

"MAPEAMENTO DE EPITOPOS DE PROTEÍNAS POTENCIALMENTE IMUNOGÊNICAS DOS VÍRUS DENGUE TIPOS 1, 2 E 3 RESPONSÁVEIS PELO DESENCADEAMENTO DA RESPOSTA IMUNE HUMORAL"

por

THATIANE SANTOS DE SIMONE

Rio de Janeiro Fevereiro, 2010

INSTITUTO OSWALDO CRUZ Pós-Graduação em Biologia Celular e Molecular

THATIANE SANTOS DE SIMONE

"MAPEAMENTO DE EPITOPOS DE PROTEÍNAS POTENCIALMENTE IMUNOGÊNICAS DOS VÍRUS DENGUE TIPOS 1, 2 E 3 RESPONSÁVEIS PELO DESENCADEAMENTO DA RESPOSTA IMUNE HUMORAL"

Tese apresentada à Coordenação do Curso de Pós-Graduação do Instituto Oswaldo Cruz, como requisito para a obtenção do título de Doutor em Ciências.

Orientadores: Dr. Salvatore Giovanni De Simone Dr. Hermann Gonçalves Schatzmayr

> Rio de Janeiro 2010

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA CENTRAL DE MANGUINHOS - FIOCRUZ

INSTITUTO OSWALDO CRUZ

Pós-Graduação em Biologia Celular e Molecular

Autora: Thatiane Santos De Simone

Título da tese: "Mapeamento de epitopos de proteínas potencialmente imunogênicas dos vírus dengue tipos 1, 2 e 3 responsáveis pelo desencadeamento da resposta imune humoral"

Orientadores: Dr. Salvatore Giovanni De Simone;

Dr. Hermann Gonçalves Schatzmayr.

Aprovada em: 26/02/2010.

EXAMINADORES:

Dr. Luiz Anastácio Alves - PRESIDENTE Instituto Oswaldo Cruz – FIOCRUZ - RJ

Dra Cristiane Dinis Ano Bom Instituto de Química - UFRJ - RJ

Dra. Flávia Barreto dos Santos Instituto Oswaldo Cruz – FIOCRUZ - RJ

SUPLENTES:

Dra. Dilvani Oliveira Santos Instituto de Biologia – UFF - RJ

Dra. Joseli de Oliveira Ferreira Instituto Oswaldo Cruz – FIOCRUZ - RJ

Rio de Janeiro, 26 de fevereiro de 2010.

Trabalho realizado no Laboratório de Bioquímica de proteínas e peptídeos do Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, sob a orientação dos Dr. Salvatore Giovanni De Simone e Dr. Hermann Gonçalves Schatzmayr ** _ ** ** _ **

Depois de algum tempo você percebe a diferença, a sutil diferença de que amar não significa apoiar-se e que companhia nem sempre significa segurança. Aprende que verdadeiras amizades continuam a crescer mesmo a longas distâncias, e o que importa não é o que você tem na vida, mas quem você tem na vida. Descobre que as pessoas com quem você mais se importa na vida são tomadas de você muito depressa, por isso, sempre devemos deixar as pessoas que amamos com palavras amorosas, pois pode ser a última vez que as vejamos. Aprende que heróis são pessoas que fizeram o que era necessário fazer, enfrentando todas as conseqüências e aprende que paciência é uma virtude que requer muita prática. Aprende que as circunstâncias e os ambientes têm influência sobre nós, mas nós somos responsáveis por nós mesmos. Descobre que algumas vezes a pessoa que você espera que o chute quando você cai é uma das poucas que o ajudam a levantar-se e que a maturidade tem mais a ver com os tipos de experiência que se teve e o que você aprendeu com elas do que com quantos aniversários você celebrou. Não importa onde já chegou, mas para onde se está indo, e descobre que se leva muito tempo para se tornar a pessoa que quer ser. Aprende a construir todas as suas estradas no hoje, porque o terreno do amanhã é incerto demais para os planos, e o futuro tem o costume de cair em meio ao vão. A vitória não vem de supetão, é conquistada em etapas.

> E assim, você aprende que realmente pode suportar... que realmente é forte, e que pode ir muito mais longe depois de pensar que não se pode mais.

> > Shakespeare

** 🕳 ** ** 🕳 **

Agradecimentos

Agradeço aos Drs. Salvatore Giovanni De Simone e Hermann Gonçalves Schatzmayr, meus orientadores, pela colaboração que resultou na minha decisão de entrar neste desafio. Através de vocês pude conciliar a virologia à bioquímica e me especializar em tecnologias até então pouco difundidas no país. Agradeço pela liberdade de ação e pela confiança em meu trabalho, que fortaleceram o caráter científico e o desenvolvimento pessoal.

À Coordenação do Curso de Pós-Graduação em Biologia Celular e Molecular do Instituto Oswaldo Cruz/ FIOCRUZ, ao Instituto Oswaldo Cruz/FIOCRUZ, ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e a Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ) pela colaboração e ao suporte prestado ao desenvolvimento deste trabalho.

Ao Dr. Floriano Paes da Silva Junior, pela amizade, disponibilidade e por todas as observações e sugestões na parte revisional, que foram indispensáveis para o enriquecimento deste estudo.

Ao Dr. Luiz Anastácio Alves, Dra. Cristiane Dinis Ano Bom, Dra. Joseli de Oliveira Ferreira, Dra. Flavia Barreto dos Santos e Dra. Dilvani Oliveira Santos pela disponibilidade e participação na avaliação final de defesa de doutorado, cujas sugestões certamente ampliarão a qualidade da tese.

A todos os integrantes do Laboratório de Bioquímica de Proteína e Peptídeos pela receptividade acolhedora e harmoniosa, pela convivência extremamente agradável, pela amizade e por estar sempre me ensinando alguma coisa.

As minhas pupilas Danielle Regina de Almeida de Brito e Cunha, Marilúcia Sobrado Pina e Letícia Matias Raposo, pela companhia na maior parte da execução desta tese. Agradeço por ter tido vocês como "filhas científicas", por saber que posso contar com cada uma de vocês em tudo o que precisar e pela amizade, que será eterna.

A bióloga Paloma Napoleão Pego pela ajuda imprescindível nos experimentos. Agradeço a Deus por você ter feito parte desta caminhada, por sua disponibilidade irrestrita, compreensão e cumplicidade, me acompanhando a qualquer dia e hora para a conclusão dos experimentos.

A mestra Ana Carolina Rennó Sodero, pela amizade, incentivo, disponibilidade e pelo auxilio valioso durante a realização deste trabalho, transmitindo suas experiências para que pudesse concluir a parte computacional desta tese.

A mestra Jessica Joy Mokfienski pela disponibilidade em compartilhar a utilização de algumas metodologias, que foram importantes para que este estudo se tornasse possível.

Agradeço a todos os integrantes do Laboratório de Flavivírus pela amizade, em especial a Dra Rita Maria Ribeiro Nogueira, por poder contar com seu profissionalismo exemplar. Agradeço por toda a ajuda prestada durante a tese e por todos os conselhos, que foram importantes na execução deste trabalho.

Aos meus familiares que sempre me apoiaram: tios, tias, primos...

Agradeço aos meus pais Luigi e Lucia Vania De Simone, por todas as oportunidades que me foram dadas, por compreenderem a minha ausência em muitos momentos no decorrer dos últimos anos e pelo incentivo, que foram vitais para o alcance de meus objetivos.

Ao meu avô Severiano Barros da Silva, que me incentivou e apoiou até onde Deus permitiu. Sua confiança em mim me inspirou a buscar vôos que jamais pensei em conquistar. Sou feliz por ter tido o prazer de ser a sua neta.

A minha avó Dirce Louzada da Silva, que me surpreende a cada dia, com sua vitalidade e disposição invejáveis, e que é a presença indispensável em todas as minhas conquistas. Agradeço por todo o incentivo, força e amor incondicional. Espero continuar sendo sempre "o orgulho da vovó".

Ao David Epifanio de Oliveira, meu companheiro de todas as horas, segue meu agradecimento mais que especial. Sem sua insistência, estímulo e confiança não teria atingido mais um degrau desta busca pelo conhecimento. Agradeço por você fazer parte da minha vida desde sempre, pela paciência nas minhas horas instáveis e pelo amor grandioso que se renova a cada dia.

No decorrer deste período, em função desta pesquisa ou mesmo por obra do destino, tive a oportunidade de conhecer muitas outras pessoas interessantes que me ofereceram ajuda, além de ter o prazer de compartilhar da amizade. A todas estas pessoas ofereço a minha gratidão, pois este trabalho é também fruto de nossas trocas e, por isso, é obra de todos nós.

"Determinação coragem e auto-confiança são fatores decisivos para o sucesso. Se estamos possuídos por uma inabalável determinação, conseguiremos superar os obstáculos. Porém, independentemente das circunstâncias, devemos ser sempre humildes, recatados e despidos de orgulho".

Dalai Lama

A todos aqueles que de alguma forma me apoiaram para a realização e conclusão desta etapa e, em especial, ao meu avô Severiano "in memorian" dedico a realização deste sonho.

INSTITUTO OSWALDO CRUZ

De Simone TS. "Mapeamento de epitopos de proteínas potencialmente imunogênicas dos vírus dengue tipos 1, 2 e 3 responsáveis pelo desencadeamento da resposta imune humoral". Rio de Janeiro; 2010 [Tese de doutorado – Instituto Oswaldo Cruz].

RESUMO

Este estudo apresenta os resultados da identificação de epitopos consecutivos responsáveis pelo desencadeamento da resposta imune humoral em todas as proteínas estruturais (C, prM / M e E) e não-estruturais (NS1, NS2a, NS2b, NS3, NS4a, NS4b e NS5) dos vírus dengue (DENV) tipos 1, 2 e 3 circulantes no Brasil.

A metodologia de síntese paralela de peptídeos (do inglês *Spot synthesis*) foi utilizada para a construção de uma biblioteca composta por 2007 peptídeos e, a triagem utilizando pool de soros de pacientes com dengue, previamente confirmados através de técnicas laboratoriais, permitiu a identificação de 96 epitopos para os DENV-1, 103 epitopos para os DENV-2 e 106 epitopos para os DENV-3. Tais resultados foram comparados com métodos computacionais que permitem a predição de regiões imunogênicas (DNASTAR e IEDB) e demonstrou que, apesar de serem considerados bons indicadores de antigenicidade de uma proteína, os métodos computacionais requerem mais do que um parâmetro de predição para a confiabilidade dos resultados. Por sua vez, a síntese paralela provou ser altamente sensível e eficiente no mapeamento de epitopos consecutivos, permitindo a síntese em nano-escala de um grande número de peptídeos, de forma simultânea e reprodutível.

A fim de avaliar a capacidade em discriminar as infecções causadas pelos sorotipos de dengue daqueles negativos para esta patologia, foi realizado um teste de reação cruzada dos peptídeos identificados com pool de soros de pacientes com DENV-1, DENV-2 ou DENV-3, seguido pela avaliação utilizando pool de soros negativos para dengue, pool de soros de voluntários previamente vacinados para a febre amarela e pool de soros de pacientes com rubéola, sarampo, leptospirose, malária, varíola e indicaram a existência de um total de 195 epitopos comuns ao grupo dengue e 3 epitopos específicos para os DENV-1, 9 para os DENV-2 e 11 para os DENV-3. A modelagem molecular das proteínas dos DENV permitiu a confirmação da localização dos epitopos na superfície da molécula.

Esses resultados constituem a primeira descrição completa de epitopos contínuos dos DENV e poderão contribuir para a compreensão da interação anticorpo-epítopo em nível molecular e, conseqüentemente, a patogenicidade do dengue, bem como servir de base para a construção racional de vacinas preventivas e para o desenvolvimento de testes de diagnóstico sorológico vírus-específicos.

INSTITUTO OSWALDO CRUZ

De Simone TS. Epitope mapping of proteins potecially imunogenic of dengue viruses type 1, 2 and 3 responsible for the humoral immune response - Rio de Janeiro; 2010 [Ph.D. thesis – Oswaldo Cruz Institute].

ABSTRACT

This study presents the results of the identification of continuous epitopes responsible for unchain the humoral immune response in all structural proteins (C, prM/M and E) and non-structural proteins (NS1, NS2a, NS2b, NS3, NS4a, NS4b and NS5) of dengue viruses (DENV) types 1, 2 and 3 circulating in Brazil.

The Spot synthesis method was used to construct a library consisting of 2007 peptides, and by screening with pool of sera from patients with dengue, that were previously confirmed by laboratory techniques, allowed the identification of 96 epitopes to DENV-1, 103 epitopes to DENV-2 and 106 epitopes to DENV-3. These results were compared to computational methods that allow the prediction of immunogenic regions (DNASTAR and IEDB programs) and have demonstrated that, although they are considered good indicators of antigenicity of a protein, computational methods require more than one parameter for predicting the reliability of results. However, the parallel synthesis proved to be highly sensitive and efficient to map continuous epitopes, allowing the synthesis of nano-scale to large numbers of peptides simultaneously and with reproducibility.

In order to evaluate the ability to discriminate the infections caused by dengue serotypes from negative cases, we performed a cross-reaction test using peptides identified in this study with a pool of sera from patients infected by DENV-1, DENV-2 or DENV-3, followed by evaluation using pool of negative sera for dengue, pool of volunteers sera previously vaccinated for yellow fever and pool of sera from patients with rubella, measles, leptospirosis, malaria, smallpox and have indicated a total of 203 epitopes specific to dengue group and 3 epitopes specific to DENV-1, 9 to DENV-2 and 11 to DENV-3. Molecular modeling of dengue proteins confirmed that epitopes were located on the molecular surface.

These results constitute the first complete description of continuous epitopes of DENV and may contribute to the understanding of the interaction of antibody-epitope at the molecular level and consequently the pathogenicity of dengue, as well as providing the basis for the rational construction of preventive vaccines and the development of virus-specific serological diagnosis tests.

NDICE GERAL

	N (11)
	XVII
INDICE DE QUADROS	XXII
ABREVIATURAS	XXIII
1. INTRODUÇÃO	01
1.1. HISTÓRICO	01
1.2. EPIDEMIOLOGIA DAS INFECÇÕES PELOS DENV	04
1.2.1. DENGUE NO BRASIL	05
1.3. Agente etiológico	80
1.3.1. Proteínas estruturais	11
1.3.2. PROTEÍNAS NÃO-ESTRUTURAIS	13
1.4. REPLICAÇÃO VIRAL	15
1.5. MANIFESTAÇÃO CLÍNICA	17
1.6. RESPOSTA IMUNE	20
1.7. PATOGÊNESE DAS INFECÇÕES PELOS DENV	21
1.8. DIAGNÓSTICO LABORATORIAL	22
1.9. PREVENÇÃO E CONTROLE	24
1.10. Do genoma ao imunoma	25
2. RELEVÂNCIA DO ESTUDO	28
3. Objetivos	29
3.1. OBJETIVO GERAL	29
3.2. OBJETIVOS ESPECÍFICOS	29
4. MATERIAIS E MÉTODOS	30
4.1. Análise computacional das proteínas dos DENV-1, DENV-2 e DENV-3	30
4.1.1. SELEÇÃO DE SEQÜÊNCIAS COMPLETAS DE AMINOÁCIDOS DOS DENV	30
4.1.2. ALINHAMENTO MÚLTIPLO DE SEQÜÊNCIAS DE PROTEÍNAS	30
4.1.3. Determinação de possíveis regiões de reconhecimento por	
ANTICORPOS	30
4.1.4. LOCALIZAÇÃO TRIDIMENSIONAL DOS PEPTÍDEOS IMUNOGÊNICOS	32
4.2. SÍNTESE PARALELA DE PEPTÍDEOS EM MEMBRANAS	33

NDICE GERAL

4.3. AMOSTRAS CLÍNICAS	34
4.3.1. CARACTERIZAÇÃO LABORATORIAL DAS AMOSTRAS CLÍNICAS	35
4.3.1.1. ISOLAMENTO VIRAL	35
4.3.1.2. TÉCNICA DE IMUNOFLUORESCÊNCIA INDIRETA (IFI)	36
4.3.1.3. Extração do RNA viral e RT-PCR	36
4.3.1.4. ENSAIO IMUNOENZIMÁTICO PARA A DETERMINAÇÃO DO TÍTULO DE	
ANTICORPOS IGG (G-ELISA) PARA A CARACTERIZAÇÃO DE SOROS DE	
PACIENTES COM DENGUE	37
4.3.1.5. Ensaio imunoenzimático para a determinação do título de	
ANTICORPOS IGG (G-ELISA) PARA A CARACTERIZAÇÃO DE SOROS DE	
PACIENTES COM OUTRAS PATOLOGIAS	38
4.4. Ensaios imunológicos para avaliação da reatividade a potenciais	
EPITOPOS	39
5. RESULTADOS	40
5.1. ANÁLISE COMPUTACIONAL DAS PROTEÍNAS DOS DENV-1, DENV-2 E DENV-3	40
5.2. PREDIÇÃO DE POSSIVEIS REGIÕES DE RECONHECIMENTO POR ANTICORPOS	40
5.3. COMPARAÇÃO DAS PREDIÇÕES DE RECONHECIMENTO POR ANTICORPOS – ESCALA	
DE ANTIGENICIDADE	47
5.4. IDENTIFICAÇÃO DE PEPTÍDEOS IMUNOGÊNICOS CONSECUTIVOS DAS PROTEÍNAS DOS	
DENV-1, DENV-2 E DENV-3, ATRAVÉS DA METODOLOGIA DE SÍNTESE PARALELA DE	
PEPTÍDEOS EM MEMBRANAS	53
5.5. COMPARAÇÃO DOS RESULTADOS OBTIDOS ATRAVES DO MÉTODO EXPERIMENTAL DA	
SÍNTESE PARALELA E MÉTODO COMPUTACIONAL DE PREDIÇÃO DE	
EPITOPOS	67
5.6. CARACTERIZAÇÃO ESTRUTURAL DOS EPITOPOS ESPECÍFICOS E COMUNS AO GRUPO	
DENGUE E O GÊNERO FLAVIVIRUS	68
5.7. LOCALIZAÇÃO TRIDIMENSIONAL DOS PEPTÍDEOS IMUNOGÊNICOS	96
6. DISCUSSÃO	101
7. CONCLUSÃO	112
8. REFERÊNCIAS BIBLIOGRÁFICAS	113

ANEXOS _____

ANEXO 1:	REGIOES PROPENSAS AO RECONHECIMENTO POR ANTICORPOS PARA CADA	
	PROTEINA DOS DENV-1, DENV-2 E DENV-3, BASEADO EM PARÂMETROS	
	DE ESTRUTURA SECUNDÁRIA, ACESSIBILIDADE E SOLUBILIDADE, DE ACORDO	
	COM O PROGRAMA DE COMPUTAÇÃO DNASTAR (VERSÃO 4.0)	138
ANEXO 2:	ÍNDICE DE ANTIGENICIDADE (ESCALA DE JAMESON & WOLF) DAS PROTEÍNAS	
	DOS DENV-1, DENV-2 E DENV-3	144
ANEXO 3:	REGIÕES IMUNOGÊNICAS COM PROPENSÃO À ANTIGENICIDADE DETERMINADA	
	ATRAVÉS DA ESCALA DE KOLASKAR & TONAGONKAR PARA AS PROTEÍNAS	
	ESTRUTURAIS E NÃO ESTRUTURAIS DOS DENV-1, DENV-2 E DENV-3	152
ANEXO 4:	REGIÕES COM PROPENSÃO À ANTIGENICIDADE DETERMINADA ATRAVÉS DA	
	ESCALA DE BEPIPRED DAS PROTEÍNAS DOS DENV-1, DENV-2 E DENV-3	158
ANEXO 5:	ALINHAMENTO MÚLTIPLO ENTRE CADA SOROTIPO DOS DENV E A PROTEÍNA	
	1R6R, SELECIONADA COMO MODELO PARA A MODELAGEM POR HOMOLOGIA	
	DA PROTEÍNA C	164
ANEXO 6:	ALINHAMENTO MÚLTIPLO, REALIZADO ATRAVÉS DO PROGRAMA CLUSTALW,	
	ENTRE CADA SOROTIPO DOS DENV E A PROTEÍNA 3C6D, SELECIONADA	
	COMO MOLDE PARA A MODELAGEM POR HOMOLOGIA DA PROTEÍNA PRM/M	166
ANEXO 7:	ALINHAMENTO MÚLTIPLO, REALIZADO ATRAVÉS DO PARÂMETRO CLUSTALW,	
	ENTRE CADA SOROTIPO DOS DENV E AS DIFERENTES PROTEÍNAS	
	SELECIONADAS COMO MODELO PARA A MODELAGEM POR HOMOLOGIA DA	
	PROTEÍNA E DOS DENV-1, DENV-2 E DENV-3. (A) ALINHAMENTO ENTRE	
	AS PROTEÍNAS 1TGE, 1TG8 E DENV-1; (B) ALINHAMENTO ENTRE 1UZG,	
	2HG0 E DENV-2 E (C) ALINHAMENTO ENTRE 1TG8 E DENV-3	168
ANEXO 8:	ALINHAMENTO MÚLTIPLO, REALIZADO ATRAVÉS DO PARÂMETRO CLUSTALW,	
	ENTRE CADA SOROTIPO DOS DENV E AS DIFERENTES PROTEÍNAS	
	SELECIONADAS COMO MODELO PARA A MODELAGEM POR HOMOLOGIA DA	
	PROTEÍNA NS3 DOS DENV-1, DENV-2 E DENV-3. (A) ALINHAMENTO	
	ENTRE AS PROTEÍNAS 2Z83, 2V8O E DENV-1; (B) ALINHAMENTO ENTRE AS	
	PROTEÍNAS 2Z83, 2V8O E DENV-2 E (C) ALINHAMENTO ENTRE 2V8O E	
	DENV-3. EM DESTAQUE, MOTIVO DE SEQÜÊNCIAS DAS ATIVIDADES DE	
	HELICASE, RTPASE E NTPASE DA PROTEÍNA NS3	172

ANEXOS _____

FIGURA 1. DISTRIBUIÇÃO GEOGRÁFICA DAS ÁREAS INFESTADAS COM AEDES
FIGURA 2: NÚMERO DE CASOS DE DENGUE E DH REPORTADOS NO BRASIL, 1986 – 2009
FIGURA 3: RECONSTRUÇÃO POR CRIOELETROMICROSCOPIA DE UMA PARTÍCULA DE DENV IMATURA E MADURA EM PH 7,0 E DIAGRAMA ESQUEMÁTICO DA COMPOSIÇÃO DE UMA PARTÍCULA IMATURA E MADURA DE DENV
FIGURA 4: DIAGRAMA ESQUEMÁTICO DO GENOMA DOS DENV E TOPOLOGIA DE MEMBRANA DA POLIPROTEINA DURANTE O PROCESSO DE TRADUÇÃO VIRAL NO LÚMEN DO RETICULO ENDOPLASMÁTICO E CITOPLASMA, RESULTANDO NA PRODUÇÃO DAS PROTEÍNAS C, PRM/M, E, NS1, NS2A, NS2B, NS3, NS4A,
NS4B E NS5 FIGURA 5: ESTRUTURA DO DÍMERO DA PROTEÍNA E DOS <i>FLAVIVÍRUS</i> (PARTÍCULA MADURA) DE ACORDO COM O MODELO EM <i>RIBBON</i> . IMAGEM DE RECONSTRUÇÃO POR CRIOELETROMICROSCOPIA MOSTRANDO A DISPOSIÇÃO DOS DÍMEROS DA PROTEÍNA E NA SUPERFÍCIE VIRAL
FIGURA 6: FIGURA ESQUEMÁTICA DE INOCULAÇÃO DO VÍRUS DENGUE PELO MOSQUITO
VETOR NO SISTEMA TEGUMENTAR DO HOSPEDEIRO
FIGURA 7: DIAGRAMA ESQUEMÁTICO DA REPLICAÇÃO DOS DENV E MICROSCOPIA
ELETRÔNICA DO MECANISMO DE REPLICAÇÃO DOS VÍRUS DENGUE NAS
CÉLULAS DO HOSPEDEIRO
FIGURA 8: FLUXOGRAMA DAS MANIFESTAÇÕES CLÍNICAS DO DENGUE
FIGURA 9: INTERAÇÃO ENTRE FATORES DE RISCO PARA O DESENVOLVIMENTO DAS
FORMAS GRAVES DO DENGUE - HIPÓTESE INTEGRAL
FIGURA 10: PRINCÍPIO DA SÍNTESE PARALELA DE PEPTÍDEOS EM MEMBRANA. A: INSERÇÃO DE RESÍDUOS EM MEMBRANA DE CELULOSE FORMANDO GOTAS REGULARES. B: FIGURA ESQUEMÁTICA DA SÍNTESE DE PEPTÍDEOS, ENVOLVENDO CICLOS SUCESSIVOS DE LAVAGEM, ACOPLAMENTO E DESPROTEÇÃO DE CADA RESÍDUO À SEQUÊNCIA DE PEPTÍDEOS
NASCENTE
FIGURA 11: FÓRMULA MATEMÁTICA UTILIZADA PELO PARÂMETRO DE JAMESON & WOLF
PARA A DETERMINAÇÃO DE REGIÕES COM PROPENSÃO À ANTIGENICIDADE

FIGURA 12: FÓRMULA MATEMÁTICA UTILIZADA PELA ESCALA DE KOLASKAR &	
Tongaonkar para a determinação de regiões com propensão à	
ANTIGENICIDADE	32
FIGURA 13: MATRIZ DE IDENTIDADE PARA TODAS AS SEQUÊNCIAS DE PROTEÍNAS DOS	
DENV-1, DENV-2 e DENV-3, OBTIDA ATRAVÉS DO PROGRAMA BIOEDIT	
(VERSÃO 7.0.4.1)	39
FIGURA 14: REPRESENTAÇÃO GRÁFICA DAS PROTEÍNAS ESTRUTURAIS DE	
CAPSÍDEO/CAPSIDEO ANCORADA E PRÉ-MEMBRANA/MEMBRANA DOS DENV-	
1, DENV-2 e DENV-3, contendo regiões com probabilidade de	
RECONHECIMENTO POR ANTICORPOS BASEADO EM ELEMENTOS DA	
ESTRUTURA SECUNDÁRIA E EM PARÂMETROS DE HIDROFILICIDADE E	
ACESSIBILIDADE DE CADA AMINOÁCIDO, ATRAVÉS DO PROGRAMA DE	
COMPUTAÇÃO DNASTAR	40
FIGURA 15: REPRESENTAÇÃO GRÁFICA DA PROTEÍNA ESTRUTURAL DE ENVELOPE E NÃO	
ESTRUTURAL 1 DOS DENV-1, DENV-2 E DENV-3, CONTENDO REGIÕES	
COM PROBABILIDADE DE RECONHECIMENTO POR ANTICORPOS BASEADO EM	
ELEMENTOS DA ESTRUTURA SECUNDÁRIA E EM PARÂMETROS DE	
HIDROFILICIDADE E ACESSIBILIDADE DE CADA AMINOÁCIDO, ATRAVÉS DO	
PROGRAMA DE COMPUTAÇÃO DNASTAR	41
FIGURA 16: REPRESENTAÇÃO GRÁFICA DA PROTEÍNA NÃO ESTRUTURAL 2A E 2B DOS	
DENV-1, DENV-2 E DENV-3, CONTENDO REGIÕES COM PROBABILIDADE DE	
RECONHECIMENTO POR ANTICORPOS BASEADO EM ELEMENTOS DA	
ESTRUTURA SECUNDÁRIA E EM PARÂMETROS DE HIDROFILICIDADE E	
ACESSIBILIDADE DE CADA AMINOÁCIDO, ATRAVÉS DO PROGRAMA DE	
COMPUTAÇÃO DNASTAR	42
FIGURA 17: REPRESENTAÇÃO GRÁFICA DA PROTEÍNA NÃO ESTRUTURAL 3 E 4A DOS	
DENV-1, DENV-2 E DENV-3, CONTENDO REGIÕES COM PROBABILIDADE DE	
RECONHECIMENTO POR ANTICORPOS BASEADO EM ELEMENTOS DA	
ESTRUTURA SECUNDÁRIA E EM PARÂMETROS DE HIDROFILICIDADE E	
ACESSIBILIDADE DE CADA AMINOÁCIDO, ATRAVÉS DO PROGRAMA DE	
COMPUTAÇÃO DNASTAR	43

FIGURA 18: REPRESENTAÇÃO GRÁFICA DA PROTEÍNA NÃO ESTRUTURAL 4B E 5 DOS	3
DENV-1, DENV-2 E DENV-3, CONTENDO REGIÕES COM PROBABILIDADE DI	Ξ
RECONHECIMENTO POR ANTICORPOS BASEADO EM ELEMENTOS D/	4
ESTRUTURA SECUNDÁRIA E EM PARÂMETROS DE HIDROFILICIDADE I	Ξ
ACESSIBILIDADE DE CADA AMINOÁCIDO, ATRAVÉS DO PROGRAMA DI	Ξ
COMPUTAÇÃO DNASTAR	44
FIGURA 19: REPRESENTAÇÃO GRÁFICA DAS PROTEÍNAS ESTRUTURAIS E NÃO)
ESTRUTURAIS DOS DENV-1, DENV-2 E DENV-3, CONTENDO REGIÕES COM	Λ
PROBABILIDADE DE RECONHECIMENTO POR ANTICORPOS BASEADO NO)
ÍNDICE DE ANTIGENICIDADE DETERMINADA PELO PARÂMETRO DI	Ξ
ANTIGENICIDADE DE JAMESON & WOLF	46
FIGURA 20: REVELAÇÃO IMUNOLÓGICA DAS MEMBRANAS CELULÓSICAS CONTENDO)
PEPTÍDEOS DO DENV-1 SINTETIZADOS (10 MERS) PELA TÉCNICA DE SÍNTESI	Ξ
PARALELA.	54
FIGURA 21: REVELAÇÃO IMUNOLÓGICA DAS MEMBRANAS CELULÓSICAS CONTENDO)
PEPTÍDEOS DO DENV-2 SINTETIZADOS (10 MERS) PELA TÉCNICA DE SÍNTESI	Ξ
PARALELA.	55
FIGURA 22: REVELAÇÃO IMUNOLÓGICA DAS MEMBRANAS CELULÓSICAS CONTENDO)
PEPTÍDEOS DO DENV-3 SINTETIZADOS (10 MERS) PELA TÉCNICA DE SÍNTESI	Ξ
PARALELA.	56
FIGURA 23: CORRELAÇÃO ENTRE OS MÉTODOS PREDITIVOS (COMPUTACIONAIS) I	Ξ
EXPERIMENTAIS (SÍNTESE PARALELA DE PEPTÍDEOS EM MEMBRANAS) DE	Ξ
DETERMINAÇÃO DE EPITOPOS DOS DENV	. 67
FIGURA 24: ESTRUTURA DAS DIFERENTES PROTEÍNAS DISPONÍVEIS NO BANCO DE	Ξ
DADOS DE PROTEÍNAS ELUCIDADAS POR DIFERENTES METODOLOGIAS QUI	Ξ
FORAM UTILIZADAS COMO MOLDE PARA A CONSTRUÇÃO DOS MODELOS-3)
DAS PROTEÍNAS DOS DENV	79
FIGURA 25: ESTRUTURA-3D DA PROTEÍNA C DOS DENV-1, DENV-2 E DENV-3	,
GERADA POR MODELAGEM POR HOMOLOGIA, DESTACANDO POR CORES OS	3
EPITOPOS IDENTIFICADOS PELA SÍNTESE PARALELA DE PEPTÍDEOS	82

FIGURA 26: ESTRUTURA-3D DA PROTEÍNA "PR" DOS DENV-1, DENV-2 E DENV-3,	
gerada pelo programa Modeller e analisada através do programa	
SWISS-PDB-VIEWER, DESTACANDO POR CORES OS EPITOPOS IDENTIFICADOS	
PELA SÍNTESE PARALELA DE PEPTÍDEOS	83
FIGURA 27: ESTRUTURA PRIMÁRIA DA PROTEÍNA PRM-M (MODELLER VERSÃO 9V4),	
RESSALTANDO AS ESTRUTURAS SECUNDÁRIAS	84
FIGURA 28: ESTRUTURA-3D DA PROTEÍNA E DOS DENV-1 GERADA PELO PROGRAMA	
Modeller (versão 9v4) e analisada através do programa Swiss-	
PDB-VIEWER, DESTACANDO POR CORES OS EPITOPOS IDENTIFICADOS	
EXPERIMENTALMENTE	86
FIGURA 29: ESTRUTURA-3D DA PROTEÍNA E DOS DENV-2 GERADA PELO PROGRAMA	
Modeller (versão 9v4) e analisada através do programa Swiss-	
PDB-VIEWER, DESTACANDO POR CORES OS EPITOPOS IDENTIFICADOS	
EXPERIMENTALMENTE	87
FIGURA 30: FIGURA 28: ESTRUTURA-3D DA PROTEÍNA E DOS DENV-3 GERADA PELO	
programa Modeller (versão 9v4) e analisada através do programa	
SWISS-PDB-VIEWER, DESTACANDO POR CORES OS EPITOPOS IDENTIFICADOS	
EXPERIMENTALMENTE	88
FIGURA 31: ESTRUTURA PRIMÁRIA DA PROTEÍNA E (MODELLER VERSÃO 9V4),	
RESSALTANDO AS ESTRUTURAS SECUNDÁRIAS	90
FIGURA 32: LOCALIZAÇÃO-3D DOS DOMÍNIOS CARBOXI-TERMINAIS PROTEÍNA NS3 DO	
DENV-1, GERADA POR MODELAGEM POR HOMOLOGIA	91
FIGURA 33: ESTRUTURA-3D DA PROTEÍNA NS3 DOS DENV-1 GERADA POR	
MODELAGEM POR HOMOLOGIA, DESTACANDO POR CORES OS EPITOPOS	
IDENTIFICADOS PELA SÍNTESE PARALELA DE PEPTÍDEOS EM MEMBRANAS	93
FIGURA 34: ESTRUTURA-3D DA PROTEÍNA NS3 DOS DENV-2 GERADA POR	
MODELAGEM POR HOMOLOGIA, DESTACANDO POR CORES OS EPITOPOS	
IDENTIFICADOS PELA SÍNTESE PARALELA DE PEPTÍDEOS EM MEMBRANAS	94
FIGURA 35: ESTRUTURA-3D DA PROTEÍNA NS3 DOS DENV-3 GERADA POR	
MODELAGEM POR HOMOLOGIA, DESTACANDO POR CORES OS EPITOPOS	
IDENTIFICADOS PELA SÍNTESE PARALELA DE PEPTÍDEOS EM MEMBRANAS	95

- XX

FIGURA 36: ESTRUTURA-3D DA PROTEÍNA NS5 DOS DENV-1 GERADA PELO PROGRAMA	
Modeller (versão 9v4) e analisada através do programa Swiss-	
PDB-VIEWER, DESTACANDO POR CORES OS EPITOPOS IDENTIFICADOS	
EXPERIMENTALMENTE	97
FIGURA 37: ESTRUTURA-3D DA PROTEÍNA NS5 DOS DENV-2 GERADA PELO	
programa Modeller (versão 9v4) e analisada através do programa	
SWISS-PDB-VIEWER, DESTACANDO POR CORES OS EPITOPOS IDENTIFICADOS	
EXPERIMENTALMENTE	98
FIGURA 38: ESTRUTURA-3D DA PROTEÍNA NS5 DOS DENV-3 GERADA PELO PROGRAMA	
Modeller (versão 9v4) e analisada através do programa Swiss-	
PDB-VIEWER, DESTACANDO POR CORES OS EPITOPOS IDENTIFICADOS	
EXPERIMENTALMENTE	99
FIGURA 39: ESTRUTURA PRIMÁRIA DA PROTEÍNA NS5 (MODELLER VERSÃO 9V4),	
RESSALTANDO AS ESTRUTURAS SECUNDÁRIAS	100

NDICE DE QUADROS

QUADRO 1: OLIGONUCLEOTÍDEOS INICIADORES UTILIZADOS NA TRANSCRIÇÃO REVERSA	
SEGUIDA PELA REAÇÃO EM CADEIA PELA POLIMERASE PARA A TIPAGEM DOS	
VÍRUS DENGUE	36
Quadro 2: Determinação das possíveis regiões de reconhecimento por	
ANTICORPOS DAS PROTEÍNAS DOS DENV-1, DENV-2 E DENV-3, ATRAVÉS	
DA GERAÇÃO DE UM CONSENSO ENTRE OS RESULTADOS OBTIDOS PELO	
PARAMETRO DE ANTIGENICIDADE DOS PROGRAMAS DE COMPUTAÇÃO	
DNASTAR E IEDB	48
QUADRO 3: RELAÇÃO DOS EPITOPOS B LINEARES DE TODAS AS PROTEÍNAS DOS DENV-	
1, DENV-2 E DENV-3 IDENTIFICADOS, EMPREGANDO MISTURA DE SOROS	
DE PACIENTES ESPECÍFICOS A CADA SOROTIPO. OS PEPTÍDEOS FORAM	
SINTETIZADOS ATRAVÉS DA METODOLOGIA DE SÍNTESE PARALELA CONTENDO	
10 a 15 aminoácidos com sobreposição de 5 resíduos. Os	
RESULTADOS FORAM RESULTANTES DE 3 EXPERIMENTOS REALIZADOS EM	
DATAS INDEPENDENTES	57
Quadro 4: Identificação de epitopos específicos aos DENV-1, DENV-2 e	
DENV-3 E EPITOPOS COMUNS AO GRUPO DENGUE, ATRAVÉS DA UTILIZAÇÃO	
DA MISTURA DE SOROS DE PACIENTES COM INFECÇÃO POR DENV-1, DENV-	
2 OU DENV-3, EM TESTE DE REAÇÃO CRUZADA	69
QUADRO 5: EPITOPOS COMUNS AO GRUPO DENGUE QUE REAGIRAM COM MISTURA DE	
SOROS DE VACINADOS PARA FEBRE AMARELA	77
QUADRO 6: NÚMERO DE ACESSO DAS PROTEÍNAS DEPOSITADAS NO BANCO DE DADOS	
DE PROTEÍNAS, USADAS EM NOSSO ESTUDO PARA A MODELAGEM POR	
HOMOLOGIA DAS PROTEÍNAS DOS DENV-1, DENV-2 E DENV-3	78
QUADRO 1: AVALIAÇÃO DA QUALIDADE ESTEREOQUIMICA GERAL DOS MODELOS	
QUADRO 7: AVALIAÇÃO DA QUALIDADE ESTEREOQUIMICA GERAL DOS MODELOS TRIDIMENSIONAIS OBTIDOS ATRAVÉS DO PROGRAMA PROCHECK (SERVIDOR	

ABREVIATURAS _____

aa	RESÍDUOS DE AMINOÁCIDOS
ABTS	SUBSTRATO ÁCIDO 2,2'-AZINO-BIS(3-ETILBENZTIAZOLINA-6-SULFONICO)
ADE	FACILITAÇÃO DA RESPOSTA DEPENDENTE DE ANTICORPOS
BLAST	FERRAMENTA PARA A PESQUISA DE ALINHAMENTO LOCAL (DO INGLÊS BASIC LOCAL
	ALIGNMENT SEARCH TOOL)
С	CAPSÍDEO
cryoEM	CRIOELETROMICROSCOPIA
DCC	QUADRO DE DENGUE COM COMPLICAÇÕES
DCM	DICLOROMETANO
DENCO	PROJETO PARA O CONTROLE DO DENGUE
DENV	VIRUS DENGUE
DENV-1	VÍRUS DENGUE TIPO 1
DENV-2	VÍRUS DENGUE TIPO 2
DENV-3	VÍRUS DENGUE TIPO 3
DENV-4	VÍRUS DENGUE TIPO 4
DC	Dengue clássico
DH	Dengue Hemorrágico
DMF	DIMETILFORMAMIDA
E	Envelope
ECP	EFEITO CITOPÁTICO
Fc	PORÇÃO CRISTALIZÁVEL DE ANTICORPOS
Fmoc	GRUPO FLUORENYLMETHOXYCARBONYL
G-ELISA	ENSAIO IMUNOENZIMÁTICO DE DETECÇÃO DE ANTICORPOS G
HLA	Antígenos Leucocitários Humanos
HOBT	N-HIDROXIBENZOTRIAZOL
IFN	INTERFERON
lgM	ANTICORPO DA CLASSE M
lgG	ANTICORPO DA CLASSE G
IgA	ANTICORPO DA CLASSE A
lgE	ANTICORPO DA CLASSE E
IL	INTERLEUCINA
KCI	CLORETO DE POTÁSSIO

ABREVIATURAS _____

KDa	KILODÁLTONS
М	MEMBRANA
MAC-ELISA	ENSAIO IMUNOENZIMÁTICO DE CAPTURA DE ANTICORPOS M
Mol	MOLAR
MTAse	RNA METILTRANSFERASE
μ g/ml	MICROGRAMA POR MILILITRO
NaCl	CLORETO DE SÓDIO
NC	REGIÃO NÃO CODIFICANTE
nmol	NANOMOLAR
NMP	N-METIL-2-PIRROLIDONA
NS	NÃO ESTRUTURAL
NTPase	NUCLEOSIDEO TRIFOSFATASE
PBS	TAMPÃO FOSFATO-SALINO
PDB	BANCO DE DADOS DE PROTEINA (DO INGLÊS PROTEIN DATA BANK)
PEAa	PROGRAMA DE ERRADICAÇÃO DO AEDES AEGYPTI
PEG	PEGUILADA
PNCD	PROGRAMA NACIONAL DE CONTROLE DO DENGUE
рН	POTENCIAL HIDROGENIÔNICO
Poli-A	POLI-ADENILATO
prM	PRECURSOR GLICOSILADO DA PROTEÍNA DE MEMBRANA
RdRp	RNA-polimerase-RNA-dependente
RE	RETÍCULO ENDOPLASMÁTICO
RMN	RESSONÂNCIA MAGNÉTICA NUCLEAR
RNA	ÁCIDO RIBONUCLEICO
RTPase	RNA TRIFOSFATASE
RT-PCR	TRANSCRIPTASE REVERSA SEGUIDA DA REAÇÃO EM CADEIA PELA POLIMERASE
SAVS	SERVIDOR DE ANALISE E VERIFICAÇÃO ESTRUTURAL (DO INGLÊS STUCTURAL ANALYSIS AND VERIFICATION SERVER)
SCD	SÍNDROME DO CHOQUE POR DENGUE
ssRNA	MOLÉCULA DE RNA FITA SIMPLES
TBEV	VÍRUS DA ENCEFALITE TRANSMITIDA POR CARRAPATO
TBS	TAMPÃO TRIS SALINA

ABREVIATURAS _____

TFA	ÁCIDO TRIFLUOROACÉTICO
TNF	FATOR DE NECROSE TUMORAL
TGN	TRANS GOLGI NETWORK
UHA	UNIDADES HEMAGLUTINANTES

1. INTRODUÇÃO

1.1. HISTÓRICO

O século XX foi marcado por transformações econômicas e sociais caracterizadas pelo rápido processo de urbanização (principalmente após a segunda guerra mundial) pelas mudanças de hábitos das populações, alterações ambientais nas cidades e no campo, migrações e pelo aumento do intercâmbio internacional (Waldman, 2000). Tais transformações alteraram o comportamento das doenças infecciosas em todo o mundo, propiciando condições adequadas para a emergência de novas doenças infecciosas, como o dengue, que ainda hoje é considerada a arbovirose humana de maior importância médica no mundo, em termos de morbidade e mortalidade (WHO, 2009).

De acordo com a Organização Mundial de Saúde, a incidência do dengue tem aumentado de forma alarmante nas últimas décadas, onde mais de 2,5 bilhões de pessoas (dois quintos da população mundial) estão expostas ao risco de infecção. Estima-se que 50-100 milhões de casos de dengue clássico, 500 mil casos de dengue hemorrágico (DH) e 25 mil mortes são notificados anualmente em todo o mundo, como resultado da dispersão do mosquito vetor (Stephenson, 2008; WHO, 2009).

O agente etiológico desta doença é o vírus dengue (DENV), que é caracterizado por quatro sorotipos antigenicamente e filogeneticamente distintos (DENV-1, DENV-2, DENV-3 e DENV-4), dentro dos quais existem consideráveis variações genéticas intra-sorotipos, sendo filogeneticamente definidos como genótipos (Chambers *et al.,* 1990; Lindenbach & Rice, 2000).

A origem geográfica dos DENV tem sido objeto de inúmeras especulações. Apesar de permanecer incerta, estudos têm sugerido a origem Africana em virtude, principalmente, da procedência do mosquito vetor *Aedes aegypti* nesta região (Gubler, 1997; Gaunt *et al.*, 2001; Holmes *et al.*, 2003). Outros estudos, entretanto, têm sugerido origem Asiática, particularmente devido à posição filogenética de cepas silvestres provenientes deste local e a alta prevalência de dengue nesta região (Gubler, 1997; Wang *et al.*, 2000; Wilder-Smith *et al.*, 2008; Weaver *et al.*, 2009). O que se sabe até o momento, é que independente de sua origem geográfica, a transmissão dos DENV ocorreu inicialmente através de um ciclo silvestre, envolvendo primatas não humanos e mosquitos do gênero *Aedes*. A adaptação viral a novas espécies, como no caso dos mosquitos *Ae. arboreal* ao *Ae. albopictus* e, posteriormente ao *Ae. Aegypti* contribuíram para o surgimento do ciclo urbano, no qual os humanos são os únicos hospedeiros a desenvolver as formas clínicas da infecção (Whitehead, 2007; Weaver *et al.*, 2009).

Não existe um consenso do início da transmissão dos DENV ao homem. Diversos estudos sugerem que o crescimento da urbanização, associado ao aumento do trafego de pessoas do campo para as cidades, provavelmente resultaram na evolução do mosquito vetor, que os tornou intimamente associados aos humanos, garantindo o estabelecimento do ciclo urbano dos DENV (Gubler, 1997; 1998; Whitehead, 2007; Weaver *et al.*, 2009).

Embora os primeiros relatos de epidemias de uma enfermidade clinicamente compatível com dengue tenham sido descritos na Ásia, África e América do Norte em 1779 e 1780 (Siler *et al.*, 1926), em uma enciclopédia chinesa, há registros que apontam que esta doença tenha ocorrido na China no século III, durante a Dinastia Chin (265 a 420 D.C.). Esta enfermidade foi chamada pelos chineses de "veneno da água", pois acreditavam que houvesse alguma associação entre insetos voadores e água. Descrições similares foram registradas nos séculos VII e X, durante as Dinastias Tang (610 D.C.) e Norte Sung (992 D.C.), respectivamente (Gubler, 1998).

O primeiro uso do termo "dengue" ocorreu em 1801 na Espanha, embora muitos nomes tenham sido atribuídos a esta doença até seu total estabelecimento (Rezende, 2004). A explicação aparentemente lógica de chamar-se "dengue" à doença segue duas vertentes, ambas com origem africana. Em quimbundo, *ndenge* significa menino, que subentende birra, choro ou manha. Outra versão dá a palavra dengue oriunda do Swahili, língua bantu da costa leste africana, na qual a expressão *ka dinga pepo* significa câimbras de início súbito (Rezende, 2004).

Sua introdução na literatura médica inglesa se deu entre 1827 e 1828, durante uma epidemia de exantema com artralgia ocorrida no Caribe e somente, em 1869, ele foi estabelecido pelo *London Royal College of Physicians* (Halstead, 1980). Este termo sobrepôs-se aos demais, passou para o inglês e francês e foi definitivamente consagrado quando incorporado à Nomenclatura Internacional das Doenças, do Conselho das Organizações Internacionais de Ciências Médicas da Organização Mundial de Saúde (WHO, 1983).

Graham (1903) foi o primeiro a documentar o envolvimento de mosquitos na transmissão do dengue. Este trabalho foi seguido por Bancroft (1906) que

identificou o mosquito *Ae. aegypti* como transmissor da doença, sendo confirmado por estudos subseqüentes (Siler *et al.*, 1926; Rosen *et al.*, 1954).

Após descartarem a participação de quaisquer bactérias e/ou protozoários e conseguirem a reprodução da doença em voluntários sadios, Ashburn & Craig (1907) demonstraram a natureza viral do agente etiológico, concluindo que a doença era causada por um "organismo" de tamanho ultramicroscópico e filtrável.

Os primeiros DENV foram isolados durante a segunda guerra mundial em março de 1944, a partir de soros de soldados que contraíram a infecção em Calcutá (Índia), Nova Guiné e Havaí (Sabin, 1952). Os vírus provenientes da Índia, do Havaí e de uma das cepas da Nova Guiné, por se mostrarem antigenicamente semelhantes, foram denominados de DENV-1 e a cepa Havaí considerada protótipo. Outras cepas de Nova Guiné apresentaram características antigênicas distintas, permitindo a identificação de um novo tipo sorológico e foram classificadas como DENV-2, tendo a cepa Nova Guiné como protótipo.

Em 1956, durante a primeira epidemia conhecida de dengue hemorrágico (DH) ocorrida em Manila (Filipinas), dois novos vírus sorologicamente relacionados foram isolados a partir de sangue e macerado de mosquito. Estes vírus foram classificados como DENV-3 e DENV-4 (Hammon *et al.*, 1960) e as cepas H87 (DENV-3) e H241 (DENV-4) designadas protótipos.

Desde o final da Segunda Guerra Mundial, a incidência de casos de dengue e a emergência de suas formas mais graves intensificaram-se dramaticamente, constituindo um dos maiores problemas de Saúde Pública, particularmente nas regiões tropicais e subtropicais (Young *et al.*, 2000). O crescimento populacional, a urbanização descontrolada, a falta de programas efetivos para o controle do vetor e o aumento das viagens contribuíram para a expansão geográfica do mosquito transmissor e, conseqüentemente do vírus, permitindo o estabelecimento de uma pandemia que persiste até os dias atuais (Gubler, 1998; 2002; Gibbons & Vaughn, 2002).

1.2. EPIDEMIOLOGIA DAS INFECÇÕES PELOS DENV

Ao longo dos séculos, tem-se registrado a ocorrência do dengue em várias partes do mundo, com pandemias e epidemias isoladas, atingindo áreas que seguem a distribuição geográfica do mosquito v*et*or: Ásia, Ilhas do Pacífico, África e as Américas (Figura 1 - WHO, 2009).

Figura 1: Distribuição geográfica das áreas infestadas com *Aedes aegypti* (em amarelo) – 2008 (adaptado de WHO, 2009).

