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Abstract: Alzheimer’s Disease (AD) is an age-related neurodegenerative disorder characterized by
progressive memory loss and cognitive impairment, affecting 35 million individuals worldwide.
Intracerebroventricular (ICV) injection of low to moderate doses of streptozotocin (STZ) in adult
male Wistar rats can reproduce classical physiopathological hallmarks of AD. This biological model
is known as ICV-STZ. Most studies are focused on the description of behavioral and morphological
aspects of the ICV-STZ model. However, knowledge regarding the molecular aspects of the ICV-STZ
model is still incipient. Therefore, this work is a first attempt to provide a wide proteome description
of the ICV-STZ model based on mass spectrometry (MS). To achieve that, samples from the pre-
frontal cortex (PFC) and hippocampus (HPC) of the ICV-STZ model and control (wild-type) were
used. Differential protein abundance, pathway, and network analysis were performed based on
the protein identification and quantification of the samples. Our analysis revealed dysregulated
biological pathways implicated in the early stages of late-onset Alzheimer’s disease (LOAD), based
on differentially abundant proteins (DAPs). Some of these DAPs had their mRNA expression further
investigated through qRT-PCR. Our results shed light on the AD onset and demonstrate the ICV-STZ
as a valid model for LOAD proteome description.

Keywords: mass spectrometry; qRT-PCR; pre-frontal cortex; hippocampus; mitochondrial membrane;
ribosome; insulin secretion; chaperone complex

1. Introduction

Alzheimer’s disease (AD) is an age-related neurodegenerative disorder characterized
by progressive memory loss and cognitive impairment [1]. Currently, AD accounts for
nearly 80% of dementia cases, affecting 35 million individuals worldwide [2]. The pre-
frontal cortex (PFC) and hippocampus (HPC) are the brain structures particularly affected
by this disease [3] since they are critically important in the brain’s memory system [4].
Late-onset Alzheimer’s disease (LOAD) is the most prevalent form of the disease [5].
Although the etiology of LOAD is still unclear, extracellular amyloid β (Aβ) peptides
and intracellular hyperphosphorylated tau (p-tau) accumulation are classical molecular
disturbances observed in the patient’s brain [6,7].

The impairment of cerebral glucose metabolism was observed in postmortem LOAD
patients’ brains [8,9]. These findings were further consolidated leading to the hypothesis
that a signal transduction failure of the cerebral insulin receptor could trigger the onset of
the disease [10]. Streptozotocin (STZ) is a diabetogenic compound [11] generally used to
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produce experimental non-transgenic animal models of diabetes [12]. Studies conducted
by Sigfried Hoyer in the early 1990s demonstrated that an intracerebroventricular (ICV)
injection of low to moderate doses of STZ in adult male Wistar rats could cause an insulin
resistant state in the brain and reproduce the classical physiopathological hallmarks of
LOAD [13,14]. The ICV-STZ animal model has been considered as an appropriate model
for the study of LOAD. Indeed, the ICV-STZ injection into rats induces progressive deficits
in learning and memory [15,16] and neurochemical and neuropathological alterations in
the brain that resemble those found in LOAD patients [17,18]. Since then, the ICV-STZ
model has been widely applied to test the insulin resistance hypothesis of LOAD [19].

Most studies using the ICV-STZ model are focused on the description of the behav-
ioral [20] and morphological [21] aspects of the disease. The molecular factors of the ICV-STZ
model are often assessed through techniques that target only a few genes, such as qRT-PCR [22]
and Western blot [23]. Mass spectrometry (MS)-based proteomics is a powerful analytical tool
commonly used to study the proteome profile of LOAD’s brain [24]. Gaining insight into the
molecular intricacies of the ICV-STZ model through high-throughput methodologies could of-
fer a more comprehensive understanding of its application in the field of dementia. Therefore,
this work is a first attempt to provide a wide proteome description based on MS proteomics of
the ICV-STZ model’s PFC and HPC. Our analysis revealed dysregulated biological pathways
implicated in the early stages of LOAD, based on differentially abundant proteins (DAPs).
A set of the DAPs were selected to have their mRNA expression further investigated through
quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). Our results could be used as a
baseline for future studies in the field.

