

Alexandre Fernandes

Paleoepidemiologia da tricuríase em populações pré-colombianas no Brasil: uma abordagem geoespacial

Rio de Janeiro 2017

Alexandre Fernandes

Paleoepidemiologia da tricuríase em populações pré-colombianas no Brasil:

uma abordagem geoespacial

Tese apresentada ao Programa de Pósgraduação em Epidemiologia em Saúde Pública, da Escola Nacional de Saúde Pública Sergio Arouca, na Fundação Oswaldo Cruz, como requisito parcial para obtenção do título de Doutor em Ciências, área de concentração: Epidemiologia, Etnicidade e Saúde.

Orientadora: Profa. Dra. Alena Mayo Iñiguez

Catalogação na fonte Fundação Oswaldo Cruz Instituto de Comunicação e Informação Científica e Tecnológica em Saúde Biblioteca de Saúde Pública

F363p	 Fernandes, Alexandre. Paleoepidemiologia da tricuríase em populações pré colombianas no Brasil: uma abordagem geoespacial / Alexandre Fernandes 2017. 163 f. : il. color. ; mapas ; tab.
	Orientadora: Alena Mayo Iñiguez. Tese (doutorado) – Fundação Oswaldo Cruz, Escola Nacional de Saúde Pública Sergio Arouca, Rio de Janeiro, 2017.
	 Trichuris. 2. Tricuríase. 3. Paleopatologia. 4. Parasitologia. Epidemiologia. 6. Algoritmos. 7. Sistemas de Informação Geográfica. 8. Brasil. I. Título.
	CDD – 23.ed. – 616.90981

Alexandre Fernandes

Paleoepidemiologia da tricuríase em populações pré-colombianas do Brasil:

Uma abordagem geoespacial

Tese apresentada ao Programa de Pósgraduação em Epidemiologia em Saúde Pública, da Escola Nacional de Saúde Pública Sergio Arouca, na Fundação Oswaldo Cruz, como requisito parcial para obtenção do título de Doutor em Ciências, área de concentração: Epidemiologia, Etnicidade e Saúde.

Aprovada em 19/12/2017

Banca Examinadora

Prof. Dr. José Roberto Machado e Silva

Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas

Prof. Dr. Alexandre Ribeiro Bello

Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas

Prof. Dr. Marcelo Luiz Carvalho Gonçalves Fundação Oswaldo Cruz, Instituto Nacional de Infectologia Evandro Chagas

Prof. Dr. Sergio Augusto de Miranda Chaves Fundação Oswaldo Cruz, Escola Nacional de Saúde Pública Sérgio Arouca

> Profa. Dra. Alena Mayo Iñiguez (Orientadora) Fundação Oswaldo Cruz, Instituto Oswaldo Cruz

> > Rio de Janeiro 2017

Aos meus pais, Edson Fernandes e Rita A. Fernandes, com todo o meu amor.

AGRADECIMENTOS

Eu poderia escrever o dobro (ou mais) de páginas dessa tese, em agradecimentos. Faço desses, a representação de minha gratidão:

Deus, acima de todas as coisas: princípio, meio e fim.

Aos meus pais, Edson Fernandes e Rita A. Fernandes: meus exemplos de coragem, força, humildade e dignidade. Conseguimos, mais uma vez! Amores incondicionais.

À Dra. Alena Mayo Iñguez (IOC/FIOCRUZ), pela coragem em me assumir como aluno nos meados do curso de doutorado, quando da ausência do Dr. Adauto (ENSP/FIOCRUZ). Sua ajuda foi muito importante para que eu me refizesse cientificamente, diante de todas as outras muitas coisas que tenho tido como obrigação fora da Fiocruz. Isso é realmente algo sensacional! Obrigado por me permitir estar na Ciência de verdade. Um salve à Paleoparasitologia!

Ao Dr. Adauto Araujo (*In memoriam*) por ter me dado à oportunidade de regressar à pesquisa, da qual estive afastado desde o ano de 2007. Foi decisivo em todos os meus mais importantes momentos científicos, da iniciação Científica até o Doutorado. Um ser humano pleno e simples. Um dos maiores que conheci. Sinto saudades. Essa vitória é pra você!

À minha madrinha, Daisy Rocha Ferreira (*In memoriam*), figura que me trouxe a todas essas personagens. Quanta falta você me faz. Aliás, a toda a minha família. Acreditar que nos veremos novamente algum dia é o que me conforta. Um ser humano sensacional. Eu te dedico mais essa vitória!

Ao Dr. Luiz Fernando Rocha Ferreira da Silva Junior (*In memoriam*), pra mim, Biluca. Um dos meus padrinhos e, sem sombra de dúvidas, um grande camarada. Muito obrigado por tudo o que fez por mim e pela minha família! Quaisquer palavras seriam muito pequenas diante do que você me representa. A saudade é enorme. Um vazio mesmo. Fui, venci e sempre será assim. Por mim. Por nós. Um brinde a você, eterno Biluca!

Ao Dr. Luiz Fernando Rocha Ferreira da Silva (ENSP/FIOCRUZ). Sábio, Emérito e Primo! Ter o privilégio de conviver com você é poder dizer: estou diante de um dos maiores pesquisadores do mundo! Pai científico de todos nós, o meu muito obrigado!

A minha tia Norma Fernandes. Muito obrigado por tudo, sempre! Uma mulher de fibra. Exemplo enorme. Um beijo grande!

Ao Dr. Luiz Felipe C. Ferreira da Silva (Engenharia Cartográfica/IME), meu padrinho, meu amigo. Por sempre se mostrar disponível em todas as situações! E o privilégio é todo meu! Orgulho total!!! À Dra. Ana Jansen (IOC/FIOCRUZ), por me permitir frequentar o LABTRIP e conviver novamente com grandes pesquisadores. Sempre me falando de Ciência, em alto nível. Com certeza, figura dentro do meu Olimpo científico. Não teria como ser diferente. O meu muito obrigado!

Ao Dr. Sérgio Augusto de Miranda Chaves (ENSP/FIOCRUZ), por participar de minha qualificação, pela literatura indicada e pela força de sempre. Imprescindível para a continuidade desse trabalho. Muito obrigado!

Ao Dr. Karl Jan Reinhard (Universidade de Nebraska/EUA), por participar de minha qualificação, pela literatura indicada e pelo sempre bom humor em conduzir os processos. Um grande pesquisador e o norte-americano mais brasileiro que eu conheço!

À Dra. Samanta C. das Chagas Xavier (IOC/FIOCRUZ), pelo convívio, as trocas de ideias sobre cartografia e pelas formidáveis aulas da disciplina de Geoprocessamento. Extraordinária!

À Dra. Marinez F. de Siqueira (Instituto de Pesquisa Jardim Botânico/RJ), por ter trazido luz ao desenvolvimento do que nós pretendíamos realizar a respeito da predição de sítios arqueológicos nas resoluções de questões paleoparasitológicas. O recente convívio me relembrou do quanto ainda preciso aprender! Não teríamos conseguido sem você!

Ao Dr. Diogo Rocha (Instituto de Pesquisa Jardim Botânico/RJ), pela clara ajuda nesse projeto. O seu conhecimento, sua presteza e objetividade tornaram possível aquilo que tínhamos como uma vaga ideia. Muito obrigado!

Aos amigos paleoparasitologistas da antiga e da nova geração: São simplesmente sensacionais!

Às amigas e professoras Ophelia Telhado e Cristiane Cardoso (da Escola Municipal Ten. Gen. Napion) e Helena Fernandes (do Ciep Leonel de M. Brizola), pela imprescindível ajuda ao meu retorno à pesquisa. Cada uma, à sua maneira, auxiliou na minha transferência das escolas de turnos diurnos para o Ciep Leonel de Moura Brizola, onde dou aulas para o Ensino de Jovens e Adultos todas às noites. Se não fosse por elas, a rotina das escolas públicas teria tornado o meu sonho inviável. A minha conquista não seria possível sem vocês!

A todos os amigos professores, administrativos e alunos dos colégios pelos quais atuei durante o período de meu doutoramento (Ciep Leonel de M. Brizola, Ciep 195 Anibal Machado, CE Collecchio, CE Dilma Madeira S. Souza e CE Amazonas). Pelas palavras de incentivo para que eu não desanimasse e fosse em frente, mesmo com todas às dificuldades impostas diariamente aos professores municipais e estaduais do Rio de Janeiro. À cidade de Paula Cândido, MG, meu refúgio e meu descanso. Terra de minha mãe, lugar sagrado.

Enfim, a todos os meus amigos de infância, adolescência e meus familiares. Sempre somos, com os outros.

Ainda que eu andasse pelo vale da sombra da morte, não temeria mal algum, porque tu estás comigo.

SALMOS – 23:4

RESUMO

Trichuris trichiura, membro do gênero Trichuris Roederer, 1761, infecta humanos desde a sua origem. Uma linha do tempo contendo todos os registros arqueológicos de T. trichiura foi construída, para melhor visualização da distribuição paleoepidemiológica em todo o mundo, ao longo do tempo. Esse panorama espaço-temporal da ocorrência de tricuríase foi utilizado como ferramenta na análise de mapas para melhor interpretação desde os primeiros dados de infecção (cerca de 8.000 anos AC) até períodos mais recentes. A tricuríase data do Período Paleolítico, cujos achados são escassos (provavelmente devido ao hábito caçador-coletor) e segue pelo período de início do sedentarismo e domesticação de plantas e animais - a Revolução Neolítica, fase temporalmente equivalente a da 1ª Transição Epidemiológica. A partir dessa etapa, ocorre uma maior distribuição de casos durante a Idade do Bronze e do Ferro e a clara expansão a partir da Era Medieval. Dessa maneira, podemos observar cenários epidemiológicos que remontam a alguns casos do continente africano, europeu e sul-americano até a óbvia ocorrência em áreas do norte da Europa, Ásia e em várias regiões da América do Norte e Central. Um claro esforço nas análises do Período Medieval e aqueles subsequentes pode ser visto em relação ao grande número de amostras. O Período Moderno / Contemporâneo apresenta mais da metade dos achados associados apenas à presença de Ascaris lumbricoides, provavelmente devido a fatores correlacionados com a 2ª Transição Epidemiológica. Todos os registros arqueológicos mundiais da ocorrência de T. trichiura foram utilizados na construção de Paleo-MDEs capazes de indicar as áreas ambientais com os maiores valores de adequação para a descoberta de novos achados. O conjunto das previsões desses Paleo-MDEs aplicados no território brasileiro, juntamente com a identificação de diferentes manifestações culturais, podem indicar quais Tradições foram mais suscetíveis à infecção por T. trichiura em dois momentos distintos da pré-história brasileira: durante o Holoceno Médio e em um período entre 2000 e 1500 anos AP. A revisão da paleoepidemiologia da tricuríase visa servir de guia para novas pesquisas, priorizando locais ainda não investigados, contribuindo para um melhor entendimento da dispersão dessa geohelmintíase e o uso de ferramentas MDE na previsão de áreas com mais chances de encontrar novos sítios arqueológicos positivos.

Palavras-chave: *Trichuris trichiura*, tricuríase, Paleoepidemiologia, modelagem de distribuição de espécies, algoritmos de modelagem.

ABSTRACT

Trichuris trichiura, a member of genus Trichuris Roederer, 1761, infect human since your origin. A timeline was constructed, containing all the archaeological records of T. trichiura, for better visualization of the paleoepidemiological distribution worldwide, over time. This spatiotemporal panorama of the occurrence of trichuriasis in the used analvsis of maps as a tool for better interpretation from the earliest infection data (about 8000 year BCE) to more recent periods. Trichuriasis dates from the Paleolithic Period, whose findings are narrow, probably due to the hunter - gatherer habit, passing through the period of beginning of sedentarism and the domestication of plants and animal - the Neolithic Revolution, whose period is temporally equivalent to of the 1st Epidemiological Transition, a greater distribution of cases during the Bronze and the Iron Ages and the clear expansion in their occurrence from the Medieval Era onwards. In this way we can observe epidemiological scenarios that trace back a few cases from the African, European and South American continent to the obvious occurrence establishments in areas of northern Europe, Asia and in several regions of North and Central America. A clear investment in the analysis of the Medieval and after Periods can be seen in relation to the large number of samples. Modern/Contemporary Period has more than half of findings which were only associated with the presence of Ascaris lumbricoides, probably due to factors correlated with the 2nd epidemiological transition. All mundial archaeological records of the occurrence of T. trichiura were used in the construction of Paleo-SDMs capable of indicating the environmental areas with the highest values of suitability for the discovery of new findings. Ensemble forecastings of these Paleo-SDMs applied in Brazilian territory, together with the identification of different cultural manifestations, could indicate which Traditions were most susceptible to *T. trichiura* infection in two distinct moments of Brazilian prehistory: during the Middle Holocene and in one period between 2000 and 1500 years BP. The review of the paleoepidemiology of trichuriasis is intended to serve as a guide for new research, prioritizing sites not yet investigated, contributing to a better understanding of the dispersion of this geohelmintiasis and the use of SDM tools is intended to predict areas with more chances to find new positive archaeological sites.

Keywords: *Trichuris trichiura*, trichuriasis, Paleoepidemiology, species distribution models, algorithm models.

LISTA DE FIGURAS

Representação da disponibilidade de dados de pesquisa de helmintos
transmitidos pelo solo: visão global18
Ciclo biológico de Trichuris trichiura21
Distribuição global de T. trichiura na população
humana
Imagem, detalhe Banco de dados do Cadastro Nacional de Sítios
Arqueológicos (CNSA). O arquivo contém, no total, 25.109
registros
Campos (atributos) pertencentes ao banco de dados do
CNSA
Diagrama metodológico de construção do banco de dados dos registros
pré-coloniais

LISTA DE ABREVIATURAS E SIGLAS

AC	Antes de Cristo
AD	Anno Domini
AP	Antes do Presente
AUC	Area Under the Curve
BC	Before Christ
BCE	Before the Common (or Current) Era
Bioclim	Bioclimatic envelope
BP	Before Present
CCSM4	Community Climate System Model 4
CDC	Centers for Disease Control and Prevention
CE	Common (or Current) Era
CMIP5	Coupled Model Intercomparison Project Phase 5
CNSA	Cadastro Nacional de Sítios Arqueológicos
Datum	Modelo matemático teórico da representação da superfície da Terra ao nível do
	mar
DNA	Deoxyribonucleic acid
GAHI	Global Atlas of Helminth Infections
GARP	Genetic Algorithm for Rule Set Production
GIS	Geographic information System
GLM	Generalized Linear Model
GPS	Global Positioning System
LSMB	Lime soil mixture barrier
Maxent	Maximum Entropy Modeling
MDE	Modelagem de distribuição de espécies
Paleo-MDE	Paleo-modelagem de distribuição de espécies
Paleo-SDM	Paleo-species distribution model
PCR	Polymerase Chain Reaction
PCRq	PCR quantitativa
pН	Potencial de Hidrogênio
PMIP3	Palaeoclimate Modelling Intercomparison Project 3
RF	Random Forest

SDM	Species distribution model
SIG	Sistema de Informação Geográfica
SR	Sensoriamento Remoto
STHs	Soil-transmitted helminthiases
SVM	Support vector machine
TSS	True Skill Statistics

SUMÁRIO

1	INTRODUÇÃO	15
1.1	O CONCEITO DE GEO-HELMINTÍASE	15
1.2	BIOLOGIA E EVOLUÇÃO DE TRICHURIS TRICHIURA	19
1.2.1	O parasito	19
1.2.2	O ciclo biológico	20
1.2.3	A distribuição geográfica de <i>T. trichiura</i> na atualidade	22
1.2.4	A patogenia	23
1.2.5	O diagnóstico	23
1.2.6	A Paleoparasitologia e a origem e dispersão da infecção por <i>T. trichiura</i>	24
1.3	GEOPROCESSAMENTO, SAÚDE E A PALEOPARASITOLOGIA	25
1.3.1	Uso de geoprocessamento na Paleoantropologia	26
1.3.2	Uso do geoprocessamento para análises tafonômicas	27
1.3.3	Uso do geoprocessamento na análise de cenários climáticos e históricos	27
1.3.4	Uso do geoprocessamento na Arqueologia	28
1.4	MODELAGENS DE DISTRIBUIÇÃO DE ESPÉCIES E SAÚDE NA	29
	PALEOPARASITOLOGIA	
2	JUSTIFICATIVA	31
3	OBJETIVOS	32
3.1	OBJETIVO GERAL	32
3.1.1	Objetivos específicos	32
4	MATERIAIS E MÉTODOS	33
4.1	PALEOEPIDEMIOLOGY OF TRICHURIASIS: A CRONOLOGICAL AND	33
	GEOESPACIAL REVIEW.	
4.1.1	Levantamento das ocorrências paleoparasitológicas de T. trichiura no	33
	mundo	
4.1.2	Construção do banco de dados mundial	33
4.1.3	Construção da linha do tempo contendo os pontos de ocorrência do	34
	banco de dados mundial de <i>T. trichiura</i>	
4.1.4	Construção dos mapas de Paleodistribuição Mundial	35
4.2	MODELAGEM DE CENÁRIOS PALEOEPIDEMIOLÓGICOS DA	36
	INFECÇÃO POR TRICHURIS TRICHIURA NO BRASIL PRÉ-COLONIAL:	

OPORTUNIDADES, DESAFIOS E PERSPECTIVAS

4.2.1	Construção do banco de dados de Tradições a partir do Cadastro	36
	Nacional de Sítios Arqueológicos	
4.2.2	Construção das Paleo-MDEs do Holoceno Médio	41
4.2.3	Construção das Paleo-MDEs do Período Pré-industrial (1760)	43
4.2.4	Construção de mapas dos sítios arqueológicos identificados pelas	44
	Tradições	
5	RESULTADOS	45
5.1	ARTIGO 1	46
5.2	ARTIGO 2	97
6	CONCLUSÕES	136
7	REFERÊNCIAS	138

1 INTRODUÇÃO

1.1 O CONCEITO DE GEO-HELMINTÍASE

Todo organismo ou sequência de ácidos nucleicos que se reproduz e encontra seu nicho ecológico em outro organismo é considerado um parasito (ARAUJO et al., 2013). Na realidade, para que essa afirmação se estabeleça, cabe ressaltar a ocorrência de outros dois componentes, o hospedeiro e o meio ambiente. Juntos, demonstram uma gama de relações interespecíficas de menor ou maior dependência: o "Fenômeno Parasitismo" (FERREIRA, 1973). Ele é tido como a base da origem da vida e, consequentemente, não existe organismo que não possa ser parasitado. Na maioria das vezes, não trás dano ou doença ao hospedeiro mas, seja qual for a condição de saúde do mesmo, destaca-se a obrigatoriedade da presença do parasito, em pelo menos algum estágio dessa relação (FERREIRA, 1973; ARAUJO et al., 2013).

O parasitismo é um dos modos de vida mais bem-sucedidos exibidos pelos seres vivos, sendo medido pela frequência com que evoluiu e quantas espécies parasitárias existem atualmente (POULIN; MORAND, 2000). No que se refere aos seres humanos, pouco mais de 400 espécies compõem o número de parasitos que podem ocorrer, sendo eles endoparasitos ou ectoparasitos. Cerca de 16% dessas espécies são dependentes do homem em seu ciclo de vida, ressaltando os helmintos das classes Nematoda como o maior grupo de parasitos intestinais, seguido pelos Trematoda (ASHFORD, 2003; ROBERTS, L.S., JANOVY JR, 2008).

As parasitoses intestinais são altamente prevalentes nos países em desenvolvimento, em especial, por fatores relativos às condições econômica, cultural e social. São causadas por protozoários e helmintos, esse último grupo composto por invertebrados que possuem simetria bilateral e o corpo em formato cilíndrico (algumas espécies exibindo um achatamento dorso-ventral). Parte desse grupo é formada por helmintos que apresentam obrigatoriamente um momento de seu ciclo de vida (ovos ou larvas) no solo, mantendo-se em condições favoráveis no ambiente até que possam se tornar infectantes e sejam capazes de acometer um hospedeiro susceptível, estabelecendo a infecção. São, portanto, chamados geo-helmintos. A ingestão de ovos (ou larvas) infectantes por meio da água, solo ou alimentos contaminados, além do contato das formas larvares com a pele do hospedeiro, são os modos de transmissão. Diversas são as espécies de nematódeos capazes de infectar os seres humanos, dentre os quais *Enterobius vermicularis, Ancylostoma duodenale, Necator americanus, Ascaris lumbricoides* e *Trichuris trichiura*, que apresentam altas prevalências na população mundial, atingindo cerca de 1 bilhão de pessoas (CDC, 2017).

As geo-helmintiases resultam da ocorrência de parasitos herdados de maneira ecológica ou filogenética (ARAUJO et al., 2008). A herança ecológica em humanos ocorre quando esses passam a se expor frequentemente aos ciclos de vida de diferentes parasitos já estabelecidos nos animais. O modo de aquisição filogenético, no entanto, consiste na aquisição humana dos parasitos através de seus ancestrais hominídeos. Com isso, os parasitas herdados filogeneti-camente, como *T. trichiura*, foram acompanhando das migrações pré-históricas humanas para outras partes de todos continentes (ARAÚJO et al., 2013). Ou seja, a ocorrência de *T. trichiu-ra* acompanha a dispersão humana pelo globo, dando a essa espécie um caráter global (Figura 1). Entretanto, os casos de tricuríase tendem a se concentrar nas regiões tropicais e subtropicais do planeta, em função de melhores condições de temperatura e umidade, necessárias para o estabelecimento e a manutenção do ciclo de vida do parasito e da necessidade dos ovos – ou, em alguns casos, larvas, liberados nas fezes estarem em um ambiente com pH, umidade e temperatura (em torno de 22°C) adequados para atingirem o estágio infeccioso, acometendo outros indivíduos.

Segundo a Organização Mundial de Saúde (OMS e, em inglês, WHO), as doenças negligenciadas somam atualmente 17 doenças infecciosas as quais se disseminam em meios a precárias condições sanitária, de moradia, de alimentação inadequadas, além de dificuldades no acesso aos serviços de saúde (WHO, 2004; VASCONCELOS; KOVALESKI; JUNIOR, 2016). Essa doenças são negligenciadas pelo capital, conferindo elevada morbidade às populações pobres acometidas. A distribuição global é desigual, estando elas presentes em praticamente toda a extensão da América Latina, África e Ásia, com algumas poucas exceções, notoriamente Austrália e Nova Zelândia. Quatro delas são causadas pelos mais comuns helmintos: T. trichiura, Ascaris lumbricoides, Ancylostoma duodenale e Necator americanus (CHAMMARTIN et al., 2013). O comprometimento cognitivo e a ocorrência de diversos processos de subnutrição, principalmente em crianças desses continentes, têm sido, por exemplo, correlacionados com a presença de uma ou mais espécies desses parasitos em um mesmo indivíduo (OJHA et al., 2014). A Organização Mundial de Saúde, observando o impacto que essas enfermidades têm causado, propôs a medição da sua incidência através de um conjunto de parâmetros que resultaram no termo "Anos de Vida Ajustados por Incapacidade" ou, em inglês, Disability Adjusted Life Years - DALY (WHO, 2014).