Historicamente a Ásia tem sido a área mais afetada por epidemias de dengue, com os 4 sorotipos (DENV 1 \rightarrow 4) circulando nos grandes centros urbanos da maioria dos países (Gubler, 1998). Nas ilhas do pacífico, epidemias de dengue e casos esporádicos de dengue hemorrágico/síndrome do choque por dengue (DH/SCD) têm sido reportadas desde a década de 70, resultante de múltiplas introduções diretas dos DENV de várias localizações na Ásia, seguida de transmissão local (Gubler, 1997; Nuegoonpipat *et al.* 2004; Wilder-Smith *et al.*, 2008). Na África, embora casos esporádicos de DH/SCD tenham sido reportados (possivelmente devido à presença de um gene de resistência existente na população) um aumento das epidemias de dengue clássico foi observado nas últimas décadas em diversas regiões do país (Gubler & Trent, 1994; Gubler, 1998; Sang, 2007; WHO, 2009). Em virtude das epidemias não estarem associadas à mortalidade, o dengue não tem sido uma prioridade neste país e muitos casos não tem sido reportados, apesar de existir a co-circulação de 3 sorotipos virais (DENV-1, DENV-2 e DENV-3) (WHO, 2009). No Continente Americano, embora tenham sido descritas epidemias compatíveis com infecção pelos DENV desde 1780, os sorotipos envolvidos em tais epidemias só foram conhecidos a partir de 1953, quando foi isolada a primeira amostra de DENV-2 em Trinidade (Anderson *et al.*, 1956). Dez anos depois, foram isoladas as primeiras amostras de DENV-3 em Porto Rico, sendo estes dois sorotipos responsáveis pelas epidemias ocorridas no continente nas décadas de 60 e 70 (PAHO, 1989; Gubler, 1992).

Durante a década de 70, houve uma tentativa, fracassada, de erradicação do mosquito *Ae. aegypti* das Américas, o que resultou em uma reinfestação deste vetor pelo Continente e a re-introdução dos DENV-1 (1977), DENV-2 e DENV-4 (1981) e DENV-3 (1994) (Gubler, 1993).

Desde a re-introdução do DENV-2 em Cuba (1981), uma situação endêmica têm sido observada, refletida pelo aumento da densidade vetorial, a co-circulação de múltiplos sorotipos, o aumento na freqüência da atividade do dengue e, conseqüentemente no registro de epidemias de DH em muitos países (Gubler, 1997, Teixeira *et al.,* 1999).

Em 2009, até a 37^ª semana epidemiológica, foi reportado nas Américas um total de 917.311 casos de dengue, incluindo 25.268 casos de DH/SCD e 371 óbitos. A co-circulação de dois sorotipos foi observada em 8 países e a múltipla circulação de 3 sorotipos em 6 países. Na Venezuela, Porto Rico, Peru e em El Salvador foi observada a co-circulação dos 4 sorotipos virais (PAHO, 2009).

1.2.1. DENGUE NO BRASIL

No Brasil, os primeiros relatos de dengue datam de 1846 e descrevem surtos ocorridos simultaneamente nos estados do Rio de Janeiro, Bahia, Pernambuco e em localidades do norte do país (Mariano, 1917). Posteriormente, novos casos foram notificados no Paraná em 1890 (Reis, 1896), no Rio Grande do Sul em 1917 (Mariano, 1917) e no Rio de Janeiro em 1923 (Pedro, 1923).

O sucesso da Campanha Brasileira de erradicação do mosquito *Ae.aegypti* iniciada em 1904, resultou na ausência de surtos de dengue no país por aproximadamente 30 anos, quando o declínio no controle do mosquito vetor, associado à introdução de novos sorotipos virais na América Central, resultou na reintrodução dos DENV no Brasil (Franco, 1961; Figueiredo, 1996; 2000; Schatzmayr, 2000).

Em 1981, em Boa Vista, Roraima, extremo norte do país, foi registrada a primeira epidemia de dengue laboratorialmente confirmada, acometendo cerca de 11.000 pessoas, onde foram isolados os DENV-1 e DENV-4 (Osanai *et al.*,1983; Nogueira *et al.*, 1988, 2000). Entretanto, foi a partir de 1986, que o dengue se tornou um problema de saúde pública, com a re-introdução do DENV-1 (1986), seguida do primeiro pico epidêmico ocorrido em 1986/1987, onde se estima que aproximadamente 90 mil individuos foram infectados por este sorotipo (Figura 2 - PAHO, 1986, 1987; Schatzmayr *et al.*, 1986; Nogueira *et al.*, 1988; Figueiredo *et al.*, 1991).

Em 1990, ocorreu a introdução do DENV-2 (Nogueira *et al.,* 1990) e juntamente com a co-circulação do DENV-1, resultou no agravamento do quadro clínico e a notificação dos primeiros casos de DH/SCD do país (Zagne *et al.,* 1994; Nogueira *et al.,* 1999a).

A partir do ano de 1994, as epidemias de dengue deixam de apresentar picos bienais e passaram a apresentar aspecto anual, principalmente devido à dispersão do mosquito v*et*or pelo país (Figura 2 - Nogueira *et al.*, 1995; PAHO, 2009; Teixeira *et al.*, 2009).

Em 1998, ocorreu um aumento nas taxas de incidência de várias unidades federativas em virtude do alto índice de infestação do vetor, sendo o responsável por aproximadamente 85% dos números de casos de dengue notificados nas Américas (Vasconcelos *et al.*, 1999; Nogueira *et al.*, 2000). Ainda neste ano, o DENV-3 foi detectado na cidade de Limeira, estado de São Paulo, porém constituiu-se de um caso isolado (Rocco *et al.*, 2001).

Entretanto, em dezembro de 2000, esse mesmo sorotipo foi detectado no município de Nova Iguaçu, estado do Rio de Janeiro, e, nos dois anos seguintes, este sorotipo foi o responsável pela maior e mais grave epidemia de dengue já ocorrida no país, com cerca de 780.000 casos notificados (Figura 2 - Nogueira *et al.,* 2001; PAHO, 2002).

Após uma queda da incidência de notificações por aproximadamente 3 anos, a tendência de crescimento do número de casos retorna a partir do ano de 2005, onde em 2006, mais de 30.000 casos foram notificados (PAHO, 2006). Nos anos seguintes, este número é ainda mais alarmante, onde em 2008, mais de 730.000 casos de dengue foram notificados no país (PAHO, 2008). O aumento das formas graves da doença, observado principalmente a partir do ano de 2007, reflete o número de casos notificados (Figura 2). Outro importante acontecimento relacionado ao aumento do número de casos de dengue clássico (DC) e DH no Brasil é que até 2006, a notificação dos casos predominava na faixa etária de 20 a 40 anos de idade, porém nos anos seguintes, verificou-se que mais que 50% dos casos ocorreram em menores de quinze anos de idade (Barreto & Teixeira, 2008).

De 1986 a 37^ª semana epidemiológica de 2009, o dengue apresentou aproximadamente 5,8 milhões de casos notificados, o que correspondeu a cerca de 70% dos casos notificados nas Américas (PAHO, 2009). Três sorotipos co-circulam no país (DENV-1, DENV-2 e DENV-3) e a entrada de um novo sorotipo não está descartada, uma vez que a circulação dos quatro sorotipos nos países vizinhos tem sido freqüentemente observada (Schatzmayr *et al.*,1986; Nogueira *et al.*, 1990; 2001; 2002a; De Simone *et al.*, 2004; PAHO, 2004; PAHO 2008).

Figura 2: Número de casos de dengue e DH reportados no Brasil, 1986 - 2009*

1.3. AGENTE ETIOLÓGICO

Os DENV pertencem à família *Flaviviridae* e ao gênero *Flavivirus*, que reúne 55 espécies divididas em 11 grupos sorologicamente relacionados (8 transmitidos por mosquitos, 2 por carrapatos e 1 sem v*et*or conhecido) e 2 grupos que não se classificam dentro destes sorogrupos (ICTVdB, 2006).

Morfologicamente, são descritos como esféricos e envelopados, com diâm*et*ro de aproximadamente 500 ângstroms e genoma constituído por uma molécula de RNA de fita simples (ssRNA) de polaridade positiva (Kuhn *et al.*, 2002). O RNA viral é envolto por múltiplas cópias da proteína de capsídeo (C) formando um nucleocapsídeo eletrodenso de sim*et*ria icosaédrica, que por sua vez é englobado por um envelope, constituído por uma bicamada lipídica derivada do retículo endoplasmático da célula hospedeira. A porção externa da superfície viral apresenta pequenas projeções na superfície, representadas pelas proteínas estruturais de membrana (M) e de envelope (E), que formam estruturas ancoradas na membrana viral (Heinz & Allison, 2001; Kuhn *et al.*,2002; Zhang *et al.*, 2003).

O comportamento das proteínas E, pré-membrana/membrana (prM/M) e M durante o processo de maturação viral confere diferenças conformacionais na estrutura das formas imaturas e maduras dos DENV. Nas formas imaturas, as proteínas prM e E apresentam 90 heterodímeros que se estendem formando espículas na superfície da partícula - Figuras 3A e 3C. Entretanto, em partículas maduras, as proteínas E e M apresentam 90 homodímeros cada uma, que contornam a bicamada lipídica proporcionando aspecto homogêneo à superfície (Figuras 3B e 3D - Zhang *et al.,*2003; Modis *et al.,*2004).

A maturação ocorre imediatamente antes ou logo após a extrusão viral da célula hospedeira e sugere-se que este processo é dirigido predominantemente por alterações conformacionais da proteína E em virtude do pH (Perera e Kuhn, 2008).

Figura 3: Reconstrução por crio-eletromicroscopia (cryoEM) de uma partícula de DENV imatura (A) e madura (B) em pH 7,0 (Perera & Kuhn, 2008) e diagrama esquemático da composição de uma partícula imatura (C) e madura (D) de DENV (adaptado de Heinz & Allison, 2001).

O genoma viral possui cerca de 11 Kilobases e peso molecular de aproximadamente 4 x 10^6 daltons. A extremidade 5' apresenta um capeamento do tipo I (^{7Me}GpppN_{2'OMe...}), que protege o RNA mensageiro da degradação por 5´ exoribonucleases (Schuman, 2001; Egloff *et al.*, 2007), enquanto que a extremidade 3', não apresenta cauda de poliadenilato (cauda poli-A) (Figura 4A - Rice *et al.*, 1986).

Duas regiões não-codificantes (NC) são encontradas nas extremidades 5' e 3', respectivamente. A NC-5' é relativamente mais curta (95-132 bases) que a NC-3' (400-700 bases) e, apesar de não apresentarem função definida, especula-se que estejam envolvidas no processo de tradução do genoma viral (Chambers *et al.,* 1990; Proutski *et al.,* 1997; Markoff, 2003). Entre essas regiões, observa-se apenas uma única fase aberta de leitura, do inglês *Open Reading Frame*, que codifica uma poliproteína única de aproximadamente 3.388 aa, que ao ser clivada por proteases celulares e virais, origina 10 diferentes proteínas (3 estruturais e 7 não estruturais) (Figura 4b - Chambers *et al.*, 1990).

Figura 4: Diagrama esquemático do genoma dos DENV (A) e topologia de membrana da poliproteina (B) durante o processo de tradução viral no lúmen do reticulo endoplasmático (RE) e citoplasma, resultando na produção das proteínas C, prM/M, E, NS1, NS2a, NS2b, NS3, NS4a, NS4b e NS5 (adaptado de Perera & Kuhn, 2008).

1.3.1. PROTEÍNAS ESTRUTURAIS

As proteínas estruturais são compostas pelas proteínas C, M e E e são assim chamadas por formar o componente estrutural da partícula viral.

O gene que origina a proteína C está localizado na porção 5´ do genoma viral e é o primeiro a ser traduzido. A clivagem da poliproteína nascente dá origem à proteína de capsídeo parcialmente processada (proteína C ancorada), que contém 114 resíduos de aa, que ao sofrer posterior clivagem por proteases virais origina a proteína C madura, contendo 100 resíduos de aa e peso molecular em torno de 11 kDa (Lindenbach e Rice, 2001).

A proteína madura contém um domínio hidrofóbico interno conservado entre os *Flavivirus*, que pode estar associada com a membrana do retículo endoplasmático (RE) e uma porção hidrofílica, carregada positivamente, que é capaz de interagir com o ssRNA viral. Acredita-se que esta interação facilita a montagem do nucleocapsídeo viral, que ocorre no lúmem do RE (Ma *et al.,* 2004; Zhu *et al.,* 2007).

A proteína M é sintetizada como um precursor glicosilado denominado de prM, que apresenta cerca de 22 kDa. Uma clivagem proteolítica específica imediatamente antes ou logo após a extrusão viral da célula hospedeira, dá origem ao fragmento "pr" e à proteína M. Estudos em partículas imaturas mostraram que o fragmento "pr" previne que a proteína E sofra mudanças conformacionais prematuras que ocasionariam a fusão do vírus com o RE e complexo de golgi da célula hospedeira, durante o processo de replicação viral (Lindenbach e Rice, 2001). A proteína M apresenta cerca de 8 kDa e, apesar de sua função não estar totalmente esclarecida, parece ser essencial na organização da estrutura viral (Zhang *et al.,* 2003).

A proteína E (51-60 kDa) é o maior componente estrutural do vírus (Chambers *et al.,* 1990). É a responsável pelas principais atividades biológicas do ciclo viral, tais como a montagem da partícula viral, fusão e interação com receptores específicos existente na superfície da célula do hospedeiro, além de ser o principal alvo de anticorpos neutralizantes e apresentar atividade hemaglutinante (Chambers *et al.,* 1990; Putnak *et al.,* 1997).

Baseado na similaridade de seqüência, perfis de hidrofobicidade semelhantes e a conservação dos resíduos de cisteína que formam as pontes dissulfeto, foi
sugerido que todos os *Flavivirus* apresentassem a mesma arquitetura básica (Seligman e Bucher, 2003). Desta forma, a estrutura da proteína E de todos os Flavivirus foi determinada por cristalografia de raio X utilizando o vírus da encefalite transmitida por carrapato como protótipo (do inglês *Tick-bone encephalitis vírus* – TBEV).

A proteína madura é composta por 90 homodímeros (180 monômeros), onde cada monômero é constituído por 3 domínios: I, II e III (Leitmeyer *et al.*, 1999). Acredita-se que o domínio I, localizado na região central da molécula (posição 50-125 aa) esteja relacionado com eventos de endocitose viral (Lai *et al.*, 2008). O domínio II (posição 200-250 aa) contém os peptídeos de fusão dos *Flavivirus* (98-110 aa) e desta forma, sugere-se que este domínio esteja envolvido na fusão de membrana, além do processo de dimerização dos monômeros da proteína E (Roehrig *et al.*, 1998; Allison *et al.*, 2001; Lai *et al.*, 2008). O domínio III (C-terminal) por ser eficiente em neutralizar a infectividade de *Flavivirus*, e conseqüentemente estar envolvido na ligação com o receptor, é denominado de domínio imunoglobulina-like (Figura 5 - Leitmeyer *et al.*, 1999; Kuhn *et al.*, 2002, Crill *et al.*, 2004; Li *et al.*, 2005e Modis *et al.*, 2004; Zulueta *et al.*, 2006).

Figura 5: Estrutura do dímero da proteína E dos *Flavivírus* (partícula madura) de acordo com o modelo em *ribbon*. (A) Vista frontal e (B) Vista lateral. Os domínios I, II e III de cada monômero da proteína E estão representados em vermelho, amarelo e azul, respectivamente; (C) Imagem de reconstrução por crioeletromicroscopia (cryoEM) mostrando a disposição dos dímeros da proteína E na superfície viral (Adaptado de Kuhn *et al.*, 2002, Crill *et al.*, 2004 e Modis *et al.*, 2004).

1.3.2. PROTEÍNAS NÃO-ESTRUTURAIS

As proteínas não estruturais (NS) são compostas por 7 diferentes proteínas (NS1, NS2a, NS2b, NS3, NS4a, NS4b e NS5) que contribuem para o processo de replicação viral, que ocorre no chamado "complexo replicase" associado à membrana, localizado na região perinuclear da célula alvo. O complexo replicase tem sido extensivamente caracterizado em vários *Flavivirus* e é formado pelas proteínas NS1, NS2a, NS3, NS4a e NS5 e possivelmente por algumas proteínas celulares ainda não conhecidas e desempenham inúmeras funções enzimáticas, incluindo protease, helicase, metiltransferase e RNA-polimerase-RNA-dependente (Westaway *et al.,* 1997; Ta e Vrati, 2000; Brooks *et al.,* 2002).

A proteína NS1 (40-50 kDa) é sintetizada no RE rugoso e está envolvida na morfogênese da partícula viral (Lindenbach e Rice, 2001). Esta proteína está presente intracelularmente na região perinuclear ou associada à superfície celular e também pode ser secretada extracelularmente. Em solução, a NS1 forma uma estrutura hexamérica e acumula-se no soro em grande quantidade (até 50 µg/ml), sendo observados em soros de indivíduos infectados por dengue desde o primeiro dia do surgimento dos sintomas, permanecendo detectável até o nono dia (Shu et al., 2000; Alcon et al., 2002, Libraty et al., 2002, Avirutnan et al., 2006). Por este motivo, especula-se sua utilização como ferramenta para a detecção precoce do dengue (Valdés et al., 2000; Xu et al., 2006). Além disso, sua contribuição na patogênese do dengue tem sido investigada, visto que em crianças que desenvolveram as formas mais graves da doença apresentaram níveis elevados de NS1 no plasma. Este fato tem sido relacionado à ativação do sistema complemento por esta proteína através de sua ligação direta com células endoteliais, podendo assim, estabelecer o "foci" para a formação de imunocomplexos levando a ativação do complemento, citólise endotelial e extravasamento plasmático (Young et al., 2000; Huang et al., 2001; Avirutnam et al., 2006).

A proteína NS2a tem cerca de 20 kDa e é a primeira das quatro proteínas (NS2a, NS2b, NS4a e NS4b) encontradas nas regiões NS2 e NS4 da poliproteína. Pouco se conhece sobre a função desta proteína, mas acredita-se que a mesma esteja envolvida na coordenação da mudança entre a replicação e o empacotamento do RNA (Khromykh *et al.*, 2001).

As proteínas NS2b, NS3 e NS5, têm sido implicadas como alvos inibitórios potenciais para agentes antivirais, uma vez que apresentam importante papel na replicação viral (Tomlinson *et al.*, 2009).

A NS2b (27 kDa) apresenta um domínio central hidrofílico conservado de aproximadamente 40 aa, que é responsável por ativar o domínio protease NS3 *in vivo* e *in vitro*, formando a protease viral NS2b/NS3, que atua no processamento dos sítios de clivagem das junções NS2a-NS2b, NS2b-NS3, NS3-NS4a e NS4b-NS5 (Murthy *et al.*, 1999; Wang *et al.*, 2002; Erbel *et al.*, 2006).

A proteína NS3 tem cerca de 70 kDa, é a segunda maior proteína viral e altamente conservada entre os *Flavivirus*. Baseado em similaridades com diversas serino-proteases virais e celulares, verificou-se que 180 resíduos de aa localizados na porção amino-termin*al* compõem uma serino-protease tripsina-símile, cuja tríade catalítica (His51, Asp75 e Ser135) é altamente conservada entre os *Flavivirus*. Esta porção ao ser ativada pela proteína NS2b, forma o complexo NS2b/NS3 que cliva a poliproteína viral durante o processamento viral (Rice, 1996). Além deste domínio, localizado a ³/₄ da porção carboxi-terminal, a proteína NS3 contém motivos conservados compatíveis com atividades de helicase, que está implicada no desenovelamento do RNA intermediário dupla fita. A NS3 também interage com a proteína NS5 e esta interação pode facilitar a localização do complexo replicase viral para as membranas do RE onde a replicação do genoma ocorre (Murthy *et al.,* 1999).

As proteínas NS4a e NS4b são pequenas como as NS2a e 2b e pouco conservadas entre os *Flavivirus*. Tais proteínas são pouco caracterizadas e suas funções no ciclo de replicação viral ainda não estão esclarecidas. A proteína NS4a (aproximadamente 16 kDa) se associa com a membrana via regiões hidrofóbicas, constituindo o complexo de replicação viral e sugere-se que durante o processamento, a porção carboxi-terminal da NS4a atua como seqüência sinal para a movimentação da proteína NS4b (aproximadamente 28 kDa) no lúmen do RE (Miller *et al.,* 2007).

A NS5 é considerada a maior proteína viral (104 kDa) e contém 3 domínios que apresentam atividades enzimáticas que são cruciais para o ciclo replicativo viral. O domínio amino-terminal, tem sido identificado como atividade de RNA metiltransferase (MTase), baseada em similaridades com metiltransferases de diversas espécies (posição 1-296 aa). Esta porção está envolvida no capeamento

do genoma de RNA viral (Miller *et al.*, 2007). A porção carboxi-terminal, localizada a partir do resíduo 455 até o final da seqüência, devido à existência de 8 motivos de seqüências altamente conservadas reconhecida por diversas RNA-polimerase-RNA-dependente (RdRp) é considerada a RNA polimerase viral (Forwood *et al.*, 1999). Entre estas regiões, especula-se que um domínio central (320-405 aa) interaja com o núcleo da célula hospedeira, porém sem função determinada até o momento. De forma interessante, um segmento de 20 resíduos de aa altamente conservados entre os *Flavivirus* tem sido identificado nesta região, cuja associação com a proteína NS3 (posição 303-618 aa) exerce papel na modulação das atividades enzimáticas virais (Brooks *et al.*, 2002).

1.4. REPLICAÇÃO VIRAL

A fêmea do mosquito vetor infectada ao picar o indivíduo sadio inocula os DENV nos vasos sanguíneos e, possivelmente, na derme e epiderme. Por este motivo, as células de Langerhans, que são localizadas no epitélio, foram consideradas células-alvo para a infecção viral, além dos monócitos, macrófagos, células NK, linfócitos B e T, hepatócitos e células endoteliais (Figura 6 - Kurane *et al.,* 1990; Gordon, 1998; Diamond *et al.,* 2000; Lin *et al.,* 2000; Wu *et al.,* 2000; Moreno-Altamirano *et al.,* 2002; Wei *et al.,* 2003; Navarro-Sanchez *et al.,* 2005; Suksanpaisan *et al.,* 2007).

Figura 6: Figura esquemática de inoculação do vírus dengue pelo mosquito vetor no sistema tegumentar do hospedeiro (adaptado de Navarro-Sanchez *et al.*, 2005)

A entrada dos vírus ocorre por fagocitose ou endocitose, através da ligação de alta afinidade e especificidade da proteína E com receptores existentes na membrana plasmática (Navarro-Sanchez *et al.,* 2005; Van der Schaar *et al.,* 2009).

Devido à grande quantidade de hospedeiros, os *Flavivirus* se ligam a receptores ubíquos na superfície das moléculas ou utilizam múltiplos receptores para mediar sua internalização nas células hospedeiras, como o sulfato de heparana, expressos em muitos tipos celulares, ICAM-3, expressos em células dendríticas imaturas, integrinas $\alpha\nu\beta$ 3 presentes em células de mamíferos e, mais recentemente, receptor de manose, descritos em macrófagos (Liu *et al.*, 2004; Miller *et al.*, 2008; van der Schaar *et al.*, 2009).

Ao penetrar nas células, os vírus se encontram em vesículas pré-lisossomais, que por apresentarem baixo pH, proporcionam uma mudança conformacional irreversível na proteína de envelope do vírus, de dímero para trímero, favorecendo a fusão do envelope do vírus à membrana endossomal da célula do hospedeiro resultando na liberação do RNA genômico no citoplasma da célula. O RNA, de polaridade positiva, é infeccioso e se comporta como RNA mensageiro, dando início a tradução da poliproteína que ocorre no retículo endoplasmático rugoso, próximo à membrana nuclear (Hench*al et al.,* 1987).

A montagem do vírion se dá inicialmente como partículas imaturas contendo a proteína prM associada não covalentemente a proteína E em um complexo heterodimérico (Navarro-Sanchéz *et al.*, 2005). A proteólise do prM leva a formação de homodímeros da proteína E e M na partícula viral, e os vírus assim formados acumulam-se em vesículas exocíticas, que se abrem posteriormente na membrana plasmática da célula, liberando as partículas virais (Figura 7 - Chambers *et al.*, 1990).

Figura 7: Diagrama esquemático da replicação dos DENV (A) e microscopia eletrônica explicitando o mecanismo de replicação dos vírus dengue nas células do hospedeiro (B): 1. Endocitose; 2. Endossoma; 3. RNA viral no citoplasma; 4. Tradução e síntese de proteínas virais específicas no retículo endoplasmático; 5. Montagem do vírus; 6. Maturação viral; 7. Exocitose (Adaptado de Barth, 2000 e Mukhopadhyay *et al.*, 2005)

1.5. MANIFESTAÇÕES CLÍNICAS

O período de incubação da doença, que varia de 3 a 14 dias, é caracterizado pela replicação viral em células alvo do hospedeiro, com conseqüente disseminação viral por todo o organismo (Figueiredo, 1999; Vaughn, 2005).

Um amplo espectro clínico é observado durante as infecções por dengue, que variam desde casos assintomáticos às formas graves, como o dengue hemorrágico e a síndrome do choque por dengue (DH/SCD) – Figura 8.

Figura 8: Fluxograma das manifestações clínicas do dengue (Adaptado de Deen *et al.,* 2006)

A infecção por dengue pode ser assintomática ou acompanhada por um estado febril inespecífico de curta duração, com faringite, rinite e/ou tosse branda. Apesar de menos freqüentes (variam de 29-56%), tais sintomas dificultam o diagnóstico exclusivamente em bases clínicas (Gibbons & Vaughn, 2002).

A forma branda da doença, conhecida como dengue clássico (ou febre do dengue), é caracterizada por febre de início súbito, dor retro-orbitária, cefaléia, mialgia, artralgia, prostração, podendo ocorrer inclusive alterações gastrointestinais (náuseas e vômitos) e linfoadenopatias (WHO, 1997; Rigau-Pèrez *et al.*, 1998).

A febre persiste, em média, por cinco a sete dias e, paralelamente à diminuição da febre pode aparecer exantema maculopapular ou morbiliforme, nas primeiras 24 horas do período febril ou no período de defervescência. Em 5 a 30% dos casos podem ocorrer manifestações hemorrágicas, tornando importante a diferenciação desses casos de dengue clássico com complicações hemorrágicas dos casos classificados como DH (Coffey *et al.*, 2009).

Os sinais de alerta para o agravamento do quadro costumam ocorrer na fase de remissão da febre e se caracterizam por dores abdominais fortes e contínuas; vômitos persistentes; hipotensão postural; diferença entre as pressões máxima e mínima menor do que 20 mmHg; fígado e baço dolorosos; vômitos hemorrágicos ou presença de sangue nas fezes (melena); extremidades das mãos e dos pés frias e azuladas; pulso rápido e fino; agitação e/ou letargia; diminuição do volume urinário; diminuição súbita da temperatura do corpo; desconforto respiratório (SVS/MS, 2008).

De acordo com a Organização Mundial de Saúde, quatro graus de severidade da doença foram definidos para as formas graves do dengue. Os Graus I e II são considerados quadros de DH, enquanto que os Graus III e IV constituem o estágio de choque da doença (WHO, 1997).

Os sintomas do DH/SCD se mostram semelhantes aos do dengue clássico em fase inicial da doença (WHO, 1997). Fenômenos hemorrágicos podem ser verificados através da positividade da prova do laço, hematomas, petéquias, epistaxes e gengivorragias. Hepatomegalia dolorosa, de tamanho variável, pode surgir no início da fase febril. O aumento da permeabilidade vascular resulta na perda do volume de fluido intravascular, com conseqüente queda da contagem de plaquetas (\leq 100.000/mm³), aumento em 20% do hematócrito e hipotensão (Mc-Bride *et al.,* 2000).

Em alguns casos, o estado do paciente pode se agravar repentinamente, evoluindo para a síndrome do choque por dengue (SCD), que é resultante de uma perda crítica do plasma e se caracteriza quando surgem sinais de insuficiência circulatória, tais como: pele fria e congestionada, inquietação e baixa pressão do pulso (< 20 mm Hg) (WHO, 1997). O paciente pode recuperar-se rapidamente após terapia antichoque apropriada. No entanto, o choque não-tratado adequadamente pode evoluir com acidose metabólica e graves sangramentos gastrintestinais e em outros órgãos, e o paciente pode evoluir para o óbito em 12 a 24 horas. Geralmente, a convalescença dos pacientes com DH, com ou sem choque, é de curta duração e sem maiores problemas (WHO, 1997).

O envolvimento de alterações neurológicas; disfunção cardiorrespiratória; insuficiência hepática; plaquetopenia igual ou inferior a 50.000/mm3; derrames cavitários e leucometria global igual ou inferior a 1.000 mm3 em sintomas de dengue e DH/SCD, se tornaram mais evidentes nos últimos anos, porém não se enquadram na classificação definida pela OMS. Tais sintomas fazem parte do quadro de dengue com complicações (DCC), definido pelo Ministério da Saúde/BR, que inclui também as manifestações clínicas menos freqüentes, como as neurológicas e psíquicas, paresias, paralisias e encefalite (Miagostovich *et al.*, 1997; Nguyen *et al.*, 1997; Thisyakorn *et al.*, 1999; Angibaud *et al.*, 2001; Nogueira *et al.*, 2002b; Soares *et al.*, 2006; Ling *et al.*, 2007; Chen & Lee, 2007; SVS/MS, 2008).

Em 2006, um programa da Organização Mundial da Saúde para a pesquisa e treinamento em doenças tropicais (TDR), em parceria com diferentes Instituições da Europa e países de doenças endêmicas (DEC), iniciou o projeto "Dengue Control" (DENCO), a fim de re-avaliar a classificação e manejo dos casos de dengue. Os primeiros resultados devem ser divulgados em 2010 e apresentam como propósito o estabelecimento de uma classificação clínica mais fácil do dengue para o diagnóstico precoce, triagem e o manejo do paciente (SVS/MS, 2008).

1.6. RESPOSTA IMUNE

O inicio do desaparecimento dos sintomas em indivíduos com dengue coincide com uma vigorosa resposta imune. Tal resposta influencia na replicação viral, e conseqüentemente, na severidade da doença (Monath, 1986).

Tanto em infecções do tipo primária quanto seqüencial pelos DENV, anticorpos contra as proteínas E e NS1 são as mais freqüentemente detectadas (Young *et al.*, 2000; Alcon *et al.*, 2002, Libraty *et al.*, 2002).

Alguns autores tem reportado uma significante resposta de anticorpos anti-NS3 e anti-NS5 em casos primários e secundários de dengue, sendo mais proeminente nestes últimos (Valdés *et al.*, 2000). Anticorpos anti-C, prM/M e NS4a são menos prevalentes em soros de pacientes, mas podem ser identificados, principalmente em soros de pacientes com infecção seqüencial por dengue (Churdboonchart *et al.*, 1991; Se-Thoe *et al.*, 1999; Valdes *et al.*, 2000, Cardosa *et al.*, 2002; Vásquez *et al.*, 2002).

Apesar do aparecimento e da persistência dos anticorpos variar consideravelmente entre os pacientes, as infecções pelos DENV induzem a produção de anticorpos da classe M (IgM), que são transitórios e indicativos de infecção recente, apesar de poderem persistir no organismo por até 90 dias após o início dos sintomas. Outro anticorpo também muito observado é o da classe G (IgG), que persiste por toda a vida do hospedeiro e é um excelente marcador de infecções seqüenciais, desde que altos níveis sejam detectados no organismo (Nogueira *et al.,* 1992; Sang *et al.,* 1998; Miagostovich *et al.,* 2001; WHO, 2009).

A presença de outros marcadores sorológicos, como os da classe A (IgA) e E (IgE) em soros de pacientes também têm sido observadas, porém pouco se sabe a respeito da resposta imunológica envolvendo estes anticorpos (Talarmin *et al.*, 1998; Groen *et al.*, 1999; Koraka *et al.*, 2001; Vasquez *et al.*, 2004).

A resposta imune celular ocorre sob estímulo principalmente das proteínas E, NS1 e NS3 (Chambers *et al.*,1990; Kurane *et al.*, 1992). Os linfócitos T participam ativamente na resposta imune, reduzindo o número de células infectadas com o vírus conferindo proteção contra reinfecção (Monath & Heinz, 1996; Libraty *et al.*, 2002). Os linfócitos T auxiliadores atuam na presença das células infectadas com dengue que expressam receptores de antígenos leucocitários humanos (HLA) tipo II, produzindo interferon gama (IFN- γ), interleucina 2 (IL-2) e o fator estimulador de colônias de macrófagos e granulócitos, enquanto que os linfócitos T citotóxicos provocam a lise diretamente das células infectadas pelos DENV, que expressam receptores HLA tipo I (Monath, 1994).

Em infecções primárias, os DENV levam a produção de linfócitos T de memória (Mathew *et al.*, 1999). Entretanto, quando o individuo adquire infecção seqüencial, ocorre a ativação cruzada destes linfócitos, que pode amplificar a reação ao facilitar a penetração do sorotipo infectante em macrófagos. Nestes casos, a chance do individuo desenvolver as formas mais graves da doença é 100x maior (Rothman, 2010).

1.7. PATOGÊNESE DAS INFECÇÕES PELOS DENV

Os fatores que contribuem para o aparecimento das formas graves da doença não são completamente compreendidos. Desta forma, nas últimas décadas, inúmeras hipóteses foram sugeridas com a tentativa de associar diferentes fatores de risco à gravidade da doença. Embora nenhuma hipótese seja excludente, a mais aceita é a da facilitação da resposta dependente de anticorpos (ADE), que preconiza uma associação entre re-infecções e o aparecimento de DH/SCD (Halstead, 1988; Thein *et al.*, 1997; McBride & Bielefeldt-Ohmann, 2000; Vaughn *et al.*, 2000).

Guzman & Kouri (2003) documentaram que a seqüência de epidemias causadas por sorotipos distintos foram associadas com casos de DH, como foi o caso de infecção por DENV-3 seguida por DENV-2 em El Salvador (2000); DENV-1 seguida por DENV-2 em Cuba (1981) e DENV-1 seguida por DENV-2 (1990) e DENV-2 seguida por DENV-3 no Brasil (2001).

A variação da virulência das cepas virais tem sido sugerida como um fator para o aparecimento de formas mais graves da doença. Esta hipótese tem sido suportada há décadas e tem sido demonstrada pela introdução de novas variantes genotípicas (principalmente de DENV-2 e DENV-3), resultando em grandes epidemias de DH/SCD (Pinheiro & Corber, 1997; Rico-Hesse *et al.,* 1997; Leitmeyer *et al.,* 1999; Watts *et al.,* 1999; Miagostovich *et al.,* 2002; Foster *et al.,* 2004; Araújo *et al.,* 2009).

Fatores de risco individuais, epidemiológicos e virais também têm sido considerados na patogenia do dengue. A hipótese integral, proposta por Kouri e colaboradores (1987), sugere que a interação entre estes grupos de fatores promoveria condições para o aparecimento das formas mais graves da doença – Figura 9.

Figura 9: Interação entre fatores de risco para o desenvolvimento das formas graves do dengue – Hipótese integral (adaptado de Guzmán & Kouri, 2002)

1.8. DIAGNÓSTICO LABORATORIAL

O diagnóstico laboratorial das infecções pelos DENV é realizado através do isolamento viral e/ou detecção do ácido nucleico viral; pela detecção de antígenos virais em tecidos, de técnicas sorológicas para demonstração de anticorpos específicos (IgM/ IgG) e captura de antígeno viral.

Para a detecção viral, o isolamento viral em cultura de células tem sido considerado o "padrão ouro", embora esta metodologia tenha sido gradualmente

substituída por técnicas de biologia molecular. Este fato é principalmente devido ao tempo necessário para a detecção, além da necessidade da realização do teste de imunofluorescência, seja para a detecção viral, já que nem todos os DENV produzem efeito citopático (ECP) em cultura de células, ou para a identificação do sorotipo viral, através da utilização de anticorpos monoclonais tipo-específico (Gubler *et al.*, 1984).

Nas últimas décadas, diversas metodologias de biologia molecular vêm sendo utilizadas para o diagnóstico do DENV (Shu & Huang, 2004). Estas metodologias detectam, caracterizam e muitas vezes quantificam o sorotipo infectante e podem confirmar um diagnóstico em situações em que o material disponível não é adequado para o isolamento viral (Morita *et al.,* 1991; Lanciotti *et al.,* 1992; Harris *et al.,* 1998).

A metodologia de transcriptase reversa seguida da reação em cadeia pela polimerase (RT-PCR) é considerada uma metodologia rápida, podendo ser usada para detecção e caracterização do genoma em amostras clínicas humanas, biópsias ou tecidos de autópsia (Deubel *et al.*, 1992; Lanciotti *et al.*, 1992; Shu & Huang, 2004). A metodologia de PCR em tempo real tem sido aplicada com sucesso na detecção dos DENV em amostras agudas. É considerada uma metodologia rápida, sensível, com baixo nível de contaminação, já que a mesma é automatizada, e permite a quantificação dos resultados obtidos (Callahan *et al.*, 2001; Drosten *et al.*, 2002; Kong *et al.*, 2006).

A detecção de antígenos virais pode ser realizada por meio de métodos imunohistoquímicos em casos com evolução fatal, através de amostras de tecidos fixados em formalina, permitindo, desta forma, o estudo de blocos arquivados por longos períodos (Hall *et al.*, 1991; Miagostovich *et al.*, 1997).

Várias técnicas sorológicas têm sido descritas para o diagnóstico da infecção por dengue, das quais o ensaio imunoenzimático de captura de anticorpos da classe IgM (MAC-ELISA) tem se mostrado extremamente útil, tanto para o diagnóstico individual de dengue como para estudos epidemiológicos (Kuno *et al.*, 1987; Lam *et al.*, 1987). Ensaios imunoenzimáticos de detecção de anticorpos da classe IgG (G-ELISA) (Chungue *et al.*, 1989; Miagostovich *et al.*, 1999) vêm sendo cada vez mais utilizados para a caracterização da resposta imune de dengue, servindo como uma alternativa ao teste de inibição da hemaglutinação (IH) descrita por Clarke & Casals (1958). A utilização de testes rápidos para o diagnóstico de dengue tem demonstrado útil para o diagnostico de infecções por dengue, devido a rapidez e facilidade de execução, podendo ser utilizado em lugares em que a rotina laboratorial é inadequada e sem a utilização de equipamentos sofisticados (Cuzzubo *et al.*, 2001; McBride *et al.*, 2009). Nos últimos anos, diversos testes comerciais tornaram-se disponíveis para o diagnostico de dengue, tanto para a detecção de anticorpos IgM e/ou IgG, como para a caracterização da resposta imune (se primária ou seqüencial) e mais recentemente, para a captura de proteína viral em soros ou plasma (Kuno *et al*, 1998; Lam *et al.*, 1998; Vaughn *et al.*, 1998; Wu *et al.*, 2000; Cuzzubo *et al.*, 2001; Blacksell, 2005; Videa *et al*, 2005; Dussart *et al.*, 2006; Kumarasamy *et al.*, 2007; Lapphra *et al.*, 2008; McBride, 2009; Zainah *et al.*, 2009).

1.9. PREVENÇÃO E CONTROLE

O desenvolvimento de vacinas anti-DENV iniciou-se na década de 40 e, apesar de inúmeros estudos e de ser considerada prioridade pela Organização Mundial de Saúde, ainda não está disponível uma vacina preventiva eficaz (Sabin & Schlesinger, 1945; WHO, 2002; Innis *et al.*, 2003).

A dificuldade na obtenção de uma vacina contra os DENV se deve a necessidade da vacina imunizar contra os quatro sorotipos virais com alta eficiência, já que a infecção por um sorotipo de dengue induz imunidade homóloga, além da inexistência de um modelo animal capaz de reproduzir as formas clínicas da infecção (WHO, 2002).

Atualmente, diferentes estratégias têm sido utilizadas para o desenvolvimento de vacinas para dengue, sendo quatro destas voltadas para a produção de vacinas quiméricas, através da inserção de genes prM e E de DENV em vírus atenuados e os outros dois voltados para a obtenção de vacinas atenuadas, através de passagens em cultura de células não-humanas (Bricks, 2004; Blaney Jr *et al.*, 2006; Girard, 2009). Destas, a estratégia empregando vírus vivo atenuado através de passagens em culturas de células é a que se encontra em fase II, que comparada com as outras estratégias, é considerada a mais adiantada (Edelman *et al.*, 2003; WHO, 2009).

Enquanto uma vacina eficaz não está disponível, as medidas de controle ao vetor consistem no principal instrumento para a prevenção da infecção pelos DENV,

além da melhoria dos serviços de saneamento básico e a rápida identificação dos pacientes que apresentem formas clínicas graves da doença (Funasa, 2002a).

Em 2002, diante da tendência de incremento da incidência e do elevado risco de aumento dos casos de DH, a Fundação Nacional de Saúde instituiu o Programa Nacional de Combate a dengue (PNCD) visando, entre outros fatores, a elaboração de programas permanentes para o combate ao mosquito vetor (Funasa, 2002b). Assim, durante aquele ano, foi criado o dia nacional de mobilização contra o dengue (Dia D) cujo objetivo principal foi fazer com que a população incorporasse em seu dia-a-dia os hábitos necessários para eliminar os criadouros do mosquito vetor e desde então, vem ocorrendo anualmente no mês de novembro (Coelho, 2008).

1.10. DO GENOMA AO IMUNOMA

Vencida a etapa do seqüenciamento genômico e, conseqüentemente o conhecimento da seqüência completa dos genes, a ciência começou nova e desafiadora escalada, que incluiu etapas fundamentais a serem cumpridas para que das ciências genômicas se extraiam todos os avanços diagnósticos, preventivos e terapêuticos esperados (Braga-neto & Marques-Júnior, 2006). A proteômica, peptidômica e a imunômica são alguns dos novos ramos científicos pós-genômicos que os grandes centros de pesquisa do mundo e as empresas mais avançadas de biotecnologia começam a construir (Willians & Hochstrasser, 1997; Soloviev, 2007; 2010).

A proteômica complementa a genômica e se propõe a analisar de forma global o conjunto de proteínas expressas numa célula ou tecido num dado momento, sendo conhecido como proteoma. Visto que o mesmo tipo de célula pode apresentar diferentes proteomas em resposta à ação de drogas, infecção por patógenos, poluição e diferentes tipos de estresses abióticos, o proteoma visa o estudo da estrutura, função e o controle dos sistemas biológicos pela análise de várias propriedades das proteínas (Willians & Hochstrasser, 1997; Wilkins *et al.*, 1997).

A peptidômica surgiu como complemento da proteômica, permitindo a análise sistemática do conteúdo peptídico em uma célula, organela, tecido ou organismo e desta surgiu a imunômica, que compreende o campo de investigação relacionado à interface existente entre o sistema imune do hospedeiro e as proteínas/peptídeos derivados de patógenos ou de si mesmo (Soloviev, 2010).

A imunômica tem representado uma ligação entre a informática, genômica, proteômica, peptidômica, imunologia e medicina clínica e inúmeras metodologias tem sido desenvolvidas nas últimas décadas com o intuito de identificar regiões imunogênicas capazes de desencadear a resposta humoral (Soloviev & Finch, 2005; Soloviev *et al.*, 2007). Tais regiões podem ser classificadas como consecutivas, que são aquelas formadas por resíduos dispostos seqüencialmente de maneira linear ou não consecutivas, que são formadas por resíduos distantes entre si em sua estrutura primária, porém se aproximam linearmente em sua estrutura tridimensional (Korber *et al.*, 2006).

Em 1990, a técnica de síntese paralela de peptídeos em membranas de celulose (do inglês *Spot synthesis*) foi apresentada por Frank e colaboradores à comunidade científica, oferecendo a oportunidade de sintetizar e realizar a triagem de um grande número de peptídeos sintéticos de forma simultânea (Frank, 1992). Com a introdução de um equipamento semi-automatizado (Frank, 1996), esta técnica combinou a vantagem de um procedimento experimental fácil e confiável a flexibilidade fornecida através de sua adaptação a diferentes métodos de revelação e baixo custo.

Dentre as diferentes aplicações da metodologia de síntese paralela de peptídeos em membrana destaca-se o mapeamento de epitopos consecutivos, cujo principio consiste em dispensar gotas de aminoácidos em uma superfície planar de uma membrana porosa (Reineke *et al.*, 2001; Laune *et al.*, 2002; Chávez-Olórtegui *et al.*, 2002; Alvarenga *et al.*, 2002; Machado de Ávila, 2004; Mendes *et al.*, 2004). De acordo com a capacidade de absorção da membrana e o volume das gotas dispensadas, diferentes compartimentos de reação química individual são formados, de modo que cada gota seja correlacionada com uma escala particular de síntese previamente definida (Figura 10a - Frank *et al.*, 1996; Gausepohl & Behn, 2002).

A síntese ocorre através de ciclos que se repetem até que todos os resíduos que compõem a seqüência de peptídeos sejam adicionados. Cada resíduo corresponde a um ciclo e é constituído pela desproteção do grupamento amino protetor do resíduo previamente acoplado à membrana seguido pelo acoplamento do novo resíduo (ativado em seu grupamento carboxi-terminal) à seqüência peptídica (Figura 10b - Frank, 2002).

Figura 10: Princípio da síntese paralela de peptídeos em membrana. A: Inserção de resíduos em membrana de celulose formando gotas regulares. B: Figura esquemática da síntese de peptídeos, envolvendo ciclos sucessivos de lavagem (1), acoplamento (2) e desproteção (3) de cada resíduo (círculos coloridos) à sequência de peptídeos nascente (Adaptado de Frank, 1996; 2002).

A identificação de epitopos consecutivos responsáveis por desencadear a resposta imune humoral constitui uma importante ferramenta na caracterização da especificidade de anticorpos, especialmente para utilização em estratégias terapêuticas, além de contribuir para o desenvolvimento de vacinas e atuar como ferramentas de diagnóstico para inúmeras doenças (Reineke *et al.*, 2002; Peng *et al.*, 2008; Silva *et al.*, 2009).

2. RELEVÂNCIA DO ESTUDO

A dificuldade na compreensão da patogenia do dengue, principalmente devido à ausência de um modelo animal capaz de reproduzir clinicamente a infecção, associadas às limitadas opções para a prevenção e controle das epidemias, tornaram imprescindíveis à disponibilidade de metodologias de diagnóstico rápido para a identificação da doença, já que até o momento, ainda não está disponível uma vacina eficaz nem foi descrita uma terapia efetiva antiviral (WHO, 2002; Crance *et al.*, 2003).

Enquanto a resposta celular apresenta importante papel na resposta imune causada pelos DENV, a resposta humoral é considerada um fator crítico para a imunidade protetora (Pang, 2003; Halstead *et al.*, 2005; Hombach *et al.*, 2007). Desta forma, a identificação de determinantes antigênicos de proteínas responsáveis pela ativação da imunidade humoral constitui a chave do conhecimento da imunogenicidade de cada proteína viral. Neste contexto, estas informações podem servir como base para o desenvolvimento de testes de diagnóstico, além de fornecer subsídios para o planejamento de futuras vacinas (Nelson, 2000).

Avanços na tecnologia de peptídeos têm permitido a identificação de epitopos em proteínas nativas através do estudo de peptídeos sintéticos (Machado *et al.,* 2004; AnandaRao *et al.,* 2005). Apesar das proteínas E e NS1 terem sido descritas como as mais imunogênicas dos DENV, pouco se sabe a respeito da antigenicidade das demais. Epitopos imunogênicos destas proteínas têm sido identificados, utilizando diferentes metodologias, e a maioria são descritas como não consecutivos, embora epitopos consecutivos sejam capazes de induzir resposta por anticorpos neutralizantes (Roehrig *et al.,* 1990; Jianmin *et al.,* 1995; Garcia *et al.,* 1997; Wu *et al.,* 2001; Vázquez *et al.,* 2002).

Em nossa proposta tivemos como objetivo aprofundar o conhecimento da imunologia molecular dos DENV, através da identificação dos determinantes antigênicos de todas as proteínas estruturais e não estruturais dos DENV-1, DENV-2 e DENV-3 responsáveis pelo desencadeamento da imunidade humoral, através da metodologia de síntese paralela de peptídeos em membranas.

3. OBJETIVOS

3.1. OBJETIVO GERAL

Mapear e caracterizar epitopos de proteínas dos DENV-1, DENV-2 e DENV-3, responsáveis pelo desencadeamento da resposta imune humoral.

3.2. OBJETIVOS ESPECÍFICOS

- Analisar, computacionalmente, possíveis regiões de reconhecimento por anticorpos dos DENV-1, DENV-2 e DENV-3, a partir de amostras Brasileiras previamente caracterizadas pelo seqüenciamento do genoma viral, disponíveis no GenBank

- Padronizar metodologias para a síntese de peptídeos em microescala (síntese paralela de peptídeos e "immunoblotting")

 Identificar peptídeos imunogênicos consecutivos de todas as proteínas estruturais e não estruturais dos DENV-1, DENV-2 e DENV-3, através da síntese paralela de peptídeos em membranas

- Construir modelos tridimensionais através da modelagem por homologia para a caracterização dos epitopos identificados.

4. MATERIAL E MÉTODOS

4.1. ANÁLISE COMPUTACIONAL DAS PROTEÍNAS DOS DENV-1, DENV-2 E DENV-3

4.1.1. SELEÇÃO DE SEQÜÊNCIAS COMPLETAS DE AMINOÁCIDOS DOS DENV

As seqüências completas das proteínas estruturais e não-estruturais utilizadas neste estudo foram obtidas a partir de seqüências nucleotídicas brasileiras depositadas no banco de dados GenBank no National Center for Biotechnology Information, USA, disponível em <<u>http://www.ncbi.nlm.nih.gov</u>>, sob códigos AA020974 (DENV-1), AAL96681 (DENV-2) e AAT79552 (DENV-3).

4.1.2. ALINHAMENTO MÚLTIPLO DE SEQÜÊNCIAS DE PROTEÍNAS

O alinhamento múltiplo das proteínas dos DENV para a seleção de regiões comuns e específicas dos 3 sorotipos virais foi realizado utilizando o algoritmo clustalW2 do programa Biological sequence alignment editor for windows 95/98/NT/2K/XP (BioEdit) versão 7.0.9.0., disponível em <<u>http://www.mbio.ncsu.edu/BioEdit/bioedit .html</u> >.

4.1.3. DETERMINAÇÃO DE POSSÍVEIS REGIÕES DE RECONHECIMENTO POR ANTICORPOS

A determinação de possíveis regiões de reconhecimento por anticorpos anti-DENV foi realizada através da correlação de 3 índices de propensão a antigenicidade: escalas de Jameson & Wolf, Kolaskar & Tongaonkar e Bepipred.