2. Results
2.1. Overview of the ICV-STZ Model’s Proteome

Aiming for a qualitative analysis, a database search was performed, combining all
biological replicates of each dataset (PFC and HPC) according to their groups (STZ and
control). As a result, the following protein sequence numbers were identified: (1) PFC
dataset: 6992 proteins from the STZ group (42% with at least one unique peptide, i.e.,
existing only in one protein) and 6629 proteins from the control group (42% unique);
(2) HPC dataset: 6693 proteins from the STZ group (42% unique) and 6269 proteins from
the control group (41% unique) (Table 1). As depicted in Figure 1, most of the identified
proteins (Figure 1A) and peptides (Figure 1B) were common to both groups (STZ and
control) in both datasets (PFC and HPC). All the proteins and peptides identified in the
STZ and control groups in the PFC and HPC datasets are listed in Supplementary Tables S1
and S2, respectively.

Table 1. Quantity of proteins and peptides identified in the proteome datasets.

Pre-Frontal Cortex Hippocampus

Streptozocin Control Streptozocin Control

N. of total proteins 6992 6629 6693 6269
N. of proteins with unique peptides 2952 2766 2785 2565

N. of peptides 48,798 45,619 48,883 42,977
N. of unique peptides 23,738 21,974 23,494 20,839
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Figure 1. Comparative analysis between PFC and HPC datasets and STZ and control groups. (A) 
Upset plot depicting protein intersections between datasets and groups. (B) Upset plot depicting 
peptide intersections between datasets and groups. 

2.2. Identification of Differentially Abundant Proteins (DAPs) in the ICV-STZ  
Model’s Proteome 

Protein identification and quantification were performed using the SwissProt 
database as a reference. Each biological replicate was analyzed separately, and the 
quantitative comparisons between groups (STZ and control) were conducted, considering 
at least three biological replicates, as explained in the Materials and Methods section, 
specifically in the Protein Quantification subsection. Thereby, a total of 1075 proteins 
identified by at least one unique peptide were quantified in the PFC dataset, 
encompassing 1063 proteins in the STZ samples and 1060 in control (Figure 2A). In the 
HPC dataset, 1064 identified by at least one unique peptide were quantified, 
encompassing 1060 proteins in the STZ samples and 1038 in control (Figure 2B). Similarly 
to what was found in the qualitative analysis, most proteins were common to both the 
STZ and control samples in the PFC and in the HPC datasets. The normalized XIC values 
of each protein is available in Supplementary Table S3. 

Figure 1. Comparative analysis between PFC and HPC datasets and STZ and control groups.
(A) Upset plot depicting protein intersections between datasets and groups. (B) Upset plot depicting
peptide intersections between datasets and groups.

2.2. Identification of Differentially Abundant Proteins (DAPs) in the ICV-STZ Model’s Proteome

Protein identification and quantification were performed using the SwissProt database
as a reference. Each biological replicate was analyzed separately, and the quantitative compar-
isons between groups (STZ and control) were conducted, considering at least three biological
replicates, as explained in the Materials and Methods section, specifically in the Protein
Quantification subsection. Thereby, a total of 1075 proteins identified by at least one unique
peptide were quantified in the PFC dataset, encompassing 1063 proteins in the STZ samples
and 1060 in control (Figure 2A). In the HPC dataset, 1064 identified by at least one unique
peptide were quantified, encompassing 1060 proteins in the STZ samples and 1038 in control
(Figure 2B). Similarly to what was found in the qualitative analysis, most proteins were com-
mon to both the STZ and control samples in the PFC and in the HPC datasets. The normalized
XIC values of each protein is available in Supplementary Table S3.
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plot showing more/less abundant proteins in the pre-frontal cortex dataset. (D) Volcano plot show-
ing more/less abundant proteins in the hippocampus dataset. Blue dots represent proteins that sat-
isfied the fold change, count, and statistical criteria. Orange dots represent proteins that satisfied the 
fold change and statistical criteria but did not satisfy the count criteria. Green dots represent pro-
teins that only satisfied the fold change criteria. Black dots represent proteins that did not satisfied 
any criteria. Blue dots with log2 fold change above 0 were considered as more abundant proteins, 
while those below 0 were regarded as less abundant proteins. The F-stringency parameter (fold 
change criteria) was automatically adjusted to 0.04 for the pre-frontal cortex dataset and 0.09 for the 
hippocampus dataset. The L-stringency value (count criteria) was set to 0.2 for both datasets and 
the BH q-value (statistical criteria) was set to 0.05. 