Esse impacto foi extensivamente analisado por Vos et al. (2015). Os autores utilizaram mais de 35.620 fontes epidemiológicas, provenientes de 188 países nas últimas três décadas e apresentaram a mais atualizada incidência dessas infecções (VOS; BARBER; BELL, 2015). O estudo foi a primeira avaliação abrangente e padronizada sobre o assunto, sendo importante

não apenas para políticas públicas como também na provisão e financiamento dos serviços de saúde.

Figura 1: Representação da disponibilidade de dados de pesquisa de helmintos transmitidos pelo solo: visão global. Modificado de Global Atlas of Helminth Infections (GAHI): <u>http://www.thiswormyworld.org/</u>.

1.2 BIOLOGIA E EVOLUÇÃO DE T. TRICHIURA

1.2.1 O parasito

Trichuris trichiura é um nematódeo pertencente ao gênero *Trichuris* sp. (Roederer 1761), Filo Nemathelminthes, Classe Nematoda, Superfamília Trichuroidea, que compreende mais de 70 espécies, as quais já foram encontradas parasitando o intestino e os órgãos anexos do tubo digestivo de diversos grupos de aves e mamíferos (REY, 2008). Essa espécie, entretanto, é caracterizada por parasitar especificamente o homem, desenvolvendo um ciclo monoxeno.

As formas evolutivas adultas medem entre 3 a 5 cm de comprimento, com os machos apresentando um tamanho menor que as fêmeas e tendo a parte posterior do corpo um formato em espiral. A região anterior de ambas as formas é mais fina que a posterior, dando ao corpo desses vermes um formato "de chicote". Os ovos desses helmintos apresentam tamanhos que variam entre 50 e 55 μ m de comprimento por 22 a 23 μ m de largura. Os ovos possuem um formato "de barril", contendo 3 camadas distintas e dois plugs polares, um em cada extremidade. (REY, 2008).

Hawash e colaboradores (2016), ao analisarem sequências mitocondriais dos genes *nad*1 e *rrn*L, não encontraram diferenças genéticas entre tricurídeos de populações humanas de Uganda (África) e de primatas não humanos, sugerindo uma origem filogenética africana em comum, que teria sido transmitida posteriormente à Ásia e à América do Sul, quando da dispersão do primeiro grupo (HAWASH et al., 2016). Os mesmos autores questionam ainda a origem ecológica de *T. trichiura*, que teria evoluído a partir de *T. suis*, parasito de porcos. Segundo eles, uma vez que não há grandes distinções moleculares entre populações de *T. suis* da Europa e da América do Sul, essas populações teriam evoluído do ancestral *T. trichiura* a partir da dispersão humana e de suas práticas como a domesticação e comercialização dos suínos.

1.2.2 O ciclo biológico

A Figura 2 representa o ciclo de *T. trichiura*. O processo de embriogênese dos ovos depositados no solo se dá em condições ideais de temperatura que variam entre 10°C a 35°C (NEVES; MELO; LINARDI, 2005). Valores abaixo (<9°C) ou acima (>52°C) de temperatura tendem a inviabilizar o desenvolvimento dos ovos. Dadas as condições ideais, há um aumento na clivagem das células contidas nos ovos até que estes se tornem embrionados. A partir desse estágio se tornam infecciosos, uma característica que pode se dar entre 15 a 30 dias. A contaminação humana ocorre após a ingestão dos ovos embrionados (por meio de mãos ou alimentos, ou água contaminados pelo solo) havendo em seguida a liberação de larvas no intestino delgado. As larvas evoluirão até o estágio adulto, com posterior fixação nas regiões de mucosa do cólon e do ceco. A oviposição das fêmeas se dará a partir de 60 a 70 dias após a infecção liberando, cada uma, cerca de 3.000 a 20.000 ovos por dia, junto às fezes (STEPHENSON; HOLLAND; COOPER, 2000; REY, 2008).

Figura 2: Ciclo biológico de *T. trichiura*. Legenda: (1) Ovos não embrionados, contidos nas fezes, ganham o solo. (2) Dá-se início ao processo de clivagem das células-ovo e o consequente desenvolvimento no solo. (3) Processo de embrionamento dos ovos. (4) Ovos se tornam infectantes. Depois da ingestão, os ovos passam ao intestino delgado, onde há eclosão das larvas. (5) Maturação e estabelecimento das larvas, assim como dos adultos, no intestino. (6) Os vermes adultos vivem no ceco e ascendem ao cólon intestinal aonde se fixam com a porção anterior na mucosa. A fêmea inicia a oviposição em 60 a 70 dias após a infecção, que pode chegar a 20.000/dia. Vermes adultos podem viver aproximadamente um ano. Modificado de CDC: https://www.cdc.gov/parasites/whipworm/biology.html.

1.2.3 A distribuição geográfica de T. trichiura na atualidade

O modo de transmissão fecal-oral é decisivo à medida que as possibilidades de contágio e dispersão de *T. trichiura* e sua distribuição pelo globo estão condicionadas à precariedade dos modos de vida adotados pelas pessoas, que geralmente habitam em condições de miséria. Com isso, a ausência ou precariedade das condições mínimas de saneamento fazem com que o parasita apresente um caráter de distribuição geográfica mudial. Vários estudos indicam que a infecção por ele causada atinge cerca de 1 bilhão de pessoas em 118 países, apresentando as maiores taxas de prevalência em algumas localidades na Ásia, África e América Latina, conforme demostrando na Figura 3 (STEPHENSON; HOLLAND; COOPER, 2000; DE SILVA et al., 2003; BOATIN et al., 2012; UTZINGER, 2012; CUTILLAS et al., 2014; PULLAN et al., 2014a; CALLEJÓN et al., 2015; CDC, 2017; JOURDAN et al., 2017) Confirmando o que outrora exposto: *T. trichiura* é, portanto, o causador de uma das mais bem distribuídas doenças tropicais negligenciadas ligadas, especialmente, às baixas condições de saúde e higiene de populações humanas menos favorecidas economicamente (PULLAN et al., 2014a; JOURDAN et al., 2017).

Figura 3: Distribuição global de *T. trichiura* na população humana. Modificado de Jourdan et al. (JOURDAN et al., 2017)

1.2.4 A patogenia

Existe uma grande variação quanto ao número de espécimes de *T. trichiura* que podem viver no intestino humano. Grande parte dos indivíduos acometidos pela tricuríase apresenta entre dois a dez exemplares, o que permite que sejam assintomáticos (REY, 2008). Entretanto, nos casos mais graves (principalmente ligados às altas cargas parasitárias), dependentes de condições relacionadas à imunidade e o estado nutricional, dentre outras, o número de parasitos pode se elevar entre cem a mil espécimes por indivíduo (casos excepcionais). O quadro clínico pode ser discreto, indefinido ou com a ocorrência eventual de nervosismo, insônia, perda de apetite e eosinofilia, além de sintomas mais frequentes como diarréia, dor abdominal, tenesmo e perda de peso. Uma intensa irritação intestinal (na porção distal do íleo e do reto) pode levar indivíduos mais vulneráveis a quadros de anemia (em mulheres grávidas) e a situações ainda mais severas, como o prolapso retal, mais comum em crianças (COOPER; BUNDY, 1988; STEPHENSON; HOLLAND; COOPER, 2000; KHUROO; KHUROO; KHUROO, 2010).

1.2.5 O diagnóstico

O diagnóstico da tricuríase (e de outras geo-helmintíases) requer conhecimento da distribuição geográfica do parasita bem como a compreensão de quadros clínicos variados, que podem ocorrer muitas vezes em sobreposição (JOURDAN et al., 2017). Dessa maneira, as co-infecções, comuns nas áreas endêmicas, tornam o diagnóstico ainda mais desafiador. As evidências da ocorrência de T. trichiura são classicamente obtidas pelo uso da microscopia de luz nos exames diretos e a consequente identificação morfométrica dos ovos identificados em material fecal, com a aplicação de exames coproparasitológicos (LUTZ, 1919). Entretanto, outras metodologias laboratoriais (ainda não padronizadas), como o uso de técnicas de imunodiagnóstico, vêm sendo empregadas com o intuito de tornar o diagnóstico dessas infeccões ainda mais preciso (LAMBERTON; JOURDAN, 2015). Esses ensaios poderão auxiliar na reavaliação do diagnóstico dado a partir de amostras fecais previamente tidas como negativas pela microscopia de luz. Alternativas ainda mais avançadas, baseadas nas análises moleculares (em especial, de DNA) também vêm sendo utilizadas. O'Connell (2016) destaca a utilização da PCR quantitativa (PCRq) no diagnóstico de várias geohelmitíases, das quais a tricuríase. Os autores destacam que, mesmo diante da resistência inerente aos ovos de T. trichiura, a metodologia é capaz de detectar DNA a partir de um único ovo (O'CONNELL; NUTMAN, 2016). O diagnóstico molecular de tricurídeos também vem sendo empregado em inúmeros trabalhos paleoparasitológicos, com a utilização de técnicas como a hibridação de ácidos nucleicos e a reação em cadeia da polimerase, conhecida pela sigla PCR (LELES et al., 2010; OH et al., 2010a; IÑIGUEZ, 2014; JAEGER; IÑIGUEZ, 2014).

1.2.6 A Paleoparasitologia e a origem e dispersão da infecção por T. trichiura

A Paleoparasitologia, que investiga os parasitos (e seus vestígios) em material arqueológico e paleontológico, tem proporcionado um novo entendimento a respeito da distribuição geográfica e temporal de diversos endo e ectoparasitos, informações sobre migrações humanas, as condições de saúde ou mesmo a dieta e o estilo de vida do homem ancestral (FERREIRA LF; ARAÚJO A; CONFALONIERI UEC, 1979, 1988). Essa ciência teve seu início no ano de 1910 com o achado de Schistosoma haematobium em múmia egípcia por Ruffer (RUFFER, 1910b), foi designada por Luiz Fernando Ferreira em 1978 e desenvolveu-se por meio do uso de diferentes metodologias diagnósticas como, por exemplo, a microscopia, a imunohistoquímica, a imunocromatografia, a hibridação de DNA e a PCR. A Paleoparasitologia trouxe grandes contribuições científicas principalmente por meio de análises do conteúdo de coprólitos (fezes dessecadas e preservadas, ao longo de anos). Tal material biológico tem revelado informações muito importantes no que diz respeito às fontes de alimentação de diversos tipos de hospedeiros como, por exemplo: restos alimentares contendo grãos de pólen, sementes não digeridas, fibras e pequenos fragmentos ósseos, abrindo um campo de pesquisa promissor para análises sobre a dieta, o paleoclima, o desenvolvimento agrícola e a ocupação humana pré-histórica, a flora bacteriana dos hospedeiros, além de permitir inferências epidemiológicas em tempos passados (GONCALVES; ARAUJO; FERREIRA, 2003; LELES et al., 2008; WOOD et al., 2012; APPELT et al., 2014). A distribuição espaço-temporal dos achados mundiais para T. trichiura está descrita sinteticamente no próximo capítulo e, de forma mais abrangente, no artigo de revisão que faz parte deste documento em formato de "coletânea", composto por 2 artigos científicos.

1.3 GEOPROCESSAMENTO, SAÚDE E A PALEOPARASITOLOGIA

O Geoprocessamento representa um conjunto de tecnologias de coleta e tratamento de informações georreferenciadas e que podem ser armazenadas e entendidas em um ambiente computacional (CÂMARA et al., 1996). Tais informações são conhecidas como dados geográficos, os quais apresentam 3 componentes básicos: 1) a localização, 2) os atributos e 3) a datação do fenômeno em questão. O geoprocessamento é tido como uma tecnologia interdisciplinar, baseada em conceitos matemáticos e computacionais, que permite a convergência de diferentes campos de conhecimento para o estudo de fenômenos ambientais e urbanos. É composto, principalmente, das seguintes ferramentas: 1) o Sensoriamento Remoto (SR), que permite a obtenção de imagens e dados do planeta, por meio da captação de energia eletromagnética emitida pela superfície da Terra; 2) o Sistema de Posicionamento Global (em inglês, GPS), que utiliza as coordenadas de um receptor na superfície terrestre (altitude, latitude e longitude) e; 3) o Sistema de Informação Geográfica (SIG), capaz de processar dados gráficos e alfanuméricos como, por exemplo, mapas e tabelas. No que tange aos processos de saúde-doenca, tais tecnologias têm sido aplicadas para estudar, explicar e prever padrões espaco-temporais da distribuição de enfermidades, parasitos, vetores, fatores ambientais, sociais e econômicos e suas interações com meio ambiente (XAVIER, 2013). Para o presente estudo, foram utilizadas ferramentas baseadas nos SIGs.

O entendimento sobre a dispersão humana pelo globo pode ser ampliado de forma interdisciplinar e esse é um dos papéis da Paleoparasitologia: compreender como se deram diversas infecções no passado e de que maneira as relações espaço-temporais entre a tríade parasito, hospedeiro e ambiente, ocorreu. Para isso, fazem-se diagnósticos por meio de amostras arqueológicas diversas (ossos, tecidos moles mumificados e, em especial, coprólitos), objetivando o encontro de vestígios de parasitos, principalmente de ovos de helmintos – os mais comumente encontrados. Cabe destacar que, com os avanços das técnicas de diagnóstico molecular, mesmo amostras cujo resultado microscópico foi negativo, podem ser evidenciadas como positivas.

Dois princípios básicos devem ser abordados quando se trata de dados geográficos: as autocorrelações espacial e temporal. Tobler (1970) propôs que "tudo está relacionado a tudo, mas as coisas mais próximas estão mais relacionadas entre si do que as coisas mais distantes" (TOBLER, 1970). Tal afirmação é tida como a Primeira Lei da Geografia e destaca que, quão mais próximos espacialmente forem duas localidades ou regiões, mais se-melhantes serão entre si (ou mais atributos semelhantes terão entre si), demonstrando um

claro aumento na autocorrelação espacial. E esse alto grau de proximidade se reflete em uma maior dependência espacial quando se toma, por exemplo, uma doença: dada a ocorrência de um caso de infecção em uma localidade, as regiões que imediatamente as circundam têm maior probabilidade de ocorrência de novos casos que regiões mais distantes. Quanto à autocorrelação temporal, esta pode ser entendida como um valor atribuído a um menor ou maior grau de dependência temporal entre dois eventos. Eventos que ocorreram em datas mais próximas entre si tendem a ser mais correlacionados do que eventos que ocorreram em épocas temporalmente mais distantes (FERREIRA, 2014). A associação entre esses dois índices de autocorrelação têm sido realizada por meio da utilização de modelos geoestatísticos bayesianos, capazes operar simultaneamente as informações temporais e espaciais dos dados geográficos (DIGGLE; GIORGI, 2016).

O emprego das técnicas de geoprocessamento para entender a dinâmica de ocorrência de fatos do passado pode ser exemplificado pelas contribuições nos campos da paleoantropologia, da tafonomia, da reconstrução de cenários e da prospecção/predição de sítios arqueológicos.

1.3.1 Uso de geoprocessamento na Paleoantropologia

Algumas ferramentas de geoprocessamento (SR e SIG) têm sido fundamentais para os avanços em campos como a paleontologia de vertebrados, na paleoantropologia e na morfologia funcional. Marean e colaboradores (2001) destacaram a importância SIGs na recomposição de restos faunísticos estudados por zooarqueologistas (MAREAN et al., 2001). As análises morfofuncionais de dentes, ossos, esqueletos e artefatos encontrados em sítios arqueológicos e/ou paleontológicos têm sido aprofundadas com a criação de bancos de dados georreferenciados, com implementação das ferramentas de SIG. Esse fato tem permitindo, por exemplo, um maior entendimento sobre a evolução humana e de outros primatas (ANEMONE; CONROY; EMERSON, 2011). O impacto humano e de outras espécies sobre determinado ambiente arqueológico ou paleontológico e as causas de possíveis emigrações dessas espécies para outras regiões também podem ser explorados no contexto do georreferenciamento. Wills e colaboradores (2014) utilizaram um software de SIG para tentar compreender a relação entre a prática de desmatamento e saída da população do sítio Chaco Canyon, Novo México, durante o período entre 860 - 1140 anos AD (WILLS; DRAKE; DORSHOW, 2014). Os autores destacaram que claramente havia uma razão pela qual esses povos, que viviam sob uma base agrícola, se moveram eventualmente para outras regiões geográficas. Entretanto, o registro arqueológico ainda se mostra insuficiente para esclarecer o real motivo para essa emigração. A organização estrutural de um sítio arqueológico também pode ser melhor comprendida com o uso de ferramentas SIGs. Mélie Le Roy e colaboradores (2016) aplicaram a tecnologia para determinar da composição e organização das práticas funerárias empregadas na necrópole de Gurgy localizada na Bacia Francesa de Paris e datada do Neolítico Antigo / Médio (LE ROY et al., 2016). O conjunto de dados apontou para uma prática funerária patrilocal, onde apenas a ocorrência de sepultamento de homens adultos ou jovens foi atestada.

1.3.2 Uso do geoprocessamento para análises tafonômicas

Elez e colaboradores (2013) utilizaram uma abordagem metodológica baseada em SIG para compreender o comportamento hidrogeológico e o impacto de fatores nocivos à preservação da caverna de Altamira, um sistema cárstico localizado na Cantábria, norte da Espanha (ELEZ et al., 2013). Com base na identificação e quantificação de fatores como a circulação interna de água, tipos e quantidade de infiltração, ventilação, trocas gasosas e a ocorrência de vibrações, foi possível propor novo status de Área Protegida para a região em que essa caverna está localizada. Wilhelmson e Dell'Unto (2015) utilizaram a tafonomia virtual, que consiste na aplicação de técnicas de modelagem 3D baseadas em imagens arqueológicas, em uma plataforma SIG (WILHELMSON; DELL'UNTO, 2015). As análises dos materiais arqueológicos e osteológicos permitiram entender mais profundamente a ação dos agentes tafonômicos envolvidos e uma interpretação mais detalhada dos restos do esqueleto encontrado no local.

1.3.3 Uso do geoprocessamento na análise de cenários climáticos e históricos

Marder e colaboradores (2011) utilizaram ferramentas de SIG na reconstrução de cenários (possíveis representações do ambiente, no passado) para o sítio arqueológico de Revadim, localizado em uma planície costeira a 40 km de Tel Aviv, em Israel (MARDER et al., 2011). Diferentes microhabitats e vestígios arqueológicos foram identificados utilizando dados de granulometria, sedimentologia e ferramentas SIG, o que revelou informações sobre as ocupações dessa região, durante o Pleistoceno Médio. Wang e colaboradores (2016) enfatizaram que a extração de dados climáticos para locais específicos não é uma tarefa trivial, o que requer habilidades avançadas de SIG e gerenciamento de dados (WANG et al., 2016). Por isso, desenvolveram um software chamado ClimateNA, capaz de fornecer dados climáticos da América do Norte, com uma faixa temporal desde o Último Máximo Glacial, há cerca de 21 mil anos, até o ano futuro de 2080. O pacote de software facilita o acesso a dados climáticos em grandes escalas, como por exemplo, para espécies continentais e caracterização e modelagem de ecossistemas regionais, mas também em escalas locais de unidades de gestão.

1.3.4 Uso do geoprocessamento na Arqueologia

Neubauer (2001) demonstrou potencialidades na utilização de tecnologias em SIG na prospecção não destrutiva de sítios arqueológicos em áreas potencialmente ameaçadas de destruição pela agricultura intensiva ou pela transformação industrial da paisagem (NEUBAUER, 2001). Glenn e Conroy (2006) destacaram os benefícios em utilizar SIG nas investigações paleoantropológicas, utilizando dados de terrenos digitalizados. A partir da obtenção de dados das características topográficas seria possível um melhor planejamento dos trabalhos de campo, mesmo em áreas mais remotas, localizadas em escalas tanto regionais quanto locais (CONROY, 2006). Anemone e colaboradores (2011), utilizando técnicas de sensoriamento remoto, criaram um modelo de rede neural artificial capaz de reconhecer assinaturas espectrais como, por exemplo, classes de cobertura do solo (florestas, pântanos e matas), em depósitos de mamíferos fósseis no sudoeste do Wyoming (Estados Unidos), datados do Paleoceno e Eoceno (ANEMONE; EMERSON; CONROY, 2011). Os autores sugeriram o modelo como ferramenta na prospecção de depósitos sedimentares fósseis sem restrição de idade ou localização geográfica. Block e colaboradores (2016) propuseram uma metodologia para predição de fósseis em escalas continentais, por meio da utilização de ferramentas SIG e a modelagem combinando a distribuição espécies no passado (modelos climáticos), a adequação geológica à preservação de fósseis (modelos tafonômicos) e a probabilidade de descoberta de fósseis (modelos de descoberta) (BLOCK et al., 2016). Os resultados de busca por fósseis obtidos pelo modelo de Block e colaboradores foram melhores que os obtidos em locais cujas buscas por fósseis foram feitas aleatoriamente. Os autores destacaram ainda que a paleodistribuição do táxon estudado serviu como o melhor indicador para a busca por novos achados fósseis, em escalas continentais.

O emprego dessas tecnologias para a análise e interpretação das ocorrências de *T. trichiura* no passado contribui, de certo, para um melhor entendimento da paleoepidemiologia no Brasil.

1.4 MODELAGENS DE DISTRIBUIÇÃO DE ESPÉCIES E SAÚDE NA PALEOPARASITOLOGIA

De maneira geral, define-se uma Modelagem de Distribuição de Espécies como um processamento computacional que combina dados de ocorrência de uma ou mais espécies e variáveis ambientais para a construção de um modelo representativo das condições por elas requeridas (ANDERSON; LEW; PETERSON, 2003). As MDEs são, por alguns autores, denominadas Modelagens Preditivas. Pretende-se, com isso, resolver o problema do uso de termos como Modelagem de Distribuição Geográfica e Modelagem de Nicho Ecológico, nomenclaturas que têm sido amplamente utilizadas na literatura científica, ora como sinônimos, ora como definições para entidades distintas, causando grande confusão conceitual (AUSTIN, 2002; SOBERON; PETERSON, 2005; GIANNINI et al., 2012). Uma MDE é a construção de um modelo que representa a distribuição geográfica de uma dada espécie. Tal distribuição depende das condições ambientais de uma região, por meio de análises de dados ambientais como tipos de vegetação, condições climáticas, ocorrências de populacões, entre outros. O nicho ecológico de uma espécie representa o conjunto de condições ambientais necessárias para que ela viva e se reproduza em uma determinada área. Em outras palavras, pode-se dizer que o conjunto de regiões acessíveis para as espécies nas quais ambas as condições abióticas e bióticas são favoráveis para a manutenção de populações, e na qual as populações têm condições de se dispersar, refletirá suas distribuições geográficas (PETERSON et al., 2011).