A escala de Jameson & Wolf (Jameson & Wolf, 1986) determina a propensão à antigenicidade de uma proteína através da associação de diferentes parâmetros físico-químicos como a hidrofilicidade, acessibilidade, a flexibilidade da cadeia e os elementos da estrutura secundária presentes (Figura 11 - Chou & Fasman, 1974; Kate & Doolittle, 1982; Emini *et al*, 1985; Karplus & Schultz, 1985). $A_i = \sum 0.3 \text{ H} + 0.15 \text{ S} + 0.15 \text{ F} + 0.2 (CF) + 0.2 (GOR)$

H: hidrofilicidade (Kyte & Doolittle) F: flexibilidade (Karplus & Schultz) S: acessibilidade (Emini) CF: estrutura secundária (Chou & Fasman) GOR: estrutura secundária (Garnier, Osgusthorpe & Robson)

Figura 11: Fórmula matemática utilizada pelo parâmetro de Jameson & Wolf para a determinação de regiões com propensão à antigenicidade (Jameson & Wolf, 1986)

A utilização do programa computacional DNASTAR Lasergene versão Windows (DNASTAR Inc., Madison, WI, US) permitiu a determinação de possíveis regiões de reconhecimento por anticorpos atraves do indice de antigenicidade (Jameson & Wolf), além de parâmetros físico químicos, como a acessibilidade ao solvente (escala de Emini), hidrofilicidade (escala de Kate & Doolittle), flexibilidade (escala de Karplus & Schultz) e elementos de estrutura secundaria (escala de Chou & Fasman).

A escala de Emini (Emini *et al*, 1985) é utilizada para a determinação da acessibilidade. Baseado em proteínas de estrutura tridimensional conhecidas, esta escala prediz que os resíduos acessíveis devem ser aqueles com uma superfície solvatada pela água maior que 20Å.

A escala de Kate & Doolittle (Kate & Doolittle, 1982) baseia-se em escalas de solubilidade determinadas em cada resíduo para a predição de regiões de reconhecimento por anticorpos. Valores positivos determinam maior propensão do resíduo em apresentar características polares, enquanto que valores negativos tendenciam caráter apolares, e variam de +3,0 a -3,4, respectivamente.

A escala de Karplus & Schultz (Karplus & Schultz, 1985) determina valores de flexibilidade de um residuo, que é dependente tanto de sua característica intrinseca quanto os resíduos localizados na cadeia lateral.

A escala de Chou & Fasman (Chou & Fasman, 1974) determina valores de propensão do resíduo em gerar uma estrutura secundária (alfa hélice, beta pregueada ou alça) em um ambiente tridimensional.

Atraves do programa de computação Immune Epitope Database and Analysis Resource (IEDB) - http://tools.immune epitope.org/tools/bcell/ iedb_input, a predição de regiões de reconhecimento por anticorpos baseada em parâmetros de antigenicidade foi determinada pelas escalas de Kolaskar & Tongaonkar e bepipred. A escala de Kolaskar & Tongaonkar (Kolaskar & Tongaonkar, 1990) determina o índice de antigenicidade baseado na solubilidade do resíduo e na freqüência de ocorrência em segmentos de epitopos previamente conhecidos (Figura 12).

$$A_p = f_{ag} / f_s$$

Ap : Propensão a antigenicidade

fag : freqüência da ocorrência do aminoácidos em epítopos. *fs*: freqüência da ocorrência do aminoácido na superfície da proteína. Essa freqüência é determinada utilizando-se os valores de solubilidade (Parker e Karplus) e acessibilidade (Emini).

Figura 12: Fórmula matemática utilizada pela escala de Kolaskar & Tongaonkar para a determinação de regiões com propensão à antigenicidade (Kolaskar & Tongaonkar, 1990)

A escala bepipred (Larsen *et al.,* 2006) utiliza o parametro Antijen, que é resultante da combinação do modelo de Markov (Larsen *et al.,* 2006) e a escala de propensidade (Parker *et al.,* 1986), estabelecendo uma correlação entre as estruturas primária e secundária de uma proteína.

4.1.4. LOCALIZAÇÃO TRIDIMENSIONAL DOS PEPTÍDEOS IMUNOGÊNICOS

A localização dos peptídeos imunogênicos foi obtida pela construção de um modelo tridimensional da proteína através de modelagem por homologia (Nayeem, 2006; Santos Filho & Alencastro, 2003). Tal processo consistiu de quatro etapas principais: identificação de uma ou mais proteínas-molde; alinhamento entre as seqüências da proteína-alvo e da(s) proteína(s) de referência; construção do modelo e validação do modelo.

As proteínas-molde para cada proteína dos DENV-1, DENV-2 e DENV-3 foram obtidas em banco de dados de estrutura de proteínas (PDB – disponível em <u>http://www.rcsb.org/pdb/</u>) através de uma busca utilizando as opções-padrão do algoritmo BLASTP (Altschul *et al.*, 1997).

O alinhamento das proteínas foi obtido utilizando o algoritmo clustalW2 e a construção dos modelos tridimensionais foi obtida através do programa MODELLER – versão 9v4 (disponível em <u>http://salilab.org/modeller/</u>), cuja visualização foi realizada através do programa Swiss-PDB-Viewer versão 3.7 (disponível em <u>http://www.expasy.org/spdbv/</u>).

A avaliação da qualidade dos modelos obtidos foi realizada de acordo com a qualidade estereoquímica geral através do programa de análises estruturais e servidor de validação (SAVS - disponível em <u>http://nihserver.mbi.ucla.edu/SAVS/</u>) utilizando os algoritmos Procheck (Laskowski *et al.*, 1993) e Prove (Pontius *et al.*, 1996).

4.2. SÍNTESE PARALELA DE PEPTÍDEOS EM MEMBRANAS

A síntese paralela de peptídeos consecutivos foi realizada em membranas de celulose amino-funcionalizadas conjugadas ao espaçador polietilenoglicol (PEG), disponível comercialmente (INTAVIS Bioanalytical Instruments AG, Koeln, Alemanha), através da estratégia 9-fluorenyl-methoxycarbonyl (Fmoc), utilizando o sintetizador semi-automático AutoSpot modelo Abimed - ASP222 (INTAVIS Bioanalytical Instruments AG, Koeln, Alemanha), de acordo com as instruções fornecidas pelo fabricante.

A síntese iniciou-se pela ativação da membrana com piperidina em N, N-Dimetilformamida (DMF) (20% v/v), permitindo a exposição do grupamento Nterminal. O acoplamento dos aminoácidos ocorreu após a ativação com solução 0,5 mmol/ml de Hidroxibenzotriazol (HOBt) em 1-metil-2-pirrolidona (NMP), seguido da solução 1,1 mmol/ml de N,N, Diisopropylcarbodiimida (DIC) em NMP, que reagiu com o grupamento amino livre do aminoácido anterior, propiciando o alongamento da cadeia peptídica no sentido C-terminal ao N-terminal.

O plano de distribuição dos aminoácidos, assim como a determinação dos protocolos foram definidos e padronizados ao nosso sistema, de acordo com o programa de computação Multipep versão Windows, de modo que cada aminoácido Fmoc com sua porção carboxi ativada foi adicionado ao *spot* correspondente.

Após lavagens manuais das membranas com solução de anidrido acético em DMF (2% v/v), o ciclo recomeça com a retirada do grupamento protetor Fmoc do aminoácido acoplado, com a utilização de solução de piperidina em DMF (20% v/v) e metanol. Este processo é monitorado pela utilização da solução de azul de bromofenol 0,001% (p/v) em DMF que colore os grupamentos amino livres.

No último ciclo, os grupamentos de proteção das cadeias laterais, assim como o Fmoc existente no último aminoácido foram removidos pelo tratamento com solução de ácido trifluoroacético (TFA), diclorometano (DCM) e triisopropilsilano (1:1:0,05 v/v). As membranas foram armazenadas a 4ºC sob proteção da luz, por no máximo 3 dias.

Todas as matérias-primas utilizadas nesta metodologia foram da marca Fluka (Distribuidor Sigma Aldrich Corp, St. Louis, MO, US).

4.3. AMOSTRAS CLÍNICAS

Para a avaliação da resposta anti-dengue a epitopos antigênicos, soros de 75 pacientes foram agrupados em diferentes painéis, de acordo com a prévia caracterização sorológica. Os soros pertencentes aos painéis 1 ao 4 foram provenientes da soroteca existente no laboratório de Flavivírus - Instituto Oswaldo Cruz / FIOCRUZ (Rio de Janeiro, Brasil) e obtidos no período de 1986 a 2005 de diferentes centros de saúde, hospitais da rede pública e clínicas particulares de todo o país. Os soros pertencentes ao painel 5 e 6 foram gentilmente cedidos por diferentes laboratórios do Instituto Oswaldo Cruz / FIOCRUZ (Rio de Janeiro, Brasil).

Painel 1: soros de indivíduos (n = 10) negativos para todas as metodologias analisadas.

Painel 2: soros de indivíduos (n = 10) com DENV-1, cuja infecção foi previamente confirmada através do isolamento viral e/ou RT-PCR e pela soroconversão do anticorpo IgG.

Painel 3: soros de indivíduos (n = 10) com DENV- 2, cuja infecção foi confirmada laboratorialmente através do isolamento viral e/ou RT-PCR e pela soroconversão do anticorpo IgG.

Painel 4: soros de indivíduos (n = 10) com DENV- 3, cuja infecção foi confirmada laboratorialmente através do isolamento viral e/ou RT-PCR e pela soroconversão do anticorpo IgG.

Painel 5: soros de indivíduos que apresentaram sinais e sintomas similares a dengue, com infecção por sarampo (n = 5), rubéola (n = 5), leptospirose (n = 5), malária (n = 5) e varíola (n = 5), previamente confirmadas através de positividade em ensaios sorológicos.

Painel 6: Soros de indivíduos (n = 10) vacinados para febre amarela, com nível de anticorpo IgG anti-febre amarela igual ou superior a 1:160.

A autorização para a utilização de soros humanos nesta pesquisa foi concedida pelo Comitê de Ética em Pesquisa da Fundação Oswaldo Cruz (CEP/FIOCRUZ) através de parecer favorável número 306/06.

4.3.1. CARACTERIZAÇÃO LABORATORIAL DAS AMOSTRAS CLÍNICAS

A caracterização laboratorial tanto das amostras negativas como positivas para dengue foi realizada no laboratório de Flavivirus, através do isolamento viral e técnica de imunofluorescência indireta (IFI) para a detecção e identificação do sorotipo viral, pela metodologia de transcrição reversa seguida da reação em cadeia da polimerase (RT-PCR) para a detecção do ácido nucleico viral e através do ensaio imunoenzimático, que permite a demonstração de anticorpos IgG específicos no soro do paciente (G-ELISA). No caso de amostras oriundas de outras patologias, a caracterização sorológica foi realizada atraves do G-ELISA, utilizando kit comercial Panbio Diagnostico (Queensland, AUS).

4.3.1.1. ISOLAMENTO VIRAL

Como sistema para isolamento do vírus, foi utilizado culturas de células do mosquito *Ae. albopictus* clone C6/36 (Igarashi, 1978).

Resumidamente, as células foram cultivadas em tubos de 1,5 x 16 cm contendo 2,0 ml de meio Leibovitz (L–15), com 10% de soro fetal bovino (SFB). Após formação de monocamada, o meio foi substituído por igual volume de meio L-15 contendo 2% de SFB.

Os soros foram diluídos 1/10 em meio L-15, 0,1 ml foram inoculados na monocamada celular e foram incubados à temperatura de 28°C. As culturas foram observadas diariamente, por um período de até dez dias, em microscópio óptico invertido (Zeiss - Deutschland, Germany), com aumento de até 800 vezes. Para cada grupo de soros inoculados, foram incluídos controles de vírus e de células.

4.3.1.2. TÉCNICA DE IMUNOFLUORESCÊNCIA INDIRETA (IFI)

As culturas que não apresentaram ECP após o 10[°] dia de inoculação foram testadas com fluido hiperimune de camundongo para dengue para detecção dos DENV, sendo as reações negativas consideradas como isolamento negativo. As culturas que apresentaram reação positiva pela IFI para detecção ou pela observação de ECP característico (sincícios), foram processadas pela técnica de IFI para a tipagem viral, empregando-se, neste caso, anticorpos monoclonais específicos para os DENV-1, DENV-2, DENV-3 e DENV-4 (Gubler *et al.*, 1984), gentilmente cedidos pelo Dr. Gubler (CDC Colorado, US).

4.3.1.3. EXTRAÇÃO DO RNA VIRAL E RT-PCR

O RNA viral foi extraído pelo método da sílica, de acordo com o protocolo descrito por Boom *et al.* (1990) ou utilizando-se o QIAmp Viral Mini Kit (QIAGEN Inc., CA, US), de acordo com o protocolo descrito pelo fabricante. Para detecção e tipagem dos DENV foi utilizado o protocolo descrito por Lanciotti *et al.* (1992).

Durante a transcrição reversa e primeira etapa de amplificação, foram utilizados iniciadores consensuais de 511 pares de base (D1 e D2) para os quatros sorotipos dos DENV, complementares as sequências dos genes C e prM. Na segunda etapa de amplificação (ou procedimento *semi-nested*), foram utilizados iniciadores com tamanhos específicos para amplificar cada um dos quatro sorotipos de dengue, denominados de TS1, TS2, TS3 e TS4, respectivamente (Quadro 1).

Oligonucleotídeo iniciador* (Sentido do primer)	Sequência	Posição No genoma	Tamanho do amplicon (em pares de base [pb])	
D1 (+)	5'- TCAATATGCTGAAACGCGGAGAAACCG- 3'	134-161	511 (D1 + D2)	
D2 (-)	5'- TTGCACCAACAGTCAATGTCTTCAGGTTC- 3'	616-644	311 (D1 + D2)	
TS1 (-)	5'- CGTCTCAGTGATCCGGGGG- 3'	568-586	482 (D1 + TS1)	
TS2 (-)	5'- CGCCACAAGGGCCATGAACAG- 3'	232-252	119 (D1 + TS2)	
TS3 (-)	5'- TAACATCATCATGAGACAGAGC- 3'	400-421	290 (D1 + TS3)	
TS4 (-)	5'- CTCTGTTGTCTTAAACAAGAGA - 3'	506-527	392 (D1 + TS4)	

Quadro 1: Oligonucleotídeos iniciadores utilizados na transcrição reversa seguida pela reação em cadeia pela polimerase para a tipagem dos vírus dengue

4.3.1.4. ENSAIO IMUNOENZIMÁTICO PARA A DETERMINAÇÃO DO TÍTULO DE ANTICORPOS IGG (G-ELISA) PARA A CARACTERIZAÇÃO DE SOROS DE PACIENTES COM DENGUE

A metodologia utilizada foi descrita por Miagostovich et al. (1999). Resumidamente, microplacas de poliestireno de fundo chato Immulon II (Dynatec Labs., VA, US) foram sensibilizadas com fluído ascítico hiperimune, que é uma mistura contendo partes iguais de anticorpo anti-DENV-1, DENV-2, DENV-3 e DENV-4 (CDC, Atlanta, USA) diluído 1/5000 em tampão Carbonato/ Bicarbonato 0,1M pH 9,6. Após incubação de 2 a 8 [°]C por no mínimo 18 horas em câmara úmida e lavagem com PBS pH 7,4, os poços foram bloqueados adicionando-se diluente padrão. Após incubação em câmara úmida por 1 hora a 37ºC, 0,075 ml de 32 UHA/0,05 ml de uma mistura de antígeno (DENV-1, DENV-2 e DENV-3) diluída em diluente padrão, foram aplicadas a cada poço e as placas foram então incubadas em câmara úmida por 1 hora a 37ºC. Após lavagens com PBS pH 7,4, foram realizadas diluições seriadas na razão 4 até o último poço, transferindo e misturando 0,025 ml da amostra. Após incubação em câmara úmida por 1 hora a 37°C, seguida por lavagens com PBS pH 7,4 e com diluente padrão, 40 µl de anticorpo IgG antihumano conjugado à peroxidase (Sigma), diluído em diluente para conjugado na proporção 1:4000, foram adicionados. Após incubação em câmara úmida por 1 hora à temperatura ambiente, as placas foram lavadas com PBS pH 7,4 e 0,1 ml de substrato, resultante da mistura com igual volume de sulfonato de 2,2'-azino-di(3etil-bentiazolina) (ABTS) e peróxido de hidrogênio (Kirkegaard & Perry Labs., Gaithersburg, USA) foi adicionado a cada poço. Após um período de incubação de 30 minutos à temperatura ambiente sob proteção da luz, foi realizada a leitura visual e em espectrofotômetro, utilizando comprimento de onda de 405 nm (Microelisa Reader/ Biomedicals, Inc., Livermore, USA), sendo as amostras com densidade óptica que se apresentaram iguais ou acima de 0.15 consideradas positivas.

4.3.1.5. ENSAIO IMUNOENZIMÁTICO PARA A DETERMINAÇÃO DO TÍTULO DE ANTICORPOS IGG (G-ELISA) PARA A CARACTERIZAÇÃO DE SOROS DE PACIENTES COM OUTRAS PATOLOGIAS

A metodologia foi realizada de acordo com instruções do fabricante (Panbio Diagnostico - Queensland, AUS). Em microplacas previamente sensibilizadas com antígeno de dengue tipos 1 a 4, foi adicionado 0,1 ml de soro de paciente diluído 1/10 em diluente de soro (tampão tris salina pH 7,2 a 7,6, contendo tween 20 e 0,1% de preservativo proclin) em cada um dos orifícios da microplaca. Após incubação por 30 minutos a 37 °C as placas foram lavadas por 6 vezes com tampão de lavagem (PBS pH 7.2-7.6 contendo Tween 20 e 0.1% de preservativo proclin) e em seguida, foi adicionado 0,1 ml de anticorpo anti-IgG humano conjugado a peroxidase em cada orifício. Seguindo a incubação por 30 minutos a 37 °C e lavagem por 6 vezes consecutivas com tampão de lavagem, as microplacas foram incubadas por 10 minutos em temperatura ambiente (20-25°C) com 0,1ml de substrato (3,3',5,5'tetramethylbenzidine e peróxido de hidrogênio em tampão citrato-ácido cítrico pH 3.5-3.8). A adição de 0,1ml de solução de parada da reação após este período resultou na alteração da coloração azul em amarela, permitindo a leitura em densitômetro, com comprimento de onda de 450nm contendo filtro de referencia de 600-650nm. Soros controles positivos e negativos, assim como todos os reativos utilizados para a execução desta metodologia foram fornecidos juntamente com o kit.

4.4. ENSAIOS IMUNOLÓGICOS PARA AVALIAÇÃO DA REATIVIDADE A POTENCIAIS EPITOPOS

A reatividade dos peptídeos obtidos na síntese paralela de peptídeos em membranas frente à mistura de pool de soros anti-dengue foi avaliada através de ensaios imunológicos de quimioluminescência, cuja metodologia foi estabelecida em nosso laboratório, a partir de informações descritas por Frank e Overwin (1996).

Resumidamente, as membranas foram rinsadas por duas vezes com etanol e bloqueadas com tampão diluente pH 7,0 (0,13 M NaCl, 0,003 M KCl, 0,05 M Tris, 0,05% de Tween 20, 3% de leite em pó desnatado) por 18 horas em temperatura de 2 a 8 °C. Em seguida, foram incubadas sob agitação por 4 horas em temperatura ambiente com soros de pacientes e após 3 lavagens com tampão TBS-tween 20 0,05% pH 7,0 (0,13 M NaCl, 0,003 M NaCl, 0,05 M Tris), as membranas foram incubadas em temperatura ambiente sob agitação com anticorpo IgG anti-humano conjugado à fosfatase alcalina (Abcam, Cambridge, MA, US) diluído 1:5000 em tampão diluente. Após 2 lavagens com tampão TBS-tween 20 0,05% pH 7,0 e 2 lavagens com tampão Citrato (0,14 M NaCl, 0,003 M KCl, 0,05 M C₆H₈O₇ . H₂O), as membranas foram incubadas com substrato quimioluminescente CDP star (Applied Biosystems, CA, US), expostas a filmes de raio-X (Kodak, São Paulo, SP, BR).

A intensidade da cor obtida foi verificada através do software TIGR Spotfinder versão 3.1.1 para windows XP (Boston, MA, US), de modo que o "spot" com sinal mais intenso da membrana foi assinalado como tendo 100% de intensidade, e todos os outros valores foram expressos em porcentagem relativa de acordo com o software. Os spots com valores densitométricos superiores ou iguais a 20% de intensidade foram considerados positivos, enquanto que os spots com valores abaixo de 20% foram considerados negativos (Hujer *et al.*, 2004).

5. RESULTADOS

5.1. ANÁLISE COMPUTACIONAL DAS PROTEÍNAS DOS DENV-1, DENV-2 E DENV-3

As sequências completas de aminoácidos dos DENV-1, DENV-2 e DENV-3 obtidas a a partir de sequências nucleotídicas brasileiras foram submetidas a analise computacional e, através do programa BioEdit foi possível verificar que o grau de conservação entre os aminoácidos dos 3 sorotipos de dengue variou de 72 a 78% - Figura 13.

Sequence	Identity	/ Matrix	(BioEdit	Sequence	Alignment	editor)
		DENV-1	DENV-	-3	DENV-2	
Seq->		AA020974	AAT79	552 AA	AL96681	
AAO20974	(D1)	ID	0,78	10 1	0,718	
AAT79552	(D3)	0,780	ID)	0,721	
AAL96681	(D2)	0,718	0,72	1	ID	

Figura 13: Matriz de identidade entre as sequências de proteínas dos DENV-1, DENV-2 e DENV-3, obtida através do programa Bioedit (versão 7.0.4.1).

5.2. PREDIÇÃO DE POSSIVEIS REGIÕES DE RECONHECIMENTO POR ANTICORPOS

As Figuras 14 a 18 apresentam a disposição ilustrativa de todas as proteínas estruturais e não estruturais dos DENV, de acordo com os elementos da estrutura secundária, acessibilidade e hidrofilicidade. Todos os resíduos positivos no eixo de valores (y) de cada parâmetro analisado são considerados uma possível região de reconhecimento por anticorpos.

Tais parâmetros puderam ser quantificados atraves do mesmo programa, e após correlação entre os resultados obtidos atraves de cada parâmetro, foi possível predizer um total de 133, 118 e 119 epitopos para os DENV-1, DENV-2 e DENV-3, respectivamente (Anexo 1).

Figura 14: Representação gráfica das proteínas estruturais de capsídeo/capsideo ancorada e pré-membrana/membrana dos DENV-1, DENV-2 e DENV-3, contendo regiões com probabilidade de reconhecimento por anticorpos baseado em elementos da estrutura secundária e em parâmetros de hidrofilicidade e acessibilidade de cada aminoácido, através do programa de computação DNASTAR

Figura 15: Representação gráfica da proteína estrutural de envelope e não estrutural 1 dos DENV-1, DENV-2 e DENV-3, contendo regiões com probabilidade de reconhecimento por anticorpos baseado em elementos da estrutura secundária e em parâmetros de hidrofilicidade e acessibilidade de cada aminoácido, através do programa de computação DNASTAR

Tese de doutorado - Thatiane Santos De Simone

Figura 16: Representação gráfica da proteína não estrutural 2a e 2b dos DENV-1, DENV-2 e DENV-3, contendo regiões com probabilidade de reconhecimento por anticorpos baseado em elementos da estrutura secundária e em parâmetros de hidrofilicidade e acessibilidade de cada aminoácido, através do programa de computação DNASTAR

Figura 17: Representação gráfica da proteína não estrutural 3 e 4a dos DENV-1, DENV-2 e DENV-3, contendo regiões com probabilidade de reconhecimento por anticorpos baseado em elementos da estrutura secundária e em parâmetros de hidrofilicidade e acessibilidade de cada aminoácido, através do programa de computação DNASTAR

Tese de doutorado - Thatiane Santos De Simone

Mapeamento de epitopos B de proteínas imunogênicas dos vírus dengue tipos 1, 2 e 3

Figura 18: Representação gráfica da proteína não estrutural 4b e 5 dos DENV-1, DENV-2 e DENV-3, contendo regiões com probabilidade de reconhecimento por anticorpos baseado em elementos da estrutura secundária e em parâmetros de hidrofilicidade e acessibilidade de cada aminoácido, através do programa de computação DNASTAR

Para a determinação de regiões propensas à antigenicidade foi utilizado o parâmetro de Jameson & Wolf, através do programa de computação DNASTAR, que determinou um total de 152, 163 e 145 possiveis regiões de reconhecimento por anticorpos para os DENV-1, DENV-2 e DENV-3, respectivamente. A figura 19 apresenta a disposição ilustrativa, enquanto que no anexo 2 foi determinada as regiões com propensão a antigenicidade através deste parâmetro.

Ao comparar os resultados obtidos utilizando o parâmetro de Jameson & Wolf com os parâmetros de estrutura secundária do programa computacional DNASTAR é possível verificar a existência de seqüências mais extensas no segundo caso e, portanto, um número menor de seqüências foi contabilizado. Este fato deve-se ao cálculo matemático utilizado na determinação do índice de antigenicidade, que inclui diferentes características topológicas para a predição de regiões de reconhecimento por anticorpos, resultando em sequências com maior especificidade.

Figura 19: Representação gráfica das proteínas estruturais e não estruturais dos DENV-1, DENV-2 e DENV-3, contendo regiões com probabilidade de reconhecimento por anticorpos baseado no índice de antigenicidade determinada pelo parâmetro de antigenicidade de Jameson & Wolf
As escalas de Kolaskar & Tongaonkar e Bepipred foram utilizadas para a determinação de um resultado comutacional mais preciso, com relação à propensão a antigenicidade, sendo obtidas através do programa computacional IEDB. Pela escala de Kolaskar, foi identificado um total de 141, 132 e 136 prováveis epitopos para os DENV-1, DENV-2 e DENV-3, respectivamente (Anexo 3), enquanto que pela escala de bepipred um total de 108, 98 e 108 prováveis epitopos foram descritos para os DENV-1, DENV-2 e DENV-3, respectivamente (Anexo 4).

5.3. Comparação das predições de reconhecimento por anticorpos – escala de antigenicidade

Apesar de apresentarem sistemáticas diferentes para a predição de regiões antigênicas, os parâmetros de antigenicidade utilizados neste estudo puderam ser correlacionados, onde foi possível determinar um total de 120, 107 e 112 epitopos potenciais para os DENV-1, DENV-2 e DENV-3, respectivamente (Quadro 2).

Foi considerado como epitopo de maior probabilidade, aquele que foi determinado em pelo menos dois parâmetros distintos.

		DENV-1			DENV-2	DENV-3			
Proteínas	Posição inicial	Seqüência	Posição final	Posição inicial	Seqüência	Posição final	Posição inicial	Seqüência	Posição final
	3	NQRKKTGRP	11	1	MNNQRKKARST	11	3	MNNQRKKTGKPS	12
C	24	STGSQ	28	21	NRVST	25	23	VSTGSQLAKR	32
C	35	KGLLSGQ	41	61	PTAG	64	61	PTAG	64
							79	KVLKG	83
	119	TRGGEP	124	157	ELCEDT	162	119	SRDGEPRMI	127
	131	QERGKSL	137	168	PLLRQNEPEDIDCWCN	183	169	HITEVEPEDIDC	180
~~N4 N4	164	TYKCPRITEAEPDDVD	179	193	TCTTTGEHRRE	204	192	GTCNQAGERRRDKRSVA	208
privi-ivi	192	GTCSQTGEHRRDKRS	206	218	ETRTETWMSSEGAW	231			
	208	ALAPHVGLGLETR	220						
	234	IQKVE	238						
	315	AKNKPTL	321	287	SNRDFVEGVSGG	298	315	AKNKPT	320
	346	SNTTTDSRCPTQGE	359	324	ELIKTEAKQPAT	335	362	LPEEQDQNY	370
	407	GKIVQ	411	346	TNTTTESRCPTQGEPSLNEEQDKRFIC	372	375	TYVDRGWGNGC	385
	413	ENLKYS	418	379	RGWGN	383	389	GKGS	392
	424	HTGDQHQVGNETTE	437	423	PHSGEEHAVGNDTGKHGEEIKITPQSSITEAELTGY	458	426	GDQHQVGNETQGV	438
	450	TSEIQ	454	465	CSPRTGL	471	464	SPRTGL	469
F	499	PWTSGASTSQETWNR	513	502	PGADTQGSNWI	512	498	WTSGATTETPTWN	510
	524	HAKKQE	529	522	NPHAKKQD	529	522	HAKKQE	527
	548	TEIQTSGT	555	563	LKCRLR	568	561	LKCRLK	566
	573	TLKGTS	578	570	DKLQL	574	586	LKKEVSETQ	594
	591	EVAETQH	597	587	KIVKEIAET	595	604	YKGEDAPCK	612
	604	EGTDAPCK	614	604	VQYEGDGSPCKI	615	615	FSTEDGQGKAH	625
	620	QDEKGVTQ	627	638	VTEKDSPVNIEAEPPFGDSY	657	636	VVTKKEEPVNIEAEPPFGESNI	656
	638	VTDKEKPVNIETEPPFGE	655						

		DENV-1			DENV-2		DENV-3			
Proteínas	Posição inicial	Seqüência	Posição final	Posição inicial	Seqüência	Posição final	Posição inicial	Seqüência	Posição final	
	776	DSGC	779	776	DSGC	779	806	KFQADSPKRLA	816	
	787	ELKCGSG	793	787	ELKCGSG	793	894	AKIVTAETQN	903	
	808	KFQADSPKRLS	818	806	QYKFQPESPSKLAS	819	910	GPNTPECPSASR	921	
	827	EGVCG	831	821	IQKAHEEGIC	830	930	DYGF	933	
	878	MIRPQPMEHKYS	889	834	SVTRL	838	943	KLREVY	948	
	911	DGPDTPECPDEQR	923	855	SENEVK	860	952	CDHR	955	
	944	LKLRDSY	949	876	KRSLRPQPTELKYS	889	960	AVKDERAVH	968	
	954	CDHR	957	901	TESH	904	976	ESQKNGSWKLEKASLIE	992	
NS1	1002	KSHT	1005	911	DGPETAECPNTNRAWN	926	997	ТѠҎҜ	1000	
Nor	1029	HNYRPGY	1035	930	VEDYG	934	1006	SNGVLE	1011	
	1047	VDEHCGSRGPSLRT	1058	949	KQDVFCDSK	957	1015	IIPKSLA	1021	
	1087	RFRGEDGCW	1092	999	HWPKS	1003	1024	ISQHNHRPGY	1033	
	1111	RPVKEKEE	1118	1022	FAGPVSQHNYRPGY	1035	1045	KLELDFNYC	1053	
				1062	VTEDCGNRGPSLRTTTAS	1079	1064	CGTRGPSLRTTT	1075	
				1086	WCCRSCT	1092	1077	SGKL	1080	
				1094	PPLRYRGEDGCW	1105	1084	WCCRSCT	1090	
				1109	EIRPLKEKEENL	1120	1095	RYMG	1098	
							1110	PISEKEEN	1117	
	1128	GSGEVDSFS	1136	1130	GQIDNFS	1136	1126	GSGKVD	1131	
	1190	NASDKMGM	1197	1312	SQQKTDW	1318	1188	NASDR	1192	
NCOA	1243	LPNSLEEL	1250				1221	LTSRENLLL	1227	
NS2a	1312	TSQKTT	1317				1241	LPEDIEQ	1247	
	1324	GSFG	1327				1307	QSSSMR	1312	
	1341	IWGR	1344							
	1346	SWPL	1349	1365	SLLKN	1369	1346	PLNEGV	1351	
	1365	SLLKNDVP	1372	1403	DVKWEDQAEISGSSP	1417	1363	SLLRNDVPM	1371	
NS2b	1393	SADLSLEKAAEVSWEEEAGHSGT	1415	1424	SEDGSMSIKNEEEEQ	1438	1391	SADLTVEKA	1399	
	1424	QDDGTMKIKDEERDD	1438				1403	TWEEEAEQTGV	1413	
	1472	KKQR	1475				1422	DDDGTMRIKDDETE	1435	

		DENV-1			DENV-2			DENV-3	
Proteínas	Posição inicial	Seqüência	Posição final	Posição inicial	Seqüência	Posição final	Posição inicial	Seqüência	Posição final
	1482	TPSPPEVERAVLDG	1496	1483	PSPPPVEKAELEDGAYRIKQRGI	1505	1481	PSPPETQKAELEEGVYRIKQ	1500
	1504	GLLGRSQV	1511	1515	VYKEGT	1520	1513	VQKEGV	1518
	1546	SVKKDLI	1552	1533	LMHRGKRIEPSWADVKKDLI	1552	1532	TYNGKRLEPNW	1542
	1555	GGGW	1558	1555	GGGWKLEGEWKEGEEVQ	1571	1545	VKKDLI	1550
	1562	GSWNTGEEVQ	1571	1574	ALEPGKNPRAVQTKPGLFKTNTGT	1597	1560	AQWQKGEEVQ	1569
	1574	AVEPGKNPKNVQTTPGTFKT PEGEV	1598	1605	FSPGTSGSPIVDRKGKV	1621	1572	AVEPGKNPKNFQ	1583
	1604	DFKPGTSGSPIVN	1616	1629	VVTRSG	1634	1585	MPGTFQTTTGEI	1596
	1643	AKASQEGPLPEIEDE	1657	1641	AQTEKSIEDNPEIEDDFFRKKRLT	1664	1602	DFKPGTSGS	1610
	1670	HPGSGKTRRY	1679	1668	LHPGAGKTKRY	1678	1612	IINREGKV	1619
	1722	AVLSEHTGR	1730	1685	EAIKRGLR	1692	1641	TNAEPDGPTPELEEEMFKKRNLT	1663
	1749	VRVP	1752	1702	VAAEMEEALR	1711	1668	HPGSGKTRKY	1677
	1766	DPASIAA	1772	1720	PAIRTEHTGREIV	1732	1684	EAIKRRLR	1691
	1793	TPPGSVEAFPQSNA	1803	1777	AARGYISTRVEMGE	1783	1701	VAAEMEEALK	1710
NS3	1808	IQDEERDIPERSWNSGYD	1824	1792	TPPGSRDPFPQSNAPIMDEEREIPERSW NSGHEWVTDFKGKT	1833	1719	TATKSEHTGREIV	1731
	1828	TDFPGK	1834	1839	SIKAGNDI	1846	1747	VRVPN	1751
	1840	SIKSGND	1846	1848	ACLRKNGKKVIQLSRKTFDSEYVK TRTNDWD	1878	1760	AHFTDPAS	1767
	1857	RVIQLSR	1863	1883	TDISE	1887	1778	VGMGE	1782
	1865	TFDTEYQKTKNNDWD	1879	1889	GANFRAERVIDPRRCMK	1905	1791	TPPGTADAFPQSNAPIQDEERDIPER SWNSGNEW	1824
	1885	DISE	1888	1908	ILTDGEERVI	1917	1838	SIKAGNDIANCLRKNGKKVIQLSRKTFDTE YQKTKLNDWD	1877
	1896	DRVIDPRRCLK	1906	1928	SAAQRRGRIGRNPRNENDQ	1946	1882	TDISEMGANFRAERVIDPRRCLK	1904
	1909	ILKDGPERV	1917	1952	EPLENDEDCAHWKEAKML	1969	1907	ILTDGPERVI	1916
	1930	AAQRRGRIGRNQNKEGDQY	1948	1972	NINTPEGI	1979	1928	AASAAQRRGRVGRNPQKENDQ	1945
	1954	PLNNDEDHAH	1963	1984	FEPEREKVDAIDGEYRLRGEARKTF	2008	1951	QPLNNDEDHAH	1961
	1975	NTPEGI	1980	2010	DLMRRGDL	2017	1971	NINTPEGI	1978
	1985	FEPEREKSAAID	1996	2029	GINYADRRWCFDGIKNNQILEENVE	2053	1983	FEPEREKSAAIDGEYRLKGESRKTF	2007
				2056	IWTKEGERKKLKPRWLD	2072			

		DENV-1			DENV-2			DENV-3	
Proteínas	Posição inicial	Seqüência	Posição final	Posição inicial	Seqüência	Posição final	Posição inicial	Seqüência	Posição final
	2025	KVASEGFQY	2033	2074	RIYSDPLALKEFKE	2087	2009	ELMRRGDL	2016
NS3	2043	ERNNQV	2048	2089	AAGRKS	2094	2024	VASEGIKYTDRKWCFDGERNNQILEENMD	2052
1000	2058	WTKEGERKKL	2067				2055	IWTKEGEKKKLRPRWLDARTYSDPLA	2080
	2075	RTYSDPLA	2082				2082	KEFKDFAAGRK	2092
	2095	SVSG	2098	2104	GRLP	2107	2127	EHGGR	2131
	2169	GKGLGKTS	2176	2167	SGKGI	2171	2167	GKGIGKTS	2174
	2214	IPEPDRQRTPQDN	2226	2219	QRTPQDN	2225	2218	QRTPQDN	2224
	2303	NTTA	2306	2266	SESN	2269	2251	TKRDLGMSKEPGV	2263
NS4a e NS4b	2324	DKGW	2327	2276	RPAS	2279	2300	NSTA	2303
	2452	GSPGKF	2457	2299	IENSSV	2304	2321	DKGW	2324
	2487	SLGGGRR	2493	2322	GKGW	2325	2386	NPTV	2389
				2402	PYDPKF	2407	2449	GSPGKF	2454
				2449	EGNPGRF	2455	2486	GTGKR	2490
				2483	MKNTTNTRRGT	2493			
	2494	GTGA	2497	2509	NTLGKNE	2515	2491	GTGS	2494
	2512	QLSKSEFNTYKRSGI	2526	2520	KKSG	2523	2546	SRGSA	2550
	2562	NLVKPEG	2568	2559	RNMVTPEG	2566	2560	MVIP	2563
	2574	GCGRGGW	2580	2582	CGGLK	2586	2572	CGRGGW	2577
	2596	YTKGGPGHEEP	2606	2595	TKGGPGH	2601	2593	YTKGGPGH	2600
	2620	HSGKD	2624	2626	TPPEK	2630	2626	PPEK	2629
NS5	2629	PPEK	2632	2639	GESSPNP	2645	2638	GESSPSPT	2645
1000	2641	GESSPNPTIEE	2651	2663	LNNNT	2667	2697	NPLSRNST	2704
	2664	WLRGNQ	2669	2698	RNPLSRNST	2706	2712	NGTGN	2716
	2701	PLSRNST	2707	2714	NATG	2717	2736	HRRPT	2740
	2739	HRKPTYERD	2747	2750	GSGT	2753	2755	NAEPETPNM	2763
	2751	GAGT	2754	2785	YDQDHPYK	2792	2778	NSTWHYDDENPYK	2790
	2780	HKSTWHYDEDNPYK	2793	2797	HGSYE	2801	2795	HGSY	2798
				2804	QTGSA	2808	2835	TTPFG	2839

		DENV-1			DENV-2		DENV-3			
Proteínas	Posição inicial	Seqüência	Posição final	Posição inicial	Seqüência	Posição final	Posição inicial	Seqüência	Posição final	
	2798	HGSYEVKPSGSA	2809	2836	DTTPF	2840	2852	TPRSMPGT	2859	
	2822	KPWD	2825	2877	GKKKTPRM	2884	2875	GRNKRPR	2881	
	2837	DTTPFG	2842	2936	GKCE	2939	2934	GKCG	2937	
	2855	TPRAKRGT	2862	2992	ENSLSG	2997	2989	RENSYSGVEGEGL	3001	
	2877	LSRNKKP	2883	3064	YQNK	3067	3014	IPGG	3017	
	2896	RSNA	2899	3074	PTPRG	3078	3073	TPTG	3076	
	2935	KQGK	2938	3086	RRDQRGSGQ	3094	3085	KDQRGSG	3091	
	2960	AKGS	2963	3152	SGDDC	3156	3185	QPSKGWHD	3192	
	2991	SRENSLSG	2998	3187	PSRGWNDWT	3195	3233	GAGWS	3237	
	3017	IPGG	3020	3234	GAGWS	3238	3279	PTSRTT	3284	
	3065	YQNK	3068	3280	PTSR	3283	3308	IEDNPWM	3314	
NSE	3075	PAKNG	3079	3310	QENPW	3314	3334	DQWCG	3338	
1100	3087	RRDQRGSGQ	3095	3335	DQWCG	3339				
	3116	ESEGIFFPSELES	3128							
	3188	PSKGWNDWQ	3196							
	3235	GAGW	3238							
	3247	GKSY	3250							
	3281	PTSRTT	3286							
	3312	ENPW	3315							
	3322	VSSW	3325							
	3330	YLGKR	3334							
	3336	DQWC	3339							
	3367	GNENY	3371							
	3382	KNESDPE	3388							

5.4. IDENTIFICAÇÃO DE PEPTÍDEOS IMUNOGÊNICOS CONSECUTIVOS DAS PROTEÍNAS DOS DENV-1, DENV-2 E DENV-3, ATRAVÉS DA METODOLOGIA DE SÍNTESE PARALELA

Inicialmente, uma biblioteca composta por um total de 1284 peptídeos foi construída cobrindo toda a extensão do DENV-1, DENV-2 e DENV-3. Tal estratégia foi composta por peptídeos contendo 15 resíduos com sobreposição de 7 (dados não mostrados). Para o refinamento dos resultados, nova estratégia de síntese foi utilizada através da estratégia F-moc, onde cada peptídeo foi composto por 10 resíduos com sobreposição de 5, constituindo uma biblioteca de 2007 peptídeos. Tal estratégia foi utilizada como padrão nos testes subseqüentes.

Controles positivos (1210-GYPKDGNAFN-1219 - proteína precursora do *Clostridium tetani* - número de acesso Genbank P04958) e negativos (131-MDKEIKKGPR-140 - proteína do paramyxovirus aviário - número de acesso Genbank ACO48304) foram utilizados em todos os testes.

As Figuras 20 a 22 apresentam os resultados da triagem empregando mistura de soros de pacientes com o mesmo sorotipo de dengue para as proteínas estruturais e não estruturais dos DENV-1, DENV-2 e DENV-3, respectivamente. No Quadro 3 estão descritas as regiões imunogênicas identificadas através da metodologia de síntese paralela de peptídeos em membranas, correspondendo a um total de 96, 103 e 106 epitopos para os DENV-1, DENV-2 e DENV-3, respectivamente.

Figura 20: Revelação imunológica das membranas celulósicas contendo peptídeos das proteínas estruturais (A) e não estruturais (B) do DENV-1 sintetizados (10 mers) pela técnica de síntese paralela. Os pontos escuros correspondem aos resultados positivos e os espaços vazios correspondem às negativas. As linhas coloridas delimitam a extensão de cada proteína sintetizada.

Mapeamento de epitopos B de proteínas imunogênicas dos vírus dengue tipos 1, 2 e 3

Figura 21: Revelação imunológica das membranas celulósicas contendo peptídeos das proteínas estruturais (A) e não estruturais (B) do DENV-2 sintetizados (10 mers) pela técnica de síntese paralela. Os pontos escuros correspondem aos resultados positivos e os espaços vazios correspondem às negativas. As linhas coloridas delimitam a extensão de cada proteína sintetizada.

Figura 22: Revelação imunológica das membranas celulósicas contendo peptídeos das proteínas C, prM/M, E, NS1, NS2a, NS2b, NS3 (42 primeiros peptídeos) (A) NS3 (82 peptídeos finais), NS4a, NS4b e NS5 (B) do DENV-3 sintetizados (10 mers) pela técnica de síntese paralela. Os pontos escuros correspondem aos resultados positivos e os espaços vazios correspondem às negativas. As linhas coloridas delimitam a extensão de cada proteína sintetizada.

		DENV-1			DENV-2		DENV-3			
Proteínas	Posição inicial	Seqüência	Posição final	Posição inicial	Seqüência	Posição final	Posição inicial	Seqüência	Posição final	
	7	KKTGRPSFNMLKRARNRVSTGS	27	6	KKARSTPFNMLKRERNRVSTVQ	27	7	KTGKPSINMLKRVRNRVSTG	26	
	35	GLLSGQGPMK	45	51	ALVAFLRFLT	58	38	LNGQGPMK	45	
С	51	IAFLRFLAIP	60	61	PTAGILKRWG	70	51	IAFLRFLAIP	60	
	89	SSMLNIMNRR	98	96	NRRRTAGVI	105	91	MLSIINKRKK	100	
	115	FHLTTRGG	122	115	FHLTTRNGEPHMIV	128	115	FHLTSRDG	122	
prM / M	165	KCPRITEA	173	165	KCPLLRQNE	174	127	IVGKNERG	134	
privi / ivi	195	SQTGEHRRDKRSVALAP HVGLGLET	219	196	TTGEHRREKRSVALVP HVGMGLET	219	195	NQAGERRRDKRSVAL APHVGMGLDTR	220	
	230	AWKQIQKVETWALRH	244	231	WKHVQRIET	239	225	MSAEGAWRQVEKVETWALRHP	245	
	287	GNRDFVEGLSGATWVDVVLEH	307	287	SNRDFVEG	294	287	GNRDFVEGLSGATW	300	
	311	VTTMAKNKPTLDIE	324	299	SWVDIVLEH	307	311	VTTMAKNK	318	
F	329	EVTNPAVLR	338	311	VTTMAKNKPTLDFE	324	347	NITTDSRCPTQGEAV LPEEQ	366	
E	341	IEAKISNTT	349	353	RCPTQGEPSLNEEQD	367	376	VDRGWGNG	384	
	353	RCPTQGEATLVEEQD	367	371	ICKHSMVDRGWGNGC	385	401	CLEPIEGKVVQYEN	414	
	371	VCRRTFVDRGWGNG	384	389	GKGGIVTC	396	419	VIITVHTGDQHQVGNE TQGV	438	

		DENV-1			DENV-2	DENV-3			
Proteínas	Posição inicial	Seqüência	Posição final	Posição inicial	Seqüência	Posição final	Posição inicial	Seqüência	Posição final
	407	GKIVQYEN	414	401	CKKNMEGKVVLPENL EYTIVITPHSGE	427	449	TEAILPEYGTLGLE	462
	420	IVTVHTGD	427	431	VGNDTGKH	438	465	PRTGLDFN	472
	455	LTDYGALTL	463	455	LTGYGTVTM	463	483	AWMVHRQW	490
	467	PRTGLDFNEMVLLTM KEKSWLVHK QWFLD LPLPWTSGA	504	467	PRTGLDFNEMVLLQMEEKAWLVHRQW FLDLPLPWLPGADTQGSNWIQKETLV TFKNPHAKKQDVVVLGSQEGAMH TALTGATEIQMSSGNLL	558	507	PTWNRKELLVT FKNAHAKKQ	526
	509	ETWNRQDL	516	563	LKCRLRMDKLQLKGM	577	530	EGAMHTAL	548
Е	521	KTAHAKKQEVVVLG	534	587	KIVKEIAETQHGTIVIRVQYE	607	569	KLELKGMS	576
	539	AMHTALTG	546	617	FEIMDLEKRHALGRLITVNPIVTEKDS PVNIEAEPPFGDSYIIIGVEP GQLKLNWFKKGSSIGQ MFETTMRGAKRMAILGDTAW	700	587	KKEVSETQ	594
	617	FLTQDEKGVTQNGRLITAN PIVTDKEKPVNIE	648	737	ILIGVIIT	744	599	LIKVEYKG	606
	683	EATARGARRMAILGDTAWDF	702	755	LSVSLVLVGVVTLYLGAMVQAD	775	623	KAHNGRLI	630
	707	GVFTSVGKLVHQVFG	721				635	VVTKKEEPVNIEAEPPFGES	654
	743	LTWLGLNS	750				659	GIGDKALKINWYRKGS SIGKMFEATARG ARRMAILGDTAWDFGS LNSLGKMV	702

		DENV-1			DENV-2		DENV-3			
Proteínas	Posição inicial	Seqüência	Posição final	Posição inicial	Seqüência	Posição final	Posição inicial	Seqüência	Posição final	
E	761	AVGMVTLY	768				707	LNSLGKMV	714	
L							743	WIGLNSKN	750	
	797	TNEVHTWTEQYKFQADS PKRLSAAIGRAWE	826	797	TDNVHTWT	805	803	WTEQYKFQ	808	
	833	RSATRLENIMWKQISNELN	851	809	FQPESPSK	816	830	IRSTTRMENLLWKQ IANELNYILWENNIKLT	860	
	869	NGILAQGKKMIRPQP MEHSWGKAK	897	832	IRSVTR	837	867	LTPQPMELK	875	
	904	QNTTFIID	911	923	RAWNSLEV	930	906	FIIDGPNT	913	
NG1	923	RAWNIWEVEDYGFG	936	941	NIWLKLRE	948	921	RAWNVWEVEDYGF GVFTTNIWLKLREVYTQ	950	
Not	965	DSKAVHADMGYWIESEK NETWKLARA	990	971	ADMGYWIESALND	983	961	VKDERAVHADMGYWIESQKN	980	
	1004	HTLWSNGVLE	1013	1037	TQTAGPWH	1044	1032	GYHTQTAGPWHLGK	1045	
	1025	PISQHNYRPGYFT QTAGPWHLGK	1047	1108	MEIRPLKEKE	1117	1066	TRGPSLRTTT	1075	
	1070	GPSLRTTT	1077				1093	PLRYMGED	1100	
	1110	IRPVKEKE	1117				1106	MEIRPISEKE	1116	

		DENV-1			DENV-2		DENV-3			
Proteínas	Posição inicial	Seqüência	Posição final	Posição inicial	Seqüência	Posição final	Posição inicial	Seqüência	Posição final	
NS1	1118	ENLVRSMV	1125							
	1140	LCVSIMIEEVMRSRWSGK	1157	1140	LGMALFLEEMLRTRV GTKHVILLVAVSFV TLITGNMSFRDLGR	1182	1138	LCLAILFEEVMRG KFGKKHMIAGVFF	1163	
	1170	LIMGQLTWNDLI	1181	1196	GMGVTYLALLAAFKVRPTFAAGLLLR	1221	1168	LLSGQITWRDMAH	1180	
NS2a	1202	LMATLKMRPMFA VGLLFRRLTSRE	1227	1255	ALGMMVLK	1262	1194	GMGVTYLALIATFKIQPFLA	1213	
	1255	AMGIMMLKLL	1264	1308	LLTSSQQK	1315	1218	LRKLTSRE	1225	
	1287	LDYAWKTTAM	1297	1320	PLALTIKGLNPTAI	1333	1312	RKTDWLPM	1319	
	1332	TMFLITENEIWGRK	1345	1338	LSRTSKKR	1345	1330	PLFIFSLKDTLKRR	1343	
	1346	SWPLNE	1351	1364	SSLLKNDI	1371	1343	SWPLNEGVM	1353	
	1364	SSLLKNDV	1371	1426	DGSMSIKNEEEEQTLTILIRTG	1447	1361	ASSLLRNDVPMAGPL	1375	
NS2b	1401	AAEVSWE	1407	1469	WEVKKQR	1475	1399	AADITWEEEAEQ	1410	
	1425	DDGTMKIKDEERDDTLTILLKAT	1447				1418	MITVDDDGTMRIKDDETE	1435	
	1469	WQKKKQR	1475				1467	WQKQTQR	1473	