A total of 17 proteins were detected as differentially abundant in both PFC and HPC: 
six proteins were more abundant (Apoe, Aprt, Cst3, Ctsd, Nme1 and Septin8) and five 
proteins were less abundant (Ckmt1, Cplx2, Nutf2, Phgdh, Rnpep) in both datasets. Rtcb 
was more abundant in the PFC and less abundant in the HPC dataset and five proteins 
(Atp5f1a, Atp5f1c, Atp5f1d, Nptxr, and Uqcrc1) were more abundant in the HPC and less 
abundant in the PFC dataset. Uchl3 exhibited lower abundance in the HPC dataset. How-
ever, Uchl3 did not show a statistically significant difference in the PFC dataset (Figure 3). 

Figure 2. Differentially abundant proteins (DAPs). (A) Venn diagram showing the relation between
streptozotocin and control samples from the pre-frontal cortex dataset. (B) Venn diagram showing the
relation between streptozotocin and control samples from the hippocampus dataset. (C) Volcano plot
showing more/less abundant proteins in the pre-frontal cortex dataset. (D) Volcano plot showing
more/less abundant proteins in the hippocampus dataset. Blue dots represent proteins that satisfied
the fold change, count, and statistical criteria. Orange dots represent proteins that satisfied the fold
change and statistical criteria but did not satisfy the count criteria. Green dots represent proteins that
only satisfied the fold change criteria. Black dots represent proteins that did not satisfied any criteria.
Blue dots with log2 fold change above 0 were considered as more abundant proteins, while those
below 0 were regarded as less abundant proteins. The F-stringency parameter (fold change criteria)
was automatically adjusted to 0.04 for the pre-frontal cortex dataset and 0.09 for the hippocampus
dataset. The L-stringency value (count criteria) was set to 0.2 for both datasets and the BH q-value
(statistical criteria) was set to 0.05.

Differential abundance analysis was carried out using only the proteins quantified in
both groups (intersections in Figure 2A,B). As a result, significant differential abundances
were detected for 116 out of 1048 proteins (11% of blue dots) in the PFC dataset, of which
86 proteins were more abundant, and 30 proteins were less abundant (Figure 2C). In the HPC
dataset, significant differential abundances were detected for 81 out of 1034 proteins (7.8% of
blue dots), from which 56 proteins were more abundant, and 25 proteins were less abundant
(Figure 2D). The fold change of each protein is available in Supplementary Table S4.

A total of 17 proteins were detected as differentially abundant in both PFC and HPC:
six proteins were more abundant (Apoe, Aprt, Cst3, Ctsd, Nme1 and Septin8) and five proteins
were less abundant (Ckmt1, Cplx2, Nutf2, Phgdh, Rnpep) in both datasets. Rtcb was more
abundant in the PFC and less abundant in the HPC dataset and five proteins (Atp5f1a, Atp5f1c,
Atp5f1d, Nptxr, and Uqcrc1) were more abundant in the HPC and less abundant in the PFC
dataset. Uchl3 exhibited lower abundance in the HPC dataset. However, Uchl3 did not show
a statistically significant difference in the PFC dataset (Figure 3).
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as mitochondrial membrane proteins, and four more abundant proteins were identified 
as related to the chaperone complex (Figure 4A). In the HPC, 14 more abundant proteins 
were classified as mitochondrial membrane proteins and 5 more abundant proteins as 
participating in insulin secretion (Figure 4B). 

Figure 3. Boxplot depicting the normalized XIC values of each biological sample per DAP in both
PFC and HPC datasets. Red dots represent control samples and green dots streptozotocin-treated
samples (STZ).

2.3. Identification of Dysregulated Pathways in the ICV-STZ Model

A network representing the functional association and physical interaction of the
DAPs was constructed to gain biological insights. As a result, in the PFC, 12 more abundant
proteins were classified as part of the ribosome complex, four less abundant proteins as
mitochondrial membrane proteins, and four more abundant proteins were identified as
related to the chaperone complex (Figure 4A). In the HPC, 14 more abundant proteins
were classified as mitochondrial membrane proteins and 5 more abundant proteins as
participating in insulin secretion (Figure 4B).

