis S, Sassera D, Beninati T, Lo N, Beati L, Piesman J, Rinaldi L, McCoy 
KD, Torina A, Sacchi L, Clementi E, Genchi M, Magnino S, Bandi C. 2008. 
Midichloria Mitochondrii is widespread in hard ticks (Ixodidae) and 
resides in the mitochondria of phylogenetically diverse species. 
Parasitology 135:485–494. https://doi.org/10.1017/S0031182007004052

26. Li S-S, Zhang X-Y, Zhou X-J, Chen K-L, Masoudi A, Liu J-Z, Zhang Y-K. 
2022. Bacterial microbiota analysis demonstrates that ticks can acquire 
bacteria from habitat and host blood meal. Exp Appl Acarol 87:81–95. 
https://doi.org/10.1007/s10493-022-00714-x

27. Duron O, Binetruy F, Noël V, Cremaschi J, McCoy KD, Arnathau C, 
Plantard O, Goolsby J, Pérez de León AA, Heylen DJA, Van Oosten AR, 
Gottlieb Y, Baneth G, Guglielmone AA, Estrada-Peña A, Opara MN, 
Zenner L, Vavre F, Chevillon C. 2017. Evolutionary changes in Symbiont 
community structure in ticks. Mol Ecol 26:2905–2921. https://doi.org/10.
1111/mec.14094

28. Olivieri E, Epis S, Castelli M, Varotto Boccazzi I, Romeo C, Desirò A, 
Bazzocchi C, Bandi C, Sassera D. 2019. Tissue Tropism and metabolic 
pathways of Midichloria Mitochondrii suggest tissuespecific functions 
in the symbiosis with ixodes ricinus. Ticks Tick Borne Dis 10:1070–1077. 
https://doi.org/10.1016/j.ttbdis.2019.05.019

29. Nhan T-X, Parienti J-J, Badiou G, Leclercq R, Cattoir V. 2012. Microbiologi
cal investigation and clinical significance of Corynebacterium spp. In 
respiratory specimens. Diagn Microbiol Infect Dis 74:236–241. https://
doi.org/10.1016/j.diagmicrobio.2012.07.001

30. Maitre A, Wu-Chuang A, Mateos-Hernández L, Foucault-Simonin A, 
Moutailler S, Paoli J-C, Falchi A, Díaz-Sánchez AA, Banović P, Obregón D, 
Cabezas-Cruz A. 2022. Rickettsia Helvetica infection is associated with 
microbiome modulation in Ixodes ricinus collected from humans in 
serbia. Sci Rep 12:11464. https://doi.org/10.1038/s41598-022-15681-x

31. Bonnet SI, Binetruy F, Hernández-Jarguín AM, Duron O. 2017. The tick 
microbiome: why non-pathogenic microorganisms matter in tick 
biology and pathogen transmission. Front Cell Infect Microbiol 7:236. 
https://doi.org/10.3389/fcimb.2017.00236

32. Simser JA, Palmer AT, Fingerle V, Wilske B, Kurtti TJ, Munderloh UG. 2002. 
Rickettsia monacensis sp. nov., a spotted fever group Rickettsia, from 
ticks (Ixodes ricinus) collected in a European city park. Appl Environ 
Microbiol 68:4559–4566. https://doi.org/10.1128/AEM.68.9.4559-4566.
2002

33. Kurtti TJ, Felsheim RF, Burkhardt NY, Oliver JD, Heu CC, Munderloh UG. 
2015. Rickettsia buchneri SP. Nov., a rickettsial endosymbiont of the 
blacklegged tick Ixodes scapularis. Int J Syst Evol Microbiol 65:965–970. 
https://doi.org/10.1099/ijs.0.000047

34. Hodosi R, Kazimirova M, Soltys K. 2022. What do we know about the 
microbiome of Front Cell Infect Microbiol 12:990889. https://doi.org/10.
3389/fcimb.2022.990889

35. Estrada-Peña A, Cabezas-Cruz A, Obregón D. 2020. Behind taxonomic 
variability: the functional redundancy in the tick Microbiome. 
Microorganisms 8:1829. https://doi.org/10.3390/microorgan
isms8111829

36. Hand CE, Honek JF. 2005. Biological chemistry of naturally occurring 
thiols of microbial and marine origin. J Nat Prod 68:293–308. https://doi.
org/10.1021/np049685x