		DENV-1			DENV-2		DENV-3			
Proteínas	Posição inicial	Seqüência	Posição final	Posição inicial	Seqüência	Posição final	Posição inicial	Seqüência	Posição final	
	1476	SGVLW	1480	1476	AGVLWDVPSPPPV	1488	1474	SGVLWDVPSPPETQ	1487	
	1503	RGLLGRSQ	1510	1495	DGAYRIKQRGILGYSQ	1510	1523	WHVTRGAV	1530	
	1529	RGAVLMYQ	1536	1519	GTFHTMWHVTRGA VLMHRGKRIEPSW	1544	1537	RLEPNWASVKKDL ISYGGGWRLSA	1560	
NGG	1549	KDLISYGGGWRFQG	1562	1548	KDLISYGGGWKLEG	1562	1600	ALDFKPGTSGSPIIN REGKVVGLYG	1624	
	1581	PKNVQTTP	1588	1584	VQTKPGLFKT	1593	1655	EMFKKRNLTIM DLHPGSGKTRK	1676	
	1614	IVNREGKIVGLYG	1626	1599	GAVSLDFS	1606	1681	IVREAIKRRLRTLIL APTRVVAAEM	1705	
1100	1657	EVFKKRNLTIMD LHPGSGKTRR	1678	1611	GSPIVDRK	1618	1711	GLPIRYQT	1718	
	1693	RTLILA	1698	1652	PEIEDDFFRK	1661	1754	YNLIIMDEA	1760	
	1711	LKGMPIRYQTTA	1722	1672	GAGKTKRY	1678	1773	ISTRVGMGEAA	1784	
	1854	NGKRVIQLSRKT	1865	1688	IVREAIKRGLRTLI	1696	1808	DEERDIPERSWN SGNEWITDFAG	1830	
	1872	KTKNNDWD	1879	1702	VVAAEMEE	1712	1856	VIQLSRKTFD	1865	
	1929	SAAQRRGRIGRNQN	1942	1725	TEHTGREIVD	1734	1878	WDFVVTTDIS	1885	

		DENV-1			DENV-2	DENV-3			
Proteínas	Posição inicial	Seqüência	Posição final	Posição inicial	Seqüência	Posição final	Posição inicial	Seqüência	Posição final
	1971	LDNINTPE	1978	1738	HATFTMRLLSPVR VPNYNLIIMDEA	1762	1887	MGANFKADRVIDPR	1900
	1999	YRLRGEAR	2006	1770	IAARGYISTRVEMGEAA	1786	1926	ASAAQRRGRVG RNPQKENDQYIFTGQ	1951
	2021	WLSYKVAS	2028	1806	APIMDEEREIPERS	1819	1971	NINTPEGIIPALFE PEREKS	1990
	2061	EGERKKLRPRWL	2072	1861	LSRKTFDSEYVKTRTNDWDF	1879	1995	GEYRLKGESR	2004
	2088	EFAAGRR	2094	1895	ERVIDPRR	1903	2009	ELMRRGDLPVWLAHKVAS	2026
				1943	NENDQYIY	1950	2040	ERNNQILE	2048
NS3				1967	AKMLLDNI	1974	2061	EKKKLRPRWLDART YSDPLALKEFKDFAAGRK	2092
				1979	GIIPSMFE	1986			
				1999	YRLRGEAR	2006			
				2011	DLMRRGDLPVWLAY	2024			
_				2043	IKNNQILEEN	2052			
				2058	WTKEGERK	2065			
				2085	FKEFAAGRK	2094			

		DENV-1			DENV-2		DENV-3			
Proteínas	Posição inicial	Seqüência	Posição final	Posição inicial	Seqüência	Posição final	Posição inicial	Seqüência	Posição final	
	2132	GKAYRHAME	2140	2095	SLTLNLI	2101	2093	SIALDLVTEIGRVPS HLAHKTRNALDNL	2120	
NS4a	2190	WMASVEPH	2197	2107	LPTFMTQK	2114	2124	HTSEHGGRAYRHAV	2137	
NOta	2212	LLIPEPDR	2219	2126	HTAEAGGR	2132	2185	MLWMAEIPLQ	2195	
				2168	SGKGIGKM	2175	2217	KQRTPQDNQ	2225	
	2252	TTKKDLGIG	2260	2252	KTKKDLGL	2259	2251	TTKRDLGMSKE	2261	
	2371	QAKATREAQK	2389	2272	ILDIDLRP	2279	2270	YLDVDLHPASA	2280	
	2464	GGRRGTGA	2478	2284	TPMLRHSIEN	2303	2294	MLRHTIEN	2301	
NS4b	2490	RTAAGIMKN	2497	2371	QAKATREAQKRAAG	2385	2363	IIGPGLQAKATREA QKRTAAGIMKN	2387	
				2408	KFEKQLGQ	2415	2442	GPITTLWEGSPGKFW	2456	
				2444	GPISTLWEGNPGRF	2457	2468	FRGSYLAGA	2476	
				2464	VSMANIFR	2471				

		DENV-1			DENV-2			DENV-3		
Proteínas	Posição inicial	Seqüência	Posição final	Posição inicial	Seqüência	Posição final	Posição inicial	Seqüência	Posição final	
	2502	LGEKWKRQLNQLSK	2515	2497	NIGETLGEKWKSRLNTLGK	2515	2489	GKRGTGSQ	2496	
	2536	EGLKRGETTKHAVS RGTAKLRWFVER	2561	2521	YKKSGIQEVDRTLA KEGIKRGETDHH	2546	2501	GEKWKKKL	2508	
	2594	KGYTKGGP	2601	2551	GSAKLRWF	2568	2528	DRTEAKEGLKRGEI	2541	
	2659	KMVEPWLRGN	2669	2596	LTKGGPGHEEPIPM	2608	2552	KLQWFVERNMVIPEG	2566	
	2685	TLEQMQRKHGGM LVRNPLSRNST	2707	2619	LQSGVDVF	2626	2592	RGYTKGGPGH	2601	
NOT	2724	VNMTSRLLNRF TMAHRKPTY	2744	2646	NPTIEAGR	2653	2621	KDVFYLPP	2628	
NS5	2765	NLDIIGQRIENIKN EHKSTWHYDE	2788	2660	LAENWLNN	2667	2642	SPTVEESR	2651	
	2839	PFGQQRVFKE	2848	2688	ETLQRKYGGALVRNPLSRNSTH	2709	2657	KMVEPWLKNN	2666	
	2854	RTPRAKR	2860	2724	SVNMISRM	2731	2677	MPTVIEHL	2684	
	2889	EFIRKVRSNAAIGAVFVDEN QWNSAKEAVEDER FWDLVHREREL	2933	2766	NLDIIGKRIEKIKQEHETSW	2785	2697	RNPLSRNSTHEMYWI	2711	
	2938	KCATCVYN	2945	2790	DHPYKTWAYHGSYE	2803	2728	LLLNRFTM	2735	
	2949	GKREKKLGREKKLG EFGKAKGSRAIWYM	2969	2813	MVNGVVRL	2821	2747	VDLGAGTRHVNAEP	2759	

		DENV-1			DENV-2			DENV-3		
Proteínas	Posição inicial	Seqüência	Posição final	Posição inicial	Seqüência	Posição final	Posição inicial	Seqüência	Posição final	
	2987	DHWFSREN	2994	2855	RTQEPKEG	2862	2764	MDVIGERIKRIKEEH NSTWHYDDENP	2789	
	3002	GLHKLGYILRDISKIPG	3018	2866	LMRITAEWLWKELG KKKTPRMCTREEFTRKVR	2897	2818	LTKPWDVV	2825	
	3079	GTVMDVISRRDQR GSGQVGTYGLNT	3104	2918	AVEDSRFW	2925	2852	RTPRSMPGTR	2861	
	3133	ERVLDWLEKHG AERLKRMAISGD	3155	2963	GSRAIWYM	2970	2892	KVRTNAAMGA	2901	
	3158	VVKPIDDRFA	3167	2982	LGFLNEDH	2989	2924	LVDREREL	2931	
NSE	3189	SKGWNDWQQ	3197	3001	EGEGLHRLGY	3010	2979	LGFLNEDHWFSRENS	2993	
1100	3203	HHFHQLIM	3210	3027	DTAGWDTRITLED	3039	3023	DTAGWDTRITEDDLH NEEKITQQMDPEHRQLAN	3055	
	3226	LVGRARVS	3233	3073	VQRPTPRGTVMDIISR	3088	3087	QRGSGQVGT YGLNTFTNME	3105	
	3248	KSYAQMWQL MYFHRRDLRLA	3267	3091	QRGSGQVG	3097	3122	ADLENPHLPE	3131	
	3288	SIHAHHQWMT	3297	3138	QNWLARVGRE RLSRMAISGDD	3158	3137	WLETKGVE	3144	
	3319	KTHVSSWE	3326	3185	IQQWEPSRG	3193	3157	VVKPIDDRFA	3166	
	3373	DYMTSMKRFKNESDP	3387	3225	QDELIGRARISQGAGWS	3241	3228	RARISQGA	3235	

		DENV-1			DENV-2			DENV-3	
Proteínas	Posição inicial	Seqüência	Posição final	Posição inicial	Seqüência	Posição final	Posição inicial	Seqüência	Posição final
				3250	KSYAQMWTLMYFHR	3263	3259	HRRDLRLA	3266
				3321	KTPVESWE	3329	3289	HAHHQWMT	3297
NS5				3375	DYMPSMKR	3382	3312	NPWMEDKTPVTTW ENVPYLGKREDQ	3336
							3342	IGLTSRATWA	3351
							3378	KRFRKEEES	3386

5.5. COMPARAÇÃO DOS RESULTADOS OBTIDOS ATRAVES DO MÉTODO EXPERIMENTAL DA SÍNTESE PARALELA E MÉTODO COMPUTACIONAL DE PREDIÇÃO DE EPITOPOS

A fim de verificar a eficiência da utilização de programas computacionais para a identificação de epitopos consecutivos responsáveis pelo desencadeamento da resposta imune humoral, os resultados obtidos através da síntese paralela de peptídeos em membrana foram comparados com os parâmetros determinados por programas computacionais [estrutura secundária, Bepipred, Jameson & Wolf, Kolaskar e pela correlação dos índices de antigenicidade (Jameson & Wolf, Kolaskar e Bepipred)] – Figura 23. Todas as sequências que apresentavam identidade igual ou superior a 70% foram considerados.

A média observada entre os resultados obtidos por todos os parâmetros utilizados (estrutura secundária, jameson & Wolf, kolaskar, bepipred e união de antigenicidade: jameson & wolf, bepipred e kolaskar) foi de 46,04%, 50,28% e 46,18% para os DENV-1, DENV-2 e DENV-3, respectivamente.

Figura 23: Correlação entre os métodos preditivos (computacionais) e experimentais (síntese paralela de peptídeos em membranas) de determinação de epitopos dos DENV

5.6. CARACTERIZAÇÃO ESTRUTURAL DOS EPITOPOS ESPECÍFICOS E COMUNS AO GRUPO DENGUE E O GÊNERO *FLAVIVIRUS*

Para verificar a existência de epitopos específicos e/ou de grupo, a biblioteca correspondente a cada proteína do DENV-1, DENV-2 e DENV-3 foi testada contra misturas de soros de pacientes com os outros sorotipos de dengue, de modo que a biblioteca de uma proteína do DENV-1 foi testada contra misturas de soros de pacientes com DENV-2 e DENV-3; os de DENV-2 foram testados contra misturas de soros de paciente com DENV-1 e DENV-3, e assim sucessivamente. Este procedimento, que foi denominado de teste de reação cruzada, possibilitou a identificação precisa de epitopos reativos para os DENV.

No Quadro 4 são apresentados os resultados da especificidade dos epitopos dos DENV-1, DENV-2 ou DENV-3 e comuns aos 3 sorotipos dos DENV de todas as proteínas dos DENV-1, DENV-2 e DENV-3, empregando mistura de soros de pacientes com outros sorotipos. Epitopos reativos para 2 sorotipos não foram contemplados.

Um total de 71, 56 e 68 epitopos dos DENV-1, DENV-2 e DENV-3, respectivamente, reagiram aos 3 sorotipos do grupo dengue, enquanto que 3, 9 e 11 epitopos reagiram de forma especifica aos DENV-1, DENV-2 e DENV-3, respectivamente.

				TESTE DE REAÇA	ÃO CRUZA	DA				
PROTEÍNAS	SOROTIPOS	DETERMINADOS*	Posição inicial	SEQÜÊNCIAS COMUNS AO GRUPO DENGUE	Posição final	Posição inicial	SEQÜÊNCIAS ESPECIFICAS	Posição final		
			7	KKTGRPSFNMLKRARNRVSTGS	27					
	1	1	35	GLLSGQGPMK	45		0			
		7	51	IAFLRFLAIP	60		U			
			89	SSMLNIMNRR	98					
			6	KKARSTPFNMLKRERNRVSTVQ	27					
С	2	4	51	ALVAFLRFLT	58		0			
	2	-	61	PTAGILKRWG	70		0			
			96	NRRRTAGVI	105					
			7	KTGKPSINMLKRVRNRVSTG	26					
	з	4	38	LNGQGPMK	45		SEQÜÊNCIAS ESPECIFICAS Posição final 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
	5	-	51	IAFLRFLAIP	60		SEQÜÊNCIAS ESPECIFICAS Posição final 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
			91	MLSIINKRKK	100					
			115	FHLTTRGG	122					
	1	4	165	KCPRITEA	173		0			
		-	195	SQTGEHRRDKRSVA	209		v			
			230	AWKQIQKVETWALRH	244					
			115	FHLTTRNGEPHMIV	128					
PrM/M			165	KCPLLRQNE	174					
	2	4	196	TTGEHRRE	203		0			
			208	ALVPHVGM	215					
			231	WKHVQRIET	239					
			115	FHLTSRDG	122					
	3	4	195	NQAGERRRDKRSVA	209		0			
			4	4	238	ETWALRHP	245			

				TESTE DE REAÇÀ	ÃO CRUZA	DA		
PROTEÍNAS	SOROTIPOS	DETERMINADOS*	Posição inicial	SEQÜÊNCIAS COMUNS AO GRUPO DENGUE	Posição final	Posição inicial	SEQÜÊNCIAS ESPECIFICAS	Posição final
			287	GNRDFVEGLSGATWVDVVLEH	307			
			311	VTTMAKNK	318		sição icialSEQÜÊNCIAS ESPECIFICASPosição final341IEAKISNTT349341IEAKISNTT349371ICKHSM376389GKGGIVTC396455LTGYGTVTM463331LITVNPIVTEKDSPVN646111111	
			329	EVTNPAVLR	338			
			359	EATLVEEQD	367			
			377	VDRGWGNG	384			
			407	GKIVQYEN	414			
		420 IVTVHTGI	IVTVHTGD	427				
	1	18	467	PRTGLDFN	PRTGLDFN 474 341 IEAKISNTT	IEAKISNTT	349	
			479	LTMKEKSWLVHK QW	492	492 516		
			509	ETWNRQDL	516		41 IEAKISNTT 349	
			521	KTAHAKKQ	528			
			617	FLTQDEKGVTQNGRLITANPIVTDKEKPVNIE	KKQ 528 ANPIVTDKEKPVNIE 648 RMAILG 696			
E			683	EATARGARRMAILG	DKEKPVNIE 648 696 696			
			714	KLVHQVFG	721			
			743	LTWLGLNS	750			1
			300	WVDIVLEH	307	371	ICKHSM	376
			311	VTTMAKNKPTLDFE	324	389	GKGGIVTC	396
			377	VDRGWGNGC	385	455	LTGYGTVTM	463
			401	CKKNMEGKVVLPEN	414	631	LITVNPIVTEKDSPVN	646
	2	15	420	VITPHSGE	427			
	2	15	431	VGNDTGKH	438			
			467	PRTGLDFN	474			
			509	SNWIQKET	516			
			521	KNPHAKKQ	528			
			623	EKRHALGR	630			

				TESTE DE REAÇ	ÃO CRUZA			
PROTEÍNAS	SOROTIPOS	DETERMINADOS*	Posição inicial	SEQÜÊNCIAS COMUNS AO GRUPO DENGUE	Posição final	Posição inicial	SEQÜÊNCIAS ESPECIFICAS	Posição final
			287	GNRDFVEG	294	457	GTLGLE	462
			376	VDRGWGNG	384	645	IEAEPPFGES	654
			401	CLEPIEGKVVQYEN	414			
			465	PRTGLDFN	472			
E	3	19	507	PTWNRKEL	514			
			599	LIKVEYKG	606			
			623	KAHNGRLI	630			
			TESTE DE REAQPosição inicialSEQÜÊNCIAS COMUNS AO GRUPO DENGUE287GNRDFVEG376VDRGWGNG401CLEPIEGKVVQYEN465PRTGLDFN507PTWNRKEL599LIKVEYKG623KAHNGRLI635VVTKKEEPVN743WIGLNSKN811ADSPKRLSAA904QNTTFIID923RAWNIWEV971ADMGYWIE1006LWSNGVLE1025PISQHN1040AGPWHLGK88923976WIESALND1094310QNTEQYKFQ830IRSTTRMENLLWKQIANELNYILWEN921RAWNSUEV973YWIESQKN1038AGPWHLGK	VVTKKEEPVN	644			
				750				
			811	ADSPKRLSAA	820	892	SWGKAK	897
			833	RSATRL	837		SEQÜÊNCIAS ESPECIFICAS IEAEPPFGES SWGKAK SWGKAK 897 SWGKAK 807 SWGKAK SWGKAK 807 SWGKAK 807 SWGKAK 807 SWGKAK 807 SWGKAK 807 SWGKAK 807 SWGKAK 807 SWGKAK 807 SWGKAK 807 SWGKAK 807 SWGKAK 807 SWGKAK 807 SWGKAK 807 SWGKAK 807 SWGKAK 807 SWGKAK 807 SWGKAK SWGK SWGKAK SWGKAK SWGKAK SWGKAK SWGKAK SWGKAK SWGKAK SWGKAK SWG	
			904	QNTTFIID	911			
	1	10	923	RAWNIWEV	930		SEQÜÊNCIAS ESPECIFICAS Posição final GTLGLE 462 IEAEPPFGES 654 IEAEPPFGES 654 SWGKAK 897 SWGKAK 897 PESPSK 816 PESPSK 816 LTPQPMELK 874 FIIDGPNT 913	
	1	10	971	ADMGYWIE	978			
			1006	LWSNGVLE	1013			
			1025	PISQHN	1030			
			1040	AGPWHLGK	1047			
			797	TDNVHTWT	805	811	PESPSK	816
NS1			832	IRSVTR	837			
	2	8	923	RAWNSLEV	930			
			943	WLKLRE	948			
			976	WIESALND	983			
			803	WTEQYKFQ	808	867	LTPQPMELK	874
			830	IRSTTRMENLLWKQIANELNYILWEN	856	906	FIIDGPNT	913
	3	10	921	RAWNVWEV	928			
	Ŭ	10	973	YWIESQKN	980			
			1038	AGPWHLGK	1045			
			1066	TRGPSLRT	1073			

PROTEÍNAS				TESTE DE REAÇ	ÃO CRUZA	DA	A				
PROTEÍNAS	SOROTIPO	DETERMINADOS	Posição inicial	SEQÜÊNCIAS COMUNS AO GRUPO DENGUE	Posição final	Posição inicial	SEQÜÊNCIAS ESPECIFICAS	Posição final			
NG1			1093	PLRYMGED	1100						
NG1			1106	MEIRPISE	1114						
	1	7	1146	IEEVMRSRWSGK	1157	1255	AMGIMMLKLL	1264			
			1152	TRVGTKHV	1159						
	2	6	1175	MSFRDLGR	1182		0				
NS2a			1338	LSRTSKKR	1345						
			1142	ILFEEVMRGK	1151	1194	GMGVTY	1199			
	3	6	1312	RKTDWLPM	1319	1220	KLTSRE	1225			
			1330	PLFIFSLKDTLKRR	1343						
			1364	SSLLKNDV	1371						
	1	5	1401	AAEVSWE	1407		0				
			1469	WQKKKQR	1475						
NS2h	2	3	1364	SSLLKNDI	1371		0				
11020	2	5	1440	LTILIRTG	1447		0				
			1343	SWPLNEGVM	1353						
	3	5	1361	ASSLLRND	1368		0				
			1399	AADITWEE	1407						
			1503	RGLLGRSQ	1510						
			1529	RGAVLMYQ	1536						
			1553	SYGGGWRFQG	1562						
			1614	IVNREGKIVGLYG	1626						
			1665	TIMDLHPGSGKTRR	1678						
NS3	1	17	1872	KTKNNDWD	1879		0				
			1929	SAAQRR	1934						
			1971	LDNINTPE	1978						
			2021	WLSYKVAS	2028						
			2061	EGERKKLRPRWL	2072						
			2088	EFAAGRR	2094						

				TESTE DE REAÇ	ÃO CRUZA	DA		
PROTEÍNAS	SOROTIPO	DETERMINADOS	Posição inicial	SEQÜÊNCIAS COMUNS AO GRUPO DENGUE	Posição final	Posição inicial	SEQÜÊNCIAS ESPECIFICAS	Posição final
			1481	DVPSPPPV	1488			
			1495	DGAYRIKQRGILGYSQ	1510		ão SEQÜÊNCIAS ESPECIFICAS Posição final 2 VVAAEMEEAL 1711 2 VVAAEMEEAL 1711 0 ALDFKP 1605 1 VAAEM 1705 9 QKENDQYIFTGQ 1951 1 1 1 1 1	
			1531	AVLMHRGK	1538			
	2	25	1672	GAGKTKRY	1678	1702	VVAAEMEEAL	1711
			1688	IVREAIKRGLRTLI	1696			
			1945	NDQYIY	1950			
			2085	FKEFAAGRK	2094			
			1479	VPSPPETQ	1487	DA Posição inicial SEQÜÊNCIAS ESPECIFICAS Posição final 1702 VVAAEMEEAL 1711 1600 ALDFKP 1605 1701 VAAEM 1705 1939 QKENDQYIFTGQ 1951 100 ALDFKP 1605 1701 VAAEM 1705 1939 QKENDQYIFTGQ 1951 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 <		
			1524	HVTRG	1528	1701	Posição inicial SEQÜÊNCIAS ESPECIFICAS Posição final 1702 VVAAEMEEAL 1711 1702 VVAAEMEEAL 1711 1600 ALDFKP 1605 1701 VAAEM 1705 1939 QKENDQYIFTGQ 1951 1939 QKENDQYIFTGQ 1951 100 ALDFKP 1605 1701 VAAEM 1705 1939 QKENDQYIFTGQ 1951 100 ALDFKP 1005 1701 VAAEM 1705 1939 QKENDQYIFTGQ 1951 100 ALDFKP 1005 101 VAAEM 1705 1939 QKENDQYIFTGQ 1951 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 <	1705
			1537	RLEPNWASVKKDLISYGGGWRLSA	1560	1939		1951
			1611	IINREGKVVGLYG	1624			
			1661	NLTIMDLHPGSGKTRK	1676			
			1681	IVREAIKRRL	1691			
NS3			1694	LILAPTRV	1700			
1100			1711	GLPIRYQT	1718			
			1753	NLIIMDEA	1760			
			1773	ISTRVGMGEAA	1784			
	3	19	1808	DEERDIPE	1815			
			1856	VIQLSRKTFD	1865			
			1878	WDFVVTTD	1883			
			1893	ADRVIDPR	1900			
			1926	ASAAQRRG	1933			
			1971	NINTPEGIIPALFEPEREKS	1990			
			1997	YRLKGESR	2004			
			2009	ELMRRGDLPVWLAHK	2023			
			2040	ERNNQILE	2048			
			2061	EKKKLRPRWLDARTY	2074			
			2085	KDFAAGRK	2092			

				TESTE DE REAÇ	ÃO CRUZA	DA		
PROTEÍNAS	SOROTIPO	DETERMINADOS	Posição inicial	SEQÜÊNCIAS COMUNS AO GRUPO DENGUE	Posição final	Posição inicial	SEQÜÊNCIAS ESPECIFICAS	Posição final
			2190	WMASVEPH	2197		_	
	1	3	2212	LLIPEPDR	2219		0	
NS4a	2	4		0		2095	SLTNL	2101
i i i i i i i i i i i i i i i i i i i			2093	SIALDLVT	2100			
	3	4	2105	VPSHLAHKT	2113		o SEQÜÊNCIAS ESPECIFICAS Posição final 0 0 1 0 2101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
			2185	MLWMAEIPLQ	2195			
			2252	TTKKDLGI	2259			
	1	4	2371	QAKATREAQK	2389		0	
NS4b			2464	GGRRGTGA	2478			
			2252	KTKKDLGL	2259			
	2	7	2286	MLRHSIEN	2303		SEQÜÊNCIAS ESPECIFICAS Posição final 0 0 SLTNL 2101 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
			2450	WEGNPGRF	2457			
			2251	TTKRDLGM	2257			
			2270	YLDVDLHP	2277			
	3	6	2294	MLRHTIEN	2301		0	
			2369	QAKATREAQKRTAAGIMKN	2387			
			2442	GPITTLWEGSPGKFW	2456			
			2536	EGLKRGET	2543			
			2548	VSRGTAKL	2555			
			2594	KGYTKGGP	2601			
			2659	KMVEPWLRGN	2669			
NCE	4	24	2685	TLEQMQRKHGGMLVRNPLSRNST	2707		0	
1100	1	24	2724	VNMTSRLLNRFTMAH	2739		0	
			2765	NLDIIG	2770			
			2854	RTPRAKR	2860	1		
		2	2889	EFIRKV	2894			
			2892	VFVDENQWNSAK	2903			

			TESTE DE REAÇÃO CRUZADA					
PROTEÍNAS	SOROTIPO	DETERMINADOS	Posição inicial	SEQÜÊNCIAS COMUNS AO GRUPO DENGUE	Posição final	Posição inicial	SEQÜÊNCIAS ESPECIFICAS	Posição final
			2908	DERFWDLVHREREL	2921			
			3082	MDVISRRD	3089			
			3135	VLDWLEKHGAERLKRMAISGD	3155			
			3189	SKGWNDWQQ	3197			
	1		3203	HHFHQLIM	3210		0	
			3158	VVKPIDDRFA	3167		0	
			3248	KSYAQMWQLMYFHR	3261			
			3288	SIHAHHQWMT	3297			
			3319	KTHVSSWE	3326	4		
			3373	DYMTSMKRFKNESDP	3387			
			2497	NIGETLGEKWKSRLNTLGK	2515	2619	LQSGVDVF	2626
			2533	LAKEGIKRGETDHH	2546	2813	MVNGVVRL	2821
			2688	ETLQRKYG	2695			
NS5			2700	GALVRNPLSRN	2710			
			2772	KRIEKIKQEHETSW	2785			
			2790	DHPYKTWAYHGSYE	2803			
			2872	EWLWKELGKKKTPR	2885			
			2890	MCTREEFTRKVR	2897			
	2	27	3001	EGEGLHRLGY	3010			
			3073	VQRPTPRGTVMDIISR	3088			
			3091	QRGSGQVG	3097			
			3138	QNWLARVGRERLSRMAISGDD	3158			
			3185	IQQWEPSRG	3193			
			3231	RARISQGAGWS	3241			
			3250	KSYAQMWT	3257			
			3321	KTPVESWE	3329			
			3375	DYMPSMKR	3382			

PROTEÍNAS				TESTE DE REAÇA	ÃO CRUZA			
PROTEINAS	SOROTIPO	DETERMINADOS	Posição inicial	SEQÜÊNCIAS COMUNS AO GRUPO DENGUE	Posição final	Posição inicial	SEQÜÊNCIAS ESPECIFICAS	Posição final
			2552	KLQWFVERNMVIPEG	2566	2530	TEAKEGLKRGEI	2541
			2621	KDVFYLPP	2628	3031	ITEDDLHNEE	3040
			2657	KMVEPWLKNN	2666			
			2697	RNPLSRNSTHEMYWI	2711			
			2782	WHYDDENP	2789			
NS5	3	29	2854	PRSMPGTR	2861			
			3047	DPEHRQLAN	3055			
			3228	RARISQGA	3235			
			3289	HAHHQWMT	3297			
			3318	KTPVTTWENVPYLG	3331			
			3344	LTSRATWA	3351			

Para verificar a existência de epitopos de reação cruzada extra-grupo dengue, os epitopos específicos e comuns aos 3 sorotipos dos DENV foram avaliados contra a mistura de soros de pacientes com outras patologias e vacinados para febre amarela. Não foi verificada a reação cruzada quando utilizados soros de outras patologias, o que demonstra a alta especificidade dos epitopos identificados. Entretanto, na avaliação de soros de vacinados para febre amarela foi possível verificar que 9 epitopos reagiram cruzadamente (Quadro 5).

A homologia de seqüências entre o vírus da febre do Nilo (acesso GenBank número AF404757_1), virus da encefalite japonesa (acesso GenBank número AAF34186.1), vírus da febre amarela (acesso GenBank número AAC72235.1) e as sequências dos DENV-1, DENV-2 e DENV-3 demonstrou que tais regiões são comuns a outros membros do gênero *Flavivirus* (dados não mostrados), o que sugere a existência de epitopos gênero-específicos.

	# FPITOPOS		TESTE DE REAÇÃO CRUZADA					
PROTEINAS	DETERMINADOS	IADOS POSIÇÃO SEQÜÊNCIAS COMUNS AOS MEMBROS DO INICIAL GÊNERO <i>FLAVIVIRUS</i>						
E	1	378	DRGWGNG	384				
NS1	1	1106	MEIRP	1110				
		1668	D/FLHPGS/AGKT	1676				
NCO	1693	1693	LILAPTRV	1700				
1133	4	1927	SAAQRRG	1933				
		2015	DLPVWL	2021				
		2699	PLSRNSTHEMYW	2710				
NS5	3	3091	QRGSGQV	3096				
		3151	RMAISGDD	3158				

Quadro 5: Epitopos comuns ao grupo dengue que reagiram com mistura de soros de vacinados para febre amarela.

5.7. LOCALIZAÇÃO TRIDIMENSIONAL DOS PEPTÍDEOS IMUNOGÊNICOS

Para a maioria das proteínas dos DENV-1, DENV-2 e DENV-3, foram identificadas uma ou mais proteínas de estrutura 3D previamente elucidada, que foi utilizada como proteína-molde para a construção dos modelos tridimensionais (Quadro 6 e Figura 24).

Todos os moldes selecionados apresentavam regiões com alta flexibilidade de troca conformacional, e, portanto, baixa resolução em RMN ou cristalografia de raios-X, não sendo possível obter um molde capaz de elucidar todos os resíduos correspondentes a cada uma das proteínas analisadas.

Para cada proteína dos DENV-1, DENV-2 e DENV-3 com molde disponível, foram construídos 30 modelos no programa Modeller (versão 9v4), dos quais apenas um foi selecionado, baseando-se na função objetiva e nos resultados de validação obtidos pelos programas Procheck e Prove.

As proteínas NS1, NS2a, NS4a e NS4b não tiveram seus modelos construídos, devido à indisponibilidade de proteínas-moldes elucidadas. A proteína NS2b não teve sua estrutura modelada em virtude da baixa homologia com a sequência-alvo, o que poderia resultar na construção de zonas desordenadas, o que tornaria o resultado com baixa confiabilidade.

Quadro	6:	Númei	ro de	acesso	das	proteínas	depositadas	no	banco	de	dados	de	proteínas,
usadas	em	nosso	estud	o para a	a moo	delagem po	or homologia	das	proteín	as d	dos DEl	NV-	1, DENV-2
e DENV	-3.												

Proteínas	DENV-1	DENV-2	DENV-3
С	1R6R	1R6R	1R6R
PrM-M	3C6D	3C6D	3C6D
E	1TGE, 1TG8	1UZG, 2HG0	1TG8
NS3	2V8O, 2Z83	2V8O, 2Z83	2V8O
NS5	2P3Q	2P3Q	2P3Q

Figura 24: Estrutura das diferentes proteínas disponíveis no banco de dados de proteínas elucidadas por diferentes metodologias que foram utilizadas como molde para a construção dos modelos-3D das proteínas dos DENV (Egloff *et al.*, 2002; Benarroch *et al.*, 2004; Ma *et al.*, 2004; Zhang *et al.*, 2004; Modis *et al.*, 2005; Nybakken *et al.*, 2006; Li *et al.*, 2008; Redondo *et al.*, 2008)

A qualidade estereoquímica geral de cada modelo mapeado foi avaliada pela distribuição dos resíduos gerados pelo gráfico de Ramachandran. No Quadro 7 é apresentada a avaliação dos modelos gerados para cada proteína dos DENV. Para um modelo ser considerado de boa qualidade, espera-se que mais de 90% dos resíduos estejam nas regiões mais favoráveis.

Quadro 7: Avaliação da qualidade estereoquímica geral dos modelos-3D obtidos através do programa Procheck (servidor SAVS - <u>http://nihserver.mbi.ucla.edu/SAVS/</u>)

		Programa Procheck					
Proteínas	Sorotipos dos DENV	% regiões permitidas e/ou favoráveis da proteína	% regiões generosamente favoráveis	% regiões desfavoráveis			
	1	94	2,9	2,9			
С	2	94	2,9	2,9			
	3	94	2,9	2,9			
	1	94	4,3	1,4			
PrM-M	2	98,5	1,4	0			
	3	98,5	1,4	0			
	1	98	1,2	0,6			
E	2	99,4	0,3	0,3			
	3	97	2,7	0,3			
	1	99,5	0,3	0,3			
NS3	2	99,5	0,3	0,3			
	3	98,9	0,4	0,7			
	1	99,5	0,5	0			
NS5	2	100	0	0			
	3	99,5	0,5	0			

Para a proteína C, dois resíduos correspondentes às regiões desfavoráveis do DENV-1 (L₃₇ e Q₄₁) e o resíduo Q₄₁ do DENV-3 apesar de serem constituintes de regiões imunogênicas comuns entre o grupo dengue, não influenciaram na construção do modelo. Os demais resíduos localizados na região desfavorável não estavam relacionados a epitopos identificados neste estudo e, portanto, não influenciaram na construção do modelo.

Pelo programa Prove, o volume atômico das proteínas modeladas foram determinadas através do Z-score, que é o desvio padrão do volume atômico em relação à média de cada tipo de átomo envolvido no mapeamento. Para todos os modelos construídos, foram obtidos valores de Z-score maiores que 1,2, o que é esperado para estrutura de baixa resolução, como as obtidas por modelagem por homologia (dados não mostrados).

Proteína C

Para a proteína C, a proteína-molde selecionada (1R6R) correspondeu a um dímero simétrico da cepa PR159-S1 (1969) do DENV-2, circulante em Porto Rico, resolvido por ressonância magnética nuclear (RMN). A identidade obtida entre a proteína-molde e os alvos foram 69%, 98% e 66% para os DENV-1, DENV-2 e DENV-3, respectivamente (Anexo 5).

A construção do modelo foi realizada através da sobreposição dos dois monômeros dos DENV naqueles que compõem o dímero da proteína 1R6R, utilizando o programa *DeepView/Swiss-PdbViewer* versão 3.7. Os 20 primeiros resíduos e os 14 últimos resíduos de aminoácido da proteína-molde, por serem conformacionalmente lábeis, apresentaram baixa resolução em RMN e, portanto, não foi possível obter um molde capaz de elucidar os 114 resíduos correspondentes à proteína C. Apesar dos modelos obtidos serem compostos por 80 resíduos, quatro regiões imunogênicas identificadas pela síntese paralela de peptídeos em membranas puderam ser destacadas (Figura 25).

A análise de cada sorotipo separadamente permitiu a verificação de que todas as regiões imunogênicas se apresentavam em regiões acessíveis ao solvente. Além disso, quando representados conforme sua estrutura secundária, tais epitopos estavam localizados na região de alfa hélice e/ou em alças (do inglês *loop*).

Figura 25: Estrutura-3D da proteína C dos DENV-1, DENV-2 e DENV-3, gerada por modelagem por homologia, destacando por cores os epitopos identificados pela síntese paralela de peptídeos (A) Superfície molecular; (B) Representação em fita (do inglês *ribbon*) da cadeia polipeptídica

Proteína prM-M

A glicoproteína prM-M imatura utilizada neste estudo foi composta por 166 resíduos, cujo modelo selecionado foi obtido através da crio-eletromicroscopia (proteína 3C6D). A identidade com a proteína-molde selecionada foi de 79%, 97% e 81% para os DENV-1, DENV-2 e DENV-3, respectivamente (Anexo 6).
A construção do modelo foi realizada nos 81 primeiros resíduos N-terminal, que corresponde ao fragmento "pr", composto por 91 resíduos. Em virtude da baixa resolução, não foi possível obter um molde capaz de elucidar os resíduos correspondentes à proteína M.

A Figura 26 apresenta os modelos construídos para a proteína "pr", ressaltando os epitopos identificados pela metodologia de síntese paralela de peptídeos em membrana. Para os DENV-1 e DENV-2 dois dos quatro epitopos identificados apresentaram estrutura determinada e para o DENV-3 apenas um epitopo dos quatro epitopos teve a sua estrutura ressaltada.

Figura 26: Estrutura-3D da proteína "pr" dos DENV-1, DENV-2 e DENV-3, gerada pelo programa Modeller e analisada através do programa Swiss-pdb-viewer, destacando por cores os epitopos identificados pela síntese paralela de peptídeos. (A) Superfície molecular e (B) Representação em fita (do inglês *ribbon*) da cadeia polipeptídica

A análise de cada sorotipo separadamente sugeriu que todas as regiões imunogênicas se apresentavam em regiões acessíveis ao solvente. Além disso, quando representados conforme sua estrutura secundária, tais epitopos estavam localizados em alças e/ou em fitas beta-pregueadas – Figura 27.

Figura 27: Estrutura primária da proteína prM-M (Modeller versão 9v4), ressaltando as estruturas secundárias. Sublinhados estão indicados os epitopos identificados experimentalmente.

Proteína E

Para a modelagem da proteína E, os modelos para a construção da estrutura-3D disponíveis no PDB, apresentaram diferentes graus de identidade e e-value de acordo com os sorotipos dos DENV. Para os DENV-1, as estruturas selecionadas (1TGE e 1TG8) foram elucidadas por crio-eletromicroscopia е difração de raio-X. respectivamente, e apresentaram aproximadamente 67 e 68% de identidade com o sorotipo 1 dos DENV. Como as estruturas do 1TGE e 1TG8 são diferentes tridimensionalmente, a modelagem foi realizada utilizando ambas as estruturas como molde. Este procedimento também foi utilizado para a construção do modelo do DENV-2, que teve como modelo as proteínas 1UZG e 2HG0. Ambas as proteínas foram elucidadas por difração de raio-x e apresentaram 67 e 47% de identidade com este sorotipo. Já para o DENV-3, como o modelo selecionado (1TG8) apresentou 69% de identidade, a construção do modelo-3D foi realizada a partir de um único modelo.

O Anexo 7 apresenta o alinhamento múltiplo realizado entre os modelos selecionados para a construção da estrutura tridimensional e os sorotipos correspondentes.

Em virtude da ausência de alguns resíduos na estrutura elucidada, não foi possível a construção de um modelo que contemplasse todos os resíduos das proteínas dos DENV. Desta forma, os modelos obtidos foram compostos por 405 resíduos para os DENV-1, 403 resíduos para os DENV-2 e 395 resíduos para os DENV-3.

As Figuras 28, 29 e 30 apresentam a análise dos modelos obtidos através do programa de computação Swiss-pdb-viewer, destacando os epitopos dos DENV-1, DENV-2 e DENV-3, respectivamente, identificados pelo teste de reação cruzada (Quadro 4). Dos 16 epitopos identificados para os DENV-1, 12 epitopos tiveram suas seqüências mapeadas tridimensionalmente no programa Swiss-PDB-viewer. Para os DENV-2, todos os 14 epitopos identificados neste estudo foram mapeados. Para os DENV-3, dos 11 epitopos identificados neste estudo, 10 epitopos tiveram suas seqüências mapeadas tridimente.

Figura 28: Estrutura-3D da proteína E dos DENV-1 gerada pelo programa Modeller (versão 9v4) e analisada através do programa Swiss-pdbviewer, destacando por cores os epitopos identificados experimentalmente. (A) Superfície molecular; (B) Formato ribbon; (C) Superfície molecular do epitopo específico, com sua cadeia principal e lateral em destaque

Mapeamento de epitopos B de proteínas imunogênicas dos vírus dengue tipos 1, 2 e 3

Figura 29: Estrutura-3D da proteína E dos DENV-2 gerada pelo programa Modeller (versão 9v4) e analisada através do programa Swiss-pdbviewer, destacando por cores os epitopos identificados experimentalmente. (A) Superfície molecular; (B) Formato ribbon; (C) Superfície molecular do epitopo específico, com sua cadeia principal e lateral em destaque

Figura 30: Estrutura-3D da proteína E dos DENV-3 gerada pelo programa Modeller (versão 9v4) e analisada através do programa Swiss-pdbviewer, destacando por cores os epitopos identificados experimentalmente. (A) Superfície molecular; (B) Formato ribbon; (C) Superfície molecular do epitopo específico, com sua cadeia principal e lateral em destaque

Tese de doutorado - Thatiane Santos De Simone

A análise de cada sorotipo separadamente permitiu a verificação de que todos os epitopos se apresentavam em regiões acessíveis ao solvente, exceto a região imunogênica I₄₂₀-D₄₂₇ do DENV-1. Esta região foi destacada (rosa) e o mapeamento do potencial de superfície utilizando o mesmo programa, permitiu a verificação de que três (V₄₂₁, T₄₂₅ e G₄₂₆) dos oito resíduos que constituem a seqüência 420-IVTVHTGD-427 estavam localizados no interior da molécula, em regiões inacessíveis ao solvente. Isto significa que os resíduos restantes na estrutura tridimensional, foram capazes de desencadear reação com mistura de soros de pacientes com dengue. Os epitopos restantes identificados neste estudo para os DENV-1, assim como aqueles obtidos para os DENV-2 e DENV-3 estavam localizados em regiões acessíveis ao solvente (Figura 31).

Figura 31: Estrutura primária da proteína E (Modeller versão 9v4), ressaltando as estruturas secundárias. Sublinhados estão indicados os epitopos identificados experimentalmente, cujo epitopo específico foi colorido de vermelho. Em destaque, a região imunogênica cujos resíduos de aminoácidos encontravam-se no interior da molécula.

Proteína NS3

Para a proteína NS3, duas proteínas-molde (2V8O e 2Z83) foram selecionadas para os DENV-1 e DENV-2 e apenas uma proteína molde (2V8O) foi selecionada para os DENV-3. As estruturas 2V8O e 2Z83 foram elucidadas por cristalografia de raio-x para o vírus Murray Valley e eram compostas por 445 resíduos (Mancini *et al.*, 2007). A

identidade da proteína molde com os sorotipos dos DENV variaram entre 62 e 64% para os DENV-1 e DENV-2, respectivamente, e 65% para os DENV-3.

O anexo 8 apresenta um alinhamento múltiplo realizado entre as proteínas molde e as proteínas NS3 dos DENV, destacando os motivos de seqüência das atividades de helicase, nucleosídeo trifosfatase (NTPase) e RTPase, característicos das proteínas NS3.

Como as estruturas 2V8O e 2Z83 foram diferentes tridimensionalmente, a modelagem para os DENV-1 e DENV-2 foi realizada utilizando um parâmetro avançado no programa modeller, que realiza a construção de um modelo tridimensional a partir de várias estruturas. Para os DENV-3, a construção do modelo tridimensional foi realizada utilizando o parâmetro básico do programa modeller, cuja construção foi realizada a partir de um único modelo (2V8O).

Com o intuito de visualizar a localização precisa dos domínios contendo os motivos de seqüência responsáveis pelas atividades da proteína NS3, as regiões destacadas na Figura 31 foram também destacadas na estrutura tridimensional da proteína NS3 do DENV-1 (Figura 32).

Figura 32: Localização-3D dos domínios carboxi-terminais proteína NS3 do DENV-1, gerada por modelagem por homologia. (A) Superfície molecular; (B) em fita (*ribbon*); Em destaque, os motivos de seqüências das atividades de helicase, RTPase e NTPase da proteína NS3

175 resíduos amino-terminais Os da proteína molde, por serem conformacionalmente lábeis, não foram elucidados e, portanto, os modelos obtidos para as proteínas dos DENV-1 e DENV-2 apresentaram 443 resíduos. Da mesma forma para os DENV-3, a construção do modelo apresentou 428 resíduos. Desta forma, na análise dos epitopos identificados pela metodologia experimental (em destaque), através do programa computacional swiss-pdb-viewer, dos onze epitopos identificados pelo teste de reaão cruzada para os DENV-1 (Quadro 4), a localização tridimensional dos quatro primeiros não pôde ser destacada (Figura 33). Da mesma forma, para os DENV-2, dos oito epitopos identificados, foram mapeados através do swiss-pdb-viewer cinco epitopos, incluindo o epitopo específico para este sorotipo $(V_{1702}-L_{1711})$ (Figura 34). Para os DENV-3, dos 24 epitopos identificados, 12 puderam ser mapeados no swiss-pdb-viewer, incluindo um epitopo especifico para este sorotipo (Q₁₉₃₉-Q₁₉₅₁) (Figura 35). As regiões A₁₆₀₀-P₁₆₀₅ e V₁₇₀₁-M₁₇₀₅, também foram identificadas como específicas para o DENV-3, entretanto, não puderam ser mapeados através da estrutura tridimensional.

Figura 33: Estrutura-3D da proteína NS3 dos DENV-1 gerada por modelagem por homologia, destacando por cores os epitopos identificados pela síntese paralela de peptídeos em membranas. (A) Superfície molecular; (B) *ribbon*

Figura 34: Estrutura-3D da proteína NS3 dos DENV-2 gerada por modelagem por homologia, destacando por cores os epitopos identificados pela síntese paralela de peptídeos em membranas. (A) Superfície molecular; (B) *ribbon*; (C) epitopo específico, com sua cadeia principal e lateral em destaque

Mapeamento de epitopos B de proteínas imunogênicas dos vírus dengue tipos 1, 2 e 3

Figura 35: Estrutura-3D da proteína NS3 dos DENV-3 gerada por modelagem por homologia, destacando por cores os epitopos identificados pela síntese paralela de peptídeos em membranas. (A) Superfície molecular; (B) *ribbon*; (C) epitopo específico, com sua cadeia principal e lateral em destaque

Proteína NS5

A última proteína modelada foi a NS5, cujo modelo disponível no PDB, apresentou identidade de 73% para os DENV-1, 91% para os DENV-2 e 70% para os DENV-3. A proteína molde selecionada (2P3Q), elucidada por difração de raio X, apresenta 295 resíduos e, portanto, dos 20 epitopos do DENV-1 identificados pelo teste de reação cruzada (Quadro 4), 6 puderam ser analisados através do programa swiss-pdb-viewer (Figura 36). Para os DENV-2, dos 19 epitopos identificados, 5 puderam ser avaliados (Figura 37) e para os DENV-3, dos 13 epitopos identificados neste estudo, 5 puderam ser avaliados com relação a sua estrutura-3D (Figura 38).

O anexo 9 apresenta o alinhamento múltiplo realizado entre os modelos selecionados para a construção da estrutura tridimensional e as proteínas NS5 dos DENV-1, DENV-2 e DENV-3.

Figura 36: Estrutura-3D da proteína NS5 dos DENV-1 gerada pelo programa Modeller (versão 9v4) e analisada através do programa Swiss-pdbviewer, destacando por cores os epitopos identificados experimentalmente. (A) Superfície molecular; (B) *ribbon*

Figura 37: Estrutura-3D da proteína NS5 dos DENV-2 gerada pelo programa Modeller (versão 9v4) e analisada através do programa Swiss-pdbviewer, destacando por cores os epitopos identificados experimentalmente. (A) Superfície molecular; (B) *ribbon* (C) epitopo específico, com sua cadeia principal e lateral em destaque

Figura 38: Estrutura-3D da proteína NS5 dos DENV-3 gerada pelo programa Modeller (versão 9v4) e analisada através do programa Swiss-pdbviewer, destacando por cores os epitopos identificados experimentalmente. (A) Superfície molecular; (B) *ribbon* (C) epitopo específico, com sua cadeia principal e lateral em destaque A análise de cada sorotipo separadamente permitiu a verificação de que todos os epitopos se apresentavam em regiões acessíveis ao solvente (Figura 39). O epitopo específico para os DENV-2 estava localizado em região de alça, quando visualizado em sua estrutura-3D.

Figura 39: Estrutura primária da proteína NS5 (Modeller versão 9v4), ressaltando as estruturas secundárias. Sublinhado em preto, encontra-se o epitopo do DENV-2 identificado neste estudo e em vermelho, encontra-se o epitopo específico, também do DENV-2

6. DISCUSSÃO

Nos últimos anos, a situação do dengue no país tem desafiado a comunidade científica, no intuito de buscar soluções para o combate à expansão de surtos e epidemias, já que até o momento não está disponível uma vacina eficaz, nem foi descrita uma terapia antiviral efetiva para dengue (WHO, 2002; Crance et al., 2003). Desta forma, pesquisas relacionadas à virologia, epidemiologia e metodologias de diagnóstico desta infecção têm aumentado com o passar dos anos. Em particular, a Bioquímica sofreu uma verdadeira revolução, principalmente devido aos avanços na área de Biologia Molecular, que vem disponibilizando uma incrível gama de informações sobre os sistemas biológicos. O surgimento da Era genômica permitiu, a partir de següências de DNA dos genes, deduzir a següência de aminoácidos das proteínas por elas codificadas e, desta forma, contribuiu para elucidar a estrutura do genoma viral e auxiliar no entendimento sobre a evolução molecular envolvendo estes vírus (Dutt et al., 2000). Entretanto, com a necessidade de obter informações não apenas da estrutura, mas também saber como as proteínas operam para exercer suas funções surgiu a Era proteômica, e mais recentemente, as Eras peptidômica e imunômica, com metodologias que permitem a síntese e análise dos peptídeos (Schrader et al., 2001; Soloviev et al., 2005).

Dentre uma variedade de metodologias disponíveis para este fim, a síntese paralela de peptídeos em membranas vem se destacando, nas últimas décadas, por sua acessibilidade rápida e econômica de mapear sítios de interação em diversos sistemas, incluindo a modificação enzimática de peptídeos e reconhecimento proteína-proteína, na preferência de substratos por enzimas, como quinases, proteases e fosfatases, além de permitir a identificação de epitopos consecutivos, através da interação peptídeos-anticorpos, que é a sua aplicação mais freqüente (Reineke *et al.*,1999; 2001; Hilpert *et al.*,2007).