2.4. Experimental Validation of mRNAs through qRT-PCR

We also investigated the quantification of the mRNA levels of Uchl3 and Nutf2 through
qRT-PCR. The proteins encoded by these mRNAs were differentially abundant in the
proteome analysis. The literature has indicated them as related to Aβ plaque formation, and
they are implicated as potential targets for therapeutic interventions in neurodegenerative
disorders [25,26]. As a result, we identified the up-regulation of both genes in the PFC and
the down-regulation of these genes in the HPC. Uchl3 has not shown differential expression
in the PFC (p-value = 0.34, SHAM-mean = 1.15, STZ-mean = 1.44) and was down-regulated
in the HPC (p-value = 0.02, SHAM-mean = 1.02, STZ-mean = 0.72) in the mRNA expression
analysis, while Nuft2 was down-regulated in both PFC (p-value < 0.01, SHAM-mean = 1.19,
STZ-mean = 2.44) and HPC (p-value < 0.03, SHAM-mean = 1.16, STZ-mean = 0.60), as
depicted in Figure 5.
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represent different evidence types, as depicted in the figure.
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and Uqcrc1 proteins [35]. Interestingly, these proteins were also found to be less abundant 
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Figure 5. Violin plot of the relative quantification through qRT-PCR. (A) Relative quantification (RQ)
for the Uchl3 gene in the prefrontal cortex of control samples (SHAM) and treated samples (STZ).
(B) Relative quantification (RQ) for the Uchl3 gene in the hippocampus of control samples (SHAM)
and treated samples (STZ). (C) Relative quantification (RQ) for the Nuft2 gene in the prefrontal cortex
of control samples (SHAM) and treated samples (STZ). (D) Relative quantification (RQ) for the Nutf2
gene in the hippocampus of control samples (SHAM) and treated samples (STZ).

3. Discussion

In the present study, we investigated the proteome of the pre-frontal cortex (PFC) and
hippocampus (HPC) of the ICV-STZ model to evaluate AD-like molecular hallmarks. Most
of the identified proteins were shared between the STZ and control groups in the PFC
and HPC datasets. This indicates high similarity between the proteome profile of these
two brain regions and that STZ promotes subtle alterations after its administration. These
results are consistent with the literature, since several molecular alterations of AD arise
only months after STZ administration [16]. Furthermore, differentially abundant proteins
(DAP) were identified, with the majority being related to mitochondrial membrane, insulin
secretion, ribosome, and the chaperone complex.

Mitochondrial dysfunction has been proposed to precede cognitive decline and promote
the aggregation of pathogenic proteins in AD [27]. Multiple studies have implicated the
mitochondria as one of the functional links between type 2 diabetes (T2D) and AD [28,29].
Moreover, the ICV-STZ model has been previously reported to produce an AD-like dysregula-
tion of the mitochondria in the PFC and HPC [30,31]. Similar to our findings, Stefanova and
colleagues (2019) identified downregulated mitochondrial genes in the PFC of a rat model
of LOAD [32], and Reddy and colleagues (2004) identified upregulated mitochondrial genes
in the HPC of a transgenic mouse model of AD [33]. Hamezah and colleagues (2018) also
identified upregulated proteins of mitochondrial complexes in the HPC of late-aged rats
(23 and 27 months) when compared to younger rats (14 months) [34]. Adav and colleagues
(2019) identified mitochondrial dysfunction in the prefrontal cortex, specifically in the medial
frontal gyrus, of early onset AD patients through quantitative proteomics. They found the
downregulation of Sdha, Atp5f1a, Atp5f1c, Atp5f1d, and Uqcrc1 proteins [35]. Interestingly,
these proteins were also found to be less abundant in our analysis of the PFC samples. As
a mitochondrial dysfunction, insulin resistance is an important hallmark that connects AD
and T2D [36], and it also influences AD pathology in non-diabetic AD patients [37]. In our
analysis, we identified misregulated proteins involved in insulin secretion. Therefore, we
believe that ICV-STZ can be used as a model to further investigate the mitochondrial and
insulin secretion roles in LOAD onset in future studies.