37. Hernandez EP, Talactac MR, Fujisaki K, Tanaka T. 2019. The case for 
oxidative stress molecule involvement in the tick-pathogen interactions 
-An Omics approach. Dev Comp Immunol 100:103409. https://doi.org/
10.1016/j.dci.2019.103409

38. van der Beek SL, Zorzoli A, Çanak E, Chapman RN, Lucas K, Meyer BH, 
Evangelopoulos D, de Carvalho LPS, Boons G-J, Dorfmueller HC, van 
Sorge NM. 2019. Streptococcal dTDP-L-Rhamnose biosynthesis enzymes: 
functional characterization and lead compound identification. Mol 
Microbiol 111:951–964. https://doi.org/10.1111/mmi.14197

39. Adibekian A, Stallforth P, Hecht M-L, Werz DB, Gagneux P, Seeberger PH. 
2011. Comparative bioinformatics analysis of the mammalian and 
bacterial glycomes. Chem. Sci 2:337–344. https://doi.org/10.1039/
C0SC00322K

40. Chigwada AD, Mapholi NO, Ogola HJO, Mbizeni S, Masebe TM. 2022. 
Pathogenic and endosymbiotic bacteria and their associated antibiotic 
resistance biomarkers in and ticks infesting nguni cattle (Spp.). 
Pathogens 11:432. https://doi.org/10.3390/pathogens11040432

41. Willis C, Desai D, LaRoche J. 2019. Influence of 16S rRNA variable region 
on perceived diversity of marine microbial communities of the Northern 
North atlantic. FEMS Microbiol Lett 366:fnz152. https://doi.org/10.1093/
femsle/fnz152

42. Hoffmann A, Fingerle V, Noll M. 2020. Analysis of tick surface decontami
nation methods. Microorganisms 8:987. https://doi.org/10.3390/
microorganisms8070987

43. Rynkiewicz EC, Hemmerich C, Rusch DB, Fuqua C, Clay K. 2015. 
Concordance of bacterial communities of two tick species and blood of 
their shared rodent host. Mol Ecol 24:2566–2579. https://doi.org/10.
1111/mec.13187

44. Zolnik CP, Prill RJ, Falco RC, Daniels TJ, Kolokotronis S-O. 2016. 
Microbiome changes through ontogeny of a tick pathogen vector. Mol 
Ecol 25:4963–4977. https://doi.org/10.1111/mec.13832

45. Hoffman C, Siddiqui NY, Fields I, Gregory WT, Simon HM, Mooney MA, 
Wolfe AJ, Karstens L, Chia N. 2021. Species-level resolution of female 
bladder microbiota from 16S rRNA amplicon sequencing. mSystems 6. 
https://doi.org/10.1128/mSystems.00518-21

46. Aivelo T, Norberg A, Tschirren B. 2019. Bacterial microbiota composition 
of ticks: the role of environmental variation, tick characteristics and 
microbial interactions. PeerJ 7:e8217. https://doi.org/10.7717/peerj.8217

47. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for 
Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/
10.1093/bioinformatics/btu170

48. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, 
Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger 
K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez 
AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, 
Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, 
Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, 
Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, 
Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, 
Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu 
YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, 
McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, 
Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras 
D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS 2nd, 
Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, 
Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, 
Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, 
von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, 
Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, 
Caporaso JG. 2019. Reproducible, interactive, scalable and extensible 
microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. 
https://doi.org/10.1038/s41587-019-0252-6

49. Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Zech Xu Z, 
Kightley EP, Thompson LR, Hyde ER, Gonzalez A, Knight R, Gilbert JA. 
2017. Deblur rapidly resolves single-nucleotide community sequence 
patterns. mSystems 2:e00191-16. https://doi.org/10.1128/mSystems.
00191-16

50. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, 
Glöckner FO. 2013. The SILVA ribosomal RNA gene database project: 
Improved data processing and web-based tools. Nucleic Acids Res 
41:D590–6. https://doi.org/10.1093/nar/gks1219

51. Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment 
software version 7: improvements in performance and usability. Mol Biol 
Evol 30:772–780. https://doi.org/10.1093/molbev/mst010

52. Price MN, Dehal PS, Arkin AP. 2009. Fasttree: computing large minimum 
evolution trees with profiles instead of a distance matrix. Mol Biol Evol 
26:1641–1650. https://doi.org/10.1093/molbev/msp077