A identificação (ou mapeamento) de epitopos de uma proteína pode ser realizada através da interação com moléculas derivadas do sistema imune, através da triagem de toda a seqüência de aminoácidos que compõem a proteína em questão, em um processo chamado de mapeamento de epitopos. Esta interação ocorre através da formação de interações não-covalentes entre os sítios existentes na porção variável dos anticorpos (sítios ou paratopos) e regiões discretas de um agente externo (epitopo). Como descrito por Paige & Wu (1989), esta interação poderia ser vista como um sistema

"chave-fechadura", onde um paratopo reconhece uma região especifica do agente externo cuja estrutura seria diretamente complementar.

Durante uma infecção natural, a grande maioria dos anticorpos antígenosespecíficos é direcionada contra epitopos conformação-dependente na estrutura nativa (também denominados de epitopos não-consecutivos). Neste caso, para a sua ligação seria necessária uma interação inter e intra-molecular que permitisse que aminoácidos distantes na estrutura primária se aproximassem para formar um determinante antigênico. Entretanto, sabe-se que além dos epitopos não-consecutivos, existem aqueles cujos aminoácidos encontram-se dispostos consecutivamente na proteína. De forma didática, tais epitopos foram denominados de consecutivos, embora seja notório que epitopos consecutivos reconhecidos podem representar partes constituintes de epitopos não consecutivos e vice-versa (Novotny *et al.*, 1989; Laver *et al.*,1990; Cason, 1994).

Neste estudo, a síntese paralela de peptídeos em membranas se mostrou eficiente na identificação de epitopos responsáveis pelo desencadeamento da resposta imune humoral dos DENV, em relação aos programas computacionais tradicionalmente utilizados para a predição de epitopos. A concordância de 46,04%, 50,28% e 46,18% para os DENV-1, DENV-2 e DENV-3, respectivamente, observada pela comparação dos programas computacionais utilizados para a predição de epitopos, corrobora com o grau de confiança geralmente estimado para a predição de epitopos através destes programas (Novotny *et al.*,1986; Pontoppidan, *et al.*, 2006), mesmo com a utilização de mais de uma metodologia para a confiabilidade dos resultados. Em contrapartida, a utilização da síntese paralela de peptídeos em membranas permitiu a determinação inequívoca de regiões imunogênicas dos DENV através da síntese em microescala de um grande número de peptídeos simultaneamente.

Um estudo inicial utilizando a estratégia composta por peptídeos contendo 15 resíduos com sobreposição de 7 resíduos gerou regiões imunogênicas com tamanho acima do esperado, pois de acordo com a literatura, epitopos consecutivos variam em média de 5 a 20 resíduos (Meloen, 2001; Enshell-Seijffers *et al.*,2003). Desta forma, nova estratégia de síntese foi utilizada para o refinamento dos resultados, cujos peptídeos foram compostos por 10 resíduos com sobreposição de 5 resíduos (Figuras 20, 21, 22 e Quadro 3). Os epitopos obtidos através da utilização desta estratégia em

sua maioria variaram entre 5 a 20 aminoácidos, com exceção de algumas regiões imunogênicas, que apresentaram número maior de resíduos.

A caracterização dos epitopos identificados neste estudo foi realizada através da discriminação entre epitopos específicos ao sorotipo (1, 2 ou 3) e epitopos especificos ao grupo dengue e/ou à família *Flaviviridae*, através de testes de reação cruzada utilizando mistura de soros com dengue e com outras patologias e, pela analise da estrutura tridimensional dos epitopos identificados.

De forma didática, a discussão dos resultados obtidos neste estudo foi realizada de acordo com cada proteína dos DENV.

Proteína C

A primeira proteína a ser sintetizada foi a proteína C, que é uma importante proteína estrutural envolvida na maturação da partícula viral, na apoptose de células hospedeiras e no interior da partícula viral e que está envolvida na montagem do nucleocapsídeo (Lindenbach & Rice, 2001; Wang *et al.*, 2002; Zhu *et al.*, 2007).

A identificação de epitopos através da síntese paralela de peptídeos em membranas, seguido da triagem empregando mistura de soros de pacientes com o mesmo sorotipo de dengue, permitiu a identificação de 4 regiões imunogênicas para cada um dos 3 sorotipos dos DENV circulantes no país (Quadro 3). De acordo com os resultados obtidos, todos os epitopos identificados reagiram cruzadamente com os sorotipos circulantes no país, quando utilizado mistura de soros de pacientes infectados com dengue. Além disso, não reagiram utilizando mistura de outros membros da família, nem quando submetidos à avaliação utilizando mistura de soros de pacientes com outras patologias, embora as regiões K₇-S₂₇ e S₈₉-R₉₈ do DENV-1 identificadas neste estudo (Quadros 3 e 4) corresponderam às seqüências imunogênicas previamente identificadas desta proteína para os vírus da encefalite japonesa (JEV) (Huang *et al.*,1996).

Em outro estudo (AnandaRao *et al.*, 2005), baseado em análises computacionais da proteína C do DENV-2, das 3 regiões identificadas como imunogênicas utilizando soros de pacientes (N_2 - N_{10} , R_{82} - R_{85} e M_{91} - R_{99}), duas corresponderam a regiões determinadas neste estudo (K_6 - Q_{27} e N_{96} - I_{105}). A terceira região (R_{82} - R_{85}) descrita por AnandaRao e colaboradores (2005), localizava-se uma região de alfa-hélice na superfície da molécula, cuja cadeia lateral do resíduo F_{84} encontrava-se localizada internamente (dados não mostrados). Visto que a identificação desta seqüência foi

baseada em parâmetros de hidrofilicidade, em nosso estudo, esta seqüência foi contemplada apenas na predição de epitopos empregando o parâmetro de antigenicidade (Jameson & Wolf), que leva em consideração as propriedades físicoquímicas dos aminoácidos, incluindo a escala Kyte e Doolittle, utilizada pelos autores.

Análises tridimensionais da proteína C permitiram verificar que todos os epitopos identificados neste estudo estavam localizados na região de alfa hélice ou alça, expostos na superfície do dímero do capsídeo viral, sendo uma característica importante para a localização tridimensional de um epitopo imunogênico.

Em virtude de não ser encontrada informação na literatura relacionada aos demais epitopos identificados neste estudo, esta constitui a primeira descrição completa de epitopos da proteína C dos DENV-1, DENV-2 e DENV-3 circulantes no país.

Proteína prM/M

Na literatura, pouca informação a respeito da antigenicidade da proteína prM/M dos DENV tem sido descrita. Em nosso estudo, testes de reação cruzada com mistura de soros de pacientes infectados por cada sorotipo dos DENV permitiu a identificação de 4 regiões imunogênicas para os DENV-1, 4 para os DENV-2 e 4 para os DENV-3 (Quadro 4).

Segundo Vasquez e colaboradores (2002), duas regiões (L_{117} - V_{145} ; L_{217} - E_{238}) foram responsáveis por induzir respostas de anticorpos neutralizantes utilizando soros policionais anti-DENV-2. Nossos resultados corroboram com tal afirmação, com exceção da região I_{127} - G_{134} do DENV-3, que reagiu somente com o DENV-2 e DENV-3, mas não houve reação com o DENV-1. Desta forma, esta região não foi considerada como epitopo de reação cruzada para os 3 sorotipos dos DENV, visto que reações falso negativas poderiam ocorrer caso este epitopo fosse utilizado em testes de diagnostico DENV específicos. Uma análise mais abrangente dos epitopos identificados por Vasquez e colaboradores nos permitiram verificar a existência da região F_{115} - V_{128} do DENV-2, identificada em nossos resultados como reagente para os 3 sorotipos. Desta forma, é provável que a região responsável por induzir respostas de anticorpos neutralizantes para o DENV-2 apresente tamanho de peptídeo menor que o descrito, sendo composto apenas pela região F_{115} - V_{128} .

Em virtude dos resultados obtidos neste estudo, todos os epitopos reagentes para os 3 sorotipos dos DENV identificados para a proteína prM/M poderiam ser úteis para o diagnóstico especifico de dengue.

Proteína E

A proteína E é uma proteína de aproximadamente 500 aminoácidos, no qual os 400 resíduos N-terminais formam o ectodomínio, que é dividido em domínio I, II e III (Modis *et al.*, 2003). Em termos dos DENV, o dominio III elicita anticorpos neutralizantes predominantemente DENV-específicos e que são efetivos em termos de bloqueio de adsorção viral em células suscetíveis (Gromowski & Barrett, 2007).

Comparado com outros *Flavivírus*, muito pouco tem sido reportado com relação à identificação de epitopos que desencadeiam a resposta imune humoral da proteína E dos DENV. A maioria dos epitopos identificados para os DENV-1, DENV-2 e DENV-3 baseiam-se no emprego de anticorpos monoclonais e são descritos como não-consecutivos (Innis *et al.*,1989; Aaskov *et al.*,1989; Mason *et al.*,1989; Megret *et al.*,1992;Trirawatanapong *et al.*. 1992; Lin *et al.*,1994; Hiramatsu *et al.*,1996; Roehrig *et al.*,1990; Lok *et al.*,2001; Serafin & Aaskov, 2001; Thullier *et al.*,2001), embora, a existência de epitopos consecutivos, utilizando soros de pacientes, também tenha sido relatada na literatura.

Roehrig e colaboradores (1998) definiram 4 regiões antigênicas dos DENV-2 que poderiam elicitar reação com anticorpos de indivíduos infectados. Duas destas regiões (K_{316} - T_{335} e I_{632} - E_{648}) elicitaram baixos níveis de anticorpos neutralizantes *in vivo*, enquanto que como anti-peptideos, as outras regiões (K_{338} - Q_{400} e G_{503} - Q_{536}) reagiriam melhor com o vírus, que quando expostas ao tratamento com pH ácido. Nossos resultados foram capazes de elicitar resposta utilizando soros de pacientes com dengue em todos os epitopos descritos por Roehrig e colaboradores (1998), inclusive discriminou em detalhes os epitopos imunogênicos. A região G_{503} - Q_{536} , descrita como reativa para os DENV, na verdade compreende duas pequenas regiões imunorreativas S_{509} - T_{516} e K_{521} - Q_{528} . Além disso, para a região K_{338} - Q_{400} descrita como reativa utilizando soros de pacientes com dengue, neste estudo, identificamos a existência de três regiões (I_{371} - M_{376} , V_{377} - C_{385} , G_{389} - C_{396}), sendo duas delas especificas para os DENV-2 (I_{371} - M_{376} , G_{389} - C_{396}).

A região V₃₇₇-C₃₈₅, apresenta uma seqüência hidrofóbica conservada entre os *Flavivirus*, presente no domínio II da glicoproteína E do DENV-2, sendo estes essenciais para a interação entre a membrana do vírus e da célula hospedeira (Modis *et al.*,2003; Modis *et al.*,2004; Zhang *et al.*,2003). Esta região foi identificada neste estudo e reagiu cruzadamente com os sorotipos dos DENV, além de reagir com mistura de soros de voluntários vacinados para a febre amarela (Quadro 5), mas não reagiu com soros de

pacientes com outras metodologias, sugerindo que esta região seja especifica aos *Flavivirus* e seria um bom candidato em testes de diagnósticos flavivirus-especificos.

Um estudo demonstrou a existência de um polipeptídio recombinante na proteína E reativa em soros de pacientes com dengue, através do ELISA (Dos Santos *et al.,* 2004). Nossos resultados corroboraram com este estudo, demonstrando evidência definitiva da ocorrência de anticorpos anti-E em soros de pacientes com dengue. A região nucleotídica compreendida entre a posição 1093-1114 e 1564-1585 do DENV-2, correspondeu à seqüência de aminoácidos P₃₃₃-L₄₉₆ em nosso estudo, sendo possível identificar um total de 7 regiões reativas (R₃₅₃-D₃₆₇, I₃₇₁-C₃₈₅, G₃₈₉-C₃₉₆,C₄₀₁-E₄₂₇, V₄₃₁-H₄₃₈, L₄₅₅-M₄₆₃, P₄₆₇-L₄₉₆), das quais 5 regiões foram comuns aos 3 sorotipos dos DENV (V₃₇₇-C₃₈₅, C₄₀₁-N₄₁₄, V₄₂₀-E₄₂₇, V₄₃₁-H₄₃₈, P₄₆₇-N₄₇₄) e 2 regiões foram específicas para os DENV-2 (G₃₈₉-C₃₉₆ e L₄₅₅-M₄₆₃).

Os resultados obtidos neste estudo, além de corroborar com resultados previamente descritos na literatura, identificou novas regiões imunogênicas, constituindo a primeira descrição completa de epitopos consecutivos da proteína E dos DENV. Dos 18 epitopos identificados para os DENV-1, 15 epitopos reagiram cruzadamente para os 3 sorotipos e apenas 1 epitopo foi descrito como específicos para este sorotipo (Quadro 4). Os 2 epitopos restantes pareceram não induzir resposta humoral significativa nos pacientes com dengue 2 e/ou 3, sugerindo que não seriam indicados para a utilização no diagnóstico e também pouco imunogênicos nas circunstâncias de uma infecção natural por dengue. Da mesma forma, dos 15 epitopos para os DENV-2, 10 reagiram cruzadamente com os 3 sorotipos e 4 foram específicos e, para os DENV-3, dos 19 epitopos identificados, 9 reagiram cruzadamente para os 3 sorotipos e 2 foram considerados como específicos a este sorotipo (Quadro 4).

Tais resultados são úteis para o desenvolvimento de novos testes de diagnóstico para dengue, assim como auxiliam no aprimoramento de testes de diagnósticos já existentes para estes vírus, tornando-os mais específicos na identificação de casos suspeitos de dengue.

Proteína NS1

A glicoproteína não-estrutural NS1 é expressa em células de mamíferos associada à membrana, sendo sua forma secretada altamente conservada nos quatro sorotipos (Flamand *et al.*,1999). Nas últimas décadas, esta proteína tem sido utilizada no desenvolvimento de ensaios imunoenzimáticos para a sua detecção específica em

soros de pacientes suspeitos de infecção por dengue, já que sua forma hexamérica foi encontrada em soros de pacientes com dengue até o nono dia de doença (Falconar, 1997; Flamand *et al.*,1999, Young *et al.*,2000, Alcon *et al.*, 2002, Xu *et al.*,2006; Dussart *et al.*,2006; Kumarasamy *et al.*, 2007; Sekaran *et al.*, 2007; Blacksell *et al.*, 2007; Lapphra *et al.*,2008; Chuansumrit *et al.*, 2008; Phuong *et al.*,2009; Chaiyaratana *et al.*, 2009; Hang *et al.*, 2009). Além disso, tem sido sugerido que esta proteína apresente papel definitivo na patogênese do DHF, devido à reação cruzada de anticorpos geradas contra a proteína NS1, podendo conferir a proteção contra os DENV (Schlesinger *et al.*,1993; Falconar *et al.*,1997; Valdés *et al.*,2000). Desta forma, a identificação de epitopos da proteína NS1 capazes de desencadear a resposta imune humoral em soros de pacientes com dengue é de grande valia.

Apesar de poucos estudos serem encontrados na literatura envolvendo a resposta imunológica a epitopos desta proteína, estudos prévios sugerem que os determinantes antigênicos possam reagir cruzadamente com a proteína NS1 (Russel *et al.*,1970; Schlesinger *et al.*,1985). Neste estudo, testes de reação cruzada empregando mistura de soros de pacientes com dengue, permitiram verificar que dos 10 epitopos identificados para os DENV-1, 8 epitopos foram comuns aos 3 sorotipos dos DENV. Da mesma forma, dos 8 epitopos identificados para os DENV-2, 5 apresentaram reatividade cruzada e para os DENV-3, 6 dos 10 epitopos identificados também reagiram para os 3 sorotipos (Quadro 4). Testes de reação cruzada empregando soros de indivíduos vacinados para febre amarela demonstraram que apenas um epitopo (M₁₁₀₆-P₁₁₁₀) reagiu cruzadamente (Quadro 5). Tal fato não ocorreu quando empregado soros de pacientes com outras patologias, sugerindo que tais epitopos possam ser utilizados em testes de diagnóstico específicos para dengue e para os *Flavivirus*, respectivamente.

Wu e colaboradores (2003) descreveram através da metodologia de phagedisplay, a região imunogênica 887-HKYSWK-891 do DENV-2. Entretanto, a utilização de soros de pacientes com dengue não reagiu com a seqüência descrita neste estudo. Este fato pode ser explicado pela metodologia utilizada, pois estudos prévios sugerem que as seqüências consensos obtidas através da metodologia de phage-display podem não ser encontradas em seqüências de antígenos naturais (Felici *et al.*,1993; Folgori *et al.*,1994; Wu *et al.*, 2001). Em outro estudo, Chan & Guan (1994) descrevem epitopos consecutivos identificados pela metodologia de PEPSCAN, que reagiram com soros de pacientes com dengue. Dos 3 epitopos localizados na região G₈₇₅-N₉₀₅, G₁₀₂₄-Y₁₀₃₁ e Q₁₀₃₈-G₁₀₄₆, apenas a região compreendida entre G₈₇₅-N₉₀₅ dos DENV-2, não correspondeu à reação especifica do DENV-2, mas reagiu cruzadamente para os DENV-1 e DENV-3 (Tabela 6).

Dos Santos e colaboradores (2004) demonstraram a existência de um polipeptídio recombinante na proteína NS1-NS2a reativa em soros de pacientes com dengue, através do ELISA. Esta região compreendeu a seqüência de aminoácidos S₉₇₉-K₁₁₅₈ do DENV-2 e os resultados obtidos neste estudo corroboram com este estudo e sugerem a existência de inúmeras regiões que poderiam contribuir para a reatividade no ELISA. Tais regiões estariam localizadas nas posições A₉₇₉-D₉₈₃, T₁₀₃₇-H₁₀₄₄ e M₁₁₀₈-E₁₁₁₇ (Quadro 3), sendo a primeira reativa aos 3 sorotipos dos DENV (Quadro 4).

Ainda para esta proteína, foi possível a identificação de 1 epitopo específico ao DENV-1 (S₈₉₂-K₈₉₇), 1 epitopo específico ao DENV-2 (P₈₁₁-K₈₁₆) e 2 epitopos específicos ao DENV-3 (L₈₆₇-K₈₇₄ e F₉₀₆-T₉₁₃), constituindo a primeira descrição completa de epitopos imunogênicos da proteína NS1 reativos ao grupo dengue e específicos a cada sorotipo viral. A localização tridimensional dos epitopos identificados para esta proteína neste estudo não foi possível, devido à ausência de estruturas tridimensionais, que pudessem atuar como base para a modelagem da proteína-alvo.

Proteínas NS2a, NS2b, NS4a e NS4b

Informações sobre as proteínas que desencadeiam resposta imune humoral das proteínas NS2a, NS2b e NS4b são ausentes na literatura. Em geral, os estudos descritos tentam associar funções a estas proteínas e até o momento, seu papel na replicação viral é ainda incerto. Sugere-se que a proteína NS2a, seja alvo viral à ligação de organelas citoplasmáticas, durante a replicação viral e a NS4b poderia modular a replicação viral via interação com a proteína NS3 (Umareddy *et al.*,2006).

Nossos estudos demonstraram a existencia de 7 epitopos comuns aos 3 sorotipos dos DENV para a proteina NS2a e 1 epitopo especifico para os DENV-1 (Quadro 4). Da mesma forma, para as proteínas NS2b e NS4b foram verificados a existencia de 8 e 11 epitopos comuns aos 3 sorotipos dos DENV, respectivamente (Quadro 4).

Observações sobre a proteína NS4a do vírus Kunjin, membro da Família *Flaviviridae*, sugerem seu envolvimento em alguns passos da replicação viral, possivelmente através de componentes ancoradores da replicase em membranas intracelulares (Mackezine *et al.*,1998). Mais recentemente, Miller e colaboradores (2007) descreveram que a proteína NS4a encontrava-se estritamente associada com a membrana celular do hospedeiro, mesmo na ausência do fragmento 2K que é descrito

como seqüência sinal para a translocação da proteína no reticulo endoplasmático. Em concordância com AnandaRao e colaboradores (2005) e Miller e colaboradores (2007), soros de pacientes com infecção por DENV-2 contém anticorpos NS4a-específicos.

Segundo AnandaRao e colaboradores (2005), uma comparação com següências de outros flavivirus como febre amarela e vírus da encefalite japonesa, demonstraram que a região A₂₁₂₃-H₂₁₂₆ definida da proteína NS4a para os DENV-2, pertencia somente ao grupo dengue. Neste estudo, esta següência fez parte de uma següência maior, composta pelos resíduos 2123-A(V)LHT(N)A(S)EA(H/G)-2130, que foi reativa apenas para os DENV-2 e DENV-3, mas não reagiu para os DENV-1, utilizando mistura de soros de pacientes com dengue. Da mesma forma, a següência Y₂₁₃₅-E₂₁₄₀, definida como reativa para os DENV-2 através da produção de peptídeos recombinantes, reagiu de forma cruzada para os DENV-1 e DENV-2, mas não reagiu para os DENV-3 em nosso estudo, o que indica que tais regiões não seriam boas candidatas para o desenvolvimento de testes de diagnostico dengue - especifico. Em contrapartida, nossos resultados demonstraram a existência de 5 regiões reativas para a proteína NS4a dos 3 sorotipos dos DENV utilizando misturas de soros de pacientes com dengue apresentando altos níveis de IgG, duas destas seqüências provenientes do sorotipo 1, enquanto as següências restantes foram provenientes do sorotipo 3. Além disso, foi identificada uma seqüência especifica para o sorotipo 2 (S₂₀₉₅-L₂₁₀₁), que poderia ser útil no desenvolvimento de testes sorotipo específicos (Quadro 4).

Proteína NS3

A proteina NS3 é uma proteína que pertence ao complexo replicase dos DENV, cujas funções, apesar de extensivamente estudadas, são ainda apenas sugeridas na literatura. A atividade de serinil-proteases tem sido sugerida na porção amino-terminal, localizada nos primeiros 180 resíduos da proteína (Chambers *et al.*, 1990; Falgout *et al.*,1991; Wengler *et al.*,1991; Zhang *et al.*,1992).

As serinil-proteases são uma das proteases mais estudadas, onde estudos de biologia molecular e bioquímicos tem extensivamente documentado a existência de uma região catalítica, também chamada de tríade catalítica, composta pelos resíduos D_{1550} - H_{1522} - S_{1610} (Murthy *et al.*,1999).

A porção carboxi-terminal da proteína NS3 tem sido predita e implicada em três atividades enzimáticas: helicase, nucleotídeo 5´-trifosfatase (NTPase) e RTPase (Gorbalenya *et al.*,1989; Suzich *et al.*,1993; Warrener *et al.*,1993; Li *et al.*,1999; Borowski

et al.,2001; Bartelma & Padmanabhan, 2002). O domínio mínimo da helicase e NTPase foi reportado ter inicio entre os resíduos 1635 e 1655, estendendo-se a toda região carboxi-terminal (Li *et al.*,1999).

Neste estudo, o modelo selecionado para a construção de estruturas tridimensionais foi constituído por uma proteína com atividade de helicase e, portanto, os 175 resíduos amino-terminal da proteína molde, não foram elucidados. Desta forma, a tríade catalítica não pode ser visualizada, porém, os resíduos responsáveis pelas atividades de helicase, NTPase e RTPase puderam ser visualizados (Figura 32). Todas as regiões, apesar de distantes em sua estrutura primária comportaram-se como um "cluster", sendo constituídas por regiões tridimensionalmente próximas, que é uma característica descrita para esta região (Benarroch *et al.*,2004; Mancini *et al.*,2007; Rosales-Léon *et al.*,2007).

Praticamente todos os estudos envolvendo a proteína NS3 baseiam-se na busca por atividades biológicas e sua interação com antivirais. Desta forma, a identificação de seqüências imunogênicas responsáveis pelo desencadeamento de resposta humoral, poderia contribuir para a compreensão das atividades enzimáticas desta proteína, podendo ser uma ferramenta importante na busca por um tratamento especifico para esta doença.

Neste estudo, através da síntese paralela de peptídeos em membranas, um total de 64 epitopos foram descritos, dos quais 18 foram identificados para os DENV-1, 26 para os DENV-2 e 20 para os DENV-3 (Quadro 3). Estudos de reação cruzada com soros de pacientes com outros sorotipos dos DENV permitiram a identificação de 11 epitopos comuns aos 3 sorotipos para os DENV-1, 7 epitopos comuns aos 3 sorotipos para os DENV-2 e 21 epitopos comuns aos 3 sorotipos para os DENV-2 e 21 epitopos comuns aos 3 sorotipos para os DENV-3 (Quadro 4). Além disso, foi verificada a existência de 1 epitopo especifico para os DENV-2 (V₁₇₀₂-L₁₇₁₁), e 3 epitopos específicos para os DENV-3 (A₁₆₀₀-P₁₆₀₅, V₁₇₀₁-M₁₇₀₅ e Q₁₉₃₉-Q₁₉₅₁) – Quadro 4.

O papel da reação cruzada envolvendo células T e B em infecções causadas pelos DENV ainda é motivo de especulações. Entretanto, estudos revelam que os peptídeos capazes de desencadear resposta imune humoral poderiam atuar como componentes de uma vacina viral, já que os linfócitos T CD4 necessitam da ativação e proliferação de células humorais para o desencadeamento da resposta imune. Alternativamente, se a resposta de anticorpos estivesse ligada a ativação de células T CD4 e se tais peptídeos pudessem funcionar como epitopos de células T CD4 ativas,

tais peptídeos poderiam ser utilizados para desencadear a resposta imune (Roehrig *et al.*,1994; Janeway *et al.*,2001).

Kurane e colaboradores (1998) identificaram um epitopo reconhecido por clones de linfócito T CD4 e CD8 que reagiu cruzadamente com os sorotipos DENV-2, DENV-3 e DENV-4. Esta região foi compreendida entre T_{1700} - A_{1710} . Curiosamente em nosso estudo, esta região foi considerada específica para os DENV-2 e DENV-3 e da mesma forma como descrito por Kurane *et al.* (1998), não apresentou reação com soros de pacientes infectados por DENV-1. Tais epitopos seriam bons candidatos a vacinas, se reagissem com os 4 sorotipos dos DENV, mas podem auxiliar na compreensão da resposta imunológica envolvendo tais proteínas.

Proteína NS5

A proteína NS5 é considerada a proteína mais conservada dos flavivírus e por apresentar similaridade do motivo GDD, encontrado em seqüências RNA-dependentes de RNA-polimerase (RdRp) de outros vírus RNA fita positiva com esta função, tem sido implicada como sendo a polimerase viral (Bruenn, 1991). Nos DENV, este domínio catalítico está localizado na região 2762-3395 e contem seis motivos de seqüências na região C-terminal, identificados neste estudo como K2962-I2967, A3025-G3030, Q3091-T3107, I3154-D3157, L3175-K3180 e C3203-R3223.

Todos os estudos descritos na literatura envolvendo a proteína NS5 baseiam-se na determinação de atividades biológicas desta proteína e seu papel na replicação viral. Desta forma, este estudo constitui a primeira descrição envolvendo a identificação de epitopos responsáveis pelo desencadeamento da resposta imune humoral da proteína NS5.

Através da síntese paralela de peptídeos em membranas, um total de 80 epitopos foi descrito, sendo 24 para os DENV-1, 27 para os DENV-2 e 29 para os DENV-3 (Quadro 3). Estudos de reação cruzada envolvendo mistura de soros de pacientes com outros sorotipos dos DENV identificaram 20 epitopos dos DENV-1 comuns aos 3 sorotipos dos DENV, 17 epitopos dos DENV-2 e 11 epitopos dos DENV-3 que reagiram cruzadamente com mistura de soros infectados por outros sorotipos de dengue. Através desta metodologia também foi possível a identificação de 2 epitopos específicos para os DENV-2 (L₂₆₁₉-F₂₆₂₆ e M₂₈₁₃-L₂₈₂₁) e 2 para os DENV-3 (T₂₅₃₀-I₂₅₄₁ e I₃₀₃₁-E₃₀₄₀) – Quadro 4.

Análises da estrutura tridimensional da proteína NS5 dos 3 sorotipos dos DENV permitiram verificar que os epitopos analisados estavam localizados na superfície da molécula, em região acessível ao solvente (Figuras 34, 35 e 36).

Testes empregando mistura de soros de indivíduos vacinados para febre amarela identificaram 3 epitopos de reação cruzada (P_{2699} - W_{2710} , Q_{3091} - V_{3096} e R_{3151} - D_{3158}), o que sugere sua utilização em testes de diagnóstico gênero-específicos (Quadro 5).

7. CONCLUSÕES

- Este estudo constituiu a primeira descrição completa de epitopos de todas as proteínas estruturais e não estruturais dos DENV-1, DENV-2 e DENV-3.

- A síntese paralela de peptídeos em membrana demonstrou ser uma metodologia altamente eficaz no mapeamento de epitopos, onde foi possível identificar um total de 96 epitopos para os DENV-1, 103 para os DENV-2 e 107 epitopos para os DENV-3.

- A comparação dos resultados obtidos pela síntese paralela de peptídeos em membranas com a utilização de programas computacionais para a identificação de regiões com propensão à imunogenicidade demonstrou a preeminência da síntese paralela, visto que permitiu de maneira inequívoca a determinação de um grande número de regiões imunogênicas dos DENV simultaneamente.

 - A utilização de misturas de soros de pacientes com DENV-1, DENV-2 e DENV-3 em testes de reação cruzada inter-sorotipos identificou um total de 71 epitopos comuns aos 3 sorotipos para os DENV-1, 56 para os DENV-2 e 70 para os DENV-3. Tais epitopos podem ser utilizados no desenvolvimento de diagnósticos grupos-específicos, além de auxiliar no planejamento racional de futuras vacinas para dengue.

- Da mesma forma, foi possível a identificação de 3 regiões imunogênicas específicas para os DENV-1, 9 para os DENV-2 e 11 para os DENV-3, sugerindo a sua utilização no desenvolvimento de metodologias de diagnóstico sorotipos-específicos, além de contribuir para a compreensão da resposta imunológica de cada sorotipo dos DENV.

- A utilização de uma mistura de soros de vacinados para febre amarela, seguido da homologia de seqüência com outros membros do gênero *Flavivirus*, permitiram a identificação de 9 regiões comuns, que podem ser utilizadas no desenvolvimento de metodologias de diagnósticos gênero-especificos. Além disso, a utilização de mistura de soros de pacientes com outras patologias, devido à ausência de reação cruzada com qualquer epitopo identificado neste estudo comprova a especificidade dos resultados.

- Os resultados obtidos neste estudo abrem novas perspectivas com relação à patogenia da doença, que é um dos grandes problemas relacionados ao dengue.

8. REFERÊNCIAS BIBLIOGRÁFICAS

- Alcon S, Talarmin A, Debruyne M, Falconar A, Deubel V, Flamand M. Enzyme-Linked Immunosorbent Assay Specific to Dengue Virus Type 1 Nonstructural Protein NS1 Reveals Circulation of the Antigen in the Blood during the Acute Phase of Disease in Patients Experiencing Primary or Secondary Infections J. Clin. Microbiol., 2002; 40 (2): 376–381
- Almond J, Clemens J, Engers H, Halstead S, Khiem HB, Pablos-Mendez A, Pervikov Y, Tram TT. Accelerating the development and introduction of a dengue vaccine for poor children, 5-8 December 2001, Ho Chi Minh City, VietNam. Vaccine. 2002. 20:3043-6.
- Allison SL, Schalich J, Stiasny K, Mandl CW, Heinz FX. Mutational evidence for an internal fusion peptide in Flavivirus envelope protein E. J. Virol. 2001; 75: 4268-4275.
- Alvarenga LM, Diniz CR, Granier C, Chávez-Olortegui C. Induction of neutralizing antibodies against *Tityus serrulatus* scorpion toxins by immunization with a misture of defined synthetic epitopes **Toxicon** 2002; 40, 89-95.
- AnandaRao R, Swaminathan S, Khanna N. The identification of immunodominant linear epitopes of dengue type 2 virus capsid and NS4a proteins using pin-bound peptides. **Virus Res.** 2005 Sep;112(1-2):60-8.
- Anderson CR, Downs WG, Hill AE. Isolation of dengue virus from a human being in Trinidad. **Science** 1956; 124: 224-25.
- Angibaud G, Luaute J, Laille M, Gaultier C. Brain involvement in dengue fever. **J. Clin. Neuroscience** 2001; 8 (1): 63-65.
- Araujo JMG, Nogueira RMR, Schatzmayr HG, Zanotto PMA, Bello G. Phylogeography and evolutionary history of dengue virus type 3. Infect. Genet. Evol. 2009; 9: 716–25.
- Ashburn PM, Craig CF. Experimental investigations regarding the etiology of dengue fever. **J. Infect. Dis.** 1907; 4: 440–75.
- Altschul SF, MaddenTL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. **Nucl. Acid Res.** 1997; 25: 3389– 3402.

- Avirutnan P, Punyadee N, Noisakran S, Komoltri C, Thiemmeca S. Vascular leakage in severe dengue virus infections: a potential role for the nonstructural viral protein NS1 and complement. **J. Infect. Dis.** 2006; 193: 1078–1088.
- Barth OM. Atlas of Dengue Viruses Morphology and Morphogenesis. Rio de Janeiro: Imprinta Gráfica Ltda., 2000. v. 1. 209 p.
- Barreto ML; Teixeira MG. Dengue fever: a call for local, national, and international action. Lancet 2008; 372 (9634):205.
- Bartelma G, Padmanabhan R. Expression, purification, and characterization of the RNA 5'-triphosphatase activity of dengue virus type 2 nonstructural protein 3. **Virol.** 2002; 299(1):122-32.
- Benarroch D, Selisko D, Locatelli GA, Maga G, Romette JL, Canard B. The RNA helicase, nucleotide 5Vtriphosphatase, and RNA 5V-triphosphatase activities of Dengue virus protein NS3 are Mg2+dependent and require a functional Walker B motif in the helicase catalytic core. **Virol.** 2004; 328: 208– 218
- Blacksell SD. Diagnostic accuracy of rapid immunochromatographic assays for the detection of IgM antibodies to dengue virus during the acute phase of infection: a systematic review and metaanalysis. In: WHO. Dengue diagnostics: proceedings of an international workshop-2004. Geneva, Switzerland. 2005, 32-38.
- Blacksell SD, Bell D, Kelley J, Mammen Jr MP, Gibbons RV, Jarman RG, Vaughn DW, Jenjaroen K, Nisalak A, Thongpaseuth S, Vongsouvath M, Davong V, Phouminh P, Phetsouvanh R, Day NP, Newton PN. Prospective study to determine accuracy of rapid serological assays for diagnosis of acute dengue virus infection in Laos. Clin. Vacc. Immunol. 2007; 14:1458-64.
- Blaney Jr JE, Durbin AP, Murphy BR, Whitehead SS. Development of a live attenuated dengue virus vaccine using reverse genetics. **Viral Immunol** 2006;19:10-32.
- Boom R, Sol C J A, Salimans M M M, Jansen C L, Wertheim-Van Dillen P M E, Van Der Noordaam J. Rapid and single method for purification of nucleic acid. **J. Clin. Microbiol**. 1990; 28: 495-503.
- Borowski P, Lang M, Niebuhr A, Haag A, Schmitz H, Schulze zur Wiesch J, Choe J, Siwecka MA, Kulikowski T. Inhibition of the helicase activity of HCV NTPase/helicase by 1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide-5 '-triphosphate (ribavirin-TP). **Acta Biochim. Pol.** 2001;48(3):739-44.
- Braga-Neto UM, Marques Jr ETA. From functional genomics to functional immunomics: New challenges, old problems, big rewards. **PLoS Comput. Biol.** 2006; 2(7): 651-62.

Bricks LF. Vacinas para a dengue: perspectivas. Pediatria (São Paulo) 2004;26(4):268-81

- Brooks, AJ, Johanson M, John AV, Xu Y, Jans DA. The interdomain region of dengue NS5 protein that binds to the viral helicase NS3 contains independently functional importin β 1 and importin α/β -recognized nuclear localization signals. **J. Biol. Chem.** 2002; 277 (39): 36399-407.
- Bruenn JA. Relationships among the positive strand and double-strand RNA viruses as viewed through their RNA-dependent RNA polymerases. **Nucl. Acid Res.** 2001; 19, 217–226.
- Callahan, JD, Wu SJ, Dion-Schultz A, Mangold BE, Peruski LF, Watts DM, Porter KR, Murpgy GR, Suharyono W, King CC, Hayes CG, Temenak JJ. Development and evaluation of serotypeand groupspecific fluorogenic reverse transcriptase PCR (TaqMan) assays for dengue virus. J. Clin. Microbiol. 2001; 39:4119–4124
- Cardosa MJ, Wang SM, Sum MSH, Tio PH. Antibodies against prM protein distinguís between previous infection with dengue and japanese encephalitis virases. **BMC Microbiol.** 2002; 2: 1-6.

Cason J. Strategies for mapping and imitating viral B-cell epitopes. J. Virol. Methods 1994; 49(2):209-19.

- Chaiyaratana W, Chuansumrit A, Pongthanapisith V, Tangnararatchakit K, Lertwongrath S, Yoksan S. Evaluation of dengue nonstructural protein 1 antigen strip for the rapid diagnosis of patients with dengue infection. **Diagn. Microbiol. Infect. Dis**. 2009. 64:91-2.
- Chan SY, Kautner I, Lam SK. Detection and serotyping of dengue viruses by PCR: a simple, rapid method for the isolation of viral RNA from infected mosquito larvae. **South. Asian J. Trop. Med. Pub. Health.** 1994;25(2):258-61.
- Chambers TJ, Hahn CS, Galler R, Rice C. Flavivirus genome organization, expression, and replication. **Annu. Rev. Microbiol.** 1990; 44: 649-88.
- Chávez-Olórtegui C, Zanetti VC, Ferreira AP, Minozzo JC, Mangili OC, Gubert IC. ELISA for the detection of venom antigens in experimental and clinical envenoming by *Loxosceles intermedia* spiders **Toxicon** 1998; 36, 563-569.
- Chen TY, Lee CT. Guillain-Barré syndrome following dengue fever. Ann. Emerg. Med. 2007;50(1):94-5.
- Chou PY, Fasman GD, Prediction of protein conformation, Biochem. 1974; 13(2):222-45
- Chungue E, Marché G, Plichart R, Boutin JP, Roux J. Comparison of immunoglobulin G enzyme-linked immunosorbent assay (IgG-ELISA) and haemagglutination inhibition (HI) test for the detection of

dengue antibodies: Prevalence of dengue IgG-ELISA antibodies in Tahiti. **Trans. Roy. Soc. Trop. Med. Hyg.**; 1989; 83: 708-11.

- Churdboonchart V, Bhamarapravati N, Peampramprecha S, Sirinavin S. Antibodies against dengue viral proteins in primary and secondary dengue hemorrhagic fever. **Am J Trop Med Hyg;** 1991; 44: 481-93.
- Clarke DH, Casals J. Techniques for hemagglutination and hemagglutination inhibition with arthropode borne viruses. **Am. J. Trop. Med. Hyg.** 1958; 7: 561-73.
- Crill WD, Chang GJJ. Localization and Characterization of Flavivirus Envelope Glycoprotein Cross-Reactive Epitopes. J. Virol. 2004: 13975–86.
- Coelho GE. Dengue: desafios atuais. Epidemiol. Serv. Saúde, 2008; Brasília, 17(3):231-233.
- Coffey LL, Mertens E, Brehin AC, Fernandez-Garcia MD, Amara A, Despre´s P, Sakuntabhai A. Human genetic determinants of dengue virus susceptibility. **Microb. Infect.** 2009; 11: 143-56.
- Cuzzubbo AJ, Vaughn DW, Nisalak A, Solomon T, Kalayanarooj S, Aaskov J, Dung NM, Devine PL. Comparison of PanBio Dengue Duo IgM and IgG capture ELISA and venture technologies dengue IgM and IgG dot blot. **J. Clin. Virol.** 2000; 16: 135-44.
- Cuzzubbo AJ, Endy TP, Nisalak A, Kalayanarooj S, Vaughn DW, Ogata SA, Clements DE, Devine PL. Use of recombinant envelope proteins for serological diagnosis of Dengue virus infection in an immunochromatographic assay. **Clin. Diagn. Lab. Immunol.** 2001. 8(6):1150-5.
- Deen JL, Harris E, Wills B, Balmaseda A, Hammond SN, Rocha C, Dung NM, Hung NT, Hien TT, Farrar JJ. The WHO dengue classifi cation and case defi nitions: time for a reassessment. Lancet 2006; 368: 170–73
- Deubel D. Recent advances and prospective researches on molecular epidemiology of dengue viruses. **Mem. Inst. Oswaldo Cruz** 1992; 87 (5): 133-36.
- De Simone TS, Nogueira RM, Araújo ES, Guimarães FR, Santos FB, Schatzmayr HG, Souza RV, Teixeira Filho G, Miagostovich MP. Dengue virus surveillance: the co-circulation of DENV-1, DENV-2 and DENV-3 in the State of Rio de Janeiro, Brazil. **Trans. R. Soc. Trop. Med. Hyg.** 2004; 98(9):553-62.
- Diamond MS, Edgil D, Roberts TG, Lu B, Harris E. Infection of human cells by dengue virus is modulated by different cell types and viral strains. **J. Virol.** 2000; 74, 7814–23.

- dos Santos FB, Miagostovich MP, Nogueira RM, Schatzmayr HG, Riley LW, Harris E. Analysis of recombinant dengue virus polypeptides for dengue diagnosis and evaluation of the humoral immune response. **Am. J. Trop. Med. Hyg.** 2004;71(2):144-52.
- Drosten C, Gottig S, Schilling S, Asper M, Panning M, Schmitz H, Gunther S. Rapid detection and quantitation of RNA of Ebola and Marburg viruses, Lassa virus, Crimean-Congo hemorrhagic fever virus, Rift valley fever virus, dengue virus, and yellow fever virus by real-time reverse transcription-PCR J. Clin. Microbiol. 2002; 40: 2323–30.
- Dussart P, Labeau B, Lagathu G, Louis P, Nunes MRT, Rodrigues SG, Storck-Herrmann C, Cesaire R, Morvan J, Flamand M, Baril L. Evaluation of an enzyme immunoassay for detection of dengue virus NS1 antigen in human serum. Clin. Vacc. Immunol. 2006; 13 (11): 1185-89.

Dutt MJ, Lee KH. Proteomic analysis. Cur. Op. Biotechnol. 2000, 11:176-179

- Edelman R, Wasserman SS, Bodison SA, Putnak RJ, Eckels KH, Tang D, et al Phase I trial of 16 formulations of a tetravalent live-attenuated dengue vaccine. **Am. J. Trop. Med. Hyg.** 2003;69:48-60.
- Egloff MP, Decroly E, Malet H, Selisko B, Benarroch D, Ferron F, Carnard B. Structural and functional analysis of methylation and 5'-RNA sequence requirements of short capped RNAs by the methyltranferase domain of dengue virus NS5. **J. Mol. Biol**. 2007; 372:723-36.
- Emini EA, Hughes JV, Perlow DS, Boger J. Induction of Hepatitis A virus-neutralizing antibody by a virusspecific synthetic peptide. **J. Virol.** 1985: 836-39.
- Enshell-Seijffers D, Denisov D, Groisman B, Smelyanski L, Meyuhas R, Gross G, Denisova G, Gershoni JM.The mapping and reconstitution of a conformational discontinuous B-cell epitope of HIV-1.J Mol Biol. 2003; 334(1):87-101.
- Erbel P, Schiering N, D'Arcy A, Renatus M, Kroemer M, Lim SP, Yin Z, Keller TH, Vasudevan SG, Hommel U. Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nat. Struct. Mol. Biol. 2006; 13 (4): 372–73.
- Falconar AK, Young PR. Immunoaffinity purification of native dimer forms of the flavivirus non-structural glycoprotein, NS1. J. Virol. Meth. 1990; 30: 323-32.
- Felici A, Amicosante G, Oratore A, Strom R, Ledent P, Joris B, Fanuel L, Frère JM. An overview of the kinetic parameters of class B beta-lactamases. **Biochem. J.** 1993; 291 (1):151-5.
- Figueiredo LT, Carlucci RH, Duarte G. Prospective study with infants whose mothers had dengue during pregnancy. **Rev. Inst. Med. Trop. São Paulo**. 1991; 36: 417-21.

Figueiredo LTM. Dengue in Brazil I: history, epidemiology and research. Virus Rev. Res. 1996; 1: 9-16.

Figueiredo LTM. Patogenia das infecções pelos vírus do dengue. Simpósio: Virologia Médica I, Ribeirão Preto; 1999; 32: 15-20.

Figueiredo LTM. The Brazilian flaviviruses. Microb. Infect. 2000; 2: 1643-49.

- Flamand M, Megret F, Mathieu M, Lepault J, Rey FA, Deubel V. Dengue virus type 1 nonstructural glycoprotein NS1 is secreted from mammalian cells as a soluble hexamer in a glycosylation-dependent fashion. **J Virol**. 1999; 73(7):6104-10.
- Folgori A, Tafi R, Meola A, Felici F, Galfré G, Cortese R, Monaci P, Nicosia A. A general strategy to identify mimotopes of pathological antigens using only random peptide libraries and human sera. **EMBO J.** 1994;13(9):2236-43.
- Forwood JK, Brooks A, Briggs LJ, Xiao CY, Jans DA, Vasudevan SG. The 37-amino-acid interdomain of dengue virus NS5 protein contains a functional NSL and inhibitory CK2 site. Biochem. Biophis. Res. Commun. 1999; 257: 731-37.
- Foster JE, Bennett SN, Carrington CVF, Vaughan H, Mcmillan WO. Phylogeography and molecular evolution of dengue 2 in the Caribbean basin, 1981–2000. Virol. 2004; 324: 48–59.
- Frank, R. Spot-synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. **Tetrahedron** 1992; 48, 9217.
- Frank, R., Overwin, H. SPOT-synthesis: epitope analysis with arrays of synthetic peptides prepared on cellulose membranes. In: Morris, G.E. (Ed.), Methods in Molecular Biology. Epitope Mapping Protocols, 1996; vol. 66. Humana Press, Totowa, p.149.
- Franco O. A erradicação do Aedes aegypti do Brasil. Rev. Brasil. Malar. Doen. Trop. 1961; 13: 43-8.
- FUNASA (Fundação Nacional de Saúde). Guia de Vigilância Epidemiológica. 2002. 5 ed. Brasília: FUNASA. (a)
- FUNASA (Fundação Nacional de Saúde). **Programa Nacional de Controle da dengue** (PNCD). 2002. FUNASA. 32 pg. (b)
- Gausepohl H, Behn C. Automated synthesis of solid phase bound peptides. In: Koch J, Mahler M (eds) Peptide arrays on membranes-synthesis and applications. 2002; Springer, Berlin Heidelberg New York, pp 55–69
- Garcia G, Vaughn DW, Angel RMD. Recognition of sysnthetic oligopeptides from nonstructural proteins NS1 and NS3 of dengue-4 virus by sera from dengue virus-infected children. **Am. J. Trop. Med. Hyg.** 1997; 56 (4): 466-70.
- Gaunt MW, Sall AA, de Lamballerie X, Falconar AKI, Dzhivanian TI, Gould EA. Phylogenetic relationships of flaviviruses correlate with their epidemiology, disease association and biogeography. J. Gen. Virol. 2001; 82, 1867–76.

Gibbons RV, Vaughn DW. Dengue: an escarlating problem. BMJ 2002; 324: 1563-66.

Girard MP. Vaccins du futur. Annales Pharmaceutiques Françaises; 2009;

Gordon S. The role of the macrophage in immune regulation. Res Immunol. 1998;149:685-688.

- Graham H. The dengue: a study of its pathology and mode of propagation. **J. Trop. Med.** (London) 1903; 6: 209.
- Groen J, Velzing J, Copra C, Balentien E, Deubel V, Vorndam V, Osterhaus DME. Diagnostic value of dengue virus-specific IgA and EgM serum antibody detection. **Microbes Infect**. 1999; 1 (13): 1085-90.
- Gorbalenya AE, Koonin EV. Viral proteins containing the purine NTP-binding sequence pattern. Nucl. Acid. Res. 1989;17(21):8413-40.
- Gromowski GD, Barrett AD. Characterization of an antigenic site that contains a dominant, type-specific neutralization determinant on the envelope protein domain III (ED3) of dengue 2 virus. **Virol.** 2007;366(2):349-60.
- Gubler DJ, Kuno G, Sather GE, Velez M, Oliver A. Use of mosquito cell cultures and specific monoclonal antibodies in surveillance for dengue viruses. **Am. J. Trop. Med. Hyg**. 1984; 33: 158-65.
- Gubler DJ. Dengue/Dengue hemorrhagic fever in the Americas: prospects for the year 2000. In: Halstead SB, Gomez-Dantes H. Dengue: a worldwide problem, a common strategy. Proceedings of the international confernce on dengue and Aedes aegypti community-based control. Merida, México. 1992: 19-27.
- Gubler DJ. Dengue and dengue haemorrhagic fever in the Americas. In : World Health Organization, regional office for South-east Asia, New Deli. **Monograph on dengue/dengue haemorrhagic fever**. Regional Publication, 1993; SEARO nº 22: 9-22.

- Gubler DJ, Trent DW. Emergence of epidemic dengue/dengue hemorrhagic fever as a public health problem in the Americas. **Infect. Ag. Dis.** 1994; 2 (6):383-93.
- Gubler DJ. Dengue and Dengue hemorrhagic fever: its history and ressurgence as a global public health problem. In: Gubler DJ and Kuno G. Dengue and dengue hemorrhagic fever. Chapter 1. New York: CAB international. 1997: 1-22.
- Gubler DJ. Dengue and dengue hemorrhagic fever. Clin. Microbiol. Rev. 1998; 11 (3): 480-96.
- Gubler DJ. The global emergence/resurgence of arboviral diseases as public health problems. **Arch. Med. Res**. 2002; 33: 330-42.
- Guzman MG and Kouri G Advances in dengue diagnosis. Clin. Diagn. Lab. Immnunol. 1996; 3: 621-7

Guzman MG, Kouri G. Dengue: an update. Lancet Infect. Dis. 2002; 2: 33-42.

- Guzmán MG, Kourí G. Dengue and dengue hemorrhagic fever in the Americas: lessons and challenges. J. Clin. Virol. 2003; 27: 1-13.
- Hall WC, Crowell TP, Watts DM, Barros VLR, Kruger H, Pinheiro, F and Peters CJ. Demonstration of yellow fever and dengue antigens in formalin-fixed paraffin-embedded human liver by immunohistochemistry.
 Am. J. Trop. Med. Hyg. 1991; 45:408-417.
- Halstead SB. Dengue haemorrhagic fever: A public health problem and a field for research. **Bull. WHO**. 1980; 58 (1): 1–21.
- Halstead SB. Pathogenesis of dengue: Challenges to molecular biology. **Science** 1988; 239 (4839): 476-81.
- Halstead, SB. Antibody, macrophages, dengue virus infection, shock, and hemorrhage: a pathogenetic cascade. **Rev. Infect. Dis.**, 1989; 11(Suppl 4): S 830-9.