Qualquer modelagem consiste em construir uma representação de comportamento ou de características de um processo (RUSSELL; NORVIG, 2004). Ela tem como objetivo extrair a melhor explicação para um conjunto de dados e representá-la de forma precisa e compacta. Quando um modelo também consegue representar exemplos do processo que não foram usados em sua construção, o modelo tem alta capacidade de generalização e pode ser utilizado, posteriormente, para fazer predições (RODRIGUES, 2012).

O caráter de modelagem preditiva das MDEs tem permitido a sua aplicação nas análises de distribuição geográfica de determinadas espécies, a partir de extrapolações das características ambientais dos locais conhecidos de ocorrência das mesmas (GIANNINI et al., 2012). O interesse por esse tipo de modelagem se dá devido a grande capacidade em gerar rapidamente modelos capazes de responder, por exemplo, às perguntas correlacionadas a identificação de ameaças enfrentadas por uma determinada espécie, em seu local de ocorrência. Os modelos preditivos, conforme supracitados, também podem ser trabalhados com o objetivo de responder a diversas questões do passado. Cada um dos modelos Passa, com isso, a ter um caráter de Paleo-Modelagem de Distribuição de Espécies, cuja sigla é Paleo-MDE (VARELA; LOBO; HORTAL, 2011). Parte dessa tese foi produzida sob essa perspectiva, utilizando valores de variáveis ambientais de tempos remotos, como as depositadas no WorldClim, uma base de dados climáticos globais que fornece camadas ambientais (layers) em diferentes resoluções referentes ao clima atual, assim como para a modela-gem de cenários climáticos do passado e do futuro (HIJMANS et al., 2005).

As técnicas de Paleo-MDEs são compostas, basicamente, por uma grande variedade de procedimentos matemáticos e estatísticos capazes de correlacionar os dados geográficos de ocorrência de uma espécie a um conjunto de variáveis espacialmente definidas e que, geralmente, refletem a fatores ambientais (GUISAN; ZIMMERMANN, 2000; FRANKLIN et al., 2009). Os algoritmos (sequências finitas de comandos, executados por meio de códigos escritos em alguma linguagem computacional), são partes integrantes dessas metodologias, sendo os mesmos classificados em 3 grupos básicos: (I) aqueles baseados no ajustamento estatístico dos dados ambientais e os de ocorrência de uma espécie de modo que possam ser correlacionados, teoricamente (exemplo: GLM e Maxent); (II) conjunto técnicas de aprendizado de máquina, capazes de detectar padrões espaciais complexos nos dados observados, sem assumir qualquer distribuição de probabilidade subjacente (exemplo: GARP) e: (III) conjunto de técnicas baseadas na teoria dos conjuntos, que utilizam apenas informações provenientes dos dados de ocorrência observados (exemplo: Bioclim), não exigindo a inclusão de dados de ausência, necessários para a aplicação dos dois grupos de técnicas anteriores (VARELA; LOBO; HORTAL, 2011). Para o emprego dos algoritmos desse trabalho foi necessário a criação de pseudoausências, valores selecionados aleatoriamente nas áreas onde T. trichiura não foi registrado ou que apresentaram, a priori, condições ambientais de ocorrência inadequadas, método esse comumente empregado em trabalhos semelhantes (FERRIER; WATSON, 1997; ZANIEWSKI; LEHMANN; OVERTON, 2002; ENGLER; GUISAN; RECHSTEINER, 2004; LOBO; VERDU; NUMA, 2006). Portanto, no presente trabalho, foram utilizadas camadas ambientais (também chamadas variáveis preditoras) do WorldClim, equivalentes ao período do Ótimo Climático (Holoceno Médio - 6000 anos) e do EcoClimate (Pré-industrial – 1760 anos), além dos dados geográficos das ocorrências arqueológicas de T. trichiura em diversas regiões do globo, além dos algoritmos Bioclim, SVM, RF e Maxent.

2 JUSTIFICATIVA

Percebe-se, até o momento, que as paleodistribuições mundiais, ou continentais, dos achados paleoparasitológicos, leia-se para uma interpretação da dispersão das infecções e doenças parasitarias no passado, apresentadas em vários estudos, não permitem maiores críticas no que tange a um melhor entendimento da tríade parasito-hospedeiro-ambiente em um contexto temporal (LELES, 2010a; FRÍAS; LELES; ARAÚJO, 2013; LE BAILLY; MAICHER; DUFOUR, 2016). Demonstram claramente a extensão desses achados com base nas ocorrências dos parasitos nas populações, mas as diferentes datações das mesmas estão situadas geoespacialmente em um mesmo patamar, dificultando a compreensão cronológica de como as infecções se deram, considerando de forma diferenciada, ao longo do tempo. Além disso, fatores como o esforço de pesquisa e os processos tafonômicos que agem sobre o material arqueológico (a depender da datação e da localização geográfica) podem complicar, ou mesmo comprometer, maiores inferências paleoepidemiológicas.

Ao contextualizar a tricuríase na problemática supracitada, entende-se que o projeto aqui apresentado trás como potencialidades a visualização e interpretação temporal das ocorrências da infecção por *T. trichiura* através da análise de uma linha do tempo, permitindo a rápida identificação dos casos no Velho e no Novo Mundo ao longo dos períodos de evolução humana. Além disso, propõe a construção de Paleo-Modelagens de Distribuição de Espécies - ou Paleo-MDEs - como ferramentas para a predição de localidades de sítios arqueológicos potencialmente positivos para *T. trichiura* no Brasil.

O projeto inova ao abordar cronologicamente a paleodistribuição mundial da tricuríase nos períodos Paleolítico/Mesolítico, Neolítico, dos Metais, Medieval, e Pré/Pós Industrial, inserindo ainda um contexto geoespacial gradual, capaz de permitir reflexões acerca da dispersão humana, do processo diferenciado de sedentarização em várias partes do globo e do consequente contado com os parasitos de outros animais, além do aumento em algumas regiões na ocorrência de *T. trichiura*, parasito já estabelecido filogeneticamente junto à população humana.

A capacidade em prever áreas com as maiores chances para o encontro de vestígios arqueológicos de *T. trichiura* poderá auxiliar no direcionamento dos esforços de pesquisa para localidades brasileiras que foram mais aptas à manutenção do ciclo dessa e de outras geo-helmintíases, no passado.

3 OBJETIVOS

3.1 OBJETIVO GERAL

Investigar a Paleoepidemiologia da tricuríase humana mundial e construir cenários paleoepidemiológicos da infecção no Brasil pré-colonial, utilizando uma análise multidisciplinar com aportes da Paleoparasitologia e da aplicação de ferramentas de geoprocessamento de MDEs.

3.1.1 Objetivos específicos

1) Propor e Investigar a Paleoepidemiologia da tricuríase humana mundial, com base na revisão da literatura e ferramentas de SIG para a produção de representações cronológicas e espaciais das ocorrências paleoparasitológicas da infecção por *T. trichiura*.

2) Propor e Investigar cenários paleoepidemiológicos da infeção por *T. trichiura* no Brasil pré-colonial, com base na construção de Paleo-MDEs.

4 MATERIAIS E MÉTODOS

Como mencionado, a tese está no formato "coletânea", composta de 2 artigos científicos: "Paleoepidemiology of trichuriasis: a Cronological and Geoespacial Review"; e "Modelagem de Cenários Paleoepidemiológicos da Infecção por Trichuris trichiura no Brasil Pré-Colonial: oportunidades, desafios e perspectivas". Assim, neste tópico se detalha os materiais e as abordagens teórico-metodológicas utilizadas para todo o estudo, específicas para cada produção científica.

4.1 PALEOEPIDEMIOLOGY OF TRICHURIASIS: A CRONOLOGICAL AND GEOESPACIAL REVIEW.

4.1.1 Levantamento das ocorrências paleoparasitológicas de T. trichiura no mundo

Foram utilizados como norteadores da pesquisa três artigos de revisão (GONÇALVES; ARAÚJO; FERREIRA, 2003; LELES et al., 2010; MITCHELL, 2016). Além disso, foram conduzidas pesquisas manuais utilizando os bancos de dados eletrônicos: PubMed, Isi Web of Science, Scopus e Scielo. Todas as referências que atenderam aos seguintes critérios de inclusão foram avaliadas: (a) descobertas de *Trichuris* sp. em material antigo; (b) materiais antigos datados do início do século XX ou anteriores, (c) foram incluídos todos os tipos de publicações. Foram utilizados os seguintes descritores: "Trichuris", "coprolite", "sediment", "soil", "latrine", "cesspit", "pit", "barrel", "privy", "Archeology", "archaeoparasitology", "paleoparasitology", "paleopathology", "excavation", "years ago", "before present", "history", "colonial", "pre Columbian", "medieval", "middle Age", "Iron age", "Bronze age", "Roman age", "Roman period", "ancient disease", "ancient parasites", "burial", "skeleton" and "mummy". Os operadores lógicos "AND" e "OR" também foram usados para combinar os descritores e, conseqüentemente, rastrear as publicações e os símbolos "\$" e "*" para truncar o final das palavras e procurar todas as suas derivações.

4.1.2 Construção do banco de dados mundial.

Todos os locais e/ou sítios arqueológicos positivos para *T. trichiura*, cujas coordenadas geográficas não estavam disponíveis, foram ativamente pesquisados usando o software Google Earth Pro 7.1.5.1557 e somados aqueles possuidores de informações geográficas,

para a construção do banco de dados da paleodistribuição de *T. trichiura*. As coordenadas geográficas de todos os registros arqueológicos foram padronizadas para latitude e longitude (em graus decimais), considerando o Sistema geodésico mundial WGS84, por meio do conversor presente no site do projeto speciesLink (<u>http://splink.cria.org.br/conversor</u>). O speciesLink é um sistema de informação distribuído que integra dados primários de coleções científicas. A ferramenta foi desenvolvida em parceria pela FAPESP, GBIF, JRS Foundation, MCTI, CNPq, FINEP, RNP e CRIA.

Os dados geográficos mundiais positivos para *T. trichiura* foram organizados em um banco de dados para serem utilizados, em seguida, na construção de mapas de paleodistribuição de *T. trichiura*, utilizando o software Arcmap 10.3.1 e na produção de Paleo-MDEs.

4.1.3 Construção da linha do tempo contendo os pontos de ocorrência do banco de dados mundial de *T. trichiura*

A cronologia dos achados de *T. trichiura* foi organizada em uma linha do tempo, construída por meio do software Timeline Maker Pro 3.0.134.14. O programa utiliza como nomenclatura para as datações as seguintes denominações: Antes de Cristo (BC, em inglês) e Anno Domini (AD). As datas cujos períodos foram originalmente expressos como anos Antes do Presente (BP, em inglês) foram convertidos para Antes da Era Comum (Before Common Era ou BCE, em inglês) e Era Comum (Common Era ou CE, em inglês), subtraindo os valores de cada um deles do ano 1950 considerado, nesse caso, como ano presente. Os termos BC e AD, usados em alguns artigos são equivalentes, respectivamente, os termos BCE e CE. A cronologia da linha do tempo corresponde à periodização proposta por Aspöck e colaboradores (1999), cujos períodos foram delimitados de acordo com à Europa Central, como visto a seguir: Períodos Paleolítico e Mesolítico (8000 a 5000 anos BC); Período Neolítico (5000 a 2200 anos BCE) e Períodos do Bronze e do Ferro (2200 a 15 anos BCE) (ASPÖCK; AUER; PICHER, 1999).
4.1.4 Construção dos mapas de Paleodistribuição Mundial

No total, seis mapas representando a paleodistribuição de *T. trichiura* em diferentes períodos foram produzidos utilizando o software Arcmap 10.3.1. Eles foram organizados de maneira que o primeiro representa todos os registros da paleodistribuição mundial e os demais, as ocorrências nos seguintes períodos: Paleolítico e Mesolítico; Neolítico; Bronze e Ferro; Medieval e Moderno e Contemporâneo.

4.2 MODELAGEM DE CENÁRIOS PALEOEPIDEMIOLÓGICOS DA INFECÇÃO POR TRICHURIS TRICHIURA NO BRASIL PRÉ-COLONIAL: OPORTUNIDADES, DESAFIOS E PERSPECTIVAS

4.2.1 Construção do banco de dados de Tradições a partir do Cadastro Nacional de Sítios Arqueológicos

O banco de dados de sítios arqueológicos fornecido pelo Cadastro Nacional de Sítios Arqueológicos (CNSA), obtido no dia 07/08/2016, foi utilizado para identificar todos os registros contendo informações sobre Tradições (culturas materiais ou arqueológicas) durante o período pré-colonial (IPHAN, 2009). As tradições foram identificadas de acordo com as divisões e subdivisões propostas no clássico "Dicionário de Arqueologia", escrito por Alfredo Mendonca de Souza (SOUZA, 1997). O banco de dados do CNSA possui 25.109 registros, cada um deles com até 199 atributos (colunas) preenchidos (Figuras 4 e 5).

X 🚽	- 0-	- 🚰 -	-								CNSA_T	ABELAS	tudo - N	licrosot	t Excel (I	alha na	Ativação	do Produ	to)		
Arquiv	Págir	na Inicial	In	iserir	Layout	da Pág	ina	Fórmula	as Da	dos	Revisão	Exibiç	ão De	senvolv	edor						
	Calibri	• 11 • A A			=	= = = »·· = = Que			iebrar Texto	brar Texto Automaticamente			al le		*	SE					
Cola	3	N I	<u>s</u> -	•	3	· <u>A</u> ·	≣		律律	M	sclar e Ceni	tralizar		9	- % 0	00 58	\$00 Fe	ormatação ndicional	For • como	matar Tabela •	Estilos de Célula *
Área de	Tran 15			Fonte						Alinhame	nto			a l	Núme	0	-5a		Estil	0	
	A25110	3	+ (=	3	fx RI	N0005	0														
	A		-		_		в				C	D	E	F	G	н	1	J	к	L	M
1	CodS	itio					Nome				Outras_	CodMu	r Municíp	JF_Síti	c Locali	d Outras	Proprie	Endere	CEP_P	Cidade	UF_Pro
25076	G000	514		Zé Borralheiro					H-GO-N	5E+08	6 Campina	GO	Fazend	a Zé Borra	alheiro						
25077	R0003	399		Zé Careca / Linha 124 / BR 3			364 (Sentir	do Cacoal			1E+08	6 Presiden	RO			José Ca	n Linha 124		Presiden	RO	
25078	PA013	342	ZéC			2é Crent	Crente				2E+08	5 Vitória do	PA	Ilha da F	azenda	Zé Crent	e		Ilha da Fa	PA	
25079	MG00	829		Zé da Chana				MGPA 82	3E+06	Perdizes	MG										
25080	SP004	460		Zé Duarte				SP.RC.12	4E+08	Bio Claro	SP	Antiga F	azenda Z	é Duarte							
25081	G001406 Zé Galinha				Sítio Arqu	5E+08	6 Rio Quer	GO	Fazend	a Lajinha	José Pe	c Fazenda	Lajinha, 2	Rio Quer	GO						

the second second				APPENDED FOR THE PARTY OF THE P							
25080	SP00460	Zé Duarte	SP.RC.12	4E+06 Rio Claro	SP	Antiga Fazenda Zé	Duarte				
25081	GO01406	Zé Galinha	Sítio Arqu	5E+06 Rio Quer	GO	Fazenda Lajinha	José Per	Fazenda	Lajinha, a	2 Rio Quer	GO
25082	ES00184	Zé Geraldo		3E+06 Conceiçã	ES	Córrego /	Aracruz	Fábrica	da Aracrus	z Celulose	ES
25083	AM00183	ZéLagoa		1E+06 Presiden	AM	Balbina	ELETRO	SCN-Q	6 - Conj A	Brasília	DF
25084	P100818	Zé Paes (Toca do)	417	2E+06 Brejo do I	PI	Serra Bra Povo da I	Parquel	Centro C	64770-0) São Rain	PI
25085	P101262	Zé Patú (Toca do)	395	2E+06 João Cos	PI	Angical	Parquel	Centro C	64770-0	São Rain	PI
25086	PI00839	Zé Pereira (Toca do)	209	2E+06 Jurema	PI	Baixão do Bate			64782-0	Jurema	PI
25087	ES00151	Zé Ramalho		3E+06 Conceiçi	ES	Córrego	Aracruz	Fábrica	da Araorus	z Celulose	ES
25088	PR00280	Zé Souza 1	PR-AP-C	4E+06 Itaguajé	PR	Pontal	José de	Souza		Itaguajé	PR
25089	PR00281	Zé Souza 2	PR-AP-C	4E+06 Itaguajé	PR	Pontal	José de	Souza		Itaguajé	PR
25090	PR00282	Zé Souza 3	PR-AP-C	4E+06 Itaguajé	PR	Pontal	José de	Souza		Itaguajé	PR
25091	PI01608	Zeca I (Toca da Roça do)	149	2E+06 Coronel	PI	Serra Tal Serra No	Parquel	Centro C	64770-0) São Rain	r Pl
25092	PI01171	Zeca IV (Toca da roça do)	717	2E+06 Coronel	PI	Serra Nova	Sr. Zeca	Barreirin	64793-0	Coronel	PI
25093	R001372	Zediotti		1E+06 Ji-Paran	RO	319/2	Edson L	ourival Zeo	liotti	Ji-Paran	RO
25094	R001373	Zediotti 2		1E+06 Ji-Paran-	RO	319/2					
25095	MT00696	Zeferino		5E+06 Vila Bela	MT	Fazenda Morro do	Zeferino	Neto Profi	eta da Cru	z	
25096	G000273	Zeferino B. da Silva (1)	GO-NI-0	5E+06 Hidrolina	GO	Fazenda Santana	Zeferino	B. da Silva	Э		
25097	G000274	Zeferino B. da Silva (2)	GO-NI-0	5E+06 Hidrolina	GO	Fazenda Santana	Zeferino	B. da Silva	э		
25098	SP01222	Zelux	Ze	4E+06 Guapiaçı	SP	Fazenda Não há	Zelux Ag	rícola Ltd	a	Guapiaç	SP
25099	PA00796	Zenóbio		2E+06 Santarén	PA	Parauá					
25100	MG00996	Zenon I		3E+06 Cabeceir	MG	Cachoeira do Quei	Consóro	i Av. Barb	30190-1	Belo Hori	MG
25101	MG00997	Zenon II	Cachoeir	3E+06 Unaí	MG	Clube da ASCEB	Consóro	i Av. Barb	30190-1	3 Belo Hori	MG
25102	MG00998	Zenon III		3E+06 Unaí	MG	Fazenda do Sr. Ata	Consóci	Av. Barb	30191-13	Belo Hori	MG
25103	RS02600	Zerme Denare	RS-AN:2	4E+06 Bento Gc	RS	Linha Jaboticaba -	Zerme D	e Linha Ja	boticaba	Bento Go	RS
25104	BA00750	Zézinho		3E+06 Itamaraju	BA	Cachoeir Sítio Vist	José de	Sitio Vist	a Alegre	Itamaraju	BA
25105	PI01635	Zezinho (Serrote do)	181	2E+06 Coronel	PI	Serrote d Sítio do N	ManoelF	Sítio do l	64793-0	Coronel.	PI
25106	DF00013	Zico	DF-CA-C	5E+06 Brasília	DF	Gama	Márcio d	Ponte Al	ta de Cima	a, chácara	No. 156
25107	MG01890	Zico		3E+06 Resplenc	MG						
25108	RS02078	ZOFIA FEO		4E+06 AMARAL	RS	COSTADO SUTIL,	ZOFIA FI	COSTAL	DO SUTIL.	AMARAL	RS
25109	BA00748	Zuador	Não há	3E+06 Itamaraju	BA	Povoado Represa	descont	descont	ecido		
25110	RN00050	Zumbi		2E+06 Maxarane	BN	Zumbi					
25111	- Andrewski - A		1. 1					-	1		
I4 4 > >	CNSA_TABELAS	_tudo 🖉							NII		
Pronto	P							Méd	ia: 71868	85294	Contag

Figura 4: Imagem, detalhe Banco de dados do Cadastro Nacional de Sítios Arqueológicos (CNSA). O arquivo contém, no total, 25.109 regis-

CodSitio	Distância	Combustão	Naturais
Nome	Rio	Edificações	Antrópicos
Outras designações Sítio	Bacia	Funerária	Futuras possibilidades
CodMunicIBGE	Outras ref de localização	Pedras	Medidas sugeridas
Município	Floresta ombrófila	Manchas	Relevância
UF Sítio	Floresta estacional	Canais	Responsável pelo registro
Localidade	Campinarana	Círculos	Endereço do responsável registro
Outras designações Localidade	Savana	Estacas	CEP responsável registro
Proprietário_do_terreno	Savana_estépica	Fossas	Cidade_responsável_registro
Endereço Proprietário	Estepe	Muros	UF responsável registro
CEP_Proprietário	Capoeira	Palafitas	E_mail_responsável_registro
Cidade Proprietário	Outra Vegetação atual	Paliçadas	Fone responsável registro
UF_Proprietário	Meio_urbano	Concentrações_cerâmicas	Nome_projeto
Email Proprietário	Via pública	Concentrações cerâm gty	Instituição
Fone_Proprietário	Estrutura_de_fazenda	Vestígios_mineração	Endereço_instituição
Ocupante atual	Pasto	Outras estruturas	Cidade responsável instituição
Descrição_sumária	Plantio	Lítico_lascado	CEP_instituição
Sítios relacionados	Área devoluta	Lítico polido	UF responsável instituição
Comprimento	Outro_Uso_atual	Sobre_material_orgânico	E_mail_responsável_instituição
Largura	Terra pública	Cerâmico	Fone responsável instituição
Altura_máxima	Terra_privada	Sobre_concha	Mapa_com_sítio_plotado
Área	Área indígena	Outros líticos	Planta baixa sítio
Medição	Área_militar	Artefatos_industriais	Planta_baixa_dos_locais_afetados
Acesso_ao_sítio	Outra_Propriedade_da_terra	Pintura	Planta_baixa_de_estruturas
Nome_e_sigla_da_folha	Unidade_de_conservação	Gravura	Perfil_estratigráfico
IBGE_DSG_Outro	Tombada_Municipal	Ausente_arte_rupestre	Foto_aérea
Escala	Tombada_Estadual	Outros_materiais_orgânicos	Foto_colorida
Ano_de_edição	Tombada_Federal	Outros_materiais_inorgânicos	Foto_preto_branco
PC_Zona	Tombada_Unesco	Tradições_artefatos_líticos	Reprografia_de_imagem
PC_E	Categoria	Fases_artefatos_líticos	Imagens_de_satélite
PC_N	Pré_colonial	Complementos_artefatos_líticos	Cópia_de_arte_rupestre_total
Perímetro_1_Zona	De_contato	Outras_artefatos_líticos	Cópia_de_arte_rupestre_parcial
Perímetro_1_E	Histórico	Tradições_artefatos_cerâmicos	llustração_do_material
Perímetro_1_N	Tipo	Fases_artefatos_cerâmicos	Notas_de_campo
Perímetro_2_Zona	Exposição	Complementos_artefatos_cerâmicos	Croqui
Perímetro_2_E	Exposição_outra	Outras_artefatos_cerâmicos	Perfil_topográfico
Perímetro_2_N	Em_superfície	Tradições_arte_rupestre	Vídeo_filme
Perímetro_3_Zona	Em_profundidade	Estilos_arte_rupestre	Outro_material
Perímetro_3_E	Registro	Complementos_arte_rupestre	Observações
Perímetro_3_N	Coleta_de_superfície	Outras_arte_rupestre	Referência_1
Perímetro_4_Zona	Corte_estratigráfico	Datação_absoluta	Referência_2
Perímetro_4_E	Levantamento_de_grafismos	Datação_relativa	Referência_3
Perímetro_4_N	Escavação	Integridade_estratigrafia	Referência_4
Datum	Instituição_do_acervo	Erosão_eólica	Data_do_registro
Margem_de_erro	Números_de_Catálogo	Erosão_fluvial	Ano_do_registro
GPS_ou_Em_mapa	Forma	Erosão_pluvial	Responsável_pelo_preenchimento
Tipo_de_relevo	Tipo_de_solo	Ativ_agrícolas	Data_do_preenchimento
Compartimento_topográfico	Estratigrafia	Const_estradas	Local_dos_dados
Altitude	Áreas_de_refugo	Constr_moradias	Atualizações
Água_mais_próxima	Lascamento	Vandalismo	

Figura 5: Campos (atributos) pertencentes ao banco de dados do CNSA.