Dysregulation of the translation machinery is a risk marker for AD [38]. For instance,
Garcia-Esparcia and colleagues (2017) identified upregulated ribosomal genes in the frontal
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cortex of patients with AD and a rapid course of Alzheimer’s disease (rpAD) patients [39].
Among these genes are Rps10 and Rps13, which were also found to be increased in our
proteome analysis of the PFC, along with several other more abundant ribosome proteins.
Additionally, Suzuki and colleagues (2022) also reported increased ribosome biosynthesis
in the cerebrovascular tissue of AD patients, although the authors did not find significant
changes in the neuronal tissue [40]. In addition, we also identified more abundant chaper-
one proteins in our proteome analysis of the PFC, indicating protein folding dysregulation,
as previously observed by Ashraf and colleagues (2014), in the context of AD and T2D [41].
Thus, our results suggest that ribosomes and chaperones might be an important class of
proteins to be further in-depth evaluated, and ICV-STZ could be used as a model to help
addressing this question.

The Cst3 gene encodes a protein (CysC) highly abundant in brain tissues [42]. This pro-
tein is implicated in AD due to its co-localization with amyloid plaques [43]. We detected
an increase in this protein in both PFC and the HPC, suggesting a possible involvement
in Aβ plaque formation. Nme1 is a protein with a serine/threonine-specific kinase activ-
ity that plays a role in neural growth and development [44]. In our analysis, we found
this protein more abundant in the PFC and HPC proteome, indicating that it may have
an increased activity in early stages of AD, followed by a downregulation in late stages
of AD, as demonstrated by Ansoleaga and colleagues (2014) in the entorhinal cortex of
AD patients at stages III–IV and V–VI [45]. Additionally, Pedrero-Prieto and colleagues
(2019) reported that this protein was exclusively found in AD amyloid-β-enriched extracts
when compared to non-AD amyloid-β-enriched extracts [46]. Therefore, Nme1 might also
be involved in amyloid-β plaque formation, and its role in the AD onset, as well as its
regulation mechanisms in AD, should be further studied.

The reticulons (RTNs) are proteins with a characteristic C-terminal membrane-bound
reticulon-homology domain (RHD) [47]. In our analysis, we identified the low abun-
dance of the protein Rtn3 and high abundance of Rtn4 in the PFC. Interestingly, a recent
study has demonstrated that Rtn3 deficiency causes increased Bace1 protein levels [48],
leading to β-amyloid peptide generation (Aβ) [49]. AD patients also present high lev-
els of Rtn4, suggesting that this protein can serve as a potential biomarker for AD [50].
Calcium/calmodulin-dependent protein kinase II (Camk2) is a multifunctional protein
kinase abundant in the central nervous system (CNS), and it becomes active when it binds
to Ca2+/calmodulin [51]. Similar to our results, Fang and colleagues (2019) identified the
downregulation of Camk2a in the hippocampus proteome of AD patients, but its expression
level was not significantly altered in the pre-frontal cortex [52]. Another interesting protein
in the context of AD is Casein kinase 2, beta polypeptide (Csnk2b). This protein is highly
abundant in the neuro fibrillar tangles (NFT) of AD patients [53], being more abundant in
our proteome analysis of the PFC.

In the proteome analysis, we identified decreased levels of Nutf2 in the PFC and
HPC, and decreased levels of Uchl3 in the HPC. However, Nutf2 was up-regulated in
the PFC and down-regulated in the HPC in our mRNA expression analysis through qRT-
PCR. Despite Uchl3 not showing a statistically significant change at the transcriptome
and proteome levels of the PFC samples, previous reports indicate that the loss of this
gene, along with Uchl1, contributes to neurodegeneration [54]. This indicates that Uchl3
translation might be downregulated, decreasing its protein level in the PFC, at least in the
ICV-STZ model. The nuclear transport factor 2 (NUTF2), also known as NTF2, plays an
important role on the nuclear transportation of proteins [55]. The accumulation of Nutf2
was observed in hippocampal neurons, both with and without tangles, in AD patients,
but not in control cases [56]. Moreover, Nutf2 was also found to be increased in the
hippocampus of an AD non-human primate model [57]. It has been demonstrated that
the nuclear pore complex (NPC) and transport proteins, such as Nutf2, are linked to the
formation of NFTs by facilitating the transport of pathological tau proteins from the nucleus
to the cytoplasm [26,56]. Although Nuft2 was decreased in both our transcriptome and
proteome analysis of the HPC, it was increased in our transcriptome analyses of the PFC.
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This result suggests that the dysfunction of nucleocytoplasmic transport may manifest
differently in the ICV-STZ model compared to AD, and it should be further investigated.