Halstead SB, Dean J. The future of dengue vaccines. Lancet 2002; 360:1243-45.

- Halstead SB, Heiinz FX, Barrett ADT, Roehrig JT. Conference report on dengue virus: molecular basis of cell entry and pathogenesis, 25-27 june 2003 Vienna, Austria **Vaccine** 2005; 23: 849-56
- Hammon WM, Rudnick A, Sather GE. Viruses associated with epidemic hemorrhagic fever of the Philippines and Thailand. **Science** 1960; 31: 1102-3.

- Hang VT, Nguyet NM, Trung DT, Tricou V, Yoksan S, Dung NM, Van Ngoc T, Hien TT, Farrar J, Wills B, Simmons CP. Diagnostic accuracy of NS1 ELISA and lateral flow rapid tests for dengue sensitivity, specificity and relationship to viraemia and antibody responses. **PLoS Negl. Trop. Dis.** 2009. 3: 360.
- Harris E, Sandoval E, Xet-Mull AM, Johnson M, Riley LW. Rapid subtyping of dengue viruses by restriction site-specific (RSS)-PCR. Virol. 1999;253(1):86-95.
- Heinz FX, Allison SL. The machinery for flavivirus fusion with host cell membranes. Curr. Opinion Microbiol. 2001; 4: 450-55.
- Henchal EA, Henchal LS, Thaisoonboonsuk BK. Topological mapping of unique epitopes on the dengue 2 virus NS1 protein using monoclonal antibodies. **J. Gen. Virol.** 1987; 68: 845-51.
- Hilpert K, Winkler DF, Hancock RE. Peptide arrays on cellulose support: SPOT synthesis, a time and cost efficient method for synthesis of large numbers of peptides in a parallel and addressable fashion. **Nat Protoc**. 2007;2(6):1333-49.
- Holmes EC, Twiddy SS. The origin, emergence and evolutionary genetics of dengue virus. **Infect. Genet. Evol.** 2003; 3: 19–28.
- Hombach, J, Cardosa JM, Sabchareon A, Vaughn DW, Barrett AD. Scientific consultation on immunological correlates of protection induced by dengue vaccines. Report from a meeting held at the World Health Organization 17–18 November 2005. Vaccine. Forthcoming 2007.
- Hujer AM, Bethel CR, Bonomo RA. Antibody mapping of the linear epitopes of CMY-2 and SHV-1 betalactamases. Antimicrob. Agents Chemother. 2004, 48, (10), 3980-8.
- Hung SL, Lee PL, Chen HW, Chen LK, Kao CL, King CC. Analysis of the steps involved in dengue virus entry into host cells. **Virol.** 1999; 257, 156-67.
- Huang JL, Huang JH, Shyu RH, Teng CW, Lin YL, Kuo MD, Yao CW, Shaio MF. High-level expression of recombinant dengue viral NS-1 protein and its potential use as a diagnostic antigen. **J. Med. Virol.** 2001; 65: 553-60.
- ICTVdB Management. **Dengue virus.** In: ICTVdB The Universal Virus Database, version 4. Büchen-Osmond, C. (Ed), New York, USA: Columbia University. 2006.
- Innis BL., Eckels KH. Progress in development of a live-attenuated, tetravalent dengue virus vaccine by the united states army medical research and materiel command. **Am. J. Trop. Med. Hyg.** 2003; 69: 1-4.

- Janeway CA Jr. How the immune system protects the host from infection. **Microb. Infect.** 2001;3(13):1167-71.
- Jianmin Z, Linn ML, Bilich R, Gentry MK, Aaskov JG. Analysis of functional epitopes on the dengue 2 E protein using monoclonal IgM antibodies. **Arch. Virol.** 1995; 140, 899-913.
- Kanesa-Thasan N, Sun W, Kim-Ahn G, Van Albert S, Putnak JR, King A, et al. Safety and immunogenicity of attenuated dengue virus vaccines (Aventis Pasteur) in human volunteers. **Vaccine** 2001;19:3179-88
- Karplus PA, Schulz GE. Prediction of chain flexibility in proteins, **Naturwissens-chaften** 1985;72: 212-213
- King AD, Nisalak A, Kalayanrooj S. B cells are the principal circulating mononuclear cells infected by dengue virus. **Southeast Asian J. Trop. Med. Public Health**; 1999; 30: 718-28.
- Koraka P, Suharti C, Setiati TE, Mairuhu AT, Van Gorp E, Hack CE. Kinetics of dengue virus-specific serum immunoglobulin classes and subclasses correlate with clinical outcome of infection. J. Clin. Microbiol.; 2001; 39 (12): 4332-8.

Korber B, LaBute M, Yusim K. Immunoinformatics comes of age. PLOS Comp. Bio. 2006; 2:6 484-492

- Kouri G, Guzmãn MG, Bravo J. Why dengue haemorrhagic fever in Cuba? II. An integral analysis. **Trans. R. Soc. Trop. Med. Hyg.** 1987; 81: 821-823.
- Khromykh AA, Varnavski AN, Sedlak PL, Westaway EG. Coupling between replication and packaging of flavivirus RNA: evidence derived from the use of DNA-based full-length cDNA clones of Kunjin virus. **J. Virol.** 2001; 75 (10): 4633–40.
- Kong YY, Thaty CH, Tin TC. Rapid detection serotyping and quantification of dengue viruses by TaqMan real-time one-step RT-PCR. **J. Virol. Methods** 2006; 138: 123-30.
- Kuhn RJ, Zhang W, Rossmann MG, Pletnev SV, Corver J, Lenches E, Jones CT, Mukhopadyay S, Chipman PR, Strauss EG, Baker TS, Strauss JH. Structure of dengue virus: implications for flavivirus organization, maturation and fusion. **Cell** 2002, 108:717-25.
- Kuno G, Gomez I, Gubler D J. Detecting artificial anti-dengue IgM immune complexes using an enzyme linked immunosorbent assay. **Am. J. Trop. Med. Hyg**. 1987; 36 (1): 153-9.
- Kuno G, Cropp CB, Wong-Lee J, Gubler DJ. Evaluation of an IgM immunoblot Kit for dengue diagnosis. **Am. J.Trop. Med. Hyg**. 1998; 59: 757-62.

- Kumarasamy V, Wahab AH, Chua SK, Hassan Z, Chem YK, Mohamad M, Chua KB. Evaluation of a commercial dengue NS1 antigen-capture ELISA for laboratory diagnosis of acute dengue virus infection **J. Virol. Methods** 2007; 140: 75–79.
- Kurane I, Janus J, Ennis FA. Dengue virus infection of human skin fibroblasts in vitro production of IFNbeta, IL-6 and GM-CSF. **Arch. Virol.** 1992;124(1-2):21-30.
- Kurane I, Kontny U, Janus J, Ennis FA. Dengue-2 virus infection of human mononuclear cell lines and establishment of persistent infections **Arch. Virol**. 1990; 110: 91–101.
- Kurane I, Zeng L, Brinton MA, Ennis FA. Definition of an epitope on NS3 recognized by human CD41 cytotoxic T lymphocyte clones cross-reactive for dengue virus types 2, 3, and 4. Virol. 1998; 240, 169–174.
- Kyte J, Doolittle RF. A simple method for displaying the hydrophobic character of a protein, **J. Mol. Biol.** 1982, *157*, 105-132
- Lai CY, Tsai WY, Lin SR, Kao CL, Hu HP, King CC, Wu HC, Chang GJ, Wang WK. Antibodies to envelope glycoprotein of dengue virus during the natural course of infection are predominantly cross-reactive and recognize epitopes containing highly conserved residues at the fusion loop of domain II. **J. Virol.** 2008; 82 (13): 6631–43
- Lam SK, Devi S, Pang T. Detection of specific IgM in dengue infections. **Southeast Asian J. Trop. Med. Pub. Hith.** 1987; 18: 532-8.
- Lam SK, Devine PL. Evaluation of capture ELISA and rapid immunochromatographic test for the determination of IgM and IgG antibodies produced during dengue infection. **Clin. Diag. Virol**. 1998; 10:75-81.
- Lanciotti RS, Calisher CH, Gubler DJ, Chang GJ, Vorndam V. Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J. Clin. Microbiol. 1992; 30: 545-51.
- Lapphra K, Sangcharaswichai A, Chokephaibulkit K, Tiengrim S, Piriyakarnsakul W, Chakorn T, Yoksan S, Wattanamongkolsil L, Thamlikitkul V. Evaluation of an NS1 antigen detection for diagnosis of acute dengue infection in patients with acute febrile illness. **Diagn. Microbiol. Infect. Dis**. 2008. 60:387-391.
- Laskowski RA, Macarthur MW, Moss DS, Thornton JM. Procheck A Program to check the stereochemical quality of protein structures. J. Appl. Crystallog. 1993; 26: 283-291

- Laune D, Molina F, Ferrieres G, Villard S, Bes C, Rieunier F, Chardes T, Granier C. Application of the Spot method to the identification of peptides and amino acids from the antibody paratope that contribute to antigen binding. **J. Immunol. Methods** 2002; 267, 53-70.
- Laver WG, Air GM, Webster RG, Smith-Gill SJ. Epitopes on protein antigens: misconceptions and realities. **Cell.** 1990;61(4):553-6
- Leitmeyer KC, Vaughn DW, Watts DM, Salas R, Villalobos I, de C, Ramos C, Rico-Hesse R Dengue virus structural differences that correlate with pathogenesis. **J. Virol.** 1999; 73: 4738-47.
- Li L, Barrett ADT, Beasley DWC. Differential expression of domain III neutralizing epitopes on the envelope proteins of west nile virus strains. **Virol**. 2005; 335: 99-105.
- Libraty DH, Young PR, Pickering D, Endy TP, Kalayanarooj S, Green S, Vaughn DW, Nisalak A, Ennis FA, Rothman AL. High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever. **J. Infect. Dis.** 2002; 186: 1165-8.
- Lin YL, Liu CC, Lei HY, Yeh TM, Lin YS, Chen RM, Liu HS. Infection of five human liver cell lines by dengue-2 virus. J. Med. Virol. 2000; 60: 425–31.
- Ling LM, Wilder-Smith A, Leo YS. Fulminant hepatitis in dengue haemorrhagic fever. **J.Clin.Virol.** 2007; 38: 265–68.
- Lindenbach BD, Rice CM. Flaviviridae: The viruses and their replication. In: Fields B N, Knipe D M, Howley P M. Virology. Fourth edition. Philadelphia: Lippincott Williams & Wilkins. 2001: 991-1041.
- Liu H, Chiou SS, Chen WJ. Differential binding efficiency between the envelope protein of Japanese encephalitis virus variants and heparan sulfate on the cell surface. **J. Med. Virol**. 2004; 72, 618–624.
- Lüthy R, Bowie JU, Eisenberg D. Assessment of protein models with three-dimensional profiles. **Nature** 1992; 356: 83-85
- Ma L, Jones CT, Groesch TD, Kuhn RJ, Post CB. Solution structure of dengue virus capsid protein reveals another fold. **PNAS** 2004; 101 (10): 3414–19.
- Machado RL, Povoa MM, Calvosa VS, Ferreira MU, Rossit AR, dos Santos EJ, Conway DJ. Genetic structure of *Plasmodium falciparum* populations in the Brazilian Amazon region. **J. Infect. Dis**. 2004;190(9):1547-55.

- Machado De Avila RA, Alvarenga LA, Tavares CA, Molina F, Granier C, Chavez-Olortegui C. Molecular characterization of protective antibodies raised in mice by *Tityus serrulatus* scorpion venom toxins conjugated to bovine serum albumin. **Toxicon** 2004; 44, 233-41.
- Mackenzie JM, Khromykh AA, Jones MK, Westaway EG. Subcellular localization and some biochemical properties of the flavivirus Kunjin nonstructural proteins NS2A and NS4A. **Virol.** 1998 Jun 5;245(2):203-15.
- Mancini EJ, Assenberg R, Verma A, Walter TS, Tuma R, Grimes JM, Owens RJ, Stuart DI. Structure of the murray valley encephalitis virus RNA helicase at 1.9 Angstrom resolution. **Protein Sci.** 2007 Oct;16(10):2294-300.
- Markoff L. 5'- and 3'-noncoding regions in flavivirus RNA. Adv. Virus Res. 2003;59:177-228.
- Mariano F. A dengue: considerações a respeito de sua incursão no Rio Grande do Sul em 1916. Arch. Bras. Med. 1917; 7 (5): 272-7.
- Mathew A, Kurane I, Green S, Vaughn DW, Kalayanarooj S, Suntayakorn S, Ennis FA, Rothman AL. Impaired T cell proliferation in acute dengue infection. **J. Immunol.** 1999, 162: 5609-15.
- McBride WJH, Bielefeldt-Ohmann H, Dengue viral infections; pathogenesis and epidemiology. **Microbes and infection**; 2000; 2:1041-50.
- McBride WJ. Evaluation of dengue NS1 test kits for the diagnosis of dengue fever. **Diagn. Microbiol.** Infect. Dis. 2009;64(1):31-6.
- McCloud TG, Cardiff RD, Brandt WE, Chiewsilp D, Russel PK. Separation of dengue strains on the basis of a nonstructural antigen. **Am J. Trop. Med. Hyg**. 1971; 20(7): 964-68.
- Mendes TM, Maria WS, Granier C, Chávez-Olórtegui C, Kalapothakis E. Epitope mapping of the antigenic protein TsNTxP from *Tityus serrulatus* scorpion venom using mouse, rabbit and sheep antibodies **Toxicon** 2004; 44, 617-24.
- Miagostovich MP, Ramos RG, Nicol AF, Nogueira RMR, Cuzzi-Maya T, Oliveira AV, Marchevsky RS, Mesquita RP, Schatzmayr HG. Retrospective study on dengue fatal cases. **Clinic. Neuropath**. 1997a; 16 (4): 204-8.
- Miagostovich MP, Santos FB, Araújo ESM, Dias J, Schatzmayr HG, Nogueira RMR. Diagnosis of dengue by using reverse transcriptase-polymerase chain reaction. **Mem. Inst. Oswaldo Cruz** 1997b; 92 (5): 595-600.

- Miagostovich MP, Vorndam V, Araújo ESM, Santos FB, Schatzmayr HG, Nogueira RMR. Evaluation of IgG enzyme-linked immunosorbent assay for dengue diagnosis. **J. Clin. Virol**. 1999; 14: 183-89.
- Miagostovich MP, De Simone TS, Araújo ESM, Miranda LHA, Schatzmayr HG, Nogueira RMR. Evaluation of IgM anti-dengue immune response in sequential infection. **Vírus Rev. Res.** 2001; 6 (2): 13-19
- Miagostovich MP, Santos FB, De Simone TS, Costa EV, Filippis AMB, Schatzmayr HG. Genetic characterization of dengue virus type 3 isolates in the State of Rio de Janeiro, 2001. Braz. J. Med. Biol. Res. 2002; 35: 1-4.
- Miller S, Kastner S, Krijnse-Locker L, Buhler S, Bartenschlager R. The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations alterations in a 2K-regulated manner. **J. Biol. Chem**. 2007. 282(12): 8873-82.
- Miller, J.L., Dewet, B.J., Martinez-Pomares, L., Radcliffe, C.M., Dwek, R.A., Rudd, P.M., Gordon, S. The mannose receptor mediates dengue virus infection of macrophages. **PLoS Pathog.** 2008; 4-17.
- Modis Y, Ogata S, Clements D, Harrison SC. A ligand-binding pocket in the dengue virus envelope glycoprotein. **Proc. Natl. Acad. Sci. USA.** 2003;100(12):6986-91
- Modis Y, Ogata S, Clements D, Harrison SC: Structure of the dengue virus envelope protein after fusion. **Nature** 2004; 427:313-19.
- Monath TP. **Pathology of the Flaviviruses**. In: Schlesinger S & Schlesinger M, eds. The Togaviridae and Flaviviridae, New York: Plenum Press. 1986: 375-424.
- Monath TP. Dengue: the risk to developed and developing countries. **Proc. Natl. Acad. Sci. USA**. 1994. 91:2395-2400.
- Monath TP, Heinz F. **Flaviviruses** In: Fields BN & Knipe DM, eds. Virology, 3th ed, Philadelphia: Lippincott Raven, 1996: 961-1034.
- Moreno-Altamirano MMB, Sánchez-García FJ, Muñoz ML. Non Fc receptor-mediated infection of human macrophages by dengue virus serotype 2. J. Gen. Virol. 2002; 83, 1123-30.
- Morita K, Tanaka M, Igarashi A. Rapid identification of dengue virus serotypes by using polymerase chain reaction. **J. Clin. Microbiol**. 1991; 29: 2107-10.

- Mukhopadhyay S, Kuhn RJ, Rossmann MG. A structural perspective of the F*lavivirus* life cycle. **Nat. Rev. Microbiol.** 2005; 3: 13–22.
- Murthy HMK, Clum S, Padmanabhan R. Dengue virus NS3 serine protease. **J. Biol. Chem**. 1999; 274 (9): 5573-80.
- Navarro-Sanchez E, Despre's P, Cedillo-Barro'n L. Innate Immune Responses to Dengue Virus. Arch. Med. Res. 2005; 36: 425–35
- Nayeem A, Sitkoff D, Krystek S A comparative study of available software for high-accuracy homology modeling: from sequence alignments to structural models. **Protein Sci.** 2006; 15 (4): 808-824.
- Nelson PN, Reynolds GM, Waldron EE, Ward E, Giannopoulos K, Murray PG. Monoclonal antibodies. **Mol. Pathol**. 2000;53(3):111-7.
- Nguyen TL, Nguyen TH, Tieu NT. The impact of dengue hemorrhagic fever on liver function. **Res. Virol**.; 1997; 148:273-77.
- Nogueira RMR, Schatzmayr HG, Miagostovich MP, Farias MFDB, Farias Filho JC. Virological study of a dengue type 1 epidemic at Rio de Janeiro. **Mem. Inst. Oswaldo Cruz**, 1988; 83 (2):219-25.
- Nogueira RMR, Miagostovich MP, Lampe E, Schatzmayr HG. Isolation of dengue virus type 2 in Rio de Janeiro. **Mem. Inst. Oswaldo Cruz**, 1990; 85 (2):253.
- Nogueira RMR, Miagostovich MP, Cavalcanti SMB, Marzochi KBF, Scatzmayr HG. Levels of IgM antibodies against dengue virus in Rio de Janeiro, Brasil. **Res. Virol**. 1992; 143: 423-27.
- Nogueira RMR, Miagostovich MP, Schatzmayr HG, Moraes GC, Cardoso FMA, Ferreira J, Cerqueira V, Pereira M. Dengue type 2 outbreak in the south of the State of Bahia, Brazil: laboratorial and epidemiological studies. **Rev. Inst. Med. Trop. São Paulo** 1995; 37: 507-10.
- Nogueira RMR, Miagostovich MP, Cunha RV, Zagne SMO, Gomes FP, Nicol AF, Coelho JCO, Schatzmayr HG. Dengue fatal cases in primary infections in Brazil. **Trans. Roy. Soc. Trop. Med. Hyg.** 1999a; 93:418.
- Nogueira RMR, Miagostovich MP, Schatzmayr HG, Araújo ESM, Santos FB, Filippis AMB, Souza RW, Zagne SMO, Nicolai C, Baran M, Teixeira Filho G. Dengue in the State of Rio de Janeiro, Brazil, 1986-1998. **Mem. Inst. Oswaldo Cruz.** 1999b; 94(3): 297-304.
- Nogueira RMR, Miagostovich MP, Schatzmayr HG. Molecular epidemiology of dengue viruses in Brazil. **Cad. Saúde Publica** 2000, 16(1):205-211.

Nogueira RMR, Miagostovich MP, Filippis AMB, Pereira MAS, Schatzmayr HG. Dengue type 3 in Rio de Janeiro, Brazil. **Mem. Inst. Oswaldo Cruz** 2001; 96 (7):925-926.

Nogueira RMR, Miagostovich MP, Schatzmayr HG. Dengue virus in Brazil. Dengue Bull.; 2002a; 26:1-10.

- Nogueira RMR, Filippis AMB, Coelho JMO, Sequeira PC, Schatzmayr HG, Paiva FG, Ramos AMO, Miagostovich MP. Dengue virus infection of the central nervous systems (CNS): a case report from Brazil. South. Asian J. Trop. Med. Public. Health; 2002b; 33 (1): 68-71.
- Novotný V, Mayer A. . A case of male pseudopregnancy. Cesk Psychiatr. 1989; 85 (6):398-401.
- Nuegoonpipat A, Berlioz-Arthaud A, Chow V, et al Sustained transmission of dengue virus type 1 in the pacific due to repeated introductions of different Asian strains **Virol.** 2004;329(2):505–12
- Osanai CH, Travassos Da Rosa APA, Tang AT, Amaral RS, Passos ADC, Tauil PL. Surto de dengue em Boa Vista, Roraima. Nota Prévia. **Rev. Inst. Med. Trop.** 1983; 25 (4): 53-4.

Paige CJ, Wu GE. The B cell repertoire. **FASEB J**. 1989; 3: 1818-24.

- Pan American Health Organization (PAHO). Dengue in the Americas: 1980-87. **Epidemiol. Bull.** 1989; 10 (1):1-8.
- Pan American Health Organization (PAHO). Dengue hemorrhagic fever (DHF) in the Americas, by country: number of reported cases of dengue and figures for 2002. **Dengue website**. 2002. www.paho.org/english/HCP/HCT/VBD/dengue-cases-2002.htm Acesso em: 25/08/2009.
- Pan American Health Organization (PAHO). Dengue hemorrhagic fever (DHF) in the Americas, by country: number of reported cases of dengue and figures for 2004. **Dengue website**. 2004. <u>www.paho.org/english/HCP/HCT/VBD/dengue-cases-2004.htm</u> Acesso em: 20/08/2009.
- Pan American Health Organization (PAHO). Dengue hemorrhagic fever (DHF) in the Americas, by country: number of reported cases of dengue and figures for 2006. **Dengue website**. 2006. www.paho.org/english/HCP/HCT/VBD/dengue-cases-2006.htm Acesso em: 20/08/2009.
- Pan American Health Organization (PAHO). Dengue Hemorrhagic Fever (DHF) in the Americas, by country: number of reported cases of dengue and figures for 2008. **Dengue website**. 2008. <u>www.paho.org/english/HCP/HCT/VBD/dengue-cases-2008.htm</u> Acesso em: 25/08/2009.
- Pan American Health Organization (PAHO). Regional Update on Dengue in the Americas. Epidemiological Status, 2009.

- Pang T Vaccines for the prevention of neglected diseases-dengue fever. **Curr. Opin. Biotechnol.** 2003; 14: 332-6
- Parker J, Guo D, Hodges R. New hydrophilicity scale derived from High-Performance Liquid Chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. **Biochem.** 1986; 25:5425-32

Pedro A. O Dengue em Nictheroy. Brazil - Mexico, 1923; 37: 173-77.

Peng WP, Hou Q, Xia ZH, Chen D, Li N, Sun Y, Qiu HJ. Identification of a conserved linear B-cell epitope at the N-terminus of the E2 glycoprotein of classical swine fever virus by phage-displayed random peptide library. **Virus Res**. 2008;135(2):267-72.

Perera R, Kuhn RJ. Structural proteomics of dengue vírus. Curr. Op. Microbiol. 2008; 11:369–377.

- Phuong HL, Thai KT, Nga TT, Giao PT, Hungle Q, Binh TQ, Nam NV, Groen J, de Vries PJ. Detection of dengue nonstructural 1 (NS1) protein in vietnamese patients with fever. **Diagn. Microbiol. Infect. Dis**. 2009. 63:372-8.
- Pinheiro FP, Corber SJ. Global situation of dengue and dengue haemorrhagic fever and its emergence in the Américas. **World Health Stat**. 1997; 50 (3-4): 161-69.
- Pontius J, Richelle J, Wodak SJ. Deviations from standard atomic volumes as a quality measure for protein crystal structures. **J. Mol. Biol.** 1996; 264 (1): 121-136.
- Proutski V, Gould EA. Holmes EC. Secondary structure of the 3-untranslated region of flaviviruses: similarities and differences. **Nucl. Acid Res**. 1997; 25: 1194–1202

Putnak JR, Thasan NK, Innis BL. A putative receptor for dengue viruses. Nature Med. 1997; 3: 828 - 29.

- Reineke U, Kramer A, Schneider-Mergener J. Antigen sequence and library based mapping of linear and discontinuous protein-protein interaction sites by spot synthesis. Curr. Top. Microbiol. Immunol. 1999; 243: 23-36.
- Reineke U, Volkmer-Engert R, Schneider-Mergener J. Applications of peptide arrays prepared by the SPOT-technology. **Curr. Op.Biotechnol.** 2001, 12:59–64.

Reineke U, Ivascu C, Schlief M, Landgraf C, Gericke S, Zahn G, Herzel H, Volkmer-Engert R, Schneider-Mergener J. Identification of distinct antibody epitopes and mimotopes from a peptide array of 5520 randomly generated sequences. J. Immunol. Methods. 2002;267(1):37-51.

Reis T J. A febre dengue em Curityba. Gaz. Med. Bahia, 1896; 4 (7): 263-6.

- Rezende JM. Notas históricas e filosóficas sobre a palavra dengue. Linguagem Médica, 3a. edição, Goiânia: AB Editora e Distribuidora de Livros Ltda; 2004.
- Rice CM, Strauss EG, Strauss JH. **Structure of the flavivirus genome**. In: Schlesinger S and Schlesinger M. Togaviruses and flaviviruses; N. York: Plenum Publishing Corp; 1986.
- Rigau-Pèrez JG, Clark GG, Gubler DJ, Reiter P, Sanders EJ, Vorndam AV. Dengue and dengue haemorrhagic fever. Lancet; 1998; 352: 971-77.
- Rico-Hesse R, Harrison LM, Salas RA, Tovar D, Nisalak A, Ramos C, Boshell J, de Mesa MT, Nogueira RM, da Rosa AT. Origins of dengue type 2 viruses associated with increased pathogenicity in the Americas. Virol; 1997; 30(2):244-51.
- Rocco IM, Kavakama BB, Santos CL. First isolation of dengue 3 in Brazil from an imported case. **Rev. Inst.** Med. Trop. São Paulo; 2001; 43(1):55-7.
- Roehrig JT, Johnson AJ, Hunt AR, Bolin RA, Chu MC Antibodies to dengue 2 virus E-glycoprotein synthetic peptides identify antigenic conformation **Virol.;** 1990; 177(2):668-75.
- Roehrig JT, Bolin RA, Kelly RG. Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica. **Virol.;** 1998; 246: 317–28.
- Rosales-León L, Ortega-Lule G, Ruiz-Ordaz B. Analysis of the domain interactions between the protease and helicase of NS3 in dengue and hepatitis C virus. J. Mol. Graph. Model. 2007;25(5):585-94.
- Rosen L, Rozeboom LE, Sweet BH, Sabin AB. The transmission of dengue by *Aedes polynesiensis* marks. **Am. J. Trop. Med. Hyg.** 1954; 3: 878-82.
- Rosen L. The emeror's new clothes revisited or reflections on the pathogenesis of dengue hemorrhagic fever. **Am. J. Trop. Med. Hyg.;** 1977; 26 (3): 337-343.

Rothman AL & Ennis FA. Immunopathogenesis of dengue hemorrhagic fever. Virol.; 1999; 257:1-6.

Rothman AL. Cellular immunology of sequential dengue virus infection and its role in disease pathogenesis. In: <u>Dengue Virus</u>. 2010; vol 338; Springer Berlin Heidelberg: 83-98.

- Russell PK, McCown JM. Comparison of dengue 2 and dengue 3 virus strains by neutralization tests and identification of a serotype of dengue 3. **Am J. Trop. Med. Hyg**, 1972; 21(1): 97-99.
- Sabin AB. Research on dengue during World War II. Am. J. Trop. Med. Hyg., 1952; 1: 30-50.
- Sabin AB, Schelinger RW. Production of immunity to dengue with virus modified by propagation in mice. **Science**; 1945; 101: 640-42.
- Sang CT, Cuzzubbo AJ, Devine PL. Evaluation of a commercial capture enzyme-linked immunosorbent assay for detection of immunoglobulin M and G antibodies produced during dengue infection. **Clin. Diagn. Lab. Immunol.**; 1998; 5: 7-10.
- Sang RC. **Dengue in África**. In: World Health Organization on behalf of the special programme for research and training in tropical diseases, 2007. Disponivel em <u>http://www.tropika.net/review/061001-Dengue in Africa/article.pdf</u>. Acesso em 18/12/2009.

Santos Filho OA, Alencastro RB. Modelagem de proteínas por homologia. Quim. Nova 2003; 26: 253-59.

- Schatzmayr HG, Nogueira RMR, Travassos da Rosa APA. An outbreak of dengue virus at Rio de Janeiro 1986. Mem. Inst. Oswaldo Cruz. 1986 Abr/Jun; 81 (2): 245-6
- Schatzmayr HG. Dengue situation in Brazil by year 2000. **Mem Inst Oswaldo Cruz.** 2000. 95 Suppl 1:179-181.
- Schrader M, Schulz-Knappe P. <u>Peptidomics technologies for human body fluids</u>. **Trends Biotechnol.**; 2001; 19 (1): *55-60.*
- Shurtleff AC, Beasley DW, Chen JJ, Ni H, Suderman MT, Wang H, Xu R, Wang E, Weaver SC, Watts DM, Russell KL, Barrett AD. Genetic variation in the 3' non-coding region of dengue viruses. **Virol.**; 2001;281(1):75-87.
- Sekaran SD, Ew CL, Kantesh BM, Appana R, Subramaniam G. Evaluation of a dengue NS1 capture ELISA assay fr the rapid detection of dengue. **J. Infect. Develop. Countries**. 2007. 1: 182-188.
- Se-Thoe SY, Ng MM, Ling AE. Retrospective study of western blot profiles in immune sera of natural dengue virus infections. **J Med Virol**. 1999; 57: 322-30.

- Selligman SJ, Bucher DJ. The importance of being outer: consequences of the distinction between the outer and inner surfaces of flavivirus glycoprotein E. **Trends in microbial**., 2003; 11 (3): 22-24.
- Shu PY, Chen LK, Chang SF, Yueh YY, Chow L, Chien LJ, Chin C, Lin TH, Huang JH. Dengue NS1specific antibody responses: isotype distribution and serotyping in patients with Dengue fever and Dengue hemorrhagic fever. **J Med. Virol.** 2000; 62(2):224-32.
- Shu PY, Huang JH Current advances in dengue diagnosis Clin. Diagn. Lab. Immunol.; 2004; 11: 642-650
- Schuman S. Structure, mechanism and evolution of the mRNA capping apparatus. **Prog. Nucl. Acid. Res. Mol. Biol**.; 2001; 66: 1-40.
- Siler JF, Hall M, Hitchens AP. Dengue, its history, epidemiology, mechanism of transmission, etiology, clinical manifestations, immunity and prevention. **Philipp. J. Sci.**, 1926; 29 (1-2): 1- 302.
- Silva JS, Mariano ZD, Scopel I. A dengue no Brasil e as políticas de combate ao *aedes aegypti*: da tentativa de erradicação ás políticas de controle. **Hygeia** 2008; 3(6):163-175.
- Silva AN, Nascimento EJ, Cordeiro MT, Gil LH, Abath FG, Montenegro SM, Marques ET. Identification of continuous human B-cell epitopes in the envelope glycoprotein of dengue virus type 3 (DENV-3). PLoS One. 2009;4(10):e7425.

Smith GP, Petrenko VA. Phage Display. Chem. Rev. 1997; 97(2):391-410.

Soares CN, Faria LC, Peralta JM, Freitas MRG, Pucciono-Sohler M Dengue infection: neurological manifestations and cerebrospinal fluid analysis **J. Neurol. Sci.**; 2006; 249:19-24

Soloviev M, Finch P. Peptidomics, current status. J. Chromatog. B, 2005; 815 (1-2): 11-24.

Soloviev M. Peptidomics: Divide et Impera. Meth. Molec. Biol.; 2007, 615: 3-9.

- Soloviev, M. **Peptidomics approach to proteomics**. In: Soloviev M. Peptidomics: Methods and Protocols. 2010. 398 pg.
- Southern JA, Precious B, & Randall RE. Two nontemplated nucleotide additions are required to generate the P mRNA of parainfluenza type 2 since the RNA genome encodes protein V. Virol. 1991; 177, 388-390.
- Stephenson JR. Understanding dengue pathogenesis: implications for vaccine design. **Bull WHO**; 2005; 83 (4): 308-14.

Stephenson J. Dengue. In: Halstead, SB. Dengue; Imperial College Press, London, 2008. 485 pp.

- Suzich JA, Tamura JK, Palmer-Hill F, Warrener P, Grakoui A, Rice CM, Feinstone SM, Collett MS. Hepatitis C virus NS3 protein polynucleotide-stimulated nucleoside triphosphatase and comparison with the related pestivirus and flavivirus enzymes. **J. Virol.** 1993;67(10):6152-8.
- Suksanpaisan L, Cabrera-Hernandez A, Smith DR. Infection of human primary hepatocytes with dengue virus serotype 2 J. Med. Virol.; 2007; 79, 300–07.
- **SVS/MS** (Secretaria de Vigilância em Saúde/ Ministério da Saúde). Informe epidemiológico da dengue. Janeiro a Novembro de 2008. ano 2008; Disponível em: <u>http://portal.saude.gov.br/portal/arquivos/pdf/</u> <u>boletim dengue janeiro novembro.pdf</u>. Acessado em: 03/12/2008.
- Ta M, Vrati S. Mov34 protein from mouse brain interacts with the 3' noncoding region of Japanese encephalitis virus. **J Virol.** 2000;74(11):5108-15.
- Talarmin A, Labeau B, Lelarge J, Sarthou JL. Imunoglobulin A-specific capture enzyme-linked immunosorbent assay for diagnosis of dengue fever. **J. Clin. Microbiol**., 1998 ; 36 (5): 1189-92.
- Teixeira MG, Barreto ML, Guerra Z. Epidemiology and Preventive Measures of Dengue. Informe Epidemiológico do SUS 1999; 8(4):5-33.
- Thein S, Aung M N, Shwe T N, Aye M, Zaw A, Aye K M, Aaskov J. Risk factors in dengue shock syndrome. **Am. J. Trop. Med. Hyg.** 1997; 56 (5): 566-72.
- Thisyakorn U, Thisyakorn C, Limpitikul W, Nisalak A. Dengue infection with central nervous system manifestations. **South Asian J.Trop.Med.Public Health** 1999; 30 (3): 504-6.
- Tomlinson SM, Malmstrom RD, Russo A, Mueller N, Pang YP, Watowich SJ. Structure-based discovery of dengue virus protease inhibitors. **Antiviral Res**. 2009;82(3):110-4.
- Trirawatanapong T, Chandran B, Putnak R, Padmanabhan R. Mapping of a region of dengue virus type-2 glycoprotein required for binding by a neutralizing monoclonal antibody. **Gene.** 1992;116(2):139-50.
- Umareddy I, Chao A, Sampath A, Gu F, Vasudevan SG. Dengue virus NS4B interacts with NS3 and dissociates it from single-stranded RNA. **J. Gen. Virol.** 2006;87(9):2605-14.
- Valdes K, Alvarez M, Pupo M, Vázquez S, Rodriguez R, Guzman MG. Human Dengue antibodies against structural and nonstructural proteins. **Clin. Diagn. Lab. Immunol**. 2000; 7: 856-7.

- Van der Schaar HM, Wilschut JC, Smit JM. Role of antibodies in controlling dengue virus infection. Immunobiol. 2009; 214: 613–29
- Vasconcelos PFC, Rosa APAT, Pinheiro FP, Rodrigues SG, Rosa EST, Cruz ACR, Ros JFST. Aedes aegypti, Dengue and Re-urbanization of Yellow Fever in Brazil and other South American Countries Past and Present Situation and Future Perspectives. **Dengue Bull.** 1999; 23.
- Vasilakis N, Fokam EB, Hanson CT, Weinberg E, Sall AA, Whitehead SS, Hanley KA, Weaver SC, Genetic and phenotypic characterization of sylvatic dengue virus type 2 trains. **Virol.** 2008; 377: 296–307
- Vaughn DW, Nisalak A, Kalayanarooj S, Solomon T, Dung NM, Cuzzubbo A, Devine PL. Evaluation of a rapid immunochromatographic test for diagnosis of dengue virus infection J. Clin. Microbiol. 1998; 36:234–238
- Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, Suntayakorn S, Endy TP, Raengsakubiack B, Rothman AL, Ennis FA, Nisalak A. Dengue viremia titer, antibody response pattern and virus serotype correlate with disease severity. J. Infect. Dis. 2000; 181: 2-9.
- Vaughn D. Immunological responses to dengue virus In: WHO Dengue diagnostics: proceedings of an international workshop-2004. Geneva, Switzerland; 2005: 16-18.
- Vásquez S, Guzmán MG, Guillen G, Chinea G, Pérez AB, Pupo M, Rodríguez R, Reyes O, Garay HE, Delgado I, Garcia G, Alvarez M. Immune response to synthetic peptides of dengue prM protein. Vaccine; 2002; 20: 1823-30.
- Vásquez S, Pérez AB, Ruiz D, Rodríguez R, Pupo M, Calzada N, González L, González D, Castro O, Serrano T, Guzmán MG. Serological markers during dengue 3 primary and secondary infections. J. Clin. Virol. 2004; 33 (2): 132-7.
- Videa E, Coloma MJ, Dos Santos FB, Balmaseda A, Harris E. Immunoglobulin M enzyme-linked immunosorbent assay using recombinant polypeptides for diagnosis of dengue. **Clin Diagn Lab Immunol.** 2005;12(7):882-4.
- Vorndam V, Kuno G. Laboratory diagnosis of dengue virus infections. In: Gubler DJ, Kuno G. **Dengue** and dengue hemorrhagic fever. CAB International: Wallingford, USA. 1997.
- Waldman EA. O controle das doenças infecciosas emergentes e a segurança sanitária. Ver. **Direito** sanitário, 2000; 1 (1): 89-106.
- Wang E, Ni H, Xu R, Barrett ADT, Watowich SJ, Gubler DJ, Weaver SC. Evolutionary relationships of endemic/epidemic and sylvatic dengue viruses. **J. Virol**. 2000; 74: 3227–3234.

- Wang WK, Sung TL, Lee CN, Lin TY, King CC. Sequence diversity of the capsid gene and the nonstructural gene NS2b of dengue 3 virus in vivo. **Virol**.; 2002; 303:181-91.
- Warrener P, Tamura JK, Collett MS. RNA-stimulated NTPase activity associated with yellow fever virus NS3 protein expressed in bacteria. **J. Virol.** 1993;67(2):989-96.
- Watts DM, Porter KR, Putvatana P, Vazquez B, Calampa C, Hayes CG, Halstead SB. Failure of secondary infection with American genotype dengue 2 to cause dengue haemorrhagic fever. Lancet 1999; 354: 1431-34.
- Wearing HJ, Rohani P. Ecological and immunological determinants of dengue epidemics. **Proc. Natl.** Acad. Sci. USA. 2006; 103(31):11802-7.
- Weaver SC, Vasilakis N. Molecular evolution of dengue viruses: Contributions of phylogenetics to understanding the history and epidemiology of the preeminent arboviral disease. **Infect. Gen. Evol.** 2009; 9: 523–40.
- Wei HY, Jiang LF, Fang DY, Guo HY. Dengue virus type 2 infects human endothelial cells through binding of the viral envelope glycoprotein to cell surface polypeptides **J. Gen. Virol.** 2003; 84, 3095–98.
- Westaway EG, Mackenzie JM, Kenney MT, Jones MK, Khromykh AA. Ultrastructure of Kunjin virusinfected cells: colocalization of NS1 and NS3 with double-stranded RNA, and of NS2B with NS3, in virus-induced membrane structures. **J. Virol**. 1997. 71:6650–6661.
- Whitehead SS, Blaney JE, Durbin AP, Murphy BR. Prospects for a dengue virus vaccine. **Nat. Rev. Microbiol.** 2007. 5: 518-528.
- Wilder-Smmith A, Gubler DJ. Geographic expansion of dengue: the impact of international travel. Med. Clin. N. Am. 2008; 92: 1377–90.
- Williams KL, Hochstrasser DF. Introduction to Proteome. In: Wilkins MR, Williams KL, Appel RD, Hochstrasser (eds) Proteome Research: New Frontiers in Functional Genomics. Springer-Verlag Berlin Heidelberg. Germany 1997. pp1-11.
- Wilkins MR, Gooley AA. Protein identification in proteomic projects. In: Wilkins MR, Williams KL, Appel RD, Hochstrasser DF. Proteome research: new frontiers in functional genomics. Springer-Verlay Berlin Heidelberg New York. Chapter 3: 35-64.

- World Health Organization (WHO). Council for International Organizations of Medical Sciences (CIOMS).
 International Nomenclature of Diseases. In: Infectious diseases. Vol. II. Part 3: Viral Diseases.
 Geneva; World Health Organization; 1983. 101 p.
- World Health Organization (WHO). Dengue haemorrhagic fever: diagnosis, treatment, prevention and control. 2nd edition. Geneva; 1997.
- World Health Organization (WHO). **Dengue and dengue hemorrhagic fever**. Fact Sheet N° 117, revised April 2002. ano 2002. Disponível em <u>www.who.int/csr/disease/en/who</u>. Acesso em: 12/12/2009.
- World Health Organization (WHO). **Dengue guidelines for diagnosis, treatment, prevention and control.** 2009. WHO Library Cataloguing-in-Publication Data. 160 pg.
- Wu SJ, Grouard-Vogel G, Sun W, Mascola JR, Brachtel E, Putvatana R, Louder MK, Filgueira L, Marovich MA, Wong HK, Blauvelt A, Murphy GS, Robb ML, Innes BL, Birx DL, Hayes CG, Frankel SS. Human skin Langerhans cells are targets of dengue virus infection. Nat. Med. 2000; 6: 816–20.
- Wu HC, Huang YL, Chao TT, Jan JT, Huang JL, Chiang HY, King CC, Shaio MF. Identification of B-Cell epitope of dengue virus type 1 and its application in diagnosis of patients. Journal of Clinical Microbiology, 2001, 39 (3): 977-82.
- Xu H, Di B, Pan YX, Qiu LW, Wang YD, Hao W, He LJ, Yuen KY, Che XY. Serotype 1-specific monoclonal antibody-based antigen capture immunoassay for detection of circulating nonstructural protein NS1: Implications for early diagnosis and serotyping of dengue virus infections. J. Clin. Microbiol. 2006;44(8):2872-8.
- Young P, Paige A, Bletchly C, Halloran W. An antigen capture enzyme-linked immunosorbent assay reveals high levels of dengue virus protein NS1 in the sera of infected patients. **J. Clin. Microbiol**. 2000; 38:1053–1057.
- Zagne S M O, Alves V G F, Nogueira R M R, Miagostovich M P, Lampe E, Tavares W. Dengue haemorrhagic fever in the State of Rio de Janeiro, Brazil: a study of 56 confirmed cases. Trans. Roy. Soc. Trop. Med. Hyg. 1994; 88: 677-9.
- Zainah S, Wahab AH, Mariam M, Fauziah MK, Khairul AH, Roslina I, Sairulakhma A, Kadimon SS, Jais MS, Chua KB. Performance of a commercial rapid dengue NS1 antigen immunochromatography test with reference to dengue NS1 antigen-capture ELISA. J. Virol. Methods. 2009;155(2):157-60.
- Zhang Y, Corver J, Chipman PR, Pletnev SV, Sedlak D, Baker TS, Strauss JH, Kuhn RJ, Rossmann MG: Structures of immature flavivirus particles. **EMBO J.** 2003, 22:2604-2613.

- Zhu W, Qin C, Chen S, Jiang T, Yu M, Yu X, Qin E. Attenuated dengue 2 viruses with deletions in capsid protein derived from an infectious full-length cDNA clone. **Virus Res.** 2007; 126 (1-2): 226-232.
- Zulueta A, Martín J, Hermida L, Alavrez M, Valdés I, Prado I, Chinea G, Rosário D, Guillén G, Guzmán MG. Amino acid changes in the recombinant dengue 3 envelope protein domain III determine its antigenicity and immunogenicity in mice. Virus Res. 2006; 121: 65-73.

ANEXO 1

Anexo 1: Regiões propensas ao reconhecimento po	r anticorpos para cada p	proteína dos DENV-1,	DENV-2 e DENV-3,	baseado em	parâmetros de
estrutura secundária, acessibilidade e solubilidade.					