Os dados geográficos dos sítios arqueológicos com informações de Tradições foram identificados por meio da análise do conteúdo dos atributos PC_Zona, PC_E, PC_N, Perímetro_1_Zona, Perímetro_1_E, Perímetro_1_N, Perímetro_2_Zona, Perímetro_2_E, Perímetro_2_N, Perímetro_3_Zona, Perímetro_3_E, Perímetro_3_N, Perímetro_4_Zona, Perímetro_4_E, Perímetro_4_N, Datum que, quando disponíveis, foram padronizados para latitude e longitude (em graus decimais), no Sistema geodético mundial WGS84, utilizando a ferramenta de conversão do speciesLink.

Foram selecionados todos os registros (com coordenadas geográficas) cujo valor foi descrito como VERDADEIRO no campo de atributo Pré colonial, em um total de 4034 registros. Uma nova filtragem foi aplicada, considerando informações dos seguintes atributos: Líti-Sobre material orgânico, co lascado, Lítico polido, Cerâmico, Sobre concha, Ou-Artefatos industriais, tros líticos, Pintura. Gravura. Ausente arte rupestre, Outros materiais orgânicos, Outros materiais inorgânicos, Tradições artefatos líticos, Fases artefatos líticos, Complementos artefatos líticos, Outras artefatos líticos, Tradições artefatos cerâmicos, Fases_artefatos_cerâmicos, Complementos_artefatos_cerâmicos, Outras artefatos cerâmicos, Tradições arte rupestre, Estilos arte rupestre, Complementos arte rupestre, Outras arte rupestre.

A partir dessa filtragem foram obtidos 2606 registros, contendo informações das seguintes Fases/Tradições: Umbu, Itaparica, Serranópolis, Arte rupestre, Humaitá, Sambaqui, Itaipu, Una, Hachurado-Zonada, Periperi, Borda incisa, Paredão/Guarita, Policroma, Vieira, Taquara, Corrugada, Marajoara, Subtradição Pintada, Aratu, Itararé, Inciso-Ponteada, Sapucai, Uru, Tupinambá, Maracá, Planalto, Sambaqui e Tupiguarani (Figura 6).

Figura 6: Diagrama metodológico de construção do banco de dados dos registros précoloniais.

Os registros identificados foram utilizados na construção de uma linha do tempo contendo as faixas temporais de ocupação das seguintes Tradições, de acordo com os registros do CNSA: Umbu; Itaparica; Serranópolis; Arte Rupestre; Humaitá; Sambaqui; Itaipu; Una; Hachurado-Zonada; Tupiguarani; Borda Incisa; Paredão/Guarita; Policroma; Vieira; Taquara; Corrugada; Marajoara; Subtradição Pintada; Aratu; Itararé; Inciso-Ponteada; Sapucaí; Uru e Tupinambá. Os sítios arqueológicos pré-coloniais positivos para *T. trichiura* também estão dispostos na linha do tempo. Essa linha do tempo teve suas datas ajustadas para o presente uma vez que não foi manipulada com a utilização do software TimelineMaker. O ajuste das datas seguiu a proposta de Corrêa, descrita em 2017 (CORRÊA, 2017).

4.2.2 Construção das Paleo-MDEs do Holoceno Médio

Para a produção das Paleo-MDEs do Holoceno Médio foram escolhidos do banco de dados mundial 30 registros paleoparasitológicos (inclusive Brasil) positivos para *T. trichiura* e anteriores *a* 2000 anos AP (FERNANDES; IÑIGUEZ, 2017). Alguns dos Paleo-MDEs gerados foram selecionados, de acordo com valores estatísticos descritos a seguir, e reunidos em uma projeção combinada ("ensemble forecasting"), que foi projetada território brasileiro. Essa projeção combinada foi posteriormente comparada aos locais de ocorrência geográfica das seguintes Tradições: (1) Umbu; (2) Itaparica; (3) Serranópolis; (4) Arte Rupestre; (5) Humaitá; (6) Sambaqui; (7) Itaipu; (8) Una e (9) Hachurado-Zonada e (10) Tupiguarani.

As variáveis preditoras paleoclimáticas Bio 05 (Temperatura máxima do mês mais quente), Bio 06 (Temperatura mínima do mês mais frio) e Bio 12 (Precipitação Anual), provenientes do Sistema de modelos climáticos canadense CCSM4 e depositadas no WorldClim 1.4, foram utilizadas para a criação das Paleo-MDEs para *T. trichiura* do Holoceno Médio. O CCSM4 é um sistema que agrega e permite a manipulação simultânea de modelos da atmosfera terrestre, da superfície terrestre, dos oceanos, e do gelo marinho, possibilitando aos pesquisadores a realização de pesquisas em diferentes momentos do passado, presente e futuro do planeta.

Os algoritmos Bioclim, Maxent, Random Forest e SVM, além do ambiente R, foram utilizados em conjunto para a produção do modelo de predição (CORTES; VAPNIK, 1995; TIN KAM HO, 1998; ELITH et al., 2006, 2011; HIJMANS; GRAHAM, 2006; MEROW; SMITH; SILANDER, 2013; GUERRA et al., 2017). Esses algoritmos têm em comum a característica de precisarem, somente, dos pontos de presença (ou de ocorrência) da espécie. Cada um deles é descrito a seguir.

O Bioclim (algoritmo de envelope Bioclimático ou ambiental) gera um modelo bioclimático que compara a distribuição de uma espécie a uma quantidade de variáveis climáticas, por meio da produção de um envelope climático, também conhecido como hipercubo (ELITH; LEATHWICK, 2009). O Maxent é o algoritmo de modelagem mais popularmente utilizado (VARELA; LOBO; HORTAL, 2011) e baseia-se na teoria da máxima entropia, que diz que a melhor aproximação para uma distribuição de probabilidades desconhecida é aquela que satisfaça qualquer restrição à distribuição (PHILLIPS; DUDÍK; SCHAPIRE, 2004; PHILLIPS; ANDERSON; SCHAPIRE, 2006). Permite realizar previsões ou inferências a partir de informações incompletas, ou seja, estima a probaliblidade de ocorrência de uma espécie encontrando a distribuição de probabilidade da máxima entropia (que é a distribuição mais próxima da distribuição uniforme), submetidas a um conjunto de restrições que representam a informação incompleta sobre a distribuição alvo. O Random Forest consiste em um conjunto de árvores de decisão construído no momento de treinamento do método (BREIMAN, 2001). O **SVM** (support vector machine) é um algoritmo caracterizado por conter um conjunto de métodos de aprendizagem supervisionados relacionados, capazes de reconhecer padrões, que pertencem à família dos classificadores lineares generalizados (VAPNIK, 1995). Eles são capazes de tratar amostras de tamanho da ordem de 100.000 instâncias, criando hiperplanos de separação que atuam como classificadores dos dados, gerando probabilidades de presença e ausência (CRISTIANINI; SHAWE-TAYLOR, 2000).

Para que os modelos sejam avaliados é necessária a quantificação dos erros produzidos por cada algoritmo. Essa quantificação se dá por meio do emprego de técnicas (ou métodos) de avaliação. Os métodos utilizados para a avaliação dos modelos gerados foram: TSS (True Skill Statistics), a Área sob a curva (AUC) e a taxa de omissão, todos derivados da matriz de confusão (MONSERUD; LEEMANS, 1992; ALLOUCHE; TSOAR; KADMON, 2006; GIANNINI et al., 2012).

O significado estatístico de cada um dos modelos está descrito a seguir. A TSS significa a Taxa de acerto de presença e taxa de acerto de ausência. Apresenta valores entre 0 e 1 dos quais os valores acima de 0,6 são considerados bons modelos. Valores de TSS entre 0,2 e 5,9 são regulares e abaixo de 0,2, ruins (não devem ser considerados). Os modelos de projeção combinada (que serão descritos no item posterior) apresentaram valores de TSS iguais ou maiores que 0,7. A AUC é a capacidade discriminatória do modelo onde, tomados dois conjuntos de pontos aleatoriamente (ausência e presença), seja possível identificar estimar a probabilidade de acertar qual deles é presença e qual deles é ausência. Quanto maior a AUC maior o poder discriminatório (ou seja, o acerto do modelo). A Taxa de omissão reflete o quanto o

modelo está omitindo registros de presença (descartando alguns pontos positivos, ou seja, o falso negativo). Identifica, portanto, os erros mais graves.

O processo de pós-modelagem está representado pela produção de uma projeção combinada, empregada ao final da seleção dos algoritmos estatisticamente significativos, com o objetivo de aumentar a confiabilidade do estudo (ARAUJO; NEW, 2007; GIANNINI et al., 2012). Essa metodologia consiste na criação de um modelo de consenso em que as áreas de alta adequabilidade sejam as áreas em que todos (ou a maioria) dos modelos indicaram como sendo propícias para a ocorrência de *T. trichiura*. Os mesmos procedimentos de avaliação estatística e pós-modelagem foram empregados na produção dos modelos do Período Pré-Industrial (1760).

4.2.3 Construção das Paleo-MDEs do Período Pré-industrial (1760)

Foram utilizados para a construção do modelo Pré-Industrial (1760) 158 pontos de ocorrência mundial (inclusive do Brasil) de T. trichiura em material arqueológico, datados entre 2000 a 1500 anos AP, além das variáveis preditoras paleoclimáticas Bio 05 (Temperatura máxima do mês mais quente), Bio 06 (Temperatura mínima do mês mais frio) e Bio 12 (Precipitação Anual) provenientes do Sistema de modelos climáticos CMIP5/PMIP3 (BRACONNOT et al., 2011, 2012). Essas variáveis foram obtidas do EcoClimate. Os mesmos algoritmos e o ambiente R utilizados na modelagem anterior foram aplicados para a produção dos Paleo-MDEs, conforme o proposto na literatura (CORTES; VAPNIK, 1995; TIN KAM HO, 1998; ELITH et al., 2006, 2011; HIJMANS; GRAHAM, 2006; MEROW; SMITH; SILANDER, 2013; R DEVELOPMENT CORE TEAM, 2014). Um segundo grupo de Paleo-MDEs do Período Pré-Industrial (1760) foi construído, somando-se a esse as variáveis preditoras diretamente correlacionadas ao solo. São elas: (a) profundidade do solo (2 metros); (b) propriedades físicas do solo (percentuais de argila e silt); (c) propriedades químicas do solo (percentuais de pH x 10) em água e em cloreto de potássio (KCl). As informações do solo foram obtidas por meio do SoilGrids (https://www.soilgrids.org/), um sistema de mapeamento de solos automatizado baseado na compilação global de dados de perfil de solo e dados de detecção remota publicamente disponíveis ("SoilGrids", 2017). O soilGrids provém de modelos globalmente ajustados que utilizam o perfil do solo e os dados covariáveis ambientais, com resoluções espaciais variando entre 250m a 1km.

4.2.4 Construção de mapas dos sítios arqueológicos identificados pelas Tradições

As distribuições geográficas de cada uma das Tradições identificadas foram plotadas em mapas construídos através do software Arcmap 10.3.1 e utilizados na visualização junto às Paleo-MDEs do Holoceno Médio e do Período Pré-Industrial.

5 RESULTADOS

A seguir os resultados são apresentados no formato de tese "coletânea", composta de 2 artigos científicos, submetidos ou destinados a publicação.

Manuscrito 1: "Paleoepidemiology of trichuriasis: a Cronological and Geoespacial Review"

Revista: PlosOne

Status: Em preparação

Manuscrito 2: *"Modelagem de Cenários Paleoepidemiológicos da Infecção por Trichuris trichiura no Brasil Pré-Colonial: oportunidades, desafios e perspectivas"*

Revista: PlosOne

Status: Em preparação

5.1 ARTIGO 1

Paleoepidemiology of Trichuriasis: a Chronological and Geospatial Review.

Alexandre Fernandes, Alena Mayo Iñiguez+

LABTRIP, Instituto Oswaldo Cruz - Fiocruz, Av Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil

⁺Corresponding author: alena@ioc.fiocruz.br

Abstract

Trichuris trichiura is a human parasite inherited phylogenetically and with a monoxenous development cycle. As other geohelminths, it needs favorable conditions in the environment to become infective and be capable to infect a susceptible host. Currently affects about 1 billion people in 118 countries, with the highest rates of prevalence in some places in Asia, Africa and Latin America. Archaeological records of this parasite have been widely found throughout the globe and the application of geoprocessing techniques can contribute to a better understanding of the chronology of infection at different moments of human evolution. A timeline containing all the archaeological records of T. trichiura was constructed for better visualization of the paleoepidemiological distribution worldwide over time. The spatiotemporal data was used to construct occurrence maps from the earliest infection data (about 8000 year BCE) to more recent periods. The infection dating from the Paleolithic Period, when findings were narrow, probably due to the hunter - gatherer habit, passing through the period of the beginning of sedentarism and the domestication of plants and animal - the so-called Neolithic Revolution, the period is temporally equivalent to the 1st epidemiological transition. A greater distribution of occurrences of infection during the Bronze and the Iron Ages, and a clear occurrence expansion from the Medieval Era onwards are also observed. In this way, we can recognize epidemiological scenarios that trace back a few occurrences from the African, European and South American continent to the places with a greater number of occurrences, such as in areas of northern Europe, Asia and North America. An evident research effort in Medieval and after Periods can be seen in relation to the large number of samples. Pre/Post Industrial Period has more than half of T. trichiura findings, which were only associated with the presence of Ascaris sp., probably due to factors correlated with the 2nd epidemiological transition. This review proposes a different view of paleoparasitological findings for a better understanding of the dispersion dynamics of this geohelminthiasis.

Introduction

Paleoepidemiology is a discipline that aimed the development of more appropriate epidemiological methods and their application to study the determinants of a disease in human populations in the past. (DE SOUZA; DE CARVALHO; LESSA, 2003a). This science has provided a better understanding of the occurrence and distribution of several human and other animals parasites along the evolution. Paleoepidemiology has allowed an epidemiological view for Paleoparasitology, discipline that emerged in 1910 with the analyzes of Sir Marc Armand Ruffer (RUFFER, 1910a). Paleoparasitology was consolidated by using the rehydration technique with trisodium phosphate and the application of several diagnostic methods (CALLEN; CAMERON, 1960; REINHARD et al., 1986; DE SOUZA; DE CARVALHO; LESSA, 2003b). The term Paleoparasitology emerged in Brazil, named by Luiz Fernando Ferreira in 1987, and then stablished together with his pupil at the time Adauto Araújo (FERREIRA LF; ARAÚJO A; CONFALONIERI UEC, 1988). Reinhard (1990; 2008) suggests Archaeoparasitology to more descriptive term, including studies of parasite evidence in both ancient and recent archaeological remains (REINHARD, 1990; REINHARD; ARAÚJO, 2008). The broader approach to these nomenclatures can be better understood through the work Foundations of Paleoparasitology, the last book edited by the three authors (FERREIRA; REINHARD; ARAÚJO, 2014).

Data studied by the "Paleo Sciences" are from diverse biological origins and geographical locations. Since samples of soft or hard tissues, to organic sediments from anthropogenic structures (pits and latrines, for example) and coprolites, fossilized or mineralized feces, usually found in archaeological sites. The imprecision of the origin of sample makes the parasitological diagnosis inconclusive, mainly, at the species level, prejudice paleoepidemiological discussions.

Trichurid findings are remarkable here, since members of genus *Trichuris* Roederer, 1761 can infect a large diversity of mammals with limited morphological and morphometric distinction of eggs. Studies have indicated from 465 to 1.050 million people in 118 countries, mainly from Asia, Africa and Latin America, are infected by *T. trichiura* (STEPHENSON; HOLLAND; COOPER, 2000; DE SILVA et al., 2003; BOATIN et al., 2012; UTZINGER, 2012; CUTILLAS et al., 2014; PULLAN et al., 2014a; CALLEJÓN et al., 2015). Trichuriasis is one of three major groups of soil-transmitted helminthiases (STHs), and is considered a Neglected Tropical Disease by WHO widespread in developing countries (BETHONY et al., 2011; HOTEZ; SAVIOLI; FENWICK, 2012). This disease, together with ascariasis and hookworm, affects the gastrointestinal tract of humans (especially children) can occur

together in the same individual, with resultant impairments in physical, intellectual, and cognitive development (BETHONY et al., 2006). As in other STHs, the fecal-oral transmission is the via of *T. trichiura* dispersion and the adult worms can live for years in the human gastrointestinal tract. The STHs are widely distributed throughout the tropics and subtropics and have the climate as an important determinant of transmission especially considering adequate moisture and warm temperature, essential for the development of soil larvae (BROOKER; MICHAEL, 2000; BROOKER; CLEMENTS; BUNDY, 2006). Trichuriasis distribution by the globe is associated to the precariousness life conditions and situations of misery (HOTEZ et al., 2009).

Paleoparasitological studies have demonstrated the species identification through the morphometric analysis of eggs and the contextualization of origin of samples (DINNIK, 1938; SONDAK, 1948; HOHNER; MÜLLER, 1965; BEER, 1976; CONFALONIERI, 1983). Even so, it is difficult to discriminated *T. trichiura* from *T. suis*, parasite from pig, since could be morphometrically undistinguishable. The identification of the sources of archaeological collection as an anthropic structure is an alternative to distinguished *T. trichiura*, when the presence of *T. suis* is plausible. (Fernandes et al. 2005, Da Rocha et al. 2006, da Rocha & Serra-Freire 2009).

More recently, with the use of molecular techniques as PCR and DNA sequencing, it has been possible to obtain a more specific diagnosis in paleoparasitology. Oh and colleagues (2010), showed the detection of ancient DNA (aDNA) from T. trichiura allowed the use of genetic information for taxonomic identification (Oh et al. 2010). Paleogenetic analysis is necessary since is still controversial the diagnosis based exclusively on morphometric data of eggs. Callejón and collaborators (2015) used ITS2 region, cox1 and cytb genes as molecular targets to identify three trichurids species from herbivores: T. globulosa, that parasitizes camelids, and T. ovis and T. skjarbini, parasites of sheep (CALLEJÓN et al., 2015). The evolutionary relationship between T. trichiura and T. suis eggs was constructed by Hawash and colleagues (2016), who demonstrated that the human trichurid was inherited from non-human primates in the African continent and, T. suis species rise in swine from Asia after the domestication of animals (HAWASH et al., 2016). Parts of the mitochondrial nad1 and rrnL genes of Trichuris sp. populations recovered from humans, pigs and non-human primates from Denmark, USA, Uganda, Ecuador, China and Saint Kitts (Caribbean) were used in the analysis. Molecular data reinforce T. trichiura as a human phylogenetic parasite, which allows tracking the occurrences of this parasite in the past with the ecological aspects and the different cultural patterns make possible to follow the history of the human evolution. In this study,

we reviewed *T. trichiura* findings from the Old and the New World and proposes a different view of worldwide paleodistribution considering and chronological eras.

Materials and Methods

Construction of Dataset

Three review articles were used as a guide for literature compilation of paleoparasitological researches (GONCALVES; ARAUJO; FERREIRA, 2003; LELES et al., 2010; PIERS D. MITCHELL, 2016). In addition, a manual search was conducted using the following electronic databases: PubMed, Isi Web of Science, Scopus and Scielo. All references that met the following inclusion criteria were analyzed: (a) Trichuris sp. findings in old material; (B) ancient materials dating from the early 20th century or before, (c) all types of publications were included, (d) the language of publication was not a limiting factor. The following descriptors were used: "Trichuris", "coprolite", "sediment", "soil", "latrine", "cesspit", "pit", "barrel", "privy", "Archeology", "archaeoparasitology", "paleoparasitology", "paleopathology", "excavation", "years ago", "before present", "history", "colonial", "pre Columbian", "medieval", "middle Age "," Iron age "," Bronze age "," Roman age "," Roman period "," ancient disease "," ancient parasites "," burial "," skeleton "and" mummy ". The logical operators "AND" and "OR" were also used to combine the descriptors and consequently to track the publications and the "\$" and "*" symbols to truncate the end of the words and search for all their derivations. In all, considering the sum of articles obtained by the search engines and those obtained by active search, were analyzed 118 bibliographical data references.

The temporal and geographical information of the localization of the archaeological findings (source, country and continent) were organized in to dataset to allow the construction of a timeline as well as the production of the world paleodistribuition of parasite. Only paleoparasitological results of *T. trichiura* infection were considered. Findings identified as *Trichiura* sp. but from humans, mummified bodies or skeletons, associated to humans or from anthropic context, as latrines, were also considered as occurrences of human trichuriasis. Findings in concomitance with parasites that only infect humans, as *Enterobius vermicularis* were also an evidence of *T. trichiura* occurrence.