53. Jbisanz. Jbisanz/Qiime2R. Available from: https://github.com/jbisanz/
qiime2R. Retrieved 18 2021.

54. McMurdie PJ, Holmes S. 2013. Phyloseq: an R package for reproducible 
interactive analysis and graphics of microbiome census data. PLoS One 
8:e61217. https://doi.org/10.1371/journal.pone.0061217

55. Ling W, Lu J, Zhao N, Lulla A, Plantinga AM, Fu W, Zhang A, Liu H, Song 
H, Li Z, Chen J, Randolph TW, Koay WLA, White JR, Launer LJ, Fodor AA, 
Meyer KA, Wu MC. 2022. Batch effects removal for microbiome data via 
conditional quantile regression. Nat Commun 13:5418. https://doi.org/
10.1038/s41467-022-33071-9

Research Article Microbiology Spectrum

November/December 2023  Volume 11  Issue 6 10.1128/spectrum.02156-23 14

https://doi.org/10.1186/s13071-022-05519-w
https://doi.org/10.1017/S0031182007004052
https://doi.org/10.1007/s10493-022-00714-x
https://doi.org/10.1111/mec.14094
https://doi.org/10.1016/j.ttbdis.2019.05.019
https://doi.org/10.1016/j.diagmicrobio.2012.07.001
https://doi.org/10.1038/s41598-022-15681-x
https://doi.org/10.3389/fcimb.2017.00236
https://doi.org/10.1128/AEM.68.9.4559-4566.2002
https://doi.org/10.1099/ijs.0.000047
https://doi.org/10.3389/fcimb.2022.990889
https://doi.org/10.3390/microorganisms8111829
https://doi.org/10.1021/np049685x
https://doi.org/10.1016/j.dci.2019.103409
https://doi.org/10.1111/mmi.14197
https://doi.org/10.1039/C0SC00322K
https://doi.org/10.3390/pathogens11040432
https://doi.org/10.1093/femsle/fnz152
https://doi.org/10.3390/microorganisms8070987
https://doi.org/10.1111/mec.13187
https://doi.org/10.1111/mec.13832
https://doi.org/10.1128/mSystems.00518-21
https://doi.org/10.7717/peerj.8217
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1038/s41587-019-0252-6
https://doi.org/10.1128/mSystems.00191-16
https://doi.org/10.1093/nar/gks1219
https://doi.org/10.1093/molbev/mst010
https://doi.org/10.1093/molbev/msp077
https://github.com/jbisanz/qiime2R
https://doi.org/10.1371/journal.pone.0061217
https://doi.org/10.1038/s41467-022-33071-9
https://doi.org/10.1128/spectrum.02156-23


56. Silverman JD, Washburne AD, Mukherjee S, David LA. 2017. A phyloge
netic transform enhances analysis of compositional microbiota data. 
Elife 6:e21887. https://doi.org/10.7554/eLife.21887

57. Tang Z-Z, Chen G, Alekseyenko AV. 2016. PERMANOVA-S: association test 
for microbial community composition that accommodates confounders 
and multiple distances. Bioinformatics 32:2618–2625. https://doi.org/10.
1093/bioinformatics/btw311

58. Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, 
Huttenhower C, Langille MGI. 2020. Picrust2 for prediction of metage
nome functions. Nat Biotechnol 38:685–688. https://doi.org/10.1038/
s41587-020-0548-6

59. Zhou H, He K, Chen J, Zhang X. 2022. Linda: Linear models for differential 
abundance analysis of microbiome compositional data. Genome Biol 
23:95. https://doi.org/10.1186/s13059-022-02655-5

Research Article Microbiology Spectrum

November/December 2023  Volume 11  Issue 6 10.1128/spectrum.02156-23 15

https://doi.org/10.7554/eLife.21887
https://doi.org/10.1093/bioinformatics/btw311
https://doi.org/10.1038/s41587-020-0548-6
https://doi.org/10.1186/s13059-022-02655-5
https://doi.org/10.1128/spectrum.02156-23

	Another tick bites the dust: exploring the association of microbial composition with a broad transmission competence of tick vector species
	RESULTS
	DISCUSSION
	Conclusion

	MATERIALS AND METHODS
	Vector competence literature review
	Data selection and tick classification
	Data processing
	Batch effect correction
	Compositional and diversity analysis
	Co-occurrence network
	Functional analysis
	Differential analysis and validation of differentially abundant bacteria