		DENV-1			DENV-2		DENV-3			
Proteínas	Posição	O a ulhân ala	Posição	Posição	O a ulti fu al a	Posição	Posição	O a ull fan a ta	Posição	
	inicial	Sequencia	final	inicial	Sequencia	final	inicial	Sequencia	final	
	3	NQRKKTGRPSF	13	40	GRGP	43	3	NQRKKTGKPS	12	
	24	STGS	27	59	IPPTA	63	24	STGS	27	
С	34	SKGLLSGQGP	43	73	KKSK	76	34	SKGLLNGQGP	43	
	58	AIPPTA	63	97	RRRRT	101	57	LAIPPTA	63	
	69	WSSFKKNG	76				73	KKSG	76	
	119	TRGGEP	124	119	TRNGEP	124	119	SRDGE	123	
	141	TSGGVNM	147	172	QNEPEDIDCWCNSTST	187	141	TASGIN	146	
prM M	174	EPDD	177	192	GTCTTTGE	199	167	CPHI	170	
privi-ivi	191	YGTCSQTGEHRRDKRS	206	244	HPGF	247	191	YGTCNQ	196	
	225	MSSEGA	230				244	HPGF	247	
	243	RHPGF	247				258	IGTSL	262	
	287	GNRDF	291	287	SNRDF	291	287	GNRDF	291	
	294	GLSGA	298	295	VSGGS	299	295	LSGA	298	
	307	HGSC	310	307	HGSC	310	307	HGGC	310	
	315	AKNKPTL	321	316	KNKPT	320	317	NKPTL	321	
	346	SNTTTDSRCPTQGE	359	347	NTTTESRCPTQGEPSL	362	349	TTDSRCPTQ	357	
	378	DRGWGNGCG	386	378	RGWGNGCG	386	378	DRGWGNGCG	386	
	389	GKGS	392	389	GKGG	392	389	GKGS	392	
	415	LKYS	418	422	TPHSG	426	424	HTGDQHQVGNETQG	437	
	424	HTGDQHQVGNETTE	437	434	DTGK	437	454	PEYGT	458	
F	446	PQAPTS	451	445	TPQSS	449	464	SPRTGL	469	
E	456	TDYG	459	456	TGYG	459	494	LPLPWTSGATTETPT	508	
	465	CSPRTGLD	472	466	SPRTGL	471	550	NSGGT	554	
	496	LPLPWSGASTSQETWNR	513	496	LPLPWLPGADTQGSNW	511	616	STEDGQGKAHNGR	628	
	552	TSGT	555	553	SSGN	556	649	PPFGESNI	656	
	607	EGTDAPCK	614	576	GMSY	579	671	RKGSSI	676	
	621	DEKGVTQNG	629	595	TQHG	598	699	DFGSVGG	705	
	643	KPVNIETEPPFG	654	607	EGDGSPCK	614	746	LNSKNTSMSFSC	757	
	673	KKGSSIG	679	640	EKDSP	644				
	701	DFGSIGG	707	651	PPFGDSYI	658				
	748	LNSRSTS	754	663	EPGQ	666				

		DENV-1			DENV-2			DENV-3	
Proteínas	Posição	Cogüância	Posição	Posição	Conjuâncio	Posição	Posição	Conjuâncio	Posição
	inicial	Sequencia	final	inicial	Sequencia	final	inicial	Sequencia	final
				673	KKGSSIGQ	680			
E				701	DFGSLGG	707			
				748	MNSRSTS	754			
	776	DSGC	779	789	KCGSG	793	787	KCGSG	791
	783	WKGRELKCGSG	793	797	TDNVH	801	811	SPKR	814
	808	KFQADSPKR	816	808	KFQPESPSK	816	873	GKRTLTP	879
	866	GNANG	870	875	GKRSLRPQPTELKYS	889	902	QNSSF	906
	886	HKYSWKSWGKA	896	911	DGPET	915	909	DGPNTPECPSA	919
	911	DGPDTPECPDE	921	918	CPNTNRAWNS	927	930	DYGF	933
	931	EDYGF	935	998	CHWPKSHTLWSNGV	1011	978	QKNGSW	983
NS1	946	LRDSYT	951	1019	PKNFAGPVSQHNYRPGY	1035	996	CTWPKSHTLWSNGV	1009
	954	CDHR	957	1041	GPWH	1044	1017	PKSLAGPISQHNHRPGY	1033
	998	CIWPKSHTLWSNGV	1011	1064	EDCGNRGPSL	1073	1039	GPWHL	1043
	1021	MYGGPISQHNYRPGY	1035	1078	ASGK	1081	1061	TENCGTRGPSL	1071
	1040	AGPWHL	1045	1086	WCCRSCTL	1093	1076	VSGK	1079
	1065	HCGSRGPSL	1073	1099	RGEDGCW	1105	1084	WCCRSCTLPPLR	1095
	1088	CRSCT	1092						
	1096	LRFRGEDGCW	1105						
	1126	SAGSGEVDSFS	1136	1173	GNMSF	1177	1126	GSGK	1129
	1154	WSGK	1157	1239	SQST	1242	1169	LSGQ	1172
	1191	ASDKMGMGT	1199	1312	SQQKTDW	1318	1186	GSNASD	1191
	1223	LTSRE	1227	1327	GLNPTA	1332	1221	LTSREN	1226
NS2a	1243	LPNS	1246	1340	RTSKKRS	1346	1310	SMRKTDW	1316
	1268	QPHQ	1271						
	1310	STTSQK	1315						
	1324	GSFG	1327						
	1342	WGRK	1345						
	1346	SWPLNEGI	1353	1367	LKND	1370	1344	RRSWPLNEGV	1351
	1367	LKND	1370	1412	ISGSSP	1417	1365	LRND	1368
NS2b	1390	SGSSA	1394	1424	SEDG	1427	1389	GTSA	1392
	1412	HSGTSHN	1418				1468	QKQTQR	1473
	1471	KKKQR	1475						

		DENV-1			DENV-2		DENV-3			
Proteínas	Posição	Coniliâncio	Posição	Posição	Cogüância	Posição	Posição	Cogüância	Posição	
	inicial	Sequencia	final	inicial	Sequencia	final	inicial	Sequencia	final	
	1481	DTPSPP	1486	1482	VPSPPP	1487	1480	VPSPPET	1486	
	1503	RGLLGRSQ	1510	1535	HRGKRIEPSW	1544	1526	TRGA	1529	
	1554	YGGGWRFQGSWNTGE	1568	1555	GGGWK	1559	1534	NGK	1536	
	1576	EPGKNPK	1582	1576	EPGKNPRA	1583	1553	GGGW	1556	
	1589	GTFKTPEG	1596	1594	NTGT	1597	1560	AQWQKGEE	1567	
	1606	KPGTSGSPIVNREGK	1620	1606	SPGTSGSP	1613	1575	PGKNPKN	1581	
	1646	SQEGPLP	1652	1616	DRKG	1619	1585	MPGT	1588	
	1670	HPGSGK	1675	1646	SIEDNPEI	1653	1592	TTGE	1595	
	1725	SEHTGR	1730	1669	HPGA	1672	1604	KPGTSGSP	1611	
	1747	SPVRVPNY	1754	1726	HTGR	1729	1642	NAEPDGP	1648	
	1793	TPPGSV	1798	1792	TPPGSRDPFPQSNAPI	1807	1668	HPGSGK	1673	
	1801	FPQSNA	1806	1818	SWNSGHE	1824	1719	TATKSEHTGR	1728	
NCO	1815	IPERSWNSGYD	1825	1829	FKGK	1832	1790	ATPPGT	1795	
1100	1830	FPGK	1833	1841	KAGNDI	1846	1801	QSNAPI	1806	
	1840	SIKSGND	1846	1851	RKNG	1854	1816	RSWNSGNE	1823	
	1852	RKNG	1855	1863	KTFDSEY	1869	1850	RKNG	1853	
	1863	RKTFDTEYQKTKNNDW	1878	1874	TNDW	1877	1861	RKTF	1864	
	1901	PRRC	1904	1899	DPRRC	1903	1871	TKLNDW	1876	
	1912	DGPER	1916	1937	GRNPRNENDQY	1947	1898	DPRRC	1902	
	1938	GRNQNKEGDQ	1947	1973	INTPEG	1978	1910	DGPER	1914	
	1953	QPLNNDE	1959	2013	RRGDL	2017	1931	RRGRVGRNPQKENDQY	1946	
	1973	NINTPEG	1979	2029	GINYADRRWCFDGIKNN	2045	1951	QPLNNDE	1957	
	2014	RRGDL	2018	2076	YSDP	2079	1972	INTPEG	1977	
	2031	FQYSDRRWCFDGERNNQ	2047				2012	RRGDL	2016	
	2066	KLRPRW	2071				2033	DRKWCFDGERNNQ	2045	
	2076	TYSDP	2080				2074	TYSDP	2078	
	2092	GRRSVSGD	2099	2104	GRLP	2107	2127	EHGGR	2131	
	2168	SGKGLGKTS	2176	2166	MSGKGI	2171	2167	GKGIGKTS	2174	
NS4a	2214	IPEPDRQR	2221	2194	QPHW	2197	2183	SSGM	2186	
	2222	TPQDN	2226	2219	QRT	2221	2220	AIVLE	2224	
				2222	PQDN	2225				

	DENV-1				DENV-2		DENV-3			
Proteínas	Posição	Cogüância	Posição	Posição	Cogüância	Posição	Posição	Cogüância	Posição	
	inicial	Sequencia	final	inicial	Sequencia	final	inicial	Sequencia	final	
	2303	NTTA	2306	2266	SESN	2269	2251	TKRDLGMSKEPGVVSPTS	2268	
	2324	DKGW	2327	2276	RPAS	2279	2300	NSTA	2303	
	2443	TGPLT	2447	2299	IENSSV	2304	2321	DKGW	2324	
	2452	GSPGKF	2457	2322	GKGW	2325	2364	GPGL	2367	
NS4b	2487	SLGGGRR	2493	2365	GPGL	2368	2386	NPTV	2389	
				2402	PYDPKF	2407	2439	ATGP	2442	
				2440	ATGP	2443	2449	GSPGKF	2454	
				2453	GRF	2455	2486	GTGKR	2490	
				2483	MKNTTNTRR	2491				
	2494	GTGA	2497	2509	NTLGKN	2515	2491	GTGS	2494	
	2512	QLSKSEFNTYKRSGI	2526	2520	KKSG	2523	2520	KSG	2522	
	2562	NLVKPEG	2568	2559	RNMVTPEG	2566	2546	SRGSA	2550	
	2572	DLGCGRGGWSYYCAG	2586	2582	CGGLK	2586	2560	MVIP	2563	
	2596	YTKGGPGHEEP	2606	2595	TKGGPGH	2601	2572	CGRGGWSYYC	2581	
	2620	HSGKD	2624	2626	TPPEK	2630	2593	YTKGGPGH	2600	
	2629	PPEK	2632	2639	GESSPNP	2645	2626	PPEK	2629	
	2641	GESSPNPTIEE	2651	2663	LNNNTQ	2668	2638	GESSPSPT	2645	
	2664	WLRGNQ	2669	2675	NPYM	2678	2673	NPYM	2676	
	2701	PLSRNST	2707	2698	RNPLSRNST	2706	2695	VRNPLSRNST	2704	
NS5	2715	SCGTG	2719	2714	NATG	2717	2711	SNGTGN	2716	
	2739	HRKPTYERD	2747	2750	GSGT	2753	2736	HRRPT	2740	
	2751	GAGT	2754	2785	YDQDHPYK	2792	2755	NAEPETPNM	2763	
	2780	HKSTWHYDEDNPYK	2793	2797	HGSYE	2801	2778	NSTWHYDDENPYK	2790	
	2798	HGSYEVKPSGSA	2809	2804	QTGSA	2808	2795	HGSY	2798	
	2822	KPWD	2825	2821	KPW	2823	2835	TTPFG	2839	
	2837	DTTPFG	2842	2836	DTTPF	2840	2852	TPRSMPGT	2859	
	2855	RTRAKRGT	2862	2877	GKKKTPRM	2884	2875	GRNKRPR	2881	
	2877	LSRNKKP	2883	2936	GKCE	2939	2934	GKCG	2937	
	2896	VRSN	2899	2992	ENSLSG	2997	2968	LGARY	2972	
	2935	KQGK	2938	3064	YQNK	3067	2989	RENSYSGVEGEGL	3001	

		DENV-1			DENV-2		DENV-3			
Proteínas	Posição	Cogüâncio	Posição	Posição	Coniliância	Posição	Posição	Cogüâncio	Posição	
	inicial	Sequencia	final	inicial	Sequencia	final	inicial	Sequencia	final	
	2960	AKGS	2963	3074	PTPRG	3078	3014	IPGG	3017	
	2991	SRENSLSG	2998	3086	RRDQRGSGQVGTYG	3099	3073	TPTG	3076	
	3017	IPGG	3020	3152	SGDDC	3156	3085	KDQRGSG	3091	
	3065	YQNK	3068	3187	PSRGWNDWT	3195	3185	QPSKGWHD	3192	
	3075	PAKNG	3079	3234	GAGWS	3238	3233	GAGWS	3237	
	3087	RRDQRGSGQVGT	3098	3280	PTSR	3283	3279	PTSRTTW	3285	
	3116	ESEGIFFPSELES	3128	3309	IQENPW	3314	3289	AHHQ	3292	
	3188	PSKGWNDWQ	3196	3335	DQWCG	3339	3308	IEDNPWM	3314	
NS5	3235	GAGW	3238				3327	PYLG	3330	
	3247	GKSY	3250				3334	DQWCG	3338	
	3281	PTSRTTW	3287							
	3312	ENPW	3315							
	3322	VSSW	3325							
	3330	YLGKR	3334							
	3336	DQWC	3339							
	3367	GNENY	3371							
	3382	KNESDPE	3388							

ANEXO 2

		DENV-1			DENV-2	DENV-3			
Proteinas	Posição inicial	Sequencia	Posição final	Posição inicial	Sequencia	Posição final	Posição inicial	Sequencia	Posição final
	1	MNNQRKKTGRPSFNMLKRARNRVS TGSQLAKRFSKGLLSGQGPM	44	1	MNNQRKKARSTP	12	1	MNNQRKKTGKPSINM	15
	69	WSSFKKNGA	77	15	MLKRERNRVST	25	17	KRVRNRVSTGSQLAKRFSKGL LNGQGPM	44
C	82	RGFKKEIS	89	29	LTKRFS	34	70	GTFKKSGA	77
U	95	MNRRKRSV	102	39	QGRGPL	44	79	KVLKGFKKEIS	89
				70	GTIKKSKAIN	79	95	INKRKKTS	102
				82	RGFRKEIGR	90			
				95	LNRRRTA	102			
	118	TTRGGEP	124	117	LTTRNGEP	124	117	LTSRDGEPRMIVGKNERGKSL	137
	129	SKQERGKSL	137	129	GRQEKGKSL	137	141	TASG	144
	141	TSGGVNM	147	140	KTEDGVN	146	154	DLGEMCDDTVTYK	166
prM-M	154	DLGELCEDTMTYKCPRITEAEPDDVD	179	157	ELCEDTITY	165	169	HITEVEPEDIDC	180
privi-ivi	192	GTCSQTGEHRRDKRSV	207	168	PLLRQNEPEDIDCWCNSTS	186	192	GTCNQAGERRRDKRSVA	208
	217	LETRTET	223	192	GTCTTTGEHRREKRSV	207	215	MGLDTRTQT	223
	225	MSSEGAWKQIQKVE	238	215	MGLETRTETWMSSEGAW	231	226	SAEGAWRQVEKVE	238
	262	ITQK	265				259	GTSL	262
	287	GNRDFVEGLSGA	298	287	SNRDFVEGVSGGS	299	287	GNRDFVEGLSG	297
	315	AKNKPTL	321	314	MAKNKPTL	321	315	AKNKPTLDIELQKTEA	330
	324	ELLKTEVTN	332	324	ELIKTEAKQPATLRKYCI	341	343	GKITNITTDSRCPTQGEAVL PEEQDQNY	370
	343	AKISNTTTDSRCPTQGEATLVEEQDA	368	343	AKLTNTTTES	372	375	TYVDRGWGNGC	385
E	375	TFVDRGWGNGC	385	375	SMVDRGWGNG	384	389	GKGS	392
L	389	GKGS	392	389	GKGG	392	403	EPIEGKVVQ	411
	403	TKLEGKIVQ	411	400	TCKKNMEG	407	424	HTGDQHQVGNETQGV	438
	413	ENLKYS	418	422	TPHSGEEHAVGNDTGKHGEEIKITP QSSITEAELTGYG	459	442	ITPQAST	448
							463	CSPRTGLDF	471
							498	WTSGATTETPTWNRKEL	514

		DENV-1		DENV-2		DENV-3			
Proteinas	Posição inicial	Sequencia	Posição final	Posição inicial	Sequencia	Posição final	Posição inicial	Sequencia	Posição final
	424	HTGDQHQVGNETTE	437	465	CSPRTGLDF	473	521	AHAKKQE	527
	447	QAPTS	451	481	MEEKA	485	533	LGSQEGA	537
	465	CSPRTGLD	472	502	PGADTQGSNWIQKET	516	546	TEIQNSGGTS	555
	481	MKEKS	485	522	NPHAKKQD	529	561	LKCRLKMDKLELKGMS	576
	499	PWTSGAST	516	535	SQEGA	539	586	LKKEVSETQH	595
	523	AHAKKQE	529	551	QMSSGN	556	602	VEYKGEDAPCK	612
	535	SQEG	538	563	LKCRLRMDKLQL	574	615	FSTEDGQGKAHNGRLIT	631
	548	TEIQTSGT	555	582	CTGK	585	636	VVTKKEEPVNIEAEPPFGESNI	656
E	567	LKMDKLTLKGTS	578	587	KIVKEIAETQHG	598	660	IGDKAL	665
	584	GSFKLEKEVAETQH	597	604	VQYEGDGSPCKI	615	668	NWYRKGSSI	676
	604	VKYEGTDAPCK	614	620	MDLEKRHAL	628	678	KMFEATARGARRMAI	692
	618	LTQDEKGVTQNGR	630	638	VTEKDSPVNIEAEPPFGDSY	657	746	LNSKNTS	752
	638	VTDKEKPVNIETEPPFGES	656	663	EPGQL	667			
	661	GAGEKAL	667	670	NWFKKGSSIGQ	680			
	671	WFKKGSSIGK	680	684	TTMRGAKRMAI	694			
	685	TARGARRMAI	694	748	MNSRSTS	754			
	748	LNSRSTS	754						
	775	ADSGC	779	775	ADSGC	779	781	WKGKELKCGSGIFVTNE	797
	783	WKGRELKCGSG	793	783	WKNKELKCGSG	793	805	YKFQADSPKRLA	816
	807	YKFQADSPKRLS	818	806	QYKFQPESPSKLAS	819	832	STTRME	837
	824	AWEEGVCG	831	821	IQKAHEEGIC	830	870	LEQGKRTLTPQPMELKYS	887
NS1	834	SATRL	838	834	SVTRLE	839	894	AKIVTAETQNSSF	906
	845	QISNE	849	855	SENEVK	860	910	GPNTPECPSASR	921
	857	NDIK	860	864	MTGDIKG	870	927	EVEDYGF	933
	874	QGKKMIRPQPMEHKYSWKSW GKAKIIGADIQ	904	873	QAGKRSLRPQPTELKYS	889	943	KLREVY	948
				897	KMLSTESHN	905	952	CDHRL	956

		DENV-1			DENV-2		DENV-3			
Proteinas	Posição inicial	Sequencia	Posição final	Posição inicial	Sequencia	Posição final	Posição inicial	Sequencia	Posição final	
	911	DGPDTPECPDEQR	923	911	DGPETAECPNTNRAWN	926	960	AVKDERAVH	968	
	929	EVEDYGF	935	929	EVEDYG	934	976	ESQKNGSWKLEKASLIE	992	
	944	KLRDSYT	952	945	KLREKQDVFCDSKL	958	997	TWPKSHTLWSNGVLE	1011	
	954	CDHR	957	962	AIKDNRAVH	970	1014	MIIPKSLA	1021	
	963	IKDSK	970	980	ALNDTWKIEK	989	1024	ISQHNHRPGY	1033	
	978	SEKDETWK	986	999	HWPKS	1003	1045	KLELDFNYCEGT	1056	
NS1	1002	KSHTLWSNGVLE	1013	1007	SNGVLE	1013	1062	ENCGTRGPSLRTTTVSGKL	1080	
	1021	MYGG	1024	1020	KNFAGPVSQHNYRPGY	1035	1084	WCCRSCT	1090	
	1029	HNYRPGY	1035	1047	KLEMDFDFCE	1056	1095	RYMGEDGCW	1103	
	1041	KLELDFDLCEGT	1044	1062	VTEDCGNRGPSLRTTTASGKLI	1083	1107	EIRPISEKEENMV	1119	
	1047	VDEHCGSRGPSLRT	1058	1086	WCCRSCT	1092				
	1087	RFRGEDGCW	1092	1094	PPLRYRGEDGCW	1105				
	1109	EIRPVKEKEEDL	1120	1109	EIRPLKEKEENL	1120				
	1126	SAGSGEVDSFS	1136	1130	GQIDNFS	1136	1125	AGSGKVDN	1132	
	1149	VMRSRWSG	1156	1148	EMLRTRVGT	1156	1146	EVMRGKFGKKHM	1157	
	1190	NASDKMGM	1197	1174	NMSFRDLG	1181	1186	GSNASDRMG	1194	
	1222	RLTSRE	1227	1191	MTDDIG	1196	1221	LTSRENLLL	1227	
NS2a	1243	LPNSLEELGDGL	1254	1222	KLTSKELM	1229	1241	LPEDIEQMA	1249	
	1267	FQPHQ	1271	1239	SQSTIPETI	1247	1307	QSSSMRKTDW	1316	
	1310	STTSQKTT	1317	1266	NMEKY	1270	1338	DTLKRRSWPLNEGV	1351	
	1324	GSFG	1327	1310	TSSQQKTDW	1318				
	1338	ENEIWGRK	1345	1338	LSRTSKKRSWPL	1349				

		DENV-1		DENV-2				DENV-3			
Proteinas	Posição inicial	Sequencia	Posição final	Posição inicial	Sequencia	Posição final	Posição inicial	Sequencia	Posição final		
	1346	SWPLNEGI	1353	1365	SLLKNDIPM	1373	1363	SLLRNDVPM	1371		
	1365	SLLKNDVP	1372	1391	GRSADLELERAADVKWEDQAEISGSSP	1417	1389	GTSADLTVEKAA	1400		
NS2b	1390	SGSSADLSLEKAAEVSWEEEAGHSGTS	1416	1423	ISEDGSMSIKNEEEEQT	1439	1403	TWEEEAEQTGV	1413		
	1423	VQDDGTMKIKDEERDDT	1439	1471	VKKQRA	1476	1421	VDDDGTMRIKDDETEN	1436		
	1470	QKKKQRS	1476				1468	QKQTQR	1473		
	1482	TPSPPEVERAVLDGI	1497	1483	PSPPPVEKAELEDGAYRIKQRGI	1505	1481	PSPPETQKAELEEGVYRIKQ	1500		
	1504	GLLGRSQV	1511	1515	VYKEGT	1520	1513	VQKEGV	1518		
	1535	YQGKRLEPSW	1544	1533	LMHRGKRIEPSWADVKKDLI	1552	1532	TYNGKRLEPNW	1542		
	1546	SVKKDLI	1552	1555	GGGWKLEGEWKEGEEVQ	1571	1545	VKKDLI	1550		
	1555	GGGW	1558	1574	ALEPGKNPRAVQTKPGLFKTNTGT	1597	1560	AQWQKGEEVQ	1569		
	1562	GSWNTGEEVQ	1571	1605	FSPGTSGSPIVDRKGKV	1621	1572	AVEPGKNPKNFQ	1583		
	1574	AVEPGKNPKNVQTTPGTFKTPEGEV	1598	1629	VVTRSG	1634	1585	MPGTFQTTTGEI	1596		
	1604	DFKPGTSGSPIVNREKI	1621	1641	AQTEKSIEDNPEIEDDFFRKKRLT	1664	1602	DFKPGTSGS	1610		
	1643	AKASQEGPLPEIEDEVFKKRNLT	1665	1668	LHPGAGKTKRY	1678	1612	IINREGKV	1619		
NS3	1670	HPGSGKTRRY	1679	1685	EAIKRGLR	1692	1641	TNAEPDGPTPELEEEMFKKRNLT	1663		
1100	1687	AIRRKLR	1693	1702	VAAEMEEALR	1711	1668	HPGSGKTRKY	1677		
	1722	AVLSEHTGREIV	1733	1720	PAIRTEHTGREIV	1732	1684	EAIKRRLR	1691		
	1749	VRVPN	1753	1777	AARGYISTRVEMGE	1783	1701	VAAEMEEALK	1710		
	1766	DPASIAA	1772	1792	TPPGSRDPFPQSNAPIMDEEREIPERS WNSGHEWVTDFKGKT	1833	1719	TATKSEHTGREIV	1731		
	1780	VGMGE	1784	1839	SIKAGNDI	1846	1747	VRVPN	1751		
	1793	TPPGSVEAFPQSNA	1803	1848	ACLRKNGKKVIQLSRKTFDSEYVKTRT NDWD	1878	1760	AHFTDPAS	1767		
	1808	IQDEERDIPERSWNSGYD	1824	1883	TDISE	1887	1778	VGMGE	1782		
				1889	GANFRAERVIDPRRCMK	1905					
				1908	ILTDGEERVI	1917					

		DENV-1		DENV-2				DENV-3			
Proteinas	Posição inicial	Sequencia	Posição final	Posição inicial	Sequencia	Posição final	Posição inicial	Sequencia	Posição final		
	1828	TDFPGK	1834	1928	SAAQRRGRIGRNPRNENDQ	1946	1791	TPPGTADAFPQSNAPIQDEERDIPERSW NSGNEW	1824		
	1840	SIKSGNDIANCLRKNGKRVIQLSRKTF DTEYQKTKNNDW	1879	1952	EPLENDEDCAHWKEAKML	1969	1838	SIKAGNDIANCLRKNGKKVIQLSRKTFDTEY QKTKLNDWD	1877		
	1885	DISE	1888	1972	NINTPEGI	1979	1882	TDISEMGANFRAERVIDPRRCLK	1904		
	1893	FRADRVIDPRRCLK	1906	1984	FEPEREKVDAIDGEYRLRGEARKTF	2008	1907	ILTDGPERVI	1916		
	1909	ILKDGPERV	1917	2010	DLMRRGDL	2017	1928	AASAAQRRGRVGRNPQKENDQ	1945		
NOO	1930	AAQRRGRIGRNQNKEGDQY	1948	2029	GINYADRRWCFDGIKNNQILEENVE	2053	1951	QPLNNDEDHAH	1961		
NS3	1952	GQPLNNDEDHAH	1963	2056	IWTKEGERKKLKPRWLD	2072	1971	NINTPEGI	1978		
	1973	NINTPEGI	1980	2074	RIYSDPLALKEFKE	2087	1983	FEPEREKSAAIDGEYRLKGESRKTF	2007		
	1985	FEPEREKSAAIDGEYRLRGEARKTF	2009	2089	AAGRKS	2094	2009	ELMRRGDL	2016		
	2011	ELMRRGDL	2018				2024	VASEGIKYTDRKWCFDGERNNQILEENMD	2052		
	2025	KVASEGFQYSDRRWCFDGERNNQVLE ENMD	2054				2055	IWTKEGEKKKLRPRWLDARTYSDPLA	2080		
	2058	WTKEGERKKLRPRWLDARTYSDPLA	2082				2082	KEFKDFAAGRK	2092		
	2084	REFKEFAAGRR	2094								
	2095	SVSG	2098	2102	EMGRLP	2107	2100	TEIGRVPS	2107		
	2105	GKLP	2108	2112	QKARDALD	2119	2111	HKTRNAL	2117		
	2127	NSEQGKAYRHAMEELPDTIE	2147	2128	EAGGR	2132	2124	HTSEHGGRAYRHAVEELPETME	2145		
	2169	GKGLGKTSI	2177	2140	ELPETL	2145	2167	GKGIGKTS	2174		
	2214	IPEPDRQRTPQDNQL	2228	2167	SGKGIGK	2173	2213	PEPEKQRTPQDNQL	2226		
NS4a e 4b	2251	ETTKKDLG	2258	2214	PEPEKQRTPQDNQL	2227	2249	ETTKRDLGMSKEPGV	2263		
	2265	EDHQ	2268	2250	EKTKKDLG	2257	2296	HTIENSTAN	2304		
	2276	DLHP	2279	2262	TTQESESNIL	2271	2320	LDKGWPISKMDL	2331		
	2299	HTIEDTTAN	2307	2273	IDLRPAS	2279	2370	KATREAQKRTA	2380		
	2323	LDKGWPISKMDL	2334	2297	HSIENSSV	2304					
	2369	GLQAKATREAQKRTA	2383	2322	GKGWP	2325					

		DENV-1			DENV-2	DENV-3			
Proteinas	Posição inicial	Sequencia	Posição final	Posição inicial	Sequencia	Posição final	Posição inicial	Sequencia	Posição final
	2387	MKNPTVDG	2394	2329	KMDI	2332	2384	MKNPTVDG	2391
	2407	AKFEKQL	2413	2371	KATREAQKRAA	2381	2401	IYDSKFEKQL	2410
NS4a e	2451	EGSPGKF	2457	2385	MKNPTVDG	2392	2447	WEGSPGKF	2454
4b	2486	KSLGGGRR	2493	2399	EPIPYDPKFEKQL	2411	2485	VGTGKR	2490
				2448	WEGNPGRF	2455			
				2483	MKNTTNTRRGT	2493			
	2494	GTGAQGETLGEKWKRQLNQLSK SEFNTYKRSGIMEVDRSEAKEGLKRGE TTKHAVSRGTA	2553	2499	TLGEKWKSRLNTLGKNEF	2516	2491	GTGSQGETLGEKWKKKLNQL SRKEFDLYKKSGITEVDR TEAKEGLKRGEI	2540
	2562	NLVKPEGKVID	2572	2518	IYKKSGIQEVDRTLAKEGIKRGETDH	2543	2544	AVSRGSAK	2551
	2574	GCGRGGW	2580	2545	AVSRGSAK	2552	2558	RNMVIPEGVI	2569
	2586	GLKKVTEVKGYTKGGPGHEEPI	2607	2559	RNMVTPEGKNND	2570	2571	GCRGGW	2577
	2618	KLHSGKDV	2625	2572	GCGRGGW	2578	2583	GLKKVTEVRGYTKGGPGHEEPVP	2605
	2628	MPPEKCDTL	2636	2582	CGGLKNVREVKGLTKGGPGHEEPI	2605	2616	LMSGKDV	2622
	2640	IGESSPNPTIEEGRTLR	2656	2617	LQSG	2620	2625	LPPEKCDT	2632
	2664	WLRGNQF	2670	2626	TPPEKCDT	2633	2637	IGESSPSPTVEESRTIR	2653
	2684	ETLEQMQRKHGGMLVRNPLSRNSTHE	2709	2638	IGESSPNPTIEAGRTLR	2654	2682	HLERLQRKHGGMLV	2695
NS5	2738	AHRKPTERDVDLGAGT	2754	2663	LNNNT	2667	2697	NPLSRNSTHE	2706
	2757	VAVEPEVAN	2765	2681	VIEKMETLQRKYG	2693	2712	NGTGN	2716
	2769	IGQRIEDIKDEHKSTWHYDEDNPYKT	2793	2697	VRNPLSRNSTHE	2708	2734	MTHRRPTIEKDVDLGAGTRHVNAEP ETPNM	2763
	2798	HGSYEVKPSGSASSM	2812	2714	NATG	2717	2765	VIGERIKRIKEEHNSTWHYDDENPYK	2790
	2822	KPWD	2825	2734	FTMKHKKATYEPDVDLGSGTRNIGIE SEIPN	2764	2795	HGSYEVKATGSA	2806
	2837	DTTPFG	2842	2767	IIGKRIEKIKQEHETSWHYDQDHPYK	2792	2819	KPWD	2822
	2845	RVFKEKVDTRTPRAKRGT	2862	2797	HGSYETKQTGSASSM	2811	2834	DTTPFG	2839
	2876	FLSRNKKPRICTREEFIRKVRSNA	2899	2821	KPWD	2824	2842	RVFKEKVDTRTPRSMPGTRRVM	2863
				2836	DTTPFG	2841	2872	RTLGRNKRPRLCTREEFTKKVRTNA	2896
							2902	FTEENQWDSAKAAVEDEDF	2920

	DENV-1				DENV-2			DENV-3			
Proteinas	Posição inicial	Sequencia	Posição final	Posição inicial	Sequencia	Posição final	Posição inicial	Sequencia	Posição final		
	2905	FVDEDQWNSAKEAVEDERF	2923	2844	RVFKEKVDTRTQEPKEGTKKLMRI	2867	2924	VDRERELHKLGKCGS	2938		
	2927	VHRERELHKQGKCA	2940	2875	ELGKKKTPRMCTREEFTRKVRSNA	2898	2944	MGKREKKLGEFGKAKGSR	2961		
	2947	MGKREKKLGEFGKAKGSR	2964	2904	FTDENKWKSAREAVEDSRF	2922	2981	LNEDHWFSRENSYSGVEGEGL	3002		
	2984	MNEDHWFSREDSLSGVEGEGL	3005	2926	VDRERNLHLEGKCE	2939	3010	DISKIPGGAMYADDTAGWDTRITED DLHNEEKITQQMDPEHRQL	3054		
	3013	DISKIPGGNMYADDTAGWDTRITED DLQNEAKITDIMEP	2053	2946	MGKREKKLGEFGKAKGSR	2963	3062	YQNKVVKVQRPTPTGT	3077		
	3065	YQNKVVRVQRPAKDG	3080	2983	LNEDHWFSRENSLSGVEGEGLH	3004	3082	ISRKDQRGSG	3091		
	3084	ISRRDQRGSGQ	3095	3012	DVSKKEGG	3018	3110	RQMEGEGVLSKADLENPHLPEKKI TQWLE	3138		
	3113	RQMESEGIFFPSELESPNL	3140	3022	YADDTAGW	3029	3140	KGVERLKRMAISGDDCVVKPIDDRFA	3165		
	3142	HGAERLKRMAISGDDCVVKPIDDRFA	3167	3033	ITLEDLKNEEMV	3044	3173	DMGKVRKDIPQ	3183		
	3175	DMGKVRKDIPQWEPSKGWNDWQ	3196	3048	MKGEHKKLA	3056	3185	QPSKGWHDW	3193		
	3209	IMKDGREIVVPCRNQDELVGRAR VSQGAGWSLRETAC	3245	3064	YQNKVVRVQRPTPRGTV	3080	3207	IMKDGRKLVVPCRPQDELIGRARI SQGAGWSLRETAC	3243		
	3247	GKSY	3250	3084	ISRRDQRGSGQ	3094	3258	HRRDLRL	3264		
NS5	3260	HRRDLRL	3266	3112	RQMEGEGIF	3120	3279	PTSRTT	3284		
	3281	PTSRTT	3286	3128	VTEEIA	3133	3295	TTEDM	3299		
	3309	WIEENPWMEDKTHVSSWEE	3327	3142	GRERLSR	3148	3307	WIEDNPWMEDKTPVTT	3322		
	3329	PYLGKREDQWCG	3340	3150	AISGDDCVVKPLDDRFA	3166	3328	YLGKREDQWCG	3338		
	3361	QVRRLIGNENYLD	3373	3174	NDMGKVRKDIQQWEPSRGWNDWT	3195	3364	IGNEEFL	3370		
	3376	TSMKRFKNESDPEGA	3390	3208	VMKDGR	3213	3374	PSMKRFRKEEESEG	3387		
				3219	CRNQDELIGRARISQGAGWSLKETAC	3244					
				3246	GKSY	3249					
				3259	HRRDLRL	3265					
				3276	SHWVPTSRTT	3285					
				3296	TTEDM	3300					
				3310	QENPWMEDKTPVESWE	3325					
				3328	PYLGKREDQWCG	3339					
				3365	IGNEEYTD	3372					
				3374	MPSMKRFRREEEEA	3387					

ANEXO 3

Anexo 3: Regiões imunogênicas com propensão à antigenicidade determinada através da escala de Kolaskar & Tonagonkar para as proteínas estruturais e não estruturais dos DENV-1, DENV-2 e DENV-3.

		DENV-1			DENV-2		DENV-3			
Proteína	Posição Inicio	Sequencia	Posição Final	Posição Inicio	Sequencia	Posição Final	Posição Inicio	Sequencia	Posição Final	
с	25	TGSQLAKR	32	23	VSTVQQLTKR	32	25	TGSQLAKR	32	
	35	KGLLSG	40	43	PLKLFMALVAFLRFLTIPPTAGIL	66	44	MKLVMAFIAFLRFLAIPPTAGVLAR	68	
	44	MKLVMAFIAFLRFLAIPPT AGILARW	69	77	AINVLRG	83	77	AIKVLKG	83	
	77	AIKVLRG	83	102	AGVIIMLIPTAMA	114	101	TSLCLMMILPAALA	114	
	102	VTMLLMLLPTALA	114							
	115	FHLT	118	135	KSLLFK	140	115	FHLT	118	
	125	HMIVSK	130	146	NMCTLMAI	153	135	KSLLFKTA	142	
	135	KSLLFK	140	155	LGELCEDT	162	147	MCTLIAM	153	
	145	VNMCTLIAM	153	164	TYKCPLLRQ	172	160	DDTVTYKCPHITEV	173	
	164	TYKCPRI	170	177	DIDCWCN	183	175	PEDIDCWCNLTSTWVTYGTC	194	
prM-M	177	DVDCWCN	183	187	TWVTYGTC	194	205	RSVALAPHVGM	215	
	190	TYGTCS	195	206	SVALVPHVGM	215	242	LRHPGFTILALFLAHYIGTS	261	
	205	RSVALAPHVGLG	216	231	WKHVQRI	237	263	TQKVVIFILLMLVTP	277	
	234	IQKVETW	240	239	TWILRHPGFAIMAAILAYT	257				
	242	LRHPGFTVIALFLAHAIGTS	261	264	QRALIFILLTAVAPS	278				
	264	QKGIIFILLMLVTPS	278							
	280	AMRCVGI	286	300	WVDIVLEHGSCVTT	313	281	MRCVGVG	287	
	298	ATWVDVVLEHGSCVTT	313	322	DFELIKT	328	298	ATWVDVVLEHGGCVTT	313	
	321	LDIELLKTE	329	333	PATLRKYCIEA	343	331	TQLATLRKLCIEG	343	
	332	NPAVLRKLCIEA	343	369	RFICKHS	375	357	QGEAVLPE	364	
E	360	ATLVEE	365	393	IVTCAMFT	400	368	QNYVCKHTYV	377	
	368	ANFVCRRT	375	407	GKVVLPEN	414	390	KGSLVTCAKFQCLEP	404	
	390	KGSLLTCAKFKCVTKL	405	417	YTIVITP	423	406	EGKVVQYENLKYTVIITVHTG	426	
	407	GKIVQYENLKYSVIVTVHTG	426	444	ITPQSSI	450	450	EAILPEY	456	
	443	TITPQA	448	474	NEMVLLQ	480	458	TLGLECS	464	
	450	TSEIQLTDYGALTLDCSPR	468	485	AWLVHRQWFLDLPLPWLP	502	491	FFDLPLPWT	499	
	474	NEMVLLT	480	515	ETLVTFK	521	513	ELLVTFK	519	
	485	SWLVHKQWFLDLPLPWT	501	527	KQDVVVLGS	535	525	KQEVVVLGS	533	
	515	DLLVTFKTA	523	555	GNLLFTGHLKCRLR	568	557	FAGHLKCRLK	566	
	527	KQEVVVLGS	535	570	DKLQLKGM	577	582	NTFVLKKE	589	
	559	FAGHLKCRLK	568	585	KFKIVKEI	592	596	GTILIKVE	603	
	573	TLKGTSYVMCTGS	585	598	GTIVIRVQYE	607	608	DAPCKIPF	615	
	597	HGTVI VQVKY	606	611	SPCKIPFFI	619	631	TANPVVTK	638	

Anexo 3 (continuação): Regiões imunogênicas com propensão à antigenicidade determinada através da escala de Kolaskar & Tonagonkar para as proteínas estruturais e não estruturais dos DENV-1, DENV-2 e DENV-3.

	DENV-1			DENV-2			DENV-3			
Proteína	Posição Inicio	Seqüência	Posição Final	Posição Inicio	Seqüência	Posição Final	Posição Inicio	Seqüência	Posição Final	
E	610	DAPCKIPFLT	619	628	LGRLITVNPIVTEKD	642	654	SNIVIGI	660	
	633	TANPIVTD	640	654	GDSYIIIGVEPGQL	667	703	VGGVLNS	709	
	654	GESYIVVGAG	663	705	LGGVFTSIGKALHQVFGAIYG AVFSGV	731	711	GKMVHQIFGSAYTALFSGVSWVMKI GIGVLLTWI	744	
	666	ALKLSW	671	736	KILIGVIIT	744	754	SFSCIAIGIITLYLGAVVQ	772	
	705	IGGVFTSVGKLVHQVFGT AYGVLFSGV	731	753	TSLSVSLVLVGVVTLYLGAMVQA	775				
	739	IGILLTWL	746							
	756	SMTCIAVGMVTLYLGVMVQA	775							
	776	DSGCVIN	782	776	DSGCVVSW	783	773	ADMGCVIN	780	
	787	ELKCGSGIFVTNE	799	787	ELKCGSGIF	795	785	ELKCGSGIFVTNE	797	
	814	PKRLSAAI	821	814	PSKLASAIQK	823	812	PKRLATAIA	820	
	827	EGVCGIR	833	827	EGICGIRSVTRL	838	825	NGVCGIR	831	
	851	NHILLEN	857	847	TPELNHI	853	858	KLTVVVGDIIGVLEQ	872	
	860	KFTVVVGN	867	879	LRPQPTELKYS	889	894	AKIVTA	899	
	943	WLKLRDS	949	906	QTFLID	911	914	PECPSA	919	
NOT	951	TQMCDHR	957	930	VEDYGFGVFTT	940	930	DYGFGVFTT	938	
NS1	963	IKDSKAVHAD	972	949	KQDVFCDSK	957	941	WLKLREVYIQLCDHR	955	
	988	ARASHEVKICIWPKSHI	1005	992	FIEVKSCHWPKSHI	1005	957	MSAAVKDERAVHAD	970	
	1045	LGKLELDFDLCEGTTVVVDEH	1065	1023	AGPVSQHN	1030	987	KASLIEVKICIWP	999	
	1084	HEWCCRSCILPPLR	1097	1032	RPGYYIQ	1038	1006	SNGVLESD	1013	
	1122	RSMVSA	1127	1057	GIIVVVIED	1065	1015	IIPKSLAGPI	1024	
				1084	TEWCCRSCILPPLR	1097	1043		1053	
				1121	VNSLVTA	1127	1055		1062	
							1077	SGKLIHEWCCRSCILPPLR	1095	
	1100		11/7	1104		11/7	1125		1125	
NS2a	1160		114/	1156		1147	1150		1140	
	1190		11/0	1100		1100	1190		1195	
	1201		1207	1102		1213	1100		1221	
	1213	MEAVGLEBB	1207	1215		1223	1226	NILL GVGLA	1234	
	1225	SBEVILL TIGESI VASVELPNSI	1247	1233	IGIALI SOST	1242	1226		1244	
	1260	MLKLLTEFQPHQLWTTLLSLTFIK	1291	1244	PETILELTDALALGMMVLKIV	1264	1251	GIALGLMALKLITQF	1265	
	1296	AMVLSIVSLFPLCLSTT	1312	1270	YQLAVTIMAISCVPNAVILLNAWKVSCT	1312	1270	LWTALISLTCS	1280	
	1318	WI PVI I GSEGCKPI TME	1334	1318	WIPI AI TIK	1326	1285	TI TVAWB	1291	
			1001	1330	PTAIFI TTI	1338	1293	ATLILAGVSLL PVCQSS	1309	
				1000		1000	1318	PMAVAAMGVPPLPLFIFSLKDT	1339	
L	L			1						
Anexo 3 (continuação): Regiões imunogênicas com propensão à antigenicidade determinada através da escala de Kolaskar & Tonagonkar para as proteínas estruturais e não estruturais dos DENV-1, DENV-2 e DENV-3.

		DENV-1		DENV-2		DENV-3			
Proteína	Posição Inicio	Seqüência	Posição Final	Posição Inicio	Seqüência	Posição Final	Posição Inicio	Seqüência	Posição Final
	1355	AIGIVSILLSSLLKNDVPLAGP LIAGGMLIACYVISG	1391	1350	NEAVMAVGMVSILASSLLKN	1369	1348	NEGVMAVGLVSILASSLLRND	1368
	1393	SADLSLEKAAEV	1404	1374	TGPLVAGGLLTVCYVLTG	1391	1371	MAGPLVAGGLLIACYVITG	1389
Neah	1417	HNILVEVQ	1424	1415	SSPILSIT	1422	1393	DLTVEKA	1399
11320	1440	LTILLKATLLAVSGVYPMSIPATLFVWYF	1468	1440	LTILIRTGLLVISGVFPVSIPI TAAAWYLWEV	1471	1411	TGVSHNLMIT	1420
							1437	ILTVLLKTALLIVSGVFP YSIPATLLVWHT	1466
	1475	RSGVLWDT	1482	1476	AGVLWDVPSPPPVEKA	1491	1473	RSGVLWDVPSP	1483
	1485	PPEVERAVLDDG	1496	1505	ILGYSQIGAGVY	1516	1492	EEGVYRIKQQ	1501
	1498	YRILQRGLLGRSQVGVG VFQDGVFHTMW	1525	1528	TRGAVLMH	1535	1506	KTQVGVGVQKEGVFHTMW	1523
	1528	TRGAVLMY	1535	1548	KKDLISY	1554	1526	TRGAVLTY	1533
	1542	PSWASVKKDLISY	1554	1569	EVQVLALE	1576	1545	VKKDLISY	1552
	1569	EVQVIAVE	1576	1582	RAVQTKPGL	1590	1567	EVQVIAVE	1574
	1598	VGAIALDF	1605	1598	IGAVSLDFS	1606	1597	GAIALDF	1603
	1621	IVGLYGNGVVTTSGTYVSAIAQAK	1644	1612	SPIVDRKGKVVGLYGNGVV TRSGAYVSAIA	1641	1617	GKVVGLYGNGVVTK	1630
	1678	RYLPAIVREA	1687	1665	IMDLHPG	1671	1676	KYLPAIVREA	1685
	1693	RTLILAPTRVVASE	1706	1677	RYLPAIVREA	1686	1691	RTLILAPTRVVAA	1703
	1717	RYQTTAVKSE	1726	1692	RTLILAPTRVVAA	1704	1709	LKGLPIRYQ	1717
	1732	IVDLMCHAT	1740	1710	LRGLPIRYQTP	1720	1730	IVDLMCHAT	1738
NS3	1743	MRLLSPVRVP	1752	1731	IVDLMCHAT	1739	1741	MRLLSPVRVPNYNLI	1755
	1765	TDPASIAARGY	1775	1742	MRLLSPVRVPNYNLI	1756	1763	TDPASIAARGY	1773
	1786	AAIFMT	1791	1764	TDPASIAARGY	1774	1784	AAIFMT	1789
	1795	PGSVEAF	1801	1832	KTVWFVPSI	1840	1830	GKTVWFVPSI	1839
	1803	QSNAVIQ	1809	1846	IAACLRK	1852	1855	KVIQLSR	1861
	1832	GKTVWFVPSI	1841	1856	KVIQLSR	1862	1876	WDFVVTTD	1883
	1857	RVIQLSR	1863	1878	DFVVTTD	1884	1894	DRVIDPRRCLKPVILT	1909
	1879	DYVVTTD	1885	1895	ERVIDPR	1901	1913	ERVILAGPMPVTAASA	1928
	1896	DRVIDPRRCLKPVILK	1911	1903	CMKPVILT	1910	1977	GIIPALFE	1984
	1915	ERVILAGPMPVTVASA	1930	1915	RVILAGPMPVTHSSA	1929	2005	KTFVEL	2010
	1946	DQYVYMG	1952	2006	KTFVDL	2011	2015	DLPVWLAHKVASEG	2028
	1979	GIIPALFE	1986	2016	DLPVWLAYRVAAE	2028	2076	SDPLALK	2082
	2007	KTFVEL	2012	2076	YSDPLALK	2083			
	2017	DLPVWLSYKVASEGF	2031						
1	2078	SDPLALR	2084						

Anexo 3 (continuação): Regiões imunogênicas com propensão à antigenicidade determinada através da escala de Kolaskar & Tonagonkar para as proteínas estruturais e não estruturais dos DENV-1, DENV-2 e DENV-3.

		DENV-1			DENV-2			DENV-3	
Proteína	Posição Inicio	Seqüência	Posição Final	Posição Inicio	Seqüência	Posição Final	Posição Inicio	Seqüência	Posição Final
	2097	SGDLILEIGKLPQHLTLR	2114	2119	DNLAVLHTA	2127	2093	SIALDLVTEIGRVPSHLAH	2111
	2120	DNLVMLH	2126	2135	NHALSELPETLETLLLLTLLA TVTGGIFLFLM	2166	2118	DNLVMLHTS	2126
NS4a	2148	TLMLLALIAVLTGGVTLFFLSGK	2170	2176	LGMCCIITASILLWYAQIQPHWIA ASIILEFFLIVLLIPE	2215	2133	YRHAVEEL	2140
N34a	2174	KTSIGLLCVTASSALLWMASVEPHW IAASIILEFFLMVLLIPE	2216				2146	TLLLLGLMILLTGG	2159
							2161 2174 2190	MLFLISG SIGLICVIASS AEIPLQWIASAIVLEFFMMVLLIPE	2167 2184 2214
	2226	NQLAYVVIGLLFMILTVA	2243	2227	LTYVVIAILTVVAAT	2241	2224	NQLAYVVIGILTLAAIIA	2241
	2258	GIGHVAAE	2265	2270	ILDIDLRPA	2278	2261	PGVVSPTSYLDVDLHPASAWT LYAVATTVITPM	2293
	2270 ATMLDVDLHPASAWT LYAVATTVITP		2295	2280	AWTLYAVATTFVTPMLRHS	2298	2304	NVSLAAIANQAVVLMG	2319
	2307	NISLTAIANQAAILMG	AAILMG 2322		SVNVSLTAIANQATVLMG	2320	2330	DLGVPLLALGCYSQVNPLTLTAAVLL LITHYAIIGPGLQAK	2370
IN54D	2333	DLGVPLLALGCYSQVNPLTLTAAVLM LVAHYAIIGPGLQAK	ALGCYSQVNPLTLTAAVLM 2373 2331 DIGVPLLAIGCYSQVNPITLTA 23 VAHYAIIGPGLQAK 2373		2371	2397	LDPVIYDS	2404	
	2392	VDGIVAIDLDPVVYDA	2407	2390	VDGITVIDLEPIPYDP	2405	2409	QLGQVMLLVLCAVQLLLMR	2427
	2412	QLGQIMLLILCTSQILLM	2429	2410	QLGQVMLLILCVTQVLM	2426	2430	WALCEALTLATG	2441
	2433	WALCESITLATG	2444	2431	WALCEALTLATG	2442	2458	TIAVSMA	2464
	2461	TIAVSMA	2467	2459	TIAVSMA	2465	2469	GSYLAGAGLAFSIMKS	2484
	2472	GSYLAGAGLAFSLMKS	2487	2470	GSYLAGAGLLFSI	2482			
	2545	KHAVSRG	2551	2524	IQEVDRT	2530	2515	FDLYKK	2520
	2560	ERNLVKPEGKVIDLGCG	2576	2543	HHAVSRGS	2550	2541	THHAVSRGSAKLQWF	2555
	2581	SYYCAGLKKVTEVKGY	2596	2565	EGKVVDLGCG	2574	2563	PEGRVIDLGCG	2573
	2614	WNLVKLH	2620	2579	SYYCGGL	2585	2578	SYYCAGLKKVTEV	2590
	2622	GKDVFFM	2628	2588	VREVKGL	2594	2601	EEPVPMS	2607
NS5	2630	PEKCDTLLCDIG	2641	2612	WNLVRLQSGVDVFFTPP EKCDTLLCDIG	2639	2611	WNIVKLM	2617
	2654	TLRVLKMVEPW	2664	2652	TLRVLNL	2658	2621	DVFYLPPEKCDTLLCDIG	2638
	2668	NQFCIKILNPYMPSVVETL	2686	2668	QFCIKVLNPYMPSVIE	2683	2651	TIRVLKMVEPW	2661
	2710	MYWVSCGTG	2718	2693	GGALVRNP	2700	2665	NQFCIKVLNPYMPTVIEHLERL	2686
	2754	TRHVAVEPEVANLDIIGQ	2771	2718	NIVSSVNM	2725	2716	NIVASVNMVSRLLLN	2730
	2797	YHGSYEVKPS	2806	2744	EPDVDLG	2750	2794	YHGSYEVKAT	2803

Anexo 3 (continuação): Regiões imunogênicas com propensão à antigenicidade determinada através da escala de Kolaskar & Tonagonkar para as proteínas estruturais e não estruturais dos DENV-1, DENV-2 e DENV-3.