Chronology of Paleodistributions

The chronology of *T. trichiura* findings was organized using the software Timeline Maker Pro 3.0.134.14 and are represented by Fig 1. The software uses the dating with the nomenclatures Before Christ (BC) and Anno Domini (AD). The dates whose periods were originally

expressed as years Before Present (BP) and After Present (AP) were converted to Before Common Era (BCE) and Common Era (CE), subtracting the values of each of them by the year 1950, considered as present year. The BC and AD terms, used in some articles are equivalent, respectively, the terms BCE and CE. The chronology in the timeline corresponds to proposed by Aspöck and collaborators (1999), who delimitated periods referring to Central Europe as follows: Paleolithic and Mesolithic Periods (8000 to 5000 years BCE); Neolithic (5000 to 2200 years BCE) and Bronze and Iron Ages (2200 to 15 years BCE) (ASPÖCK; AUER; PICHER, 1999). The following periods are: Medieval period, which began in the transition between the 14th and 15th centuries and the Modern/Contemporary periods that began, respectively, in 1453, with the resumption of the historic city of Constantinople by the Ottoman Turks and the subsequent period in 1789, with the French Revolution (BRITTON; KENT; JONNY, 2017).

Construction of Paleodistribution maps

Geographic coordinates were standardized to decimal degrees using the online Species-Link conversion tool (<u>http://splink.cria.org.br/</u>), and the applied in the construction of maps of the distribution of trichurid findings in archaeological material. All locations and archaeological sites whose geographic coordinates were not available were actively searched using Google Earth Pro software 7.1.5.1557. The paleodistribuition maps were performed using Arcmap 10.3.1 software.

Results

Two hundred-nine occurrences of *T. trichiura* were verified from the analysis of archaeological material from all continents (Table 1, Fig 1). Most of records, 138, date from the Common Era, and 51 belong to Before the Common Era. Twenty records did not have their dates clarified but were considered for the worldwide geographical analysis (Fig 2A). The largest part of trichurid findings occurred in archaeological sites from the Old World: Europe (n = 98), Asia (n = 45) and Africa (n = 3). In the New World there are more records in North America (n = 43) than South America (n = 20).

Paleolithic/Mesolithic Period Paleodistribuition

The Paleolithic/Mesolithic paleodistribution map (Fig 2B) showed only seven findings from these periods. The oldest finding of *Trichuris trichiura* in Africa was in a coprolite dating around 7 to 10 thousand years (BP). The analysis was from a coprolite from Kruger cave,

located at 15 km from Rustenburg, South Africa (EVANS et al., 1996). It was also observed an egg identified as Ascaris lumbricoides and free-living nematode larvae. Some years after, Confalonieri (1983) founded eggs of the parasite in coprolite samples from Lapa do Barreirinho I, Brazil (CONFALONIERI, 1983). Next, Gonçalves and collaborators (2003) found eggs of Trichuris sp. in samples collected from the Brazilian archaeological site Lapa Pequena, diagnosis that was later confirmed by Leles and colleagues, in 2008 (GONÇALVES; ARAÚJO; FERREIRA, 2003; LELES et al., 2008). Dark and collaborators (2004) suggested the identification of T. trichiura eggs in sediments from a peat deposit located in Wales, England, dating from 5740 to 5620 years BC and (DARK et al., 2004). Harter and colleagues (2005) identified eggs of Trichuris sp. and Ascaris sp. in 12 sediments collected from the hip region of skeletons from two regions of Cyprus, Shillourokambos and Khirokitia. The samples dating from 8300 to 7000 years BC, related to the Pre-Ceramic Neolithic Period. In the same study, the authors demonstrated the occurrence of Fasciola sp. and Taenia sp. (HARTER-LAILHEUGUE et al., 2005). Lastly, Côté and colleagues (2016) applied Multiplex PCR and Next Generation Sequencing to discriminate 16 species human gastrointestinal parasites in several archaeological sites from France, Spain and Iran. It was possible to recover aDNA from T. trichiura from Spanish archaeological material (CÔTÉ et al., 2016).

Neolithic Period Paleodistribuition

The Neolithic Period is represented by an increase in the number of occurrences in Europe, compared to the previous period, in addition to new occurrences in the Brazilian and Asian territories (Fig 3A). Roever-Bonett (1979) affirmed the presence of *Trichuris* sp. eggs in an archaeological deposit of 5400 years BP, from Swifterbant, Holland (ROEVER-BONETT, 1979). A subsequent study demonstrated the presence of trichurid in European sand deposits associated with organic material from Brean Down, in Somerset, with the oldest occupation dating the Bronze Age (JONES; HUTCHINSON; NICHOLSON, 1988). The site consisted mainly of several layers of sand deposited through the action of the winds, led to a poor preservation of organic materials, except for bones, shells and remains of charred plants, as well as, canine feces. Aspöck and colleagues (1995) and (1996) reported *T. trichiura* finding in samples taken directly from the partially damaged sacrum region of a mummified body known as Ötzi (Synonyms: Iceman; Similaun Mam; Man of Hauslabjoch; Tyrolean Iceman; *Homo tyrolensis*; Hauslabjoch mummy). The Ötzi was a man of about 25-40 years, discovered in the Alps of Ötzal and dating from 5200 to 5300 years BP (ASPÖCK; AUER; PICHER, 1995, 1996). The Ötzi was in a relatively well preserved state, since the conditions

of humidity and low temperatures of the region in which it was found favored the adipocere formation and its consequent corporal preservation. In the first study, since samples were collected from the damaged region of the Ötzi body, the authors were not clear about the specific diagnosis of the trichurid eggs. However, in a later analysis, the material was obtained from the colon region make possible the *T. trichiura* diagnosis. Bouchet and collaborators (1995) analyzed human coprolites and organic sediments from a Neolithic site of Chalain, Jura, and found eggs of F. hepatica, Diphyllobothrium sp. Trichuris sp. or Capillaria sp. (BOUCHET et al., 1995). Other works were conducted focusing on the analysis of coprolites found in Chalain, (DOMMELIER et al., 1998; DOMMELIER ESPEJO, 2001). The authors established a relation between the parasite eggs found, Diphyllobotrium sp., Taenia sp., and Fasciola sp., and the feeding habits of consuming ichthyophagia, creatophagia and phytophagia, respectively. Dommelier (2001) found eggs of Trichuris sp. and Ascaris sp. in coprolites and sediment located in Arbon, Thurgau, Switzerland, dating to 3384 - 3370 years BC and Trichuris sp. eggs in sediments collected in Clarivaux, Jura, France, dating from 3100 to 2700 years BC (DOMMELIER, 2001). Bouchet and collaborators (2003) found T. trichiura eggs in visceral contents collected from canopic vessels from mummified bodies of Nubia region, Northeast of Africa (BOUCHET; HARTER; LE BAILLY, 2003). The dating of samples, 2400 BC and 1500 AD, corresponds to a period of intense trade between Nubians and Egyptians, in Upper Nile Valley and the Upper Nubia regions. Bouchet and colleagues (2003) suggested that these commerce may have favored the maintenance, not only of T. trichiura infection, but also of other parasites as: Schistosoma haematobium, Taenia sp., Enterobius vermicularis, and Ascaris lumbricoides (KENDALL; NATIONAL MUSEUM OF AFRICAN ART (U.S.); MUSEUM OF FINE ARTS, 1996; BOUCHET; HARTER; LE BAILLY, 2003; HARTER-LAILHEUGUE; BOUCHET, 2004). Côté and colleagues (2016) also found DNA of T. trichiura from archaeological material from France, dated to 4300 BC - 3700 BC (Côté et al. 2016). The latest European findings were made by Bouchet & Le Bailly (2011), analyzing coprolites from Germany. A number of other animal parasites were found together with T. trichiura eggs (Bouchet & Le Bailly 2011). Trichuris sp. eggs were recovered two other localities abroad Europe. Ferreira & Araújo (1982) found T. trichiura eggs in Brazilian samples from the archaeological site Boqueirão Soberbo, dating from 4905 \pm 85 to 1325 \pm 60 BP (FERREIRA; ARAÚJO; CONFALONIERI, 1982). Kanehara & Kanehara found eggs in sediments from Sannai Maruyama archaeological site, Aomori, Japan, dating from 3500 to 6000 BP, corresponding to the initial and middle periods of the Jomon Culture (KANEHARA; KANEHARA, 1995). The authors pointed out the lack of ascarid eggs and suggested a late introduction of this helminth, dating from the beginning of rice cultivation.

Bronze/Iron Period Paleodistribuition

The following data refer to the findings from the Bronze/Iron Period (Fig 3B). Szidat (1944) highlighted the presence of eggs of *T. trichiura* and *A. lumbricoides* in mummified bodies of a girl (Drobnitz girl) and a man (Karwinden Man), from Prussia territory, dating between 600 years BC to 500 AD. (SZIDAT, 1944). Specht (1963) found *T. trichiura* eggs in sediments from a latrine built by the Romans in Vilshofen, Germany, dated 150 to 140 BC (SPECHT, 1963). Jansen & Over (1962) found eggs of *Ascaris lumbricoides*, *Toxocara canis*, *Oxyuris equi*, *Trichuris ovis*, *T. globulosa*, *Fasciola*, *Taenia saginata*, *T. solium*, and *Diphyllobotrium latum* in coprolites collected from Bremerhaven, situated in the north of the German territory, dating from 100 BC to 500 AD (JANSEN; OVER, 1962). The authors concluded that the sample consisted on a mixture of human and other animal coprolites due to the high diversity of parasites found.

Helbaek (1958) observed T. trichiura eggs in coprolite samples from bodies known as "Grauballe Man" and "Tollund Man", found in Jutland, Denmark from 3rd and 4th centuries (HELBAEK, 1958). These findings were followed by the Jansen and Over (1966) records of Trichuris sp., Ascaris sp. and O. equi eggs in an excavation campaign conducted in 1962 at a Roman military camp in Valkenburg on Rhine, Holland (JANSEN; OVER, 1999). Archaeological evidences dated the site, between 42 and 100 years AD. The authors indicated that no latrines were found in the region during the campaign. Aspöck and collaborators (1973) showed T. trichiura and A. lumbricoides eggs in human coprolites found in a salt mine located in the Alps, Austria (2000 -3000 years BP). This period corresponding to the Hallstatt culture, denoting the transition from the Bronze to the Iron Age and the emergence of the Celtic people in the region (ASPÖCK; FLAMM; PICHER, 1973). Then, more findings were reported from England. Trichuris sp. and Ascaris sp. eggs in medieval latrines located Worcester (10th -16th centuries), demonstrated the temporal amplitude of the associated infections in the region (GREIG, 1981; MOORE, 1981). Then, Jones examined tissue from the small intestine of a mummy known as Lindow Man, found in Cheshire, and found T. trichiura and A. lumbricoides eggs (JONES, 1986). The author noted a large number of T. trichiura eggs and suggested that the individual suffered of a high helminth burden.

Šebela and collaborators found well preserved eggs of *T. trichiura*, *A. lumbricoides* and hookworm in sediments collected from the pelvic region of a skeleton collected in Hulín, Czech Republic, dated between 1600 to 1500 BC (ŠEBELA; VOJTKOVÁ; VOJTEK, 1990).

There was also an increase in the findings in France from the 1990s until the year 2016. Sediment collected from the skeleton of a Gaul man (2^{nd} century BC), found in a hospital in Bobigny, were positive for *T. trichiura* and *A. lumbricoides* (ROUSSET; HERON; METROT, 1996). Dufour and collaborators found *T. trichiura* eggs when analyzed sacral sediments collected from a skeleton dating from 2^{nd} century AD (DUFOUR; SEGARD; BAILLY, 2016). The individual was in a Roman lead coffin located in Jaunay-Clan archaeological site and constituted the first occurrence of human trichuriasis in this type of burial. Côté and colleagues found T. trichiura and animal parasites in two records dating back at least 150 years BC, from the northern and eastern regions of France (CÔTÉ et al., 2016). It should be noted that Heirbaut and collaborators (2011) found eggs of *T. trichiura* in samples from the Pompeii, Italy (HEIRBAUT; JONES; WHEELER, 2011).

There was a large increase in the number of occurrences of *T. trichiura* and others parasites in Israel, Iran, China and Korea, during the Metal Age. Eggs of *T. trichiura* and cysts of *Entamoeba coli*, *E. histolytica*, *Giardia lamblia* and *Chilomastix mesnili* were retrieved in coprolites from a cave located in the Nahal-Mishmar Valley, Israel (WITENBERG, 1961). The layer in which the material was found dates 1800 years BP. Findings of *T. trichiura*, *Ascaris* sp. and *Taenia* sp. in soil samples were observed from Qumran latrines, located near the Dead Sea (100 years BCE to 68 CE) (HARTER et al., 2004). Zias and collaborators (2006), also studied Qumran samples and verified the habit of using communitarian swimming pools after the act of going to the bathroom, as a religious practice of purification, besides serving as a source of drinking water (ZIAS; TABOR; HARTER-LAILHEUGUE, 2006). These practices may have contributed to the increase the transmission of intestinal parasites in the region, including whipworms. The tradition of not eating pork was the argument used by the authors to suggest the human origin of trichuriasis and not caused by another *Trichuris* sp. from animals.

Chen and Hung identified *T. trichiura* eggs using scanning electron microscopy (SEM) in a sample from a Chinese mummy dating of 167 years BC, corresponding to the Han Dynasty (CHEN; HUNG, 1981). The findings were corroborated subsequently (CHENG, 1984). A large number of *Clonorchis sinensis* and *T. trichiura* eggs were observed in sediments associated to pelvis and lumbar bones of a skeleton dating to 2300 years BP, found in a grave located in Jiangling, Hubei Province (WEN-YUAN et al., 1984). In 1987, the results were confirmed using SEM (SU, 1987).

Several occurrences of trichurids were attested in many locations of Korea, from as demonstrated in studies from 1997 until 2013, described below. A research conducted by the Kwangju National Museum showed the identification of *T. trichiura* and *A. lumbricoides* eggs in soil samples from Schinchang-dong, Gwangju, Korea, dating 100 years BC (KNM, 1997). Others excavations in southeastern Republic of Korea revealed *T. trichiura*, *A. lumbricoides*, *C. sinensis* and two unidentified species of flukes by examining suspect contents of privies (HAN et al., 2003). After that, paleodistribution of trichuriasis in Korea widens with findings in the regions of Hyangyang-ri, Jangheung-eup, Jangheung-gun and Jeollanam-do (KIM et al., 2013).

Côté and colleagues (2016) also found Iranian samples of this period positive fo*T*. *trichiura* (CÔTÉ et al., 2016). Eggs of *Ascaris* sp., *T. saginata*, *D. dendriticum*, *E. vermicularis* and *T. trichiura* were found in sediments from Iran dating from 0550 BC - 450 BC (Côté et al. 2016).

A significant number of occurrences of T. trichiura in South America could be evidenced in comparison with the same region, in Neolithic Period (Fig 3B). Ferreira and collaborators (1980) identified T. trichiura eggs in coprolites collected from Gruta do Gentio II archaeological site, located in Minas Gerais, Brazil and dated from 3.490 ± 120 BP to 430 ± 70 BP (FERREIRA; DE ARAÚJO; CONFALONIERI, 1980). In seven of the 22 samples analyzed, the trichurid species was confirmed by morphology. In addition, hookworm eggs and unidentified nematode larvae were found. In another work in Gruta do Gentio II, they detected T. trichiura eggs in coprolites from the abdominal cavity of a naturally mummified body of a child about 8 to 9 years old, dating 1600 BC (FERREIRA; DE ARAÚJO; CONFALONIERI, 1983). The specific diagnosis was carried out through the morphology and morphometric of eggs. The authors reported that eggs were not well preserved, in spite of being collected from the body. In 1989, Ferreira and collaborators found T. trichiura eggs when analyzing coprolites collected in the Furna do Estrago archaeological site, Pernambuco, Brazil (FERREIRA et al., 1989). The stratigraphic layer contained the coprolites and numerous human burials dated from 2000 years BP. Eggs of Trichuris sp. were identified in samples collected from Lapa Pequena archaeological site (8000 to 7000 BP). Next, two other Brazilian findings were reported by Gonçalves and Leles during the years 2000, from the archaeological sites Santa Elina and Cubatão I (GONÇALVES; ARAUJO; FERREIRA, 2003; LELES, 2010a). Goncalves and collaborators attested the occurrence of T. trichiura eggs. Leles detected trichurid aDNA in six samples from Cubatão I sambaqui (dated to 2460 to 2620 years BP). The samples were subjected to DNA hybridization with 18S rDNA gene of *Trichuris* sp.

T. trichiura eggs were diagnosed in samples from Tulán, San Pedro de Atacama, Chile (GONÇALVES; ARAUJO; FERREIRA, 2003). The presence of parasite was evidenced in sediments from 470 ± 200 years BC to 310 ± 90 years AD in El Potrero de Santa Lucía (PAU et al., 2005). And after, *Trichuris* sp. and *Capillaria* sp. eggs, and oocysts of *Eimeria macusaniensis* were found in sediment collected in the Orejas de Burro 1 archaeological site, Santa Cruz Province, Argentina (FUGASSA; BARBERENA, 2006). The site was constituted of multiple burials and several archaeological levels, with evidences of human activities. The positive sample was dated from 3720 to 3978 years cal BP.

Medieval Period Paleodistribuition

The Medieval Paleodistribuition is represented by Fig 4A. Dittmar and Steyn (2004) found *Trichuris* sp. eggs in two coprolites obtained from K2 archaeological site located on the farm Greefswald, in the Northern Province of South Africa (DITTMAR; STEYN, 2004). This site is from the Iron Age, dating 1000 to 1300 AD. The two positive coprolites for *Trichuris* sp. had format compatible to human feces. One of samples contained pollen from Dioscoreacea, which points to the consumption of yams, vegetable traditionally used as a subsistence economy of the inhabitants of the region.

Eggs of *A. lumbricoides*, *Dicrocoelium dendriticum* and *T. trichiura* were recovered from coprolites collected from an archaeological site in Winchester, dating of 11th to 12th centuries AD (TAYLOR, 1955). Two studies conducted by Pike (1967 and 1968) revealed eggs of *Ascaris* sp., *Dicrocoelium* sp. and *Trichuris* sp. in soil samples from Owlesbury, near Winchester and dated of 1000 AD (PIKE, 1967, 1968). The first work describes the *Trichuris* sp. in a locality close to the one reported Taylor (1955). All eggs were in a good state of preservation and occurred in very high numbers. In the second study, Pike described the finding of *Trichurs* sp. eggs from sediments of a human occupation dating from Roman times. Later, the author found similar eggs in samples from Southampton, dated to the 13th to the 14th centuries (PIKE, 1975). New occurrences, later in York, are attested by Wilson & Rackham and after by Hall (WILSON; RACKHAM, 1976; HALL; JONES; KENWARD, 1983). A new find was still made on by Jones in York (JONES, 1984). He found *Trichuris* sp. eggs in samples of soil, coprolites, latrine, and cesspools dated between 9th to 12th centuries AD. The same author also find *T. trichiura* and *A. lumbricoides* eggs in human feces from a latrine made of stones, located in Union Terrace, York. The latrine was built in the 14th century and was used until

57

the 16th century AD (JONES; HUTCHINSON; NICHOLSON, 1988). Lastly, Rouffignac (1987) described *Trichuris* sp. and *Ascaris* sp. eggs from soil samples dating from the Middle Age from Southwark (ROUFFIGNAC, 1987).

Between 1961 and 2012, occurrences of *T. trichiura* and *A. lumbricoides* were recorded from archaeological samples from the Czech Republic, the Netherlands, Denmark and Norway. Archaeological sediments (n=88) collected in Hradební Street, Chrudim, Czech Republic (14th and 18th centuries) demonstrated *T. trichiura* eggs, been the most frequent in all samples. In addition, the parasites *A. lumbricoides*, *Toxocara* sp., *D. latum* and *F. hepatica* were found (WITENBERG, 1961). Then there were several findings in the Dutch territories. Boersema (1975) observed *T. trichiura* and *A. lumbricoides* eggs in two pits from the 13th and 14th centuries located in Stroosteeg (BOERSEMA JH, 1975). Brinkkemper & van Haaster (2012) described a large amount of whipworm and roundworm eggs in slides prepared for pollen analysis from seventeen Dutch localities and dated from the 13th to 19th centuries (BRINKKEMPER; VAN HAASTER, 2012). The human origin of helminth eggs was suggested since they were associated with pollens of plants used in agriculture.

Two studies have demonstrated the occurrence of trichurids in Danish territory. Nansen and Jørgensen (1977) highlighted the recovering of *Trichuris* sp., *Ascaris* sp., *Taenia* sp. and *Fasciola hepatica* eggs from coprolites collected from Ribe, dating to the 8th and 9th centuries (NANSEN, P, JØRGENSEN, 1977). Ribe is considered the oldest city in northern Europe and was involved with the process of maritime expansion that occurred during the Viking Age (7th Century). It was also known for be an important place of cultural exchanges and supplies amongst Northern Norway, the Mediterranean and the Middle East. In 2015, Søe and colleagues detected *Trichuris* sp., *Ascaris* sp. and *Fasciola* sp. eggs in environmental samples collected in a Viking settlement, Viborg, Denmark dating from 1018 to 1030 years AD (SØE et al., 2015). The paleogenetic analysis demonstrated the recovery the aDNA of parasites and identified as *T. trichiura, A. lumbricoides* and *F. hepatica*. The study presented an aDNA analysis method involving PCR amplification and direct sequencing for species-specific identification of eggs from parasites.

Norway and Germany were also investigated and had the occurrences of *T. trichiura* recorded in two studies. Eggs of *Ascaris* sp., *Trichuris* sp. and operculate eggs, with a size range corresponding to *D. latum*, were found in samples collected from a 15th century cesspit in Oslo, Norway (Jones 1982). Hermann (1985) emphasized the association of *Ascaris* sp. and *Trichuris* sp. from the analysis of sediments of latrines collected from thirteen different cities of Germany (Hermann 1985).