4. Materials and Methods
4.1. Animals

Male Wistar rats (60–90 days old, weighing 300–350 g), provided by the animal facility
of the Federal University of Parana (UFPR), were housed in groups of 3–4 in polypropylene
cages with wood shavings as bedding. The rats were maintained at 22 ± 2 ◦C on a
12 h/12 h light/dark cycle (lights on at 7:00 AM); water and standard chow were available
ad libitum. Before the experiment, the rats were allowed to acclimatize for 1 week to reduce
environmental stress. The experiments were performed following the Brazilian Law for
Animal Experimental Ethics and Care (11.794/8 October 2008) and the guidelines of the
UFPR Committee on the care and use of laboratory animals. The experimental procedures
were approved by the University Ethics Board (CEUA/BIO-protocol—SCB, UFPR 1411-A).

4.2. Stereotaxic Surgery

Stereotaxic surgery was carried out as previously described [17,58,59]. The animals
were anesthetized with a 3 mL/kg dose of anesthetic Equitesin (1% sodium thiopental,
4.25% chloral hydrate, 2.13% magnesium sulfate, 42.8% propylene glycol, and 3.7% ethanol
in water) and a dose of atropine sulfate (0.4 mg/kg) to reduce the production of secretions).
The animals were placed in a stereotaxic apparatus (David Kopf, St Tujunga, CA, USA).
A 28-gauge stainless steel needle was lowered into each lateral ventricle (LV). The stereo-
taxic coordinates for ICV infusion, according to Paxinos and Watson [60], were measured:
anterior/posterior, −0.8 mm from bregma; medial/lateral, ±1.5 mm from the midline;
dorsal/ventral, −3.8 mm from the skull. An electronic pump (Insight, Ribeirão Preto, SP,
Brazil) was used to control the flow of the injections at a rate of 1.0 µL/min over 4.5 min.
The lesioned group received bilateral ICV injections of STZ (3 mg/kg total dose) dissolved
in sterile 0.9% saline (4.5 µL per injection site). Sham surgery followed the same procedure,
but sterile saline was injected instead of STZ. After surgery, all the rats were allowed to
recover from anesthesia for 2–4 h in a heated and well-ventilated room. Food and water
were placed inside the cage for 10–15 days so that the animals could easily access it without
physical trauma caused by the head surgery.

4.3. Sample Preparation

The samples were pulverized in liquid nitrogen, as previously described [61]. Protein
extraction was then performed using a solution of 0.1% RapiGest (w/v) in 50 mM triethy-
lammonium bicarbonate (TEAB). Subsequently, the extracted proteins were centrifuged
at 18,000× g, at 4 ◦C for 15 min, and the supernatant was collected. The protein content
was quantified using a fluorimetric assay on the Qubit 2.0 platform, following the manufac-
turer’s instructions. Next, 100 µg of total protein from each sample was reduced with 10 mM
dithiothreitol (DTT) at 60 ◦C for 30 min. The samples were then cooled to room temperature
and incubated in the dark with 25 mM iodoacetamide (IAA) for 25 min. The samples were
subsequently digested overnight with trypsin at a 1:50 enzyme-to-substrate (E/S) ratio, at
37 ◦C.

4.4. Desalting

In due course, the enzymatic reaction was halted by adding trifluoroacetic acid
(0.4% v/v final concentration), and the peptides were incubated for an additional 40 min to
degrade the RapiGest. Afterward, the samples were centrifuged at 18,000× g for 10 min
to remove any insoluble materials. The peptides were then quantified using the fluoro-
metric assay—Qubit 2.0 (Invitrogen, Waltham, MA, USA)—following the manufacturer’s
recommendations. Each sample was desalted and concentrated using Stage-Tips (Stop and
Go-Extraction Tips), as described by Rappsilber and colleagues [62].