	DENV-1				DENV-2			DENV-3	
Proteína	Posição Inicio	Seqüência	Posição Final	Posição Inicio	Seqüência	Posição Final	Posição Inicio	Seqüência	Posição Final
	2813	VNGVVRLLTKPWDVIPMVTQI	2833	2812	VNGVVRLLTKPWDVVPMVTQV	2832	2810	INGVVKLLTKPWDVVPMVT	2828
	2843	QQRVFKE	2849	2842	QQRVFKE	2848	2840	QQRVFKE	2846
	2900	AIGAVFVD	2907	2934	LEGKCETCVYN	2944	2880	PRLCTR	2885
	2924	WDLVHRE	2930	2972	ARFLEFEALGF	2982	2930	LHKLGKCGSCVYN	2942
	2936	QGKCATCVYN	2945	3003	LHRLGYILRDV	3013	2970	ARYLEFEALGF	2980
	2971	LGAAFLEFEAL	2981	3055	LAEAIFKLT	3063	3001	LHKLGYILRDISKI	3014
	3004	LHKLGYILRDISKI	3017	3065	QNKVVRVQRP	3074	3053	LANAIFKLT	3061
	3052	EHALLATSIFKLT	3064	3120	FKSIQHLTVTEEIAVQNWLARV	3141	3063	QNKVVKVQRP	3072
	3066	QNKVVRVQRP	3075	3153	GDDCVVKPL	3161	3116	GVLSKA	3121
	3120	IFFPSEL	3126	3166	ASALTA	3171	3152	GDDCVVKPI	3160
	3132	AERVLDWL	3139	3196	QVPFCSHHFHELV	3208	3166	NALLAL	3171
NS5	3154	GDDCVVKPI	3162	3210	KDGRVLVVPCR	3220	3193	WQQVPFCSHHFHEL	3206
	3167	ATALIAL	3173	3241	ETACLGKS	3248	3212	RKLVVPCRPQDE	3223
	3196	QQVPFCSHHFHQLI	3209	3262	DLRLAANAICSAVPSHWVPTS	3282	3240	ETACLGKA	3247
	3215	EIVVPCR	3221	3300	MLAVWNR	3306	3261	DLRLASNAICSAVPVHWVPTS	3281
	3223	QDELVGRARVSQG	3235	3326	EVPYLG	3331	3286	SIHAHH	3291
	3242	ETACLGKS	3249	3338	CGSLIGLT	3345	3325	NVPYLG	3330
	3263	DLRLAANAICSAVPVNWV	3280	3357	AINQVRSL	3364	3337	CGSLIGLT	3344
	3288	SIHAHH	3293				3351	QNILTAIQQVRSL	3363
	3301	MLSVWNR	3307						
	3320	THVSSWEEVPYLG	3332						
	3339	CGSLIGLT	3346						
	3354	NIQVAINQVRRL	3365						

	DENV-1				DENV-2		DENV-3			
Proteína	Posição Inicio	Seqüência	Posição Final	Posição Inicio	Posição Seqüência Po Inicio F		Posição Inicio	Seqüência	Posição Final	
	1	MNNQRKKTGRP	11	1	MNNQRKKARST	11	1	MNNQRKKTGKPS	12	
	21	NRVSTGSQ	28	61	PTAG	64	23	VSTGSQ	28	
С	38	LSGQ	41				38	LNGQ	41	
							61	PTAG	64	
	119	TRGGEPH	125	120	RNGEPH	125	119	SRDGEPRMI	127	
	131	QER	133	131	QEKG	134	131	NER	133	
	169	RITEAEPDDVD	179	172	QNEPEDI	178	170	ITEVEPEDI	178	
prM-M	186	DTWV	189	186	STWV	189	193	TCNQAGERRRDK	204	
	193	TCSQTGEHRRDK	204	193	TCTTTGEHRREK	204	218	DTR	220	
	218	ETR	220	218	ETR	220	222	QTWMS	226	
	222	ETWMSSEGAWK	232	222	ETWMSSEGAW	231	229	GAWR	232	
	315	AKNKPT	320	292	VEGVSGG	298	314	MAKNKPT	320	
	330	VTN	332	315	AKNKPT	320	328	TEAT	331	
	346	SNTTTDSRCPTQGEATLVEE	365	328	TEAKQPAT	335	347	NITTDSRCPTQGEAVL PEEQDQN	369	
	380	GWGN	383	346	TNTTTESRCPTQGEPSLNEEQD	367	378	DRGWGN	383	
	425	TGDQHQVGNETTEHGTIA TITPQAPTSEIQL	455	379	RGWGN	383	426	GDQHQVGNETQGVT AEITPQASTTEAIL	453	
_	466	SPRTGL	471	423	PHSGEEHAVGNDTGKHGE EIKITPQSSITEAELTGY	458	464	SPRTGL	469	
E	499	PWTSGASTSQETWN	512	463	MECSPRTGL	471	497	PWTSGATTETPTWN	510	
	524	HAK	526	501	LPGADTQGSNWI	512	522	HAK	524	
	537	EGA	539	522	NPHAKK	527	535	EGA	537	
	547	ATEIQTSGTT	556	537	EGA	539	545	ATEIQNSGGTS	555	
	591	EVAETQ	596	549	EIQM	552	590	VSETQ	594	
	606	YEGTDAPC	613	593	AET	595	604	YKGEDAPCKIPFSTEDGQGKAH	625	
	620	QDEKGVTQ	627	606	YEGDGSPCK	614	635	VVTKKEEPVNIEAEPPFGE	653	
	637	IVTDKEKPVNIETEPPFGE	655	637	IVTEKDSPVNIEAEPPFG	654	684	ARG	686	
	686	ARG	688	664	PGQ	666	698	WDFG	701	
	700	WDF	702	750	SRST	753	748	SKNT	751	

		DENV-1		DENV-2				DENV-3			
Proteína	Posição Inicio	Seqüência	Posição Final	Posição Inicio	Seqüência	Posição Final	Posição Inicio	Seqüência	Posição Final		
	808	KFQADSPKRL	817	806	QYKFQPESPSKL	817	806	KFQADSPKR	814		
	878	MIRPQPMEHKYS	889	822	QKAHE	826	874	KRTLTPQPME	883		
	910	IDGPDTPECPDEQR	923	876	KRSLRPQPTELKY	888	898	TAETQN	903		
	978	ESEKNET	984	901	TESH	904	908	IDGPNTPECPSASR	921		
	1023	GGPISQHNYRPGYFTQT AGPW	1043	911	DGPETAECPNTNRAW	925	961	VKDERAV	967		
NS1	1065	HCGSRGPSLRTTT	1077	1022	FAGPVSQHNYRPGYYTQTAGPW	1043	976	ESQKNGSWK	984		
	1098	FRGE	1101	1065	DCGNRGPSLRTTTAS	1079	997	TWPK	1000		
	1111	RPVKEKEE	1118	1097	RYRGEDGC	1104	1021	AGPISQHNHRPGYHT QTAGPW	1041		
				1113	LKEKEEN	1119	1064	CGTRGPSLRTTT	1075		
							1110	PISEKEEN	1117		
	1126	SAGSGEVD	1133	1129	HGQI	1132	1126	GSGKVD	1131		
	1190	NASDKMGM	1197	1312	SQQKTD	1317	1188	NASDR	1192		
NS2a	1244	PNSLEEL	1250	1340	RTSKKRSWP	1348	1244	DIEQ	1247		
	1312	TSQKT	1316				1309	SSMR	1312		
	1341	IWGR	1344								
	1346	SWPL	1349	1371	IPMT	1374	1369	VPMA	1372		
	1393	SADL	1396	1403	DVKWEDQAEISGSS	1416	1391	SADLT	1395		
NS2h	1403	EVSWEEEAEHSGT	1415	1424	SEDGSMSIKNEEEEQ	1438	1401	DITWEEEAEQTGV	1413		
NOZD	1424	QDDGTMKIKDEERDD	1438				1422	DDDGTMRIKDDETE	1435		
	1472	KKQR	1475				1468	QKQTQR	1473		
	1478	VLWDTPSPPEVERA	1491	1481	DVPSPPPVEKAELED	1495	1478	WDVPSPPETQKAELE	1492		
	1539	RLEPSWAS	1546	1513	AGVYK	1517	1509	VGVGVQ	1514		
	1557	GWRFQGSWNTGEE	1569	1539	RIEPSWADV	1547	1536	KRLEPNWAS	1544		
NS3	1575	VEPGKNPKNVQTTPGTF KTPEGEV	1598	1557	GWKLEGEWKEGEE	1569	1561	QWQKGEE	1567		
	1606	KPGTSGSPIVN	1616	1576	EPGKNPRAVQTKPGLFKT	1593	1573	VEPGKNPKNFQTMP GTFQTTTGEI	1596		
	1629	VVTTSGT	1635	1595	TGTI	1598	1604	KPGTSGSPIIN	1614		

	DENV-1				DENV-2			DENV-3	
Proteína	Posição Inicio	Seqüência	Posição Final	Posição Inicio	Seqüência	Posição Final	Posição Inicio	Seqüência	Posição Final
	1642	QAKASQEGPLPEIEDE	1657	1605	FSPGTSGSPIVDR	1617	1627	VVTKNGGYVSGIAQT NAEPDGPTPELEE	1654
	1670	HPGSGKTR	1677	1629	VVTR	1632	1668	HPGSGKTRK	1676
	1721	TAVKSEHTGR	1730	1641	AQTEKSIEDNPEIED	1655	1717	QTTATKSEHTGR	1728
	1763	HFTDPASIA	1771	1670	PGAGKTKR	1677	1761	HFTDPASIA	1769
	1792	ATPPGSVEAFPQ	1803	1718	QTPAIRTEHTGR	1729	1790	ATPPGTADAFPQSNAPIQ DEERDIPERSWNSGNEW	1824
	1805	NAVIQDEERDIPERSWNSG	1823	1762	HFTDPASIA	1770	1840	KAGND	1844
	1825	DWITDFPG	1832	1791	ATPPGSRDPFPQSNAPIMDE EREIPERSWNSGHEW	1825	1863	TFDTEYQKTKL	1873
	1841	IKSGND	1846	1865	FDSEYVKTRTN	1875	1909	TDGPER	1914
NS3	1865	TFDTEYQKTKNNDWD	1879	1922	MPVTHSSAAQRRGRIGRNP RNENDQ	1946	1921	MPVTAASAAQRRGRVGRN PQKENDQYI	1947
	1911	KDGPER	1916	1953	PLENDEDCAH	1962	1951	QPLNNDEDHAHW	1962
	1924	PVTVASAAQRRGRIGRNQNKEGDQYV	1949	1974	NTPEGI	1979	1973	NTPEGI	1978
	1954	PLNNDEDHAHW	1964	1984	FEPEREKVDAID	1995	1984	EPEREKSAAID	1994
	1975	NTPEGI	1980	2058	TKEGERKKL	2066	1997	YRLKGESR	2004
	1986	EPEREKSAAID	1996				2028	GIKY	2031
	2029	EGFQY	2033				2041	ERNNQI	2046
	2043	ERNNQV	2048				2056	WTKEGEKKKL	2065
	2058	WTKEGERKKL	2067				2073	RTYSD	2077
	2075	RTYSD	2079						
	2128	SEQGGKAY	2135	2128	EAGGRA	2133	2127	EHGGRA	2132
NS4a	2140	EELPD	2144	2215	EPEKQRT	2221	2138	EELPE	2142
ino+a	2171	GLGK	2174				2169	GIGK	2172
	2216	EPDRQR	2221				2214	EPEKQR	2219

	DENV-1				DENV-2		DENV-3				
Proteína	Posição Inicio	Seqüência	Posição Final	Posição Inicio	Seqüência	Posição Final	Posição Inicio	Seqüência	Posição Final		
	2222	TPQDNQ	2227	2222	PQDNQ	2226	2220	TPQDNQ	2225		
	2264	AENHQ	2268	2253	KKDL	2256	2253	RDLGMSKEPGVVSPTSY	2269		
	2302	ENTT	2305	2261	ITTQESES	2268	2299	ENSTA	2303		
	2326	2326 GWPI		2324	GWPL	2327	2323	GWPI	2326		
NS4b	2370	LQAKATREAQKRT	2382	2368	LQAKATREAQKRA	2380	2367	LQAKATREAQKRT	2379		
	2385	GIMKNPTVD	2393	2385	MKNPTVD	2391	2382	GIMKNPTVD	2390		
	2448	ILWEGSPGKF	2457	2400		2409	2444	TILWEGSPGKF	2454		
	2489	GGGRR	2493	2445 2486	TTNTRRGT	2455 2493	2486	GTGK	2489		
	2494	GTGAQGETLGEK	2505	2494	GNIGETLGEK	2503	2490	RGTGSQGETLGEK	2502		
	2518	FNTY	2521	2523	GIQE	2526	2522	GITEVDRTEAKEGLKR	2537		
	2530	DRSEAKEGLKRGETTKHAVSR	2550	2535	GIKRGETDHHAVSR	2548	2573	GRGG	2576		
	2576	GRGG	2579	2561	MVTPEGKV	2568	2590	VRGYTKGGPGHEEPVPMST	2608		
	2592	EVKGYTKGGPGHEEPIPM	2609	2574	GRGGW	2578	2627	PEK	2629		
	2641	GESSPNPTIEEG	2652	2593	GLTKGGPGHEEPIPMS	2608	2638	GESSPSPTVEES	2649		
	2702	LSRNST	2707	2626	TPPEKC	2631	2699	LSRNST	2704		
	2740	RKPTYERDVDLGAG	2753	2639	GESSPNPTIEA	2649	2738	RPTIEKDVDLGAGTRHVN AEPETPNMDV	2765		
	2756	HVAVEPEV	2763	2701	LSRNST	2706	2775	EEHNSTWHYDDENP YKTWAY	2794		
NOT	2776	IKNEHKSTWHYDEDNPYKT WAY	2797	2740	KATYEPDVDLGSGTRNIG	2757	2797	SYEVKATGSASS	2808		
NS5	2800	SYEVKPSGSASS	2811	2760	SEI	2762	2832	MTDTTPFG	2839		
	2835	MTDTTPFG	2842	2776	KQEHETSWHYDQDHPYKTWA YHGSYETKQTGSASS	2810	2848	VDTRTPRSMPGT	2859		
	2851	VDTRTPRAKRG	2861	2834	MTDTTPFG	2841	2905	ENQWDSAKAAVEDE	2918		
	2882	KPRI	2885	2850	VDTRTQEPKEGTK	2862	2948	EKKLGEFGKAKG	2959		
	2909	NQWINSAKEAVE	2919	2877	GKKKTPRIMC	2885	2990		2999		
	2951	EKKLGEFGKAKG	2962	2907	ENKWKSAREAVE	2918	3013	DLHNEEKITQQMDPEHRQ	3052		
	2994	NSLSGVEGE	3002	2950	EKKLGEFGKAKG	2961	3069	VQRPTPTGT	3077		
	3016	KIPGGNMYADDTAGWD TRITEDDLQNEAK	3044	2993	NSLSGVEGE	3001	3085	KDQRGSGQVGTY	3096		
				3014	SKKEGGAMYADDTAGWD	3030					

		DENV-1		DENV-2		DENV-3			
Proteína	Posição Inicio	Seqüência	Posição Final	Posição Inicio	Seqüência	Posição Final	Posição Inicio	Seqüência	Posição Final
	3074	RPAKNGT	3080	3072	QRPTPRGT	3079	3115	EGVL	3118
	3087	RRDQRGSGQVGTY	3099	3087	RDQRGSGQVGTY	3098	3122	DLENPHLPEK	3131
	3125	ELESPNL	3131	3182	IQQWEPSRGWNDW	3194	3176	KVRKDIPQWQPSKGWHDW	3193
	3178	KVRKDIPQWEPSKGWNDW	3195	3231	ISQG	3234	3219	RPQDEL	3224
NS5	3223	QDEL	3226	3276	SHWVPTSRTT	3285	3230	ISQG	3233
1100	3231	RVSQGAGWS	3239	3313	PWMEDKTPVESWEEV	3327	3278	VPTSRTT	3284
	3278	NWVPTSRTT	3286	3329	YLGKREDQW	3337	3311	NPWMEDKTPVTTWEN	3325
	3313	NPWMEDKTHVSSWEEV	3328	3368	EEYTDYMP	3375	3328	YLGKREDQW	3336
	3330	YLGKREDQW	3338	3381	RREEEEA	3387	3379	FRKEEESEGAI	3389
	3381	FKNESDPEGAL	3391						

Anexo 5: Alinhamento múltiplo entre cada sorotipo dos DENV e a proteína 1R6R, selecionada como molde para a modelagem por homologia da proteína C

CLUSTAL 2	.0.12 multi	ple sequence	alignment	lignment							
1R6R_B PDBID CHAIN SEQUENCE 1R6R_A PDBID CHAIN SEQUENCE dengue1			MNDQRKKARN MNDQRKKARN MNNQRKKTGR	MNDQRKKARNTPFNMLKRERNRVSTVQQLTKRFSLGMLQGRGPLKLFMAL 50 MNDQRKKARNTPFNMLKRERNRVSTVQQLTKRFSLGMLQGRGPLKLFMAL 50 MNNQRKKTGRPSFNMLKRARNRVSTGSQLAKRFSKGLLSGQGPMKLVMAF 50							
1R6R_B PDBID CHAIN SEQUENCE 1R6R_A PDBID CHAIN SEQUENCE dengue1			VAFLRFLTIF VAFLRFLTIF IAFLRFLAIF :******	AFLRFLTIPPTAGILKRWGTIKKSKAINVLRGFRKEIGRMLNILNRRRR 100 AFLRFLTIPPTAGILKRWGTIKKSKAINVLRGFRKEIGRMLNILNRRRR 100 AFLRFLAIPPTAGILARWSSFKKNGAIKVLRGFKKEISSMLNIMNRRKR 100							
1R6R_B PDBID CHAIN SEQUENCE 1R6R_A PDBID CHAIN SEQUENCE dengue1			SVIMLLMLLF	TALA 114		DENV-1					
	CLUSTAL 2.0.12 multip			alignment							
	1R6R_B PD 1R6R_A PD dengue2	BID CHAIN SE(BID CHAIN SE(QUENCE	MNDQRKKARI MNDQRKKARI MNNQRKKARS	MAL 50 MAL 50 MAL 50						
	1R6R_B PD 1R6R_A PD dengue2	BID CHAIN SE(BID CHAIN SE(QUENCE QUENCE	VAFLRFLTIPPTAGILKRWGTIKKSKAINVLRGFRKEIGRMLNILNRR VAFLRFLTIPPTAGILKRWGTIKKSKAINVLRGFRKEIGRMLNILNRR VAFLRFLTIPPTAGILKRWGTIKKSKAINVLRGFRKEIGRMLNILNRR							
	1R6R_B PD 1R6R_A PD dengue2	BID CHAIN SE(BID CHAIN SE(QUENCE QUENCE	ENCE ENCE TAGVIIMLIPTAMA 114			DENV-2				
,	-	CLUSTAL 2.0	.12 multip	le sequence	e alignment						
		1R6R_B PDB1 1R6R_A PDB1 dengue3	ID CHAIN SE ID CHAIN SE	QUENCE	MNDQRKKARNIPFNMLKRERNRVS MNDQRKKARNIPFNMLKRERNRVS MNNQRKKIGKPSINMLKRVRNRVS	STVQQLTKRFSLGN STVQQLTKRFSLGN STGSQLAKRFSKGI	ALQGRGPLKLF ALQGRGPLKLF LINGQGPMKLV :*:*:**:**	MAL 50 MAL 50 MAF 50			
	1R6R_B PDB 1R6R_A PDB dengue3			QUENCE	VAFLRFLTIPPTAGILKRWGTIKH VAFLRFLTIPPTAGILKRWGTIKH IAFLRFLAIPPTAGVLARWGTFKH :******:*****	KSKAINVLRGFRKE KSKAINVLRGFRKE KSGAIKVLKGFKKE	EIGRMLNILNR EIGRMLNILNR EISNMLSIINK	RRR 100 RRR 100 RKK 100			
		1R6R_B PDB] 1R6R_A PDB] dengue3	D CHAIN SEQUENCE D CHAIN SEQUENCE		TSLCLMMILPAALA 114			DENV-3			

Anexo 6: Alinhamento múltiplo, realizado através do programa clustalW, entre cada sorotipo dos DENV e a proteína 3C6D, selecionada como molde para a modelagem por homologia da proteína prM/M

CLUSTAL 2.0.12 multiple sequence	e alignment		CLUSTAL 2.0.12 multiple sequenc	e alignment
1000 0000 0000 0000 0000 0000 0000 000			199 - C.S.	
3C6D_E PDBID CHAIN SEQUENCE 3C6D_D PDBID CHAIN SEQUENCE 3C6D_F PDBID CHAIN SEQUENCE dengue1	FHLTTRNGE PHMIVSRQEKGKSLLFKTEDGVNMCTLMAMDLG FHLTTRNGE PHMIVSRQEKGKSLLFKTEDGVNMCTLMAMDLG FHLTTRNGE PHMIVSRQEKGKSLLFKTEDGVNMCTLMAMDLG FHLTTRGGE PHMIVSKQERGKSLLFKTSGGVNMCTLIAMDLG	ELCEDTIT 50 ELCEDTIT 50 ELCEDTIT 50 ELCEDTIT 50 ELCEDTMT 50	3C6D_E PDBID CHAIN SEQUENCE 3C6D_D PDBID CHAIN SEQUENCE 3C6D_F PDBID CHAIN SEQUENCE dengue2	FHLTTRNGEPHMIVSRQEKGKSLLFKTEDGVNMCTIMAMDLGELCEDTIT 50 FHLTTRNGEPHMIVSRQEKGKSLLFKTEDGVNMCTIMAMDLGELCEDTIT 50 FHLTTRNGEPHMIVSRQEKGKSLLFKTEDGVNMCTIMAMDLGELCEDTIT 50 FHLTTRNGEPHMIVGRQEKGKSLLFKTEDGVNMCTIMAIDLGELCEDTIT 50
3C6D_E PDBID CHAIN SEQUENCE 3C6D_D PDBID CHAIN SEQUENCE 3C6D_F PDBID CHAIN SEQUENCE dengue1	YKCPLLRQNEPEDIDCWCNSTSTWVTYGICT YKCPLLRQNEPEDIDCWCNSTSTWVTYGICT YKCPLLRQNEPEDIDCWCNSTSTWVTYGICT	81 81 81 81 81 81 81 81	3C6D_E PDBID CHAIN SEQUENCE 3C6D_D PDBID CHAIN SEQUENCE 3C6D_F PDBID CHAIN SEQUENCE dengue2	YKCPLLRQNEPEDIDCWCNSTSTWVTYGTCT 81 YKCPLLRQNEPEDIDCWCNSTSTWVTYGTCT 81 YKCPLLRQNEPEDIDCWCNSTSTWVTYGTCT 81 YKCPLLRQNEPEDIDCWCNSTSTWVTYGTCTTTGEHRREKRSVALVPHVG 100
3C6D_E PDBID CHAIN SEQUENCE 3C6D_D PDBID CHAIN SEQUENCE 3C6D_F PDBID CHAIN SEQUENCE dengue1	LGLETRTETWMSSEGAWKQIQKVETWALRHPGFTVIALFLAH	NAIGTSITQ 150	3C6D_E PDBID CHAIN SEQUENCE 3C6D_D PDBID CHAIN SEQUENCE 3C6D_F PDBID CHAIN SEQUENCE dengue2	MGLETRTETWMSSEGAWKHVQRIETWILRHPGFAIMAAILAYTIGTTHFQ 150
3C6D_E PDBID CHAIN SEQUENCE 3C6D_D PDBID CHAIN SEQUENCE 3C6D_F PDBID CHAIN SEQUENCE dengue1	KGIIFILLMLVIPSMA 166	DENV-1	3C6D_E PDBID CHAIN SEQUENCE 3C6D_D PDBID CHAIN SEQUENCE 3C6D_F PDBID CHAIN SEQUENCE dengue2	DENV-2
	CLUSTAL 2.0.12 multiple sequence a	alignment		
	3C6D_E PDBID CHAIN SEQUENCE 3C6D_D PDBID CHAIN SEQUENCE 3C6D_F PDBID CHAIN SEQUENCE dengue3	FHLTIRNGEPHMIVSP FHLTIRNGEPHMIVSP FHLTIRNGEPHMIVSP FHLTIRNGEPHMIVSP FHLTSRDGEPRMIVGK	QEKGKSLLFKTEDGVNMCTLMAMDLGELCEDTIT QEKGKSLLFKTEDGVNMCTLMAMDLGELCEDTIT QEKGKSLLFKTEDGVNMCTLMAMDLGELCEDTIT QERGKSLLFKTASGINMCTLIAMDLGEMCDDTVT	50 50 50 50
	3C6D_E PDBID CHAIN SEQUENCE 3C6D_D PDBID CHAIN SEQUENCE 3C6D_F PDBID CHAIN SEQUENCE dengue3	YKCPLLRQNEPEDIDC YKCPLLRQNEPEDIDC YKCPHITEVEPEDIDC	WCNSISIWVIYGICI WCNSISIWVIYGICI WCNSISIWVIYGICI WCNLISIWVIYGICNQAGERRDKRSVALAPHVG	81 81 100
	3C6D_E PDBID CHAIN SEQUENCE 3C6D_D PDBID CHAIN SEQUENCE 3C6D_F PDBID CHAIN SEQUENCE dengue3	MGLDTRTQTWMSAEGA	WRQVEKVETWALRHPGFTILALFLAHYIGTSLTQ	150
	3C6D_E PDBID CHAIN SEQUENCE 3C6D_D PDBID CHAIN SEQUENCE 3C6D_F PDBID CHAIN SEQUENCE dengue3	KVVIFILLMLVIPSMI	DEN	/.3

Anexo 7: Alinhamento múltiplo, realizado através do parâmetro clustalW, entre cada sorotipo dos DENV e as diferentes proteínas selecionadas como modelo para a modelagem por homologia da proteína E dos DENV-1, DENV-2 e DENV-3. (A) alinhamento entre as proteínas 1TGE, 1TG8 e DENV-1; (B) alinhamento entre 1UZG, 2HG0 e DENV-2 e (C) alinhamento entre 1TG8 e DENV-3.

(A)	
1TGE_B PDB 1TGE_A PDB 1TGE_C PDB 1TG8_A PDB dengue1 Clustal Co	10 20 30 40 50 60 70 80 90 100 110 120 130 MRCIGISNRD FVEGVSGGSW VDIVLEHGSC VTTMAKNKPT LDFELIKTEA KQPATLRKYC IEAKLTNTT ESRCPTQGEP TLNEEQDKRF VCKHSMVDRG WGNGCGLFGK GGIVTCAMFT CKKNMEGKIV MRCIGISNRD FVEGVSGGSW VDIVLEHGSC VTTMAKNKPT LDFELIKTEA KQPATLRKYC IEAKLTNTT ESRCPTQGEP TLNEEQDKRF VCKHSMVDRG WGNGCGLFGK GGIVTCAMFT CKKNMEGKIV MRCIGISNRD FVEGVSGGSW VDIVLEHGSC VTTMAKNKPT LDFELIKTEA KQPATLRKYC IEAKLTNTT MRCIGISNRD FVEGVSGGSW VDIVLEHGSC VTTMAKNKPT LDFELIKTEA KQPATLRKYC IEAKLTNTT MRCVGIGNRD FVEGVSGGSW VDIVLEHGSC VTTMAKNKPT LDFELIKTEA KYT MRCVGIGNRD FVEGVSGGSW VDIVLEHGSC VTTMAKNKPT LDFELIKTEA TNPAVLRKLC IEAKLSNTT MRCVGIGNRD FVEGVSGGSW VDIVLEHGSC VTTMAKNKPT LDIELLKTEV TNPAVLRKLC IEAKLSNTT MRCVGIGNRD FVEGVSGGSW VDIVLEHGSC VTTMAKNKPT LDIELLKTEV TNPAVLRKLC IEAKLSNTT MRCVGIGNRD FVEGVSGGSW VDIVLEHGSC VTTMAKNKPT LDIELKTEV TNPAVLRKLC IEAKLSNTT MRCVGIGNRD FVEGVSGGSW TOVVLEHGSC VTTMAKNKPT TOVT
1TGE_B PDB 1TGE_A PDB 1TGE_C PDB 1TG8_A PDB dengue1 Clustal Co	140 150 160 170 180 190 200 210 220 230 240 250 260 QPENLEYTVV ITPHSGEEHA VGNDTGKHGK EVKITPQSSI TEAELTGYGT VTMECSPRTG LDFNEMVLLQ MKDKAWLVHR QWFLDLPLPW LPGADTQGSN WIQKETLVTF KNPHAKKQDV VVLGSQEGAM QPENLEYTVV ITPHSGEEHA VGNDTGKHGK EVKITPQSSI TEAELTGYGT VTMECSPRTG LDFNEMVLLQ MKDKAWLVHR QWFLDLPLPW LPGADTQGSN WIQKETLVTF KNPHAKKQDV VVLGSQEGAM QPENLEYTVV ITPHSGEEHA VGNDTGKHGK EVKITPQSSI TEAELTGYGT VTMECSPRTG LDFNEMVLLQ MKDKAWLVHR QWFLDLPLPW LPGADTQGSN WIQKETLVTF KNPHAKKQDV VVLGSQEGAM QPENLEYTVV ITPHSGEEHA VGNDTGKHGK EVKITPQSSI TEAELTGYGT VTMECSPRTG LDFNEMVLLQ MKDKAWLVHR QWFLDLPLPW LPGADTQGSN WIQKETLVTF KNPHAKKQDV VVLGSQEGAM QPENLEYTVV ITPHSGEEHA VGNDTGKHGK EVKITPQSSI TEAELTGYGT VTMECSPRTG LDFNEMVLLQ MKDKAWLVHR QWFLDLPLPW LPGADTQGSN WIQKETLVTF KNPHAKKQDV VVLGSQEGAM QPENLEYTVV ITPHSGEEHA VGNDTGKHGK EVKITPQSSI TEAELTGYGT VTMECSPRTG LDFNEMVLLQ MKDKAWLVHR QWFLDLPLPW LPGADTQGSN WIQKETLVTF KNPHAKKQDV VVLGSQEGAM QPENLEYTVV ITPHSGEHA VGNDTGKHGK EVKITPQSSI TEAELTGYGT VTMECSPRTG LDFNEMVLLQ MKDKAWLVHR QWFLDLPLPW LPGADTQGSN WIQKETLVTF KNPHAKKQDV VVLGSQEGAM QYENLKYSVI VTVHTGDQHQ VGNETTEHGT IATITPQAPT SEIQLTDYGA LTLDCSPRTG LDFNEMVLLT MKEKSWLVHK QWFLDLPLPW TSGASTSQET WNRQDLLVTF KTAHAKKQEV VVLGSQEGAM * ***::::: * *:::: * *:::: * *::: *:: *
1TGE_B PDB 1TGE_A PDB 1TGE_C PDB 1TG8_A PDB dengue1 Clustal Co	270 280 290 300 310 320 330 340 350 360 370 380 390 HTALTGATEI QMSSGNLLFT GHLKCRLRMD KLQLKGMSYS MCTGKFKVVK EIAETQHGTI VIRVQYEGDG SPCKIPFEIM DLEKRHVLGR LITVNPIVTE KDSPVNIEAE PPFGDSYIII GVEPGQLKLN HTALTGATEI QMSSGNLLFT GHLKCRLRMD KLQLKGMSYS MCTGKFKVVK EIAETQHGTI VIRVQYEGDG SPCKIPFEIM DLEKRHVLGR LITVNPIVTE KDSPVNIEAE PPFGDSYIII GVEPGQLKLN HTALTGATEI QMSSGNLLFT GHLKCRLRMD KLQLKGMSYS MCTGKFKVVK EIAETQHGTI VIRVQYEGDG SPCKIPFEIM DLEKRHVLGR LITVNPIVTE KDSPVNIEAE PPFGDSYIII GVEPGQLKLN HTALTGATEI QMSSGNLLFT GHLKCRLRMD KLQLKGMSYS MCTGKFKVVK EIAETQHGTI VIRVQYEGDG SPCKIPFEIM DLEKRHVLGR LITVNPIVTE KDSPVNIEAE PPFGDSYIII GVEPGQLKLN HTALTGATEI QMSSGNLLFT GHLKCRLRMD KLQLKGMSYS MCTGKFKVVK EIAETQHGTI VIRVQYEGDG SPCKIPFEIM DLEKRHVLGR LITVNPIVTE KDSPVNIEAE PPFGDSYIII GVEPGQLKLN HTALTGATEI QMSSGNLLFT GHLKCRLMD KLQLKGMSYS MCTGKFKVVK EIAETQHGTI VIRVQYEGDG SPCKIPFEIM DLEKRHVLGR LITVNPIVTE KDSPVNIEAE PPFGDSYIII GVEPGQLKLD HTALTGATEI QTSGTTTIFA GHLKCRLKMD KLTLKGTSYV MCTGSFKLEK EVAETQHGTV LVQVKYEGTD APCKIPFLTQ DEKGVTQNGR LITANPIVTD KEKPVNIETE PPFGESYIVV GAGEKALKLS ********* * * * * * * * *** ** *** ** *
1TGE_B PDB 1TGE_A PDB 1TGE_C PDB 1TG8_A PDB dengue1 Clustal Co	

Anexo 7 (continuação): Alinhamento múltiplo, realizado através do parâmetro clustalW, entre cada sorotipo dos DENV e as diferentes proteínas selecionadas como modelo para a modelagem por homologia da proteína E dos DENV-1, DENV-2 e DENV-3. (A) alinhamento entre as proteínas 1TGE, 1TG8 e DENV-1; (B) alinhamento entre 1UZG, 2HG0 e DENV-2 e (C) alinhamento entre 1TG8 e DENV-3.

(B)	
1UZG_B PDB 1UZG_A PDB dengue2 2HGO_A PDB Clustal Co	10 20 30 40 50 60 70 80 90 100 110 120 130 MRCVGVGNRD FVEGLSGATW VDVVLEHGGC VTTMAKNKPT LDIELQKTEA TQLATLRKLC IEGKITNITT DSRCPTQGEA ILPEEQDQNY VCKHTYVDRG WGNGCGLFGK GSLVTCAKFQ CLESIEGKIV MRCVGVGNRD FVEGLSGATW VDVVLEHGGC VTTMAKNKPT LDIELQKTEA TQLATLRKLC IEGKITNITT DSRCPTQGEA ILPEEQDQNY VCKHTYVDRG WGNGCGLFGK GSLVTCAKFQ CLESIEGKIV MRCIGISNRD FVEGVSGGSW VDIVLEHGSC VTTMAKNKPT LDFELIKTEA KQPATLRKYC IEAKLTNITT ESRCPTQGEP SLNEEQDKRF ICKHSMVDRG WGNGCGLFGK GGIVTCAMFT CKKNNEGKVV FNCLGMSNRD FLEGVSGATW VDLVLEGDSC VTIMSKDKPT IDVKMMNEA ANLAEVRSYC YLATVSDLST KAACPTMGEA HNDKRADPAF VCRQGVVDRG WGNGCGLFGK GSIDTCAKFA CSTKAIGRTI :.*:*:*** *:**:**: **:**** ** *:**** :*::*** :* :* :* :* :* :* :*
1UZG_B PDB 1UZG_A PDB dengue2 2HGO_A PDB Clustal Co	140 150 160 170 180 190 200 210 220 230 240 250 260 QHENLKYTVI ITVHT-GDQH QVGNETQG VTAEIT SQASTAEAIL PEYGTLGLEC SPRTGLDFNE MILLTMKDKA WMVHRQWFFD LPLPWTSGAT TKTPTWNRKE LLVTFKNAHA KKQEVVVLGS QHENLKYTVI ITVHT-GDQH QVGNETQG VTAEIT SQASTAEAIL PEYGTLGLEC SPRTGLDFNE MILLTMKDKA WMVHRQWFFD LPLPWTSGAT TKTPTWNRKE LLVTFKNAHA KKQEVVVLGS DHENLKYTVI ITVHT-GDQH QVGNETQG VTAEIT SQASTAEAIL PEYGTLGLEC SPRTGLDFNE MILLTMKDKA WMVHRQWFFD LPLPWTSGAT TKTPTWNRKE LLVTFKNAHA KKQEVVVLGS LPENLEYTVI ITPHS-GEEH AVGNDTGKHG EEIKIT PQASITEAEL TGYGTVTMEC SPRTGLDFNE MVLLQMEEKA WLVHRQWFLD LPLPWLPGAD TQGSNWIQKE TLVTFKNPHA KKQDVVVLGS LKENIKYEVA IFVHGPTTVE SHGNYSTQVG ATQAGRFSIT PAAPSYTLKL GEYGEVTVDC EPRSGIDTNA YYVMTVGTKT FLVHREWFMD LNLPWSSAGS TVWRNRE TLMEFEEPHA TKQSVIALGS **::*: * * **: * * * **: ::: *::*:*:** ::: *: ::: *::**:**
1UZG_B PDB 1UZG_A PDB dengue2 2HGO_A PDB Clustal Co	270 280 290 300 310 320 330 340 350 360 370 380 390 QEGAMHTALT GATEIQTSGG TS-IFAGHLK CRLKMDKLKL KGMSYAMCLN TFVLKKEVSE TQHGTILIKV EYKGEDAPCK IPFS-TEDGQ GKAHNGRLIT ANPVVTKKEEPVNIEAEP PFGESNIVIG QEGAMHTALT GATEIQTSGG TS-IFAGHLK CRLKMDKLKL KGMSYAMCLN TFVLKKEVSE TQHGTILIKV EYKGEDAPCK IPFS-TEDGQ GKAHNGRLIT ANPVVTKKEEPVNIEAEP PFGESNIVIG QEGAMHTALT GATEIQTSGG TS-IFAGHLK CRLKMDKLKL KGMSYAMCLN TFVLKKEVSE TQHGTILIKV EYKGEDAPCK IPFS-TEDGQ GKAHNGRLIT ANPVVTKKEEPVNIEAEP PFGESNIVIG QEGAMHTALT GATEIQTSGG NL-LFTGHLK CRLKMDKLQL KGMSYAMCG KFKIVKEIAE TQHGTIVIRV QYEGDGSPCK IPFS-ITDDQ GKAHNGRLIT VNPIVTKKDSPVNIEAEP PFGESNIVIG QEGALHQALA GAIPVEFSSN TVKLTSGHLK CRVKMEKLQL KGTTYGVCSK AFKFLGTPAD TGHGTVVLEL QYTGTDGPCK VPISSVASLN DLTPVGRLVT VNPFVSVATA NAKVLIELEP PFGDSYIVVG ****:* **: ** :: * : :**** **::*:* *: :: * **:::: :* **** :*:. : ***:* :*: ***: **:
1UZG_B PDB 1UZG_A PDB dengue2 2HGO_A PDB Clustal Co	400 410 420 430 440 450 460 470 480 490 500 IGDKALKINW YRK

Anexo 7 (continuação): Alinhamento múltiplo, realizado através do parâmetro clustalW, entre cada sorotipo dos DENV e as diferentes proteínas selecionadas como modelo para a modelagem por homologia da proteína E dos DENV-1, DENV-2 e DENV-3. (A) alinhamento entre as proteínas 1TGE, 1TG8 e DENV-1; (B) alinhamento entre 1UZG, 2HG0 e DENV-2 e (C) alinhamento entre 1TG8 e DENV-3.

(C)	
dengue3 1TG8_A PDB Clustal Co	102030405060708090100MRCVGVGNRD FVEGLSGATW VDVVLEHGGC VTTMAKNKPT LDIELQKTEA TQLATLRKLC IEGKITNITT DSRCPTQGEA VLPEEQDQNY VCKHTVVDRG MRCIGISNRD FVEGVSGGSW VDIVLEHGSC VTTMAKNKPT LDFELIKTEA KQPATLRKYC IEAKLTNTTT DSRCPTQGEP TLNEEQDKRF VCKHSMVDRG ***:*********************************
dengue3 1TG8_A PDB Clustal Co	.
dengue3 1TG8_A PDB Clustal Co	210220230240250260270280290300MKNKAWMVHR QWFFDLPLPW TSGATTETPT WNRKELLVTF KNAHAKKQEV VVLGSQEGAM HTALTGATEI QNSGGTSIFA GHLKCRLKMD KLELKGMSYAMKDKAWLVHR QWFLDLPLPW LPGADTQGSN WIQKETLVTF KNPHAKKQDV VVLGSQEGAM HTALTGATEI QMSSGNLLFT GHLKCRLRMD KLQLKGMSYS**:***:*****:**********************************
dengue3 1TG8_A PDB Clustal Co	310320330340350360370380390400MCTNTFVLKK EVSETQHGTI LIKVEYKGED APCKIPFSTE DGQGKAHNGR LITANPVVTK KEEPVNIEAE PPFGESNIVI GIGDKALKIN WYRKGSSIGKMCTGKFKVVK EIAETQHGTI VIRVQYEGDG SPCKIPFEIM DLEKRHVLGR LITVNPIVTE KDSPVNIEAE PPFGDSYIII GVEPGQLKLD WFKKG**** : * *::******** :*:*:*:*::************************************
dengue3 1TG8_A PDB Clustal Co	410 420 430 440 450 460 470 480 490 MFEATARGAR RMAILGDTAW DFGSVGGVLN SLGKMVHQIF GSAYTALFSG VSWVMKIGIG VLLTWIGLNS KNTSMSFSCI AIGIITLYLG AVV

Anexo 8: Alinhamento múltiplo, realizado através do parâmetro clustalW, entre cada sorotipo dos DENV e as diferentes proteínas selecionadas como modelo para a modelagem por homologia da proteína NS3 dos DENV-1, DENV-2 e DENV-3. (A) alinhamento entre as proteínas 2Z83, 2V8O e DENV-1; (B) alinhamento entre as proteínas 2Z83, 2V8O e DENV-2 e (C) alinhamento entre 2V8O e DENV-3. Em destaque, motivo de seqüências das atividades de helicase, RTPase e NTPase da proteína NS3.

(A)	
2Z83_A PDB 2V80_A PDB dengue1 Clustal Co	
2Z83_A PDB 2V80_A PDB dengue1 Clustal Co	150 160 170 180 190 200 210 220 230 240 250 260 270 280
2Z83_A PDB 2V80_A PDB dengue1 Clustal Co	290 300 310 320 330 340 350 360 370 380 390 400 410 420 LFVMDEAHFT DPASIAARGY IATKVELGEA AAIFMTATPP GTDPFDDSN APIHDLQDEI PDRAWSSGYE WITEYAGKTV WFVASVKMGN EIAMCLQRAG KKVIQLNRKS YDTEYPKCKN GDWDFVITTD ISEMGANFGA LFVMDEAHFT DPASIAARGY IATRVEAGEA AAIFMTATPP GTDPFDTN SPVHDVSSEI PDRAWSSGFE WITDYAGKTV WFVASVKMSN EIAQCLQRAG KKVIQLNRKS YDTEYPKCKN GDWDFVITTD ISEMGANFGA MIMDEAHFT DPASIAARGY ISTRVGMGEA AAIFMTATPP GSVEAFPQSN AVIQDEERDI PERSWNSGYD WITDFPGKTV WFVPSIKSGN DIANCLRKNG KRVIQLSRKT FDTEYPKTKN NDWDYVVTTD ISEMGANFRA :::*****
2Z83_A PDB 2V80_A PDB dengue1 Clustal Co	430 440 450 460 470 480 490 500 510 520 530 540 550 560 SRVIDCRKSV KPTILEEGEG RVILGNPSPI TSASAAORG RVGRNPNQVG DEYHYGGATS EDDSNLAHWT EAKIMLDNIH MPNGLVAQLY GPEREKAFTM DGEYRLRGEE KKNFLELLRT ADLPVWLAYK VASNGIQYTD SRVIDCRKSV KPTILDEGEG RVILSVPSAI TSASAAORG RVGRNPSQIG DEYHYGGGTS EDDTMLAHWT EAKILLDNIH LPNGLVAQLY GPEREKAFTM DGEYRLRGEE RKTFLELIKT ADLPVWLAYK VASNGIQYND DRVIDPRRCL KPVILKDGPE RVILAGPMPV TVASAAORG RIGRNQNKEG DQYVMGQPL NNDEDHAHMT EAKMLLDNIH TPEGIPALF EPEREKSAAI DGEYRLRGEA RKTFVELMRR GDLPVWLSYK VASBGFQYSD .**** *::: **.**:: ***** *:: **********
2Z83_A PDB 2V80_A PDB dengue1 Clustal Co	570580590600610620RKWCFDGPRT NAILEDNIEV EIVTRMGERK ILKPRWLDAR VYADHQALKW FKDFAAGKRH HHHHHRKWCFDGPRS NIILEDNNEV EIITRIGERK VLKPRWLDAR VYSDHQSLKW FKDFAAGKR-RRWCFDGERN NQVLEENMDV EIWTKEGERK KLRPRWLDAR TYSDPLALRE FKEFAAGRR-*:***** *. *:**:*:* ** *: **** *:****** *:******* *:******

Anexo 8 (continuação): Alinhamento múltiplo, realizado através do parâmetro clustalW, entre cada sorotipo dos DENV e as diferentes proteínas selecionadas como modelo para a modelagem por homologia da proteína NS3 dos DENV-1, DENV-2 e DENV-3. (A) alinhamento entre as proteínas 2Z83, 2V8O e DENV-1; (B) alinhamento entre as proteínas 2Z83, 2V8O e DENV-2 e (C) alinhamento entre 2V8O e DENV-3. Em destaque, motivo de seqüências das atividades de helicase, RTPase e NTPase da proteína NS3.

(B)	
2Z83_A PDB 2V80_A PDB Dengue Clustal Co	AGVLWDVPSP PPVEKAELED GAYRIKQRGI LGYSQIGAGV YKEGTFHTMW HVTRGAVLMH RGKRIEPSWA DVKKDLISYG GGWKLEGEWK EGEEVQVLAL EPGKNPRAVQ TKPGLFKTNT
2Z83_A PDB 2V80_A PDB Dengue Clustal Co	
2Z83_A PDB 2V80_A PDB Dengue Clustal Co	250 260 270 280 290 300 310 320 330 340 350 360 RYQTSAVQRE HQGNEIVDVM CHATLTHRLM SPNRVPNYNL FVMDEAHFTD PASIAARGYI ATKVELGEAA AIFMTATPPG RYLTPAVQRE HSCNEIVDVM CHATLTHRLM SPLRVPNYNL FVMDEAHFTD PASIAARGYI ATRVEAGEAA AIFMTATPPG RYLTPAVQRE HSCNEIVDVM CHATLTHRLM SPLRVPNYNL FVMDEAHFTD PASIAARGYI ATRVEAGEAA AIFMTATPPG RYQTPAIRTE HTGREIVDLM CHATFTMRLL SPVRVPNYNL IIMDEAHFTD PASIAARGYI STRVEMGEAA GIFMTATPPG ** *.*:: * * *.****: ****: ****** **: ** ********
2Z83_A PDB 2V80_A PDB Dengue Clustal Co	370 380 390 400 410 420 430 440 450 460 470 480 FVASVKMGNE IAMCLQRAGK KVIQLNRKSY DTEYPKCKNG DWDFVITTDI SEMGANFGAS RVIDCRKSVK PTILEEGEGR VILGNPSPIT SASAAQRRGR VGRNPAQVGD EYHYGGATSE FVASVKMSNE IAQCLQRAGK RVIQLNRKSY DTEYPKCKNG DWDFVITTDI SEMGANFGAS RVIDCRKSVK PTILEEGEGR VILSVPSAIT SASAAQRRGR VGRNPAQVGD EYHYGGATSE FVASVKMSNE IAQCLQRAGK KVIQLSRKTF DSEYVKTRTN DWDFVVTTDI SEMGANFGAS RVIDCRKSVK PVILDEGEGR VILSVPSAIT SASAAQRRGR IGRNPRNEND QYIYMGEPLE **.*:* ** **:: ** :**: **: :**:****: *:: ******
2Z83_A PDB 2V80_A PDB Dengue Clustal Co	490 500 510 520 530 540 550 560 570 580 590 600 DDSNLAHWTE AKIMLDNIHM PNGLVAQLYG PEREKAFTMD GEYRLRGEEK KNFLELLRTA DLPVWLAYKV ASNGIQYTDR KWCFDGPRTN AILEDNIEVE IVTRMGERKI LKPRWLDARV DDTMLAHWTE AKILLDNIHL PNGLVAQLYG PERDKTYTMD GEYRLRGEER KTFLELLRTA DLPVWLAYKV ASNGIQYNDR KWCFDGPRSN IILEDNNEVE IITRIGERKV LKPRWLDARV NDEDCAHWKE AKMLLDNIHT PEGIIPSMFE PEREKVDAID GEYRLRGEAR KTFVDLMRRG DLPVWLAYKV AABGINYADR RWCFDGINN QILEENVEVE IWTKEGERKK LKPRWLDARI :* ***.* **::****: *:*:::: ***:*: ::* ******* : *.*::*:: *******:* *::**** :***** :.* ***:* *** * *: **** * *:
2Z83_A PDB 2V80_A PDB Dengue Clustal Co	610 620 YADHQALKWF KDFAAGKRHH HHHH YSDHQSLKWF KDFAAGKR YSDPLALKEF KEFAAGRK *:* :** * :****::

Tese de doutorado – Thatiane Santos De Simone

Anexo 8 (continuação): Alinhamento múltiplo, realizado através do parâmetro clustalW, entre cada sorotipo dos DENV e as diferentes proteínas selecionadas como modelo para a modelagem por homologia da proteína NS3 dos DENV-1, DENV-2 e DENV-3. (A) alinhamento entre as proteínas 2Z83, 2V8O e DENV-1; (B) alinhamento entre as proteínas 2Z83, 2V8O e DENV-2 e (C) alinhamento entre 2V8O e DENV-3. Em destaque, motivo de seqüências das atividades de helicase, RTPase e NTPase da proteína NS3.

(C)	
2V80_A PDB Dengue Clustal Co	
2V80_A PDB Dengue Clustal Co	 130 140 150 160 170 180 190 200 210 220 230 240
2V80_A PDB Dengue Clustal Co	
2V80_A PDB Dengue Clustal Co	
2V80_A PDB Dengue Clustal Co	490 500 510 520 530 540 550 560 570 580 590 600 EDDTMLAHWT EAKILLDNIH LPNGLVAQLY GPERDKTYTM DGEYRLRGEE RKTFLELIKT ADLPVWLAYK VASNGIQYND RKWCFDGPRS NIILEDNNEV EIITRIGERK VLKPRWLDAR NNDEDHAHWT EAKMLLDNIN TPEGIIPALF EPEREKSAAI DGEYRLKGES RKTFVELMRR GDLPVWLAHK VASEGIKYTD RKWCFDGERN NQILEENMDV EIWTKEGEKK KLRPRWLDAR ::* **** ***:***** *: *:*: *: *****: :: ******
2V80_A PDB Dengue Clustal Co	610 VYSDHQSLKW FKDFAAGKR TYSDPLALKE FKDFAAG .*** :** ******

Anexo 9: Alinhamento múltiplo, realizado através do parâmetro clustalW, entre cada sorotipo dos DENV e a proteína 2P3Q selecionada como modelo para a modelagem por homologia da proteína NS5 dos DENV-1 (A), DENV-2 (B) e DENV-3 (C).

(A)	
D1 2P3Q_A PDB Clustal Co	
D1 2P3Q_A PDB Clustal Co	
(B)	
D2 2P3 <u>0</u> A PDB Clustal Co	10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 G TGNIGETLGE KWKSRLNTLG KNEFQIYKKS GIQEVDRLA KEGIKRGETD HHAVSRGSAK LRWFVERNMV TPEGKVVDLG CGRGGWSYYC GGLKNVREVK GLTKGGPGHE EPIPMSTYGW NLVRLQSGVD VFFTPPEKCD TLLCDIGESS MRGSHHHHHH GSNIGETLGE KWKSRLNALG KSEFQIYKKS GIQEVDRLA KEGIKRGETD HHAVSRGSAK LRWFVERNLV TPEGKVVDLG CGRGGWSYYC GGLKNVREVK GLTKGGPGHE EPIPMSTYGW NLVRLQSGVD VFFTPPEKCD TLLCDIGESS ***********************************
D2 2P3Q_A PDB Clustal Co	170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 PNPTIEAGRT LRVLNLAENW LNNNTQFCIK VLNPYMPSVI EKMETLQRKY GGALVRNLS RNSTHEMYWV SNATGNIVSS VNMISRMLIN RFTMKHKKAT YEPDVDLGSG TRNIGIESEI PNLDIIGKRI EKIKQEHETS WHYDQDHPYK TWAYHGSYET PNPTVEAGRT LRVLNLVENW LSNNTQFCVK VLNPYMSSVI EKMEALQRKH GGALVRNLS RNSTHEMYWV SNASGNIVSS VNMISRMLIN RFTMRHKKAT YEPDVDLGSG TRNIGIESET PNLDIIGKRI EKIKQEHETS WHYDQ
(C)	
 D3 2P3 <u>Q_</u> A PDB Clustal Co	10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 GKRGT GS-QGETLGE KWKKKLNQLS RKEFDLYKKS GITEVDRTEA KEGLKRGEIT HHAVSRGSAK LQWFVERNMV IPEGRVIDLG CGRGGWSYYC AGLKKVTEVR GYTKGGPGHE EPVPMSTYGW NLVKLMSGKD VFYLPPEKCD TLLCDIGESS MRGSHHHHHH GSNIGETLGE KWKSRLNALG KSEFQIYKKS GIQEVDRTLA KEGIKRGETD HHAVSRGSAK LRWFVERNLV TPEGKVVDLG CGRGGWSYYC AGLKKVTEVR GLTKGGPGHE EPIPMSTYGW NLVRLQSGVD VFFIPPERCD TLLCDIGESS :: ** ***** ***.:** *. :.**::**** ********
D3 2P3Q_A PDB Clustal Co	170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 PSPTVEESRT IRVLKMVEPW LKNN-QFCIK VLNPYMPTVI EHLERLQRKH GGMLVRNLS RNSTHEMYWI SNGTGNIVAS VNMVSRLLLN RFTMTHRRPT IEKDVDLGAG TRHVNAEPET PNMDVIGERI KRIKEEHNST WHYDDENPYK TWAYHGSYEV PNPTVEAGRT LRVLNLVENW LSNNTQFCVK VLNPYMSSVI EKMEALQRKH GGALVRNLS RNSTHEMYWV SNASGNIVSS VNMISRMLIN RFTMRHKAT YEPDVDLGSG TRNIGIESET PNLDIIGKRI EKIKQEHETS WHYQ