Legendre and collaborators (1987) retrieved Ascaris sp. and Trichuris sp. eggs in sediment samples collected from medieval latrines found in Strasbourg, France, dating to 15th to 16th centuries (LEGENDRE; MARIE; RIEB, 1987). Bouchet and collaborators identified T. trichiura eggs in various regions of Paris, which were known as Lutetia at the time of the Roman military leader Julius Caesar. It was detected the occurrence of Trichuris sp, Ascaris sp. and Taenia sp. eggs from the analysis of three human constructions (BOUCHET, 1989). Then, Bouchet and collaborators (1991) retrieved Trichuris sp., Ascaris sp., Toxocara sp., Acanthocephala, and Ancylostoma sp. eggs in sediment samples dating from the 12th to 15th centuries and, in 1991 (BOUCHET, 1989; BOUCHET; ERVYNCK; RAVESCHOT, 1991). In the same work found eggs of Trichuris sp., Ascaris sp., Toxocara sp., Heterakis sp., Toxascaris sp., Ficolis sp., Syngamus sp. and Ancylostoma sp., in samples of sediment dating from the 17th to 18th century. Still in 1991, Bouchet identified eggs of Trichuris sp., Ascaris sp., Heterakis sp. and Capillaria sp., in sediment samples recovered from the region of Beauvais, in Oise (BOUCHET, 1991). In 1993, Bouchet identified eggs of Trichuris sp., Fasciola sp. and *Dicrocoelium* sp. in more sediments of a village in Paris, dating of 14th to 15th centuries (BOUCHET, 1993). In 1995, analyzed soil samples and coprolites obtained from the region in which is located the Louvre museum and dating from 11th to 16th centuries. The author found Ascaris sp., Trichuris sp., Metastrongylus sp., Heterakis sp., Fasciola sp. and Dicrocoelium sp. eggs (BOUCHET, 1995). In one of the samples were found eggs of T. trichiura, A. lumbricoides and D. dendriticum. Bouchet and colleagues (1995) identified eggs of Trichuris sp., Ascaris sp. Diphyllobothrium sp. and Schistosoma sp. (possibly S. haematobium), in sediments and coprolites of the 15th century, taken from a Montibéliard latrine (Bouchet et al. 1995). The diagnosis was confirmed by Gonçalves and collaborators (2003), who found Ascaris sp. and Trichuris sp. eggs in others samples from the same region (GONÇALVES; ARAUJO; FERREIRA, 2003). In 1996, Bouchet investigated the occurrence of intestinal helminths from 6 samples of a medieval site located in Charavines, Isère (BOUCHET, 1996). Eggs of Ascaris sp., Trichuris sp., F. hepatica, Parascaris equorum were found. Twenty years later, Côté and colleagues (2016) found aDNA from T. trichiura in Southern of France (CÔTÉ et al., 2016).

The encounter of *T. trichiura* also occurred in Spanish samples dating from the Medieval Period. Hidalgo-Argüello and colleagues (2003) showed *T. trichiura* and *A. lumbricoides* eggs in intestinal contents of Infantes Maria and Fernando, sons of King Ferdinand II of Spain. The body was found in the Collegiate-Basilica of St. Isidoro, dates to $10^{\text{th}} - 13^{\text{th}}$ centuries AD (HIDALGO-ARGÜELLO et al., 2003). Eggs of *T. trichiura*, *Ascaris* sp., *E. vermicu*-

laris and hookworms were found in Guanche Mummies dating to 1200 AD (Cal BP 750) and located in the Canary Islands (JAEGER et al., 2016).

Da Rocha and colleagues (2006) observed the occurrence of *Ascaris* sp. and *Trichuris* sp. eggs dated between the 2^{nd} and 19^{th} centuries collected from different structures in Namur, Belgium (DA ROCHA et al., 2006). In 2014, Appelt and colleagues used microscopy, a culture-dependent approach and metagenomics to investigate a 14^{th} century coprolite found inside a barrel in Namur, (APPELT et al., 2014). The study added knowledge about gut microbiota components in medieval times and showed *Trichuris* sp. and *Ascaris* sp. infection. Rácz and collaborators (2015) noted the occurrence *T. trichiura* and *A. lumbricoides* eggs in coprolites collected from three burials located in the Grand Place of Nivelles, one Belgian abbatial complex dated from 783 cal. AD to 1274 cal. AD (RÁCZ et al., 2015). The association *Ascaris* sp. *- Trichuris* sp. infection was observed in two of the three burials.

Twenty-one new archaeological records were observed from Asia for this period In the Israeli region of Acre, T. trichiura eggs were found in soil samples from 13th century latrines (MITCHELL; STERN, 2000). The site was used as a hospital in the Crusade era, and A. lumbricoides and D. latum eggs were also identified (MITCHELL; STERN, 2000). Eggs of T. trichiura and A. lumbricoides were observed in sediments from structures used as toilet, in the Fujiwara Palace, Japan (MATSUI; KANEHARA; KANEHARA, 2003). Thirteen of the twenty-one archaeological records of T. trichiura came from Korea. Han and colleagues (2003) detected eggs of T. trichiura, A. lumbricoides, C. sinensis and flukes from Korean soil samples collected from privies and dated between 2000 BC to 1400 AD (HAN et al., 2003). Seo and colleagues (2007) showed the first record of helminth eggs from coprolites collected from a child mummy of Yangju, dating from the 15th century (SEO et al., 2007). The authors found A. lumbricoides, C. sinensis eggs and in high quantity of T. trichiura eggs. They noted an excellent preservation of mummy and parasite eggs and attributed this conservation to a sealing material of lime that involved the coffin, called lime soil mixture barrier (LSMB). The LSMB possibly functioned as a barrier to prevent the access of decomposers and oxygen, assisting in the preservation of the mummy and parasites. The relationship between the presence of organic remains such as clothes, hair and brain matter and the presence of helminth eggs were investigated in 75 Korean tombs preserved in LSMD (SEO et al., 2010). Seven of these tombs contained eggs of T. trichiura. Helminth eggs of C. sinensis, D. latum, Ascaris sp. and Trichuris sp. were recovered in soil samples from ancient Seoul, dated between 14th to 19th centuries (SHIN et al., 2011). Helminth eggs of C. sinensis, A. lumbricoides and T. trichiura were analyzed in soil samples collected from structures dating from 18 BCE to 660 CE, belonging to the Kingdom of Baekje, Korea (SHIN et al., 2014). For the authors, such structures were used as pits, toilets or, in particular, reservoirs for human waste that could be used as fertilizers.

Six occurrences of *T. trichiura* in China from the corresponding Medieval Period. In a review, Yeh and Mitchell (2016) summarized the findings of helminths in Chinese mummies from different provinces including Ancestral China, Han Dynasty, Song Dynasty and Ming Dynasty (YEH; MITCHELL, 2016). The review showed that *T. trichiura* had been recurrent in the Chinese population, from the ancestry until the 20th century. The work focused on the Asian continent show, therefore, an increase in occurrences of trichuriasis in Korea and China (SEO et al., 2010; SHIN et al., 2014; YEH; MITCHELL, 2016).

Four occurrences of trichuriasis were detected in North America during this period: one in the United States, one in Canada and two in Mexico. Eggs of *Trichuris* sp. and *Ascaris* sp. were identified in latrine soil sediment from Elden Pueblo, USA, dating of 1070 to 1250 AD (HEVLY et al., 1979). Sediment samples collected in the archaeological site of 7th century in Ferryland, near Newfoundland, Canada, were positive for *Trichuris* sp., *Ascaris* sp., *Taenia* sp. and *Dicrocoelium* sp. (HORNE; TUCK, 1996). Two Mexican locations were positive for *T. trichiura* during Medieval period. First, *T. trichiura* eggs were found in Mexican samples from the Zape River in Durango. The material was dated 600 AD (REINHARD, 2011). After, Jiménez and colleagues (2012) identified *Echinostoma* sp., *Hymenolepis* sp, *Dipylidium caninum*, *A. duodenale*, *E. vermicularis* and *T. trichiura* in coprolites excavated in Cueva de los Muertos Chiquitos, Durango, dating 1400 AD (JIMÉNEZ et al., 2012).

Evidence of trichuriasis in South America during the medieval period is represented by two occurrences, in Chile and Peru. The high number of *T. trichiura* eggs and *Entamoeba* sp. cysts was demonstrated in a mummified body of a child found in a stone structure located in El Plomo, near to Santiago, Chile. The body belong to an Inca mummy dating 450 AD (PIZZI; SCHENONE, 1954). Then, Santoro and collaborators (2003) analyzed the changes in human parasitism regarding diversity and prevalence, associated with the Inca expansion in Lluta valley, northern Chile (SANTORO; DORSEY VINTON; REINHARD, 2003). The presence of *E. vermicularis*, *T. trichiura*, *Adenocephalus pacificus* (syn *Diphyllobothrium pacificum*) and *Hymenolepis nana* were found. Differences in prevalence were observed between Inca and Pre-Inca periods, revealing the influence of Inca expansion in the dynamic of parasitic infection in Lluta people. However, *T. trichiura* prevalences remained similar during this cultural transition (7% and 8% in Pre-Inca and Inca periods), suggesting that the social

changes imposed by the Empire did not affect or promoted the trichuriasis paleoepidemiology in the region.

In Peru, Martinson and colleagues (2003), reported eggs morphometrically compatible with *T. trichiura* in coprolites from San Geronimo archaeological site. The material was dated to 1020 -1156 AD and belongs to the Chiribaya culture (MARTINSON et al., 2003). According to the authors, helminths rarely infected Chiribaya. The only oral-fecal transmission helminth found was *T. trichiura* in San Gerónimo, where is at the end of the river, downstream of the largest population concentrations in Chiribaya Alta and Chiribaya Baja.

Modern/Contemporary Paleodistribution Period

Twenty-nine archaeological records from Modern/Contemporary Periods were described. Four were occurrences of *T. trichiura* in France, with dates ranging from the 15th century to the First World War. Bouchet and Paicheler (1995) found eggs of T. trichiura in samples from Montbeliard, (Doubs, dating from the XV century, and the diagnosis was confirmed in 2003, by Gonçalves and collegues (BOUCHET et al., 1995; GONÇALVES; ARAUJO; FERREIRA, 2003). Bouchet and collaborators (1998) reported eggs of Trichuris sp., Ascaris sp., Fasciola sp. and Taenia sp., from coprolites obtained from Marly de Leroy archaeological site dating of 17th to 18th centuries (BOUCHET; BENTRAD; PAICHELER, 1998). In 2012, Le Bailly and collaborators conducted the first morphometric diagnosis of T. trichiura, A. lumbricoides and Taenia sp. eggs in samples from a German camp in Geispolsheim, Alsace, France, one of several regions in which conflicts occurred during the First World War (LE BAILLY; LANDOLT; BOUCHET, 2012). After that, in another study, Le Bailly and collaborators found T. trichiura eggs in a German gallery called Kilianstollen (Carspach, France) also from the First World War period. Eggs of T. trichiura, A. lumbricoides, Taenia sp. and Calodium sp. were identified in sediment samples collected from the abdominal cavities of two corps belongs to German soldiers (LE BAILLY et al., 2014). According to the authors, poor sanitary conditions of trenches, added to the lack of knowledge about the parasite infections and the presence of commensal animals, as rodents, supported the diversity of parasites found.

Others occurrences of human trichuriasis have also been reported in others localities of Europe, during this period. Fernandes and colleagues (2005) observed the unique occurrence of helminth eggs in two structures, which could have been used as latrines, garbage deposits or food storage, at Raversijde, northern coast of Belgium(16th century). The abundance of human intestinal parasite eggs indicated a high infection rate in the residents, reflecting very

poor sanitation of Raversijde village (FERNANDES et al., 2005). Samples from several localities of Netherlands (Coevorden, Den, Haag, Dordrecht, Kuinre, Utrecht, Venlo and Zaandam) were also positive for *T. trichiura* and *A. lumbricoides* (BRINKKEMPER; VAN HAASTER, 2012). After, Morrow and colleagues (2014) recovered large concentrations of *T. trichiura* and *A. lumbricoides* eggs by microscopic analysis of intestinal contents of a mummy dating from the 18th to 19th centuries, found in a church located in Vilnius, Lithuania. (MORROW et al., 2014). The anthropic context in which the samples were found allowed to infer the human origin of the analyzed materials and to conclude *T. trichiura* inding.

Shin and collaborators (2009) studied a mummified male from the late 17th and early 18th century, corresponding to the Korean pre-industrial period, and found eggs of *T. trichiura*, *A. lumbricoides*, *Paragonimus westermani* and larvae of *Strongyloides stercoralis* and *Trichostrongylus* spp. in samples collected from pelvis and sacrum of (SHIN et al., 2009). The coffin in which the mummy was found was wrapped in LSMB. In 2011, Lee and colleagues (2011) investigated, in the same location, another coffin that contained a mummified woman (LEE; SHIN; SEO, 2011). Eggs of *T. trichiura*, *A. lumbricoides*, *P. westermani*, and *Taenia* spp. were retrieved.

Lee and collaborators (2009) found eggs of T. trichiura in stool samples collected directly from a mummy to Gangneung and dating from the 17th century (LEE et al., 2009). The body belong to general Gyeongsun of the Joseon Dynasty, who is one of the best-preserved mummies in Korea. In most of mummies examined, the wooden coffins were surrounded by a layer of LSMB, which indicates high possibility of organic material preservation in their interior. The genealogy of the mummy was possible because the availability of information about family's history, unlike the other mummies examined. Oh and collaborators (2010) achieved the first results of T. trichiura aDNA amplification and sequencing from sacrum sediments collected from a mummified body of a woman of the Joseon Dynasty dated 1755 years AD (Oh et al. 2010). Two regions of 18S rDNA were used and the results showed 100% identity with T. trichiura, sequences, 97% with T. suis and 91% with T. muris, corroborating the human origin of parasite. Later, the authors investigated the pattern of soil contamination by helminth eggs from Old Seoul, the capital of the Joseon dynasty, with a population estimated around 200 thousand inhabitants (SHIN et al., 2013). By analyzing 46 soil samples from one of the residences, which dates from the 15th to 19th centuries, Ascaris sp. and Trichuris sp. eggs were found. The authors suggested a hygiene concern within the homes in the ancient Seoul, since samples collected inside the residences were negative for parasites. Although the authors did not stated the human origin of parasites, they highlighted that, at the time, there

was a decree of the Emperor preventing the rising pigs by the inhabitants. Lastly, Kim and collaborators (2013) analyzed 593 soil samples from 12 archaeological sites in Jeolla-do and 5 Jeju-do, and found 4 helminth eggs, two from each *A. lumbricoides* and *T. trichiura* (KIM et al., 2013). The sediment layer in which the eggs were found was dated from the 19^{th} century, when the inhabitants of these localities used feces as fertilizer, a practice that may have contributed to the spread of parasites. Finally, Seo and colleagues (2014) published a review showing that *T. trichiura* had been recurrent in the Chinese population, from its ancestry until the 20th century and together with other articles emphasize an expansion of occurrences in Korea and China during this period (Seo et al. 2010b, 2014, Shin et al. 2014, Yeh & Mitchell 2016).

Twenty-two occurrences of T. trichiura during this historical period were from North America. Reinhard and collaborators (1986) studied latrines from two houses of different social classes of Newport (18th century), and identified Trichuris sp. and Ascaris sp. eggs (Reinhard et al. 1986b). The presence of T. trichiura from coprolites and sediments of soil was demonstrated in 5 archaeological sites located in Arizona, New Mexico and Utah (Reinhard et al. 1987). Ascaris lumbricoides and T. trichiura eggs were found in samples from four 19thcentury latrines, located in Wilmington, Delaware (Fries et al. 1990). In 1990, Reinhard observed T. trichiura and A. lumbricoides eggs in coprolites recovered from a latrine of 1720 AD, located in Williamsburg (Reinhard 1990). Trichuris trichiura eggs were found in two archaeological deposits from, Michigan, dating from the 19th century (1867 to 1891 AD). Such deposits were located in low-income neighborhoods (Faulkner et al. 2000). Eggs of T. trichiura were present in a privy localized at Albany (USA) and dated of 1600 to 1700 AD (Fisher et al. 2007). Reinhard and colleagues (2008) identified eggs of T. trichiura, A. lumbricoides and C. sinensis in sediment samples of latrines dating of 1880 to 1930 AD, located in San Bernardino, California (Reinhard et al. 2008). Reinhard (2011) summarized the occurrences of T. trichiura in Albany and California, as well as in Pennsylvania, Rhode Island, New Jersey, North Carolina and Virginia, dating from the 18th to 20th centuries (Reinhard 2011).

Trichuris trichiura aDNA was recovered from a sample of burial sediment from Guadaloupe, located in the Lesser Antilles in the Caribbean. dating from the 19th century (CÔTÉ et al., 2016).

New locations in South America were positive for *T. trichiura* during this period. In 1984, Araújo and collaborators identified *T. trichiura* eggs in a mummified body from Itacambira, Minas Gerais dating from the Brazilian colonial period (ARAÚJO;

CONFALONIERI; FERREIRA, 1984). Such a diagnosis was confirmed by Bianucci and collaborators, in 2015, to find traces of an adult trichurid inserted in rectal portion of the same body, through histological cuts and further analysis by light and electronic microscopies (BIANUCCI et al., 2015). Jaeger and colleagues (2013) realized the first paleoparasitological study from Rio de Janeiro using sediments samples extracted from human remains buried in the archeological site Praça XV cemetery (Jaeger et al. 2013a). *Trichuris trichiura* was the most frequent and abundant parasite and *Ascaris* sp., protozoa cysts suggestive of *Entamoeba* sp. and a single taeniid egg were also found (Jaeger et al. 2013a). These results were then confirmed by the same group, using a paleoparasitological molecular hybridization approach on the same samples (JAEGER; IÑIGUEZ, 2014). Jaeger and colleagues (2013) found *T. trichiura* and *Ascaris* sp. eggs in samples from the archaeological site Nossa Senhora do Carmo Church, Rio de Janeiro, dated of 17^{th} to 19^{th} centuries and suggested that these intestinal parasites were widespread during the historical period in the city (Jaeger et al. 2013b).

Fugassa and Guichón (2006) found trichurid eggs and a probable oocyst of *Eimeria* sp. in sediments from pelvic cavities of human skeletons recovered from the archaeological site Nombre de Jesús, dating from the late 16^{th} century (FUGASSA; ARAÚJO; GUICHÓN, 2006; FUGASSA; GUICHÓN, 2006). The measurements of the eggs were compatible with those of *T. trichiura*. The presence of *Eimeria* sp. in human sediments was explained by a possible local contamination with guanaco feces or by the consumption of infected guanaco. *T. trichiura* eggs were found in colon samples from a pre-Columbian mummy from the Murga Culture, Peru, dating from the colonial period (FOUANT et al., 1982).

Although *T. trichiura* eggs were not found in archaeological samples from Oceania, it is noteworthy that Andrews (1979) found a single egg of *Ascaris* sp. in coprolites from a settlement at Fisherman's Bay, Macara Beach, Wellington coprolite (ANDREWS, 1979). The author stated that the measurements were congruent with *A. lumbricoides* and speculated on the presence of this parasite among the ancient natives of the New Zealand islands, known as Maori, before the arrival of Europeans. Since the associated occurrence of *Ascaris* sp. and *Trichuris* sp. is frequent, the finding gives an indication of environmental conditions favorable to the presence of *T. trichiura* at least at the same period.

Discussion

Worldwide and Chronological Paleodistribution

The worldwide timeline showed that, the Old World concentrates more than twice the number of *T. trichiura* records from the New World, of which, most belong to Europe, follow from Asia (Fig 1). Observing the worldwide Paleodistribution map, it is remarkable the scarcity or absence of findings in African territory, North Asia, the whole of Oceania and the northern regions of North and South America (Fig 2A). Since in this worldwide representation the chronology is not considered, the distribution represent, obviously, the extension of trichuriasis records, and, the scientific effort in the study of parasites from archaeological sites, or the scientific production of different paleoparasitologists groups in the globe. This review differs from previous assuming all the findings of *Trichuris* sp. associated to anthropic context as *T. trichiura* occurrence. In addition, it gives a chronological and geospatial character to the data for the construction of paleodistributions of different periods of human evolution

Paleolithic/Mesolithic Period Paleodistribuition

The Paleolithic/Mesolithic period was characterized by the occurrence of small gatherer groups of hunter-gatherers, usually about ten or twelve adults and children, who lived in regular movements, following the wild animals and gathering a variety of grains and plants for the consumption. These groups occupied large geographical regions due to the lack of food in a single locality (BRITTON; KENT; JONNY, 2017). The results revealed seven world records of *T. trichiura*, from Africa, Europe and South America (Fig 2B). The earliest dates for trichuriasis in the Paleolithic are from the South African site Kruger cave and from Shillouro-kambos and Khirokitia, located in Cyprus (Fig 1).

European archaeological sites located in England and Spain indicate that trichuriasis has been maintained in Europe for at least an interval of about 3000 years, during Paleolithic/Mesolithic times. The latter findings are from the New World, in Brazilian archaeological sites indicate that the paleodistribution of trichuriasis had already reached the southern portion of the American continent (Fig 1 and 2B).

The reduction of these small human groups of hunter-gatherers began to occur at least 9000 BC, with the growing expansion of agricultural scenarios in the Middle East, southern and eastern Asia, Europe and North Africa. This practice allowed the settlement, and increase in size, of the human groups scattered throughout these regions. (LIBRADO et al., 2017).

In fact, The Paleolithic/Mesolithic period displayed the lowest occurrences of T. trichiura in the study (Fig 1). However, there is an expressive geographical distribution, with records emerging in Africa and dispersing throughout Europe and South America (Fig 2B). The parasitic diversity represented by traces of Ascaris sp., E. vermicularis, T. saginata, Fasciola sp. and D. dendriticum eggs in the Old World shows that even small groups of hunter-gatherers were already exposed to infection by more easily transmitted parasites in areas with larger human agglomerations as T. trichiura, Ascaris sp., E. vermicularis and T. saginata, for example. In passing, the association of ascarids with T. trichiura reinforce that these geohelminthiases were well established territorially during the Paleolithic and Mesolithic periods. As described by Barret and colleagues (1998), long-term coevolutionary relationships between hominids and heirloom parasites imply a good match between the parasites mode of transmission, virulence, and lifecycle, and the lifestyle and demographics of early foraging bands (BARRETT et al., 1998). The authors cite as an example the fact that hominoid primates have always habits that typically favored the persistence of intestinal parasites, such as the tendency to gregarious behavior and frequent hand-to-mouth contact. The occurrences of Fasciola sp and D. dendriticum indicate the use of some animals for human consumption and a frequent exposure to not human parasites may have resulted from their daily rounds of collecting, preparing, and eating raw plants, insects, meat, and fish (AUDY, 1958; BENNETT; BEGON, 1997). There is also a lack of occurrences of trichuriasis in Asia, Oceania and North America, possibly reflecting less research effort in these regions.

Neolithic Period Paleodistribuition

Most of the sixteen Neolithic records are located in Europe contained 15 occurrences in different regions from Germany, England, Holland, Austria, France and Switzerland, confirming the broad territorial distribution in that continent (Figs 1 and 3A). Agriculture gradually spread to Europe during this period, allowing the individuals of small villages to practice a mixed economy based on agriculture and hunting and gathering (Britton et al, 2017). Over the course of hundreds of years large commercial networks have been established, linking Europe to the Middle East. This period, knows as Neolithic Revolution, was characterized by innovations in stone-making technology and consequent construction to tools, fundamental for farming and raising of domesticated animals.