Sample lysis was carried out following the SPEED protocol [63]. Subsequently, sample
quantification was performed using the fluorometric Qubit assay, as per the manufacturer’s
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instructions. One hundred micrograms of each sample were reduced with dithiothreitol
(final concentration 10 mM) for 30 min at 60 ◦C, cooled to room temperature (20 ◦C), fol-
lowed by alkylation with iodoacetamide (final concentration 30 mM) for 25 min. Finally, the
samples were digested overnight with trypsin in a 1/50 (E/S) ratio, at 37 ◦C. The reaction
was interrupted with trifluoroacetic acid (TFA) 10% (final concentration of 1%), followed
by centrifugation for 15 min at 18,000× g, and quantified again by the fluorometric Qubit
assay. Ten micrograms of each sample were desalted with Stop and Go Extraction Tips
(Stage Tips), as described by Rappislber and colleagues (2003) [62].

4.5. Mass Spectrometry

Peptides were subjected to LC-MS/MS (liquid chromatography with tandem mass
spectrometry) analysis with an UltiMate 3000 (Thermo Fisher®, San José, CA, USA) ultra-
high-performance liquid chromatography (UHPLC) system coupled with an Orbitrap
FusionTM LumosTM mass spectrometer (Thermo, San José), as follows: The peptide mix-
tures were loaded into a column (75 mm i.d., 30 cm long) packed in-house with a 3µm
ReproSil-Pur C18-AQ resin (Dr. Maisch) with a flow of 250 nL/min. Subsequently, they
were eluted with a flow of 250 nL/min, from 5% to 40% ACN, in 0.1% formic acid in
a 140 min gradient (23). The mass spectrometer was set in data-dependent acquisition
(DDA) mode to automatically switch between full-scan (MS) and MS/MS (MS2) acquisition.
Survey MS spectra (from m/z 300–1500) were acquired in the Orbitrap analyzer with a
resolution of 120,000 at m/z 200. The most intense ions captured in a 2 s cycle time were
chosen, excluding unassigned ones that had a 1+ charge state. The ions were sequentially
isolated and fragmented using higher-energy collisional dissociation (HCD) with a normal-
ized energy of 30. The fragment ions were analyzed with a resolution of 15,000 at 200 m/z.
The general mass spectrometric conditions were as follows: spray voltage, 2.5 kV; no sheath
and auxiliary gas flow; ion transfer tube temperature of 250 ◦C; predictive automatic gain
control (AGC) enabled; and S-lens RF level of 40%. Mass spectrometer scan functions
and nLC solvent gradients were regulated using the XCalibur 4.1 data system (Thermo,
San José). Two technical replicates were acquired for each biological replicate.

4.6. Protein Identification

Protein identification was based on the peptide-spectral matching (PSM) approach,
using the Comet search algorithm embedded into the freely available PatternLab for
Proteomics computational environment (version 5) [64]. Two FASTA files containing non-
redundant protein sequences were used in two separate searches: the SpliceProt/SwissProt
database (29,044 entries) and SwissProt (9775 entries). The SpliceProt/SwissProt is a
customized protein sequence database composed of non-redundant sequences from Splice-
Prot [65] and SwissProt [66] databases. The first protein search was performed to obtain an
overview of the ICV-STZ model’s proteome, and all biological replicates were analyzed
together. The second protein search was performed to identify and further compare the
quantity of proteins between the two groups: STZ and control (differential abundance
analysis). In this case, each biological replicate was analyzed separately.