The occurrence of trichuriasis - at the Boqueirão Soberbo archaeological site, regionally different from the Brazilian Paleolithic sites, and the Sannai Maruyama site (Japan) - indicate the extent of infection (Fig 3A).

During the Neolithic period, it is visible the increase in the occurrence of trichuriasis in Europe (Fig 3A). In addition, eggs of Ascaris sp., Taenia sp. Diphyllobothrium sp., Fasciola sp., Dicrocoelium sp. and Capillaria sp. were found in different regions of Europe, demonstrating a common characteristic of the 1st epidemiological transition, from Paleolithic to Neolithic (BARRETT et al., 1998; ARAÚJO et al., 2013). This moment was represented by an increase in the diversity of infections that affected the human consequences of the processes of domestication of plants and animals and the consequent human sedentarization. The transition involved major changes in human social organization, diet, demographics and behavior, creating more conditions favorable for zoonotic infections and an increase in virulence of preexisting human parasites. The analyzes of coprolites from different regions from Germany, for example, showed that T. trichiura infection was strongly established in this territory (BOUCHET; LE BAILLY, 2011). Moreover, the consumption of fishes was attested by the presence of Difilobotrium sp. difilobotrid eggs, in the same regions. The diversity of parasite eggs in French samples reaffirm the proximity between humans and other animals. On the other hand, T. trichiura findings compiled here corroborate with the 1st epidemiologic transition, and demonstrate that this worm was one of the predominant parasite in human during this prehistoric period.

Trichuris trichiura also occurred singly in other three regions during the Neolithic period: in Africa, Asia and South America (Fig 3A). The establishment of trichuriasis in the New World, however, is greatly different from the Neolithic scenario proposed for Old World. *Trichuris trichiura* (and other geohelminths) arrived in the Americas through alternative routes such as transpacific navigation or coastal areas, thus avoiding the hostile conditions of the Bering land bridge, to make possible to their life cycles (ARAÚJO et al., 2013). In the America, trichuriasis was present in nomadic prehistoric populations of hunter-gatherers. The rare egg findings in the Neolithic New World compared to the Old World can evidence this panorama.

Bronze/Iron Period Paleodistribuition

There was an increase in the number of occurrences of *T. trichiura* in during the Bronze/Iron Period (Fig 1). Sixteen were registered from Europe, in regions of former Prussia (Germany), England, Holland, Austria, Denmark, France, Czech Republic and Italy. The same can be said of Asia, with fifteen distributed in the territories of Israel, Iran, China and Korea, the latter having the largest number of occurrences (n = 11).

During this period, started a concentration of more reports of trichuriasis in Europe, a picture also observed in Asia, reflecting the marked civilization process in these regions. Particularly, an even greater diversity of parasites is observed in Europe, highlighting the occurrence of human helminths and protozoa such as *Ascaris* sp., *E. vermicularis*, *Entamoeba coli*, *E. histolytica*, *Giardia lamblia* and *Chilomastix mesnili*. This diversity is more evident considering parasites of domesticated animals such as *Trichuris ovis*, *Toxocara canis*, *Oxyurus equi*, *Fasciola hepatica*, *T. saginata*, *T.solium*, *D. latum*, *Clonorchis sinensis* and *Capillaria* sp. eggs (Table 1).

Finally, registers appeared in different locations in Brazil, Argentina and Chile (Fig 3B). South America showed a low parasite diversity when compared to the Old World, with only occurrences of *E. vermicularis*, *Trichostrongylus* spp., *Capillaria* sp. eggs and *E. macusaniensis* oocysts (Table 1). During this period there was a gradual abandonment of huntergatherer habits, (who existed until to the post-conquest times) and the increasing adoption of agriculture by the South American inhabitants (BRITTON; KENT; JONNY, 2017). The people of the highlands of South America began to build ever larger and more complex civilizations, with a large flow of trade and the establishment of extensive culturally unified areas. People from the Atlantic coast, however, adopted a feeding from the seas and rivers, resulting in the construction of large mounds of shells, called sambaquis.

Medieval Period Paleodistribuition

A single South African archaeological site, called K2, was positive for *T. trichiura*, demonstrating the occurrence of trichuriasis in the region during this period.

Fifty new occurrences arose in Europe, in different regions of Germany and the Netherlands (Fig 4A and Table 1). In Europe have emerged from Belgium, Norway and Spain. The number of infections in Asia is also increasing, again with a predominance of China and Korea.

The first findings in North America date back to this period (Fig 4A). They are Elden Pueblo, in the United States, Ferryland, Canada and Rio Zape and Cueva de los Muertos Chiquitos, Mexico. Finally, new occurrences were recorded in South America: two in Chile and one in Peru (Table 1).

It is possible to observe the significant increase in the number of occurrences of trichuriasis during the Medieval period, (Figs 1 and 4A) in comparison with the previous periods. One more record of *T. trichiura* in South Africa was registered. *Trichuris trichiura* occurrences were also recorded in Asia and, for the first time, on the North American continent. Germany, Holland, England and France were the countries with the highest numbers of *T. trichiura* occurrences. All localities of Germany and Holland presented only trichurid infection in concomitance with *Ascaris* sp. England, Czech Republic, Denmark, France, Spain and Belgium also had positive results for parasites of other animals (Table 1).

During the Medieval Period, trichuriasis intensifies in Asia in geographical expansion and frequency (Table 1 and Fig 4A). Most of them have been associated with *Ascaris* sp., and other parasites of animals such as *D. latum, Metagonimus yokogawai, C. sinensis, Paragonimus westermani* and fluke, essentially associated to localities with great availability of water for the maintenance of their cycles of life.

The parasitic fauna represented by *Ascaris* sp, *E. vermicularis*, *A. duodenale*, *Taenia* sp., *Dicrocoelium* sp., *Paragonimus* sp., *Echinostoma* sp., *Hymenolepis* sp. and *D. caninum* show not only that the intensive process of contact with animals as well as evidence of the great human crowded already well established in different regions of North America (Table 1). The archaeological sites of El Plomo, Lluta valley and San Geronimo demonstrated an expansion of *T. trichiura* to the west coast of South America, reinforcing the framework previously proposed in the Bronze/Iron Period.

Modern/Contemporary Period Paleodistribuition

The Modern/Contemporary Period showed the occurrence of trichuriasis in all previously positive continents with an expressive increase in the number of occurrences in North America, although most in a restricted area of East Coast of USA (Fig 4B). The archaeological sites Itacambira, Praça XV Cemetery, Nossa Senhora do Carmo Church represent the Brazilian findings from this period. In Argentina, in Nombre de Jesús and in Peru are also recorded in the most recent periods of human history.

The trichuriasis becomes evident in North and Central America during this period (Fig 4B). Its beginning coincides with that of the 1st Industrial Revolution in Europe (England), consequently, with the 2nd epidemiological transition. This period was characterized by a marked decline in mortality from infectious diseases in developed countries, (OMRAN, 1971).

In general, there was an increase in number of *T. trichiura* occurrences and co-occurrence with *Ascaris* sp., in relation to those acquired by contact with other animals (Table 1). Technological advances in less favored regions were able to prevent the dispersal of infectious diseases, such as trichuriasis. The South American findings from Itacambira, the Cemetery of Praça XV and the Church of Nossa Senhora do Carmo demonstrated that the overcrowding in

villages or even in cities, and poor hygiene and sanitary conditions should promote an intensification in the transmission of *T. trichiura* in these regions.

The paleodistributions presented may contain biases related to taphonomic processes inherent to ancient samples that affect the preservation by biotic and abiotic factors since deposition until the archaeological recovery. In addition, the late use (from the 1990s) of new diagnostic methodologies, such as PCR, for confirmation or even detriment to those based on the morphometric identification of eggs by the use of light microscopy techniques.

This review presents a spatiotemporal picture of trichuriasis occurrences in the past, using paleodistributions in chronological periods of human evolution, providing a better understanding of how trichuriasis occurred since the Paleolithic to the Modern/Contemporary Period.

References

- De Souza SMFM, De Carvalho DM, Lessa A. Paleoepidemiology: Is There a Case to Answer? Mem Inst Oswaldo Cruz. 2003;98: 21–27. doi:10.1590/S0074-02762003000900005
- Ruffer MA. Note on the Presence of "Bilharzia Haematobia" in Egyptian Mummies of the Twentieth Dynasty [1250-1000 B.C.]. Br Med J. 1910;1: 16. doi:10.1136/bmj.1.2557.16-a
- Callen EO, Cameron TWM. A prehistoric diet revealed in coprolites. New Sci. 1960;8: 35–40.
- Reinhard KJ, Confalonieri UE, Herrmann B, Ferreira LF, Araújo A, Luiz Fernando Ferreira, et al. Recovery of oarasite remains from coprolites and latrines: Aspects of paleoparasitological technique. Homo. 1986;37: 217–239.
- de Souza SMFM, de Carvalho DM, Lessa A. Paleoepidemiology: is there a case to answer? Mem Inst Oswaldo Cruz. 2003;98 Suppl 1: 21–7. Available: http://www.ncbi.nlm.nih.gov/pubmed/12687758
- Ferreira LF; Araújo A; Confalonieri UEC. Paleoparasitologia no Brasil. PEC/ENSP; 1988.
- Reinhard KJ. Archaeoparasitology in North America. Am J Phys Anthropol. 1990;82: 145–163. doi:10.1002/ajpa.1330820204
- Reinhard KJ, Araújo A. Archaeoparasitology. Encyclopedia of Archaeology. Deborah
 M. New York: Elsevier, Academic Press; 2008. pp. 494–501. Available:
http://digitalcommons.unl.edu/anthropologyfacpub/22

- Ferreira LF, Reinhard KJ, Araújo A. Foundations of Paleoparasitology. Ferreira LF, Reinhard KJ, Araújo A, editors. Rio de Janeiro: Editora Fiocruz; 2014.
- Stephenson LS, Holland C V, Cooper ES. The public health significance of Trichuris trichiura. Parasitology. 2000;121 Suppl: S73–S95. doi:10.1017/S0031182000006867
- De Silva NR, Brooker S, Hotez PJ, Montresor A, Engels D, Savioli L. Soil-transmitted helminth infections: Updating the global picture. Trends Parasitol. 2003;19: 547–551. doi:10.1016/j.pt.2003.10.002
- Utzinger J. A research and development agenda for the control and elimination of human helminthiases. PLoS Negl Trop Dis. 2012;6: 2–8. doi:10.1371/journal.pntd.0001646
- Boatin B a., Basáñez MG, Prichard RK, Awadzi K, Barakat RM, García HH, et al. A research agenda for helminth diseases of humans: Towards control and elimination. PLoS Negl Trop Dis. 2012;6: 1–10. doi:10.1371/journal.pntd.0001547
- Pullan RL, Smith JL, Jasrasaria R, Brooker SJ. Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasit Vectors. Parasites & Vectors; 2014;7: 37. doi:10.1186/1756-3305-7-37
- Cutillas C, de Rojas M, Zurita A, Oliveros R, Callejón R. Trichuris colobae n. sp. (Nematoda: Trichuridae), a new species of Trichuris from Colobus guereza kikuyensis. Parasitol Res. 2014;113: 2725–32. doi:10.1007/s00436-014-3933-6
- Callejón R, Gutiérrez-Avilés L, Halajian A, Zurita A, de Rojas M, Cutillas C. Taxonomy and phylogeny of Trichuris globulosa Von Linstow, 1901 from camels. A review of Trichuris species parasitizing herbivorous. Infect Genet Evol. 2015;34: 61– 74. doi:10.1016/j.meegid.2015.06.011
- Bethony JM, Cole RN, Guo X, Kamhawi S, Lightowlers MW, Loukas A, et al. Vaccines to combat the neglected tropical diseases. Immunol Rev. 2011;239: 237–270. doi:10.1111/j.1600-065X.2010.00976.x
- Hotez PJ, Savioli L, Fenwick A. Neglected tropical diseases of the Middle East and North Africa: review of their prevalence, distribution, and opportunities for control. Aksoy S, editor. PLoS Negl Trop Dis. 2012;6: e1475. doi:10.1371/journal.pntd.0001475
- Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, Diemert D, et al. Soiltransmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet. 2006;367: 1521–1532. doi:10.1016/S0140-6736(06)68653-4

- Brooker S, Michael E. The potential of geographical information systems and remote sensing in the epidemiology and control of human helminth infections. Adv Parasitol. 2000;47: 245–88. Available: http://www.ncbi.nlm.nih.gov/pubmed/10997209
- Brooker S, Clements ACA, Bundy DAP. Global Epidemiology, Ecology and Control of Soil-Transmitted Helminth Infections. Advances in parasitology. 2006. pp. 221–261. doi:10.1016/S0065-308X(05)62007-6
- Hotez PJ, Fenwick A, Savioli L, Molyneux DH. Rescuing the bottom billion through control of neglected tropical diseases. Lancet. 2009;373: 1570–1575. doi:10.1016/S0140-6736(09)60233-6
- 23. Dinnik N. Independent Species Trichocephalus trichiurus (L., 1771) and Trichocephalus suis (Schrank, 1788). apud UEC Confalonieri 1983. Paleoparasitologia do Gênero Trichuris Roederer, 1761, com um Estudo Paleoepi-demiológico sobre a Origem do Trichuris trichiura. Universidade Federal Rural do Rio de Janeiro. 1938.
- 24. Sondak V. Independence of the whipworm species Trichocephalus trichiura and the swine whipworm Trichocephalus suis. Parasitol Sb. 1948; 197.
- 25. Hohner L, Müller K. Vergleichende Grössenbestimmungen an Eiern von Peitschenwürmern des Menschen und des Schweines. apud UEC Confalonieri 1983. Paleoparasitologia do Gênero Trichuris Roederer, 1761, com um Estudo Paleoepidemiológico sobre a Origem do Trichuris trichiura (Lin. Universidade Federal Rural do Rio de Janeiro. 1965.
- Beer. The relationship between Trichuris trichiura (Linnaeus 1758) of man and Trichuris suis (Schrank 1788) of the pig. Res Vet Sci. 1976;20: 47–54.
- Confalonieri U. Paleoparasitologia do Gênero Trichuris Roederer, 1761, com um Estudo Paleoepidemiológico sobre a Origem do Trichuris trichiura (Linn., 1771), Stiles, 1901 na América (Nematoda, Trichuridae). 1983.
- 28. Fernandes A, Ferreira LF, Gonçalves MLC, Bouchet F, Klein CH, Iguchi T, et al. Intestinal parasite analysis in organic sediments collected from a 16th-century Belgian archeological site. Cad saude publica / Minist da Saude, Fund Oswaldo Cruz, Esc Nac Saude Publica. 2005;21: 329–332. doi:10.1590/S0102-311X2005000100037
- Da Rocha GC, Harter- Lailheugue S, Le Bailly M, Araújo A, Ferreira LF, Da Serra-Freire NM, et al. Paleoparasitological remains revealed by seven historic contexts from "Place d'Armes", Namur, Belgium. Mem Inst Oswaldo Cruz. 2006;101: 43–52. doi:10.1590/S0074-02762006001000008
- 30. da Rocha GC, Serra-Freire NM. Paleoparasitology at "Place d'Armes{"}, Namur,

Belgium: a biostatistics analysis of trichurid eggs between the Old and New World. Rev Bras Parasitol Vet. 2009;18: 70–74. doi:10.4322/rbpv.01803013

- Oh CS, Seo M, Chai JY, Lee SJ, Kim MJ, Park JB, et al. Amplification and sequencing of Trichuris trichiura ancient DNA extracted from archaeological sediments. J Archaeol Sci. 2010;37: 1269–1273. doi:10.1016/j.jas.2009.12.029
- Hawash MBF, Betson M, Al-Jubury A, Ketzis J, LeeWillingham A, Bertelsen MF, et al. Whipworms in humans and pigs: origins and demography. Parasit Vectors. Parasites & Vectors; 2016;9: 37. doi:10.1186/s13071-016-1325-8
- Gonçalves MLC, Araujo A, Ferreira LF. Human intestinal parasites in the past: New findings and a review. Mem Inst Oswaldo Cruz. 2003;98: 103–118. doi:10.1590/S0074-02762003000900016
- Leles D, Reinhard KJ, Fugassa M, Ferreira LF, Iñiguez AM, Araújo A. A parasitological paradox: Why is ascarid infection so rare in the prehistoric Americas? J Archaeol Sci. 2010;37: 1510–1520. doi:10.1016/j.jas.2010.01.011
- 35. Piers D. Mitchell. Human parasites in the Roman World: health consequences of conquering an empire. Parasitology. 2016;Jan 8: 1–11. doi:10.1017/S0031182015001651
- 36. Aspöck H, Auer H, Picher O. Parasites and parasitic diseases in prehistoric human populations in Central Europe. Helminthologia. 1999;36: 139–145. Available: http://www.saske.sk/pau/helminthologia/issues99_3.htm
- 37. Britton P, Kent A, Jonny. TimeMaps [Internet]. 2017.
- Evans AC, Markus MB, Mason RJ, Steel R. Late stone-age coprolite reveals evidence of prehistoric parasitism. S Afr Med J. 1996;86: 274–5. Available: http://www.ncbi.nlm.nih.gov/pubmed/8658307
- Gonçalves MLC, Araújo A, Ferreira LF. Human Intestinal Parasites in the Past: New Findings and a Review. Mem Inst Oswaldo Cruz. 2003;98: 103–118. doi:10.1590/S0074-02762003000900016
- Leles D, Araújo A, Ferreira LF, Vicente ACP, Iñiguez AM. Molecular paleoparasitological diagnosis of Ascaris sp. from coprolites: New scenery of ascariasis in pre-Columbian South America times. Mem Inst Oswaldo Cruz. Fundação Oswaldo Cruz; 2008;103: 106–108. doi:10.1590/S0074-02762008005000004
- Dark P, Allen JRL, Aspöck H, Auer H, Picher O, Platzer W, et al. New evidence for the antiquity of the intestinal parasite Trichuris (whipworm) in Europe. Antiquity. Cambridge University Press; 2004;78: 676–681. doi:10.1017/S0003598X00113304

- 42. Harter-Lailheugue S, Le Mort F, Vigne J-D, Guilaine J, Le Brun A, Bouchet F. Premières données parasitologiques sur les populations humaines précéramiques chypriotes: VIIIe et VIIe millénaires av. J.-C. 2005;31: 43–54.
- Côté NML, Daligault J, Pruvost M, Bennett EA, Gorgé O, Guimaraes S, et al. A New High-Throughput Approach to Genotype Ancient Human Gastrointestinal Parasites. Knapp M, editor. PLoS One. 2016;11: e0146230. doi:10.1371/journal.pone.0146230
- 44. Roever-Bonett H et al. Helminth eggs and gregarines from coprolites from the excavations at Swifterbant. Helenium. 1979;19: 7–12.
- Jones AKG, Hutchinson AR, Nicholson C. The worms of Roman horses and other finds of intestinal parasite eggs from unpromising deposits. Antiquity. 1988;62: 275–276. doi:10.1017/S0003598X00074007
- 46. Aspöck H, Auer H, Picher O. The mummy from the Hauslabjoch: a medical parasitology perspective. Assoc Microbiol Clin Ital. 1995;3: 245–255. Available: https://scholar.google.com.br/scholar?q=Aspöck%2C+Auer+e+Picher%2C+1995&btn G=&hl=pt-BR&as_sdt=0%2C5
- Aspöck H, Auer H, Picher O. Trichuris trichiura eggs in the neolithic glacier mummy from the Alps. Parasitol Today. Elsevier; 1996;12: 255–256. doi:10.1016/0169-4758(96)30008-2
- Bouchet F, Petrequin P, Paicheler J, Dommelier S. Première approche paléoparasitologique du site néolithique de Chalain (Jura, France). Bull la Société Pathol Exot. 1995;88: 265–268.
- 49. Dommelier S, Bentrad S, Paicheler J-C, Pétrequin P, Bouchet F. Parasitoses liées à l'alimentation chez les populations néolithiques du lac de Chalain (Jura, France). Anthropozoologica. 1998;27: 41–49.
- 50. Dommelier Espejo S. Contribuition a` L'e'tude Pale'oparasitologique des Sites Ne'olithiques em Environnement Lacustre dans les Domaines Jurassien et péri- alpin.
 2001; Available: https://scholar.google.com.br/scholar?hl=pt-BR&q=Contribuition+a%60+L'e'tude+Pale'oparasitologique+des+Sites+Ne'olithiques +em+Environnement+Lacustre+dans+les+Domaines+Jurassien+et+Pe'+ri-+alpin.&btnG=&lr=
- 51. Dommelier E. Contribuition à L'étude Paléoparasitologique des Sites Néolithiques em Environnement Lacustre dans les Domaines Jurassien et Péri-alpin. [Internet]. Université de Reims. 2001. Available: https://scholar.google.com.br/scholar?hl=pt-BR&q=Contribuition+a%60+L'e'tude+Pale'oparasitologique+des+Sites+Ne'olithiques

+em+Environnement+Lacustre+dans+les+Domaines+Jurassien+et+Pe'+ri-+alpin.&btnG=&lr=

- Bouchet F, Harter S, Le Bailly M. The State of the Art of Paleoparasitological Research in the Old World. Mem Inst Oswaldo Cruz. 2003;98: 95–101. doi:10.1590/S0074-02762003000900015
- 53. Kendall T, National Museum of African Art (U.S.), Museum of Fine Arts B. Kerma and the Kingdom of Kush, 2500-1500 B.C.: the archaeological discovery of an ancient Nubian empire. National Museum of African Art, Smithsonian Institution; 1996.
- 54. Harter-Lailheugue S, Bouchet F. Paleoparasitological investigations in funerary contexts along the nile. Paleopathol Newsl. 2004;128: 5–9.
- 55. Ferreira L, Araújo A, Confalonieri U. Untitled note. Paleopathol News. 1982;38: 5.
- Kanehara M, Kanehara M. In the forefront of research, Jomon people suffered from parasites. Gekkan Rekishi Kaido. 1995;84.
- 57. Szidat. Über die Erahaltungsfähigkeit von Helmintheneierm in Vor-und Frühgeschtlichen Moorleichen. Parasitol Res. 1944;13: 265–274.
- Specht kw. Eine interessante Erdprobe aus einer Abortgrube in Römerkastell Künzing. 1963;21: 90–94.
- Jansen J, Over H. Het voorkomen van parasieten in terpmateriaal uit Noordwest Duitsland. Tijdschr Diergeneesk. 1962;87: 1377–1379.
- 60. Helbaek H. Grauballemandens sidste måltid. Kuml. 1958; 83–116.
- Jansen J, Over HJ. Observations on helminth infections in a roman army-camp. Proceedings of the First International Congress of Parasitology. Roma; 1999. p. 791. doi:10.1016/B978-0-08-011427-9.50149-9
- Aspöck H, Flamm H, Picher O. Intestinal parasites in human excrements from prehistoric salt-mines of the Hallstatt period (800-350 B.C.). Zentralbl Bakteriol Orig A. 1973;223: 549–58. Available: http://www.ncbi.nlm.nih.gov/pubmed/4146831
- 63. Moore PD. Life seen from a medieval latrine. Nature. 1981;294: 614–614. doi:10.1038/294614a0
- 64. Greig J. The investigation of a medieval barrel-latrine from Worcester. J Archaeol Sci. 1981;8: 265–282. doi:10.1016/0305-4403(81)90003-0
- Jones AKG. Parasitological investigations on Lindow man. IM Stead, JB Bourke, D Brothwell, Lindow Man-The Body Bog, Br Museum Publ. 1986; 136–139.
- Šebela L, Vojtková L, Vojtek J. Intestinal Parasites in Man of Old Bronze Age. Anthropol. 1990;28: 105–107.

- 67. Rousset JJ, Heron C, Metrot P. [Human helminthiasis at the Gauls]. Hist Sci Med. 1996;30: 41–6. Available: http://www.ncbi.nlm.nih.gov/pubmed/11624833
- Dufour B, Segard M, Bailly M Le. A First Case of Human Trichuriasis from a Roman Lead Coffin in France. Korean J Parasitol. 2016;54: 625–629. doi:10.3347/kjp.2016.54.5.625
- Heirbaut E, Jones A, Wheeler W. Archaeometry: methods and analysis. In: Jansen, G.
 C. M., Koloski-Ostrow, A. O., Moormann EM, editor. Roman Toilets: Their Archaeology and Cultural History. Peeters, Leuven, Belgium; 2011. pp. 7–20.
- Witenberg G. Human parasites in archaeological findings. Bull Isr Explor Soc. 1961;25: 86. Available: http://www.cabdirect.org/abstracts/19660801693.html
- Harter S, Bouchet F, Mumcuoglu KY, Zias JE. Toilet practices among Members of the Dead Sea Scrolls Sect at Qumran (100 BC-68 AD). Rev Qumrân. 2004;21: 579–584.
- 72. Zias JE, Tabor JD, Harter-Lailheugue S. Toilets at Qumran, the Essenes, and the scrolls: New Anthropological Data and Old Theories. Rev Qumrân. 2006;22: 631–640.
- 73. Chen LB, Hung T. [Scanning electron microscopic view of parastic worm ova in an ancient corpse (author's transl)]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 1981;3: 64–5. Available: http://www.ncbi.nlm.nih.gov/pubmed/6458400
- 74. Cheng TO. Glimpses of the past from the recently unearthed ancient corpses in China.
 Ann Intern Med. American College of Physicians; 1984;101: 714–715.
 doi:10.7326/0003-4819-101-5-714
- 75. Wen-yuan Y, De-xiang W, Guang-fang S, Zhong-bi W, Ren-sheng T. Parasitologische Untersuchung einer alten Leiche aus der Chu-Dynastie der Streitenden Reiche aus dem Mazhuan-Grab Nr. 1, Kreis Jiangling, Provinz Hubei. Acta Acad Med Wuhan. Springer-Verlag; 1984;4: 23–27. doi:10.1007/BF02856945
- Su TC. A scanning electron microscopic study on the parasite eggs in an ancient corpse from a tomb of Chu Dynasty, the Warring State, in Jiangling County, Hubei Province. J Tongji Med Univ. 1987;7: 63–4. Available: http://www.ncbi.nlm.nih.gov/pubmed/3298670
- KNM. Shinchang-dong wetland site National, I. Reporto on the research of antiquities of the Kwangju Museum. Kwangju Natl Museum. 1997;33: 159–166.
- Han E-T, Guk S-M, Kim J-L, Jeong H-J, Kim S-N, Chai J-Y. Detection of Parasite Eggs from Archaeological Excavations in the Republic of Korea. Mem Inst Oswaldo Cruz, Rio Janeiro. 2003;98: 123–126.
- 79. Kim MJ, Shin DH, Song MJ, Song HY, Seo M. Paleoparasitological surveys for

detection of helminth eggs in archaeological sites of Jeolla-do and Jeju-do. Korean J Parasitol. 2013;51: 489–492. doi:10.3347/kjp.2013.51.4.489

- Ferreira LF, de Araújo AJ, Confalonieri UE. The finding of eggs and larvae of parasitic helminths in archaeological material from Unai, Minas Gerais, Brazil. Trans R Soc Trop Med Hyg. 1980;74: 798–800. Available: http://www.ncbi.nlm.nih.gov/pubmed/7010700
- Ferreira LF, de Araújo AJ, Confalonieri UE. The finding of helminth eggs in a Brazilian mummy. Trans R Soc Trop Med Hyg. 1983;77: 65–67. doi:10.1016/0035-9203(83)90017-2
- Ferreira LF, Araújo A, Confalonieri U, de Lima JM. Trichuris trichiura eggs in human coprolites from the archaeological site of "Furna do Estrago", Brejo da Madre de Deus, Pernambuco, Brazil. Mem Inst Oswaldo Cruz. 1989;84: 581. doi:10.1590/S0074-02761989000400020
- Leles D. "Paleogenética e paleoepidemiologia de Ascaris sp. (Linnaeus, 1758) e Trichuris sp. (Roederer, 1761)." 2010; 218.
- Pau D, Perez Tort G, Petetta L, Coronel D. Hallazgo de huevos de Ascaris ssp. en sedimentos arqueológicos contenidos en la cavidad pélvica-estomacal de restos humanos. Bol Chil Parasitol. 2005;60: 327.
- Fugassa M, Barberena R. Cuevas y zoonosis antiguas: paleoparasitología del sitio Orejas de Burro 1 (Santa cruz, Argentina). Magallania (Punta Arenas). 2006;34: 57–62. doi:10.4067/S0718-22442006000200006
- Dittmar K, Steyn M. Paleoparasitological analysis of coprolites from K2, an Iron Age archaeological site in South Africa: the first finding of Dicrocoelium sp. eggs. J Parasitol. 2004;90: 171–173. doi:10.1645/GE-3224RN
- 87. Taylor EL. Parasitic helminths in mediaeval remains. Vet Rec. 1955;67: 216–218.
- 88. Pike AW. The recovery of parasite eggs from ancient cesspit and latrine deposits: an approach to the study of early parasite infections. Diseases in antiquity A survey of the diseases, injuries and surgery of early populations. 1967. pp. 184–188.
- Pike AW. Recovery of helminth eggs from archaeological excavations, and their possible usefulness in providing evidence for the purpose of an occupation. Nature. 1968. pp. 303–304. doi:10.1038/219303a0
- 90. Pike. Parasite eggs: the organic content of cesspit soil from Southampton and their significance for the archaeologist and biologist. In: C Platt RC-S, editor. Excavations in Mediaeval Southampton 1953-1969. Leicester University Press; 1975. pp. 347–348.

- Wilson A, Rackham DJ. Parasite Eggs. In: Buckland PC, editor. The Environmental Evidence from the Church Street Roman Sewer System. York: Council for British Archaeology; 1976. pp. 32–33.
- Hall A, Jones A, Kenward H. Cereal bran and human faecal remains from archaeological deposits. Site, Environment and Economy BAR International Series. 1983. pp. 85–104.
- 93. Jones AKG. Intestinal parasite ova from archaeological deposits: evidence of widespread faecal contamination in Viking age York. Paleopathology 5th European Members Meeting. Siena - Italy; 1984.
- 94. Rouffignac C. Mediaeval man and his worms. Biologist. 1987;34: 187–190.
- Boersema JH JJ. Helminth infections in Medieval Utrecht. Trop Geo Med. 1975;27:
 441.
- 96. Brinkkemper O, van Haaster H. Eggs of intestinal parasites whipworm (trichuris) and mawworm (ascaris): Non-pollen palynomorphs in archaeological samples. Rev Palaeobot Palynol. Elsevier B.V.; 2012;186: 16–21. doi:10.1016/j.revpalbo.2012.07.003
- Nansen, P, Jørgensen R. Fund af parasitæg i arkæologisk materiale fra det vikingetidige Ribe. Nord Vet-Med. 1977;29: 263–266.
- Søe MJ, Nejsum P, Fredensborg BL, Kapel CMO. DNA typing of ancient parasite eggs from environmental samples identifies human and animal worm infections in Vikingage settlement. J Parasitol. 2015;101: 57–63. doi:10.1645/14-650.1
- 99. Jones AKG. Human parasite remains: prospects for a quantitative approach. In: Hall, A.R., Kenward HK, editor. Environmental Archaeology in the Urban Context. The Council for British Archaeology; 1982. pp. 66–77.
- Legendre J, Marie J, Rieb J. Contribution à l'Étude de l'État Sanitaire de la Population Strasbourgeoise à la Fin du Moyen-Age. Archéologie et Médecine, APDCA, Juan-les-Pins; 1987.
- 102. Bouchet. Etude parasitologique des coprolithes et des sediments de trois ensembles clos medievaux de la rue de lutece. Rev d'Archéométrie. 1989;13: 13–21.
- Bouchet F, Ervynck A, Raveschot P. Rijk, maar proper parasitologisch onderzoek van een put uit de Schepenhyuisstraat. Stadsarcheologie. 1991;15: 8–13.
- 104. Bouchet F. Étude parasitologique des chantiers archéologiques de Beauvais (Oise). Rev

archéologique Picardie. Persée - Portail des revues scientifiques en SHS; 1991;3: 293–294. doi:10.3406/pica.1991.1636

- Bouchet F. Apport de la parasitologie sur les chantiers archéologiques : l'exemple de la ville de Paris. Journées d'archéologie d'Ile Fr. 1993;
- Bouchet F. Recovery of Helminth Eggs from Archeological Excavations of the Grand Louvre (Paris, France). J Parasitol. 1995;81: 785–787. doi:10.2307/3283976
- 107. Bouchet F. Apport de la paléoparasitologie au chantier archéologique de Charavines. Actes des congrès la Société d'archéologie médiévale. Persée - Portail des revues scientifiques en SHS; 1996;5: 42–45.
- 108. Hidalgo-Argüello MR, Díez Baños N, Fregeneda Grandes J, Prada Marcos E. Parasitological analysis of Leonese royalty from Collegiate-Basilica of St. Isidoro, León (Spain): helminths, protozoa, and mites. J Parasitol. 2003;89: 738–743. doi:10.1645/0022-3395(2003)089[0738:PAOLRF]2.0.CO;2
- 109. Jaeger LH, Gijón-Botella H, Del Carmen Del Arco-Aguilar M, Martín-Oval M, Rodríguez-Maffiotte C, Del Arco-Aguilar M, et al. Evidence of Helminth Infection in Guanche Mummies: Integrating Paleoparasitological and Paleogenetic Investigations. J Parasitol. 2016;102: 222–8. doi:10.1645/15-866
- Appelt S, Armougom F, Bailly M Le, Robert C, Drancourt M. Polyphasic analysis of a middle ages coprolite microbiota, Belgium. PLoS One. 2014;9: 1–8. doi:10.1371/journal.pone.0088376
- 111. Rácz SE, De Araújo EP, Jensen E, Mostek C, Morrow JJ, Van Hove ML, et al. Parasitology in an archaeological context: analysis of medieval burials in Nivelles, Belgium. J Archaeol Sci. 2015;53: 304–315. doi:10.1016/j.jas.2014.10.023
- Mitchell P, Stern E. Parasitic intestinal helminth ova from the latrines of the 13th century crusader hospital of St John in Acre, Israel. ... Assoc 13th Bienn Eur Members Meet 2000; 21–22. Available: https://scholar.google.com.br/scholar?q=Parasitic+intestinal+helminth+ova+from+the+ latrines+of+the+13th+century+crusader+h&btnG=&hl=pt-BR&as_sdt=0%2C5
- Matsui A, Kanehara M, Kanehara M. Palaeoparasitology in Japan--discovery of toilet features. Mem Inst Oswaldo Cruz. 2003;98 Suppl 1: 127–136. doi:10.1590/S0074-02762003000900019
- 114. Seo M, Guk S-M, Kim J, Chai J-Y, Bok GD, Park SS, et al. Paleoparasitological Report on the Stool From a Medieval Child Mummy in Yangju, Korea. J Parasitol. 2007;93: 589–592. doi:10.1645/GE-905R3.1

- 115. Seo M, Oh CS, Chai JY, Lee SJ, Park JB, Lee BH, et al. The Influence of Differential Burial Preservation on the Recovery of Parasite Eggs in Soil Samples from Korean Medieval Tombs. J Parasitol. 2010;96: 366–370. doi:10.1645/GE-2131.1
- Shin DH, Oh CS, Lee SJ, Chai JY, Kim J, Lee SD, et al. Paleo-parasitological study on the soils collected from archaeological sites in old district of Seoul City. J Archaeol Sci. 2011;38: 3555–3559. doi:10.1016/j.jas.2011.08.024
- 117. Shin DH, Shim S, Kim MJ, Oh CS, Lee M, Jung SB, et al. V-shaped pits in regions of ancient Baekje kingdom paleoparasitologically confirmed as likely human-waste reservoirs. Korean J Parasitol. 2014;52: 569–73. doi:10.3347/kjp.2014.52.5.569
- Yeh H-Y, Mitchell PD. Ancient Human Parasites in Ethnic Chinese Populations. Korean J Parasitol. 2016;54: 565–572. doi:10.3347/kjp.2016.54.5.565
- Hevly RH, Kelly RE, Anderson GA, Olsen SJ. Comparative effects of climatic change, cultural impact, and volcanism in the paleoecology of flagstaff, Arizona A.D. 900-1300. 1979; 487–523.
- Horne PD, Tuck JA. Archaeoparasitology at a 17th Century Colonial Site in Newfoundland. J Parasitol. 1996;82: 512–515. doi:10.2307/3284098
- Reinhard KJ. Os achados na América do Norte. In: Ferreira LF, Reinhard KJ, Araújo A, editors. Fundamentos da Paleoparasitologia. Rio de Janeiro: Fiocruz; 2011. pp. 353–375.
- 122. Jiménez FA, Gardner SL, Araújo A, Fugassa M, Brooks RH, Racz E, et al. Zoonotic and Human Parasites of Inhabitants of Cueva de Los Muertos Chiquitos, Rio Zape Valley, Durango, Mexico. J Parasitol. 2012;98: 304–309. doi:10.1645/GE-2915.1
- 123. Pizzi T, Schenone H. Discovery of eggs of Trichuris trichiura in the contents of the intestines of an Inca archeological body. Bol Chil Parasitol. 1954;9: 73–5. Available: http://www.ncbi.nlm.nih.gov/pubmed/13230186
- 124. Santoro C, Dorsey Vinton S, Reinhard KJ. Inca Expansion and Parasitism in the Lluta Valley: Preliminary Data. Mem Inst Oswaldo Cruz. 2003;98: 161–163. doi:10.1590/S0074-02762003000900024
- Martinson E, Reinhard KJ, Buikstra JE, De La Cruz KD. Pathoecology of Chiribaya Parasitism. Mem Inst Oswaldo Cruz. 2003; doi:10.1590/S0074-02762003000900029
- 126. Bouchet F, Bentrad S, Paicheler J. Enquête épidémiologique sur les helminthiases à la cour de Louis XIV. médecine/sciences. 1998;14: 463. doi:10.4267/10608/1064
- 127. Le Bailly M, Landolt M, Bouchet F. First World War German soldier intestinal worms: an original study of a trench latrine in France. J Parasitol. 2012;98: 1273–5.

doi:10.1645/GE-3200.1

- Le Bailly M, Landolt M, Mauchamp L, Dufour B. Intestinal parasites in first world war german soldiers from "Kilianstollen", carspach, France. PLoS One. 2014;9: 1–6. doi:10.1371/journal.pone.0109543
- 129. Morrow JJ, Larsen AS, Piombino-Mascali D, Jankauskas R, Kozakaite J, Araújo A, et al. Taphonomic considerations of a whipworm infection in a mummy from the Dominican Church of the Holy Spirit, Vilnius, Lithuania. Int J Paleopathol. 2014;7: 83–87. doi:10.1016/j.ijpp.2014.08.001
- Shin DH, Chai JY, Park EA, Lee W, Lee H, Lee JS, et al. Finding ancient parasite larvae in a sample from a male living in late 17th century Korea. J Parasitol. 2009;95: 768–71. doi:10.1645/GE-1763.1
- Lee HJ, Shin DH, Seo M. Discovery of Taeniid eggs from a 17th century tomb in Korea. Korean J Parasitol. 2011;49: 327–329. doi:10.3347/kjp.2011.49.3.327
- 132. Lee IS, Lee EJ, Park JB, Baek SH, Oh CS, Lee SD, et al. Acute traumatic death of a 17th century general based on examination of mummified remains found in Korea. Ann Anat. 2009;191: 309–320. doi:10.1016/j.aanat.2009.02.006
- 133. Oh CS, Seo M, Chai JY, Lee SJ, Kim MJ, Park JB, et al. Amplification and sequencing of Trichuris trichiura ancient DNA extracted from archaeological sediments. J Archaeol Sci. Elsevier Ltd; 2010;37: 1269–1273. doi:10.1016/j.jas.2009.12.029
- 134. Shin DH, Oh CS, Shin YM, Cho CW, Ki HC, Seo M. The pattern of ancient parasite egg contamination in the private residence, alley, ditch and streambed soils of Old Seoul City, the Capital of Joseon Dynasty. Int J Paleopathol. Elsevier Inc.; 2013;3: 208–213. doi:10.1016/j.ijpp.2013.04.002
- 135. Araújo A, Confalonieri U, Ferreira L. Encontro de ovos de Trichostrongylidae e Trichuris trichiura em corpo mumificado do período colonial brasileiro. Rev Centr Cienc Biol Saúde. 1984;1: 11–16.
- Bianucci R, Torres EJL, Santiago JMFD, Ferreira LF, Nerlich AG, Souza SMM de, et al. Trichuris trichiura in a post-Colonial Brazilian mummy. Mem Inst Oswaldo Cruz. 2015;110: 145–7. doi:10.1590/0074-02760140367
- 137. Jaeger LH, Taglioretti V, Fugassa MH, Dias O, Neto J, Iñiguez AM. Paleoparasitological results from XVIII century human remains from Rio de Janeiro, Brazil. Acta Trop. 2013;125: 282–286. doi:10.1016/j.actatropica.2012.11.007
- 138. Jaeger LH, Iñiguez AM. Molecular paleoparasitological hybridization approach as effective tool for diagnosing human intestinal parasites from scarce archaeological

remains. PLoS One. 2014;9: e105910. doi:10.1371/journal.pone.0105910

- Jaeger LH, Taglioretti V, Dias O, Iñiguez AM. Paleoparasitological analysis of human remains from a European cemetery of the 17th-19th century in Rio de Janeiro, Brazil. Int J Paleopathol. 2013;3: 214–217. doi:10.1016/j.ijpp.2013.04.001
- 140. Fugassa M, Guichón R. Nuevos aportes a la paleoparasitologia del sítio arqueológico "Nombre de Jesús" (S.XVI), Cabo Virgenes, Argentina. Rev Argentina Antropol Biológica. Asociación de Antropología Biológica Argentina; 2006;8.
- 141. Fugassa MH, Araújo A, Guichón RA. Quantitative paleoparasitology applied to archaeological sediments. Mem Inst Oswaldo Cruz. 2006;101: 29–33. doi:10.1590/S0074-02762006001000006
- 142. Fouant M, Allisson M, Enrique G, Guillermo F. Parasitos Intestinales entre los indigenas precolombinos. Chungara. 1982;9: 285–299.
- 143. Andrews JR. Ascaris egg in coprolite material. N Z Med J. 1979;89: 274. Available: http://www.ncbi.nlm.nih.gov/pubmed/286922
- 144. Librado P, Gamba C, Gaunitz C, Der Sarkissian C, Pruvost M, Albrechtsen A, et al. Ancient genomic changes associated with domestication of the horse. Science (80-). 2017;356: 442–445. doi:10.1126/science.aam5298
- 145. Barrett R, Kuzawa CW, McDade T, Armelagos GJ. EMERGING AND RE-EMERGING INFECTIOUS DISEASES: The Third Epidemiologic Transition. Annu Rev Anthropol. Annual Reviews 4139 El Camino Way, P.O. Box 10139, Palo Alto, CA 94303-0139, USA ; 1998;27: 247–271. doi:10.1146/annurev.anthro.27.1.247
- 146. AUDY JR. The localization of disease with special reference to the zoonoses. Trans R Soc Trop Med Hyg. 1958;52: 308–28; discussion 329-34. Available: http://www.ncbi.nlm.nih.gov/pubmed/13581130
- 147. Bennett M, Begon ME. Virus zoonoses--a long-term overview. Comp Immunol Microbiol Infect Dis. 1997;20: 101–9. Available: http://www.ncbi.nlm.nih.gov/pubmed/9208195
- 148. Araújo A, Reinhard K, Ferreira LF, Pucu E, Chieffi PP. Paleoparasitologia: A origem dos parasitas humanos. Arq Neuropsiquiatr. 2013;71: 722–726. doi:10.1590/0004-282X20130159
- Bouchet F, Le Bailly M. Os achados na Europa. In: Ferreira LF, Reinhard KJ, Araújo A, editors. Fundamentos da Paleoparasitologia. Rio de Janeiro: Fiocruz; 2011.

150. Omran AR. The epidemiologic transition. A theory of the epidemiology of population change. Milbank Mem Fund Q. 1971;49: 509–538. doi:10.1126/science.58.1509.437-a

Fig 1: Timeline with all archaeological evidences of *T. trichiura* at the moment. It was divided in to five periods: (a) Paleolithic and Mesolithic; (b) Neolithic; (c) Bronze Age; (d) Medieval Age; (e) Modern and Contemporary periods.

Fig 2: (A) Paleodistribution map of all the findings referring to *T. trichiura*, across the globe. (B) Paleodistribution map of occurrences to *T. trichiura* during Paleolithic and Mesolithic periods.

Fig 3: (A) Paleodistribution map of occurrences to *T. trichiura* during the Neolithic. (B) Paleodistribution map of occurrences to *T. trichiura* during Bronze and Iron periods.

Fig 4: (A) Paleodistribution map of occurrences to *T. trichiura* during the Medieval Period. (B) Paleodistribution map of occurrences to *T. trichiura* during Modern and Contemporary periods.

ID	Source	Continent	Local	Period	Sample origin	Other findings	References
1	Kruger cave	Africa	South Africa (Rustemburg)	7000 - 10000 BP	human coprolite	Ascaris lumbricoides eggs and free-living nematode larvae