For all searches, we used a target-reverse database enriched with 128 common MS con-
taminant sequences (e.g., keratins, albumin, and trypsin). Uninterpreted high-resolution
MS/MS spectra were searched against this comprehensive database using Comet default
parameters. The enzyme specificity was semi-specific, no proline restriction was specified
for trypsin, up to 2 missed cleavages were allowed, and the initial precursor mass tolerance
was set to 30 ppm. The following modifications were considered (up to 2 variable modifica-
tions per peptide): (1) carbamidomethyl (C, fixed) and (2) oxidation (M, variable). PSM
results were filtered by the Search Engine Processor (SEPro) tool implemented in PatternLab
for Proteomics. These steps are described in detail in the PatternLab for Proteomics latest
bioinformatic protocol [63]. The final post-processing step was adjusted to converge to
reliable results showing ≤ 1% FDR at the protein level and ensure that all identifications
had less than 10 ppm mass error for precursor tolerance.
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4.7. Protein Quantification

Protein label-free quantification was performed according to the XIC (extracted ion
chromatogram) normalized by TIC (total ion chromatogram) [63] of the identified pro-
teins using the SwissProt database. A minimum of seven MS1 points were accepted for
obtaining the extracted ion-chromatogram (XIC). Only proteins that could be quantified
by at least two unique peptides were considered in the following analyses: (1) The “Ap-
proximately area-proportional Venn Diagrams” module was used to determine which
quantified proteins were exclusive to control or STZ samples, and which ones were shared
by both classes. (2) The “TFold” module was then used to determine which shared proteins
were differentially abundant between control and STZ samples (up- and down-regulated).
To be considered exclusive to one class (e.g., STZ), a protein has to be quantified in at
least three biological replicates of that class (i.e., STZ) and not should not be present in
any of the replicates of the other class (i.e., control). Accordingly, proteins shared by both
classes had to be quantified in all three biological replicates of both STZ and control groups
to be considered for further statistical analysis of differential abundance. This statistical
analysis used the Benjamini–Hochberg (BH) approach with a q-value of 0.05 [40]. The tool’s
F-stringency parameter was automatically adjusted to 0.10 and the L-stringency value was
set to 0.2. F-stringency serves as a fold-change stringency parameter, while L-stringency
functions to control the assignment of different abundances for low-abundance proteins.

4.8. GO Enrichment and Network Analysis

GO enrichment analysis was performed by comparing all DAPs (test-set) in each
dataset (PFC and HPC) to the whole rat genome (reference-set) using software STRING
version 11.5 [67]. Proteins were classified into biological processes, molecular functions,
and cellular components. GO term frequency differences between test- and reference-sets
were statistically assessed by a one-tailed Fisher’s exact test, with the FDR filter set to
5% to correct for multiple testing. The functional and physical association network of the
DAPs was also constructed using software STRING with a minimum interaction score of
0.400. The final enrichment results were limited to the most specific terms. For the network
construction, all the following active interaction sources were considered: experimentally
validated, text mining, databases, co-expression, and neighborhood.

4.9. Quantitative Real Time Polymerase Chain Reaction (qRT-PCR)

Total RNA was extracted from the hippocampus and prefrontal cortex using mirVana™
PARIS™ Kit (Life Technologies, Carlsbad, CA, USA). RNA was treated with DNase I—RNAse-
free (Thermo Scientific) and reverse-transcribed into cDNA using the High-Capacity cDNA Re-
verse Transcription Kit (Applied Biosystems, San Francisco, CA, USA), according to the manu-
facturer’s instructions. Real-time PCR was performed by using triplicates of samples by SYBER
green. Levels of gene expression were normalized by the Gapdh gene. The following primers
were used Uchl3 (5′ GAGCCCTGAAGAAAGAGCCA 3′ and 5′ TGACCTTCATGTGCACTG-
GTT 3′), Nutf2 (5′ CATCGTGCCAGCCCCAC 3′ and 5′ GCCTAGTTGGGTTCTGTCGT 3′),
Gapdh (5′ GTTACCAGGGCTGCCTTCTC 3′ and 5′ GATGGTGATGGGTTTCCCGT 3′).

5. Conclusions

Taken together, this work aimed to describe the proteome of the PFC and HPC using an
AD-like non-transgenic animal model (ICV-STZ). Our analysis focused on the initial stages
of the AD onset. Proteins associated with mitochondria, insulin secretion, ribosome, and
the chaperone complex were identified as DAPs, indicating that these biological pathways
are important in the AD onset. Furthermore, mRNAs correspondent to some of these
DAPs were investigated in the transcriptome through qRT-PCR. We believe that our results
demonstrated that ICV-STZ is a valid model to study the LOAD onset. We also contributed
to knowledge regarding the molecular alterations in the first stages of the disease using the
ICV-STZ rat model.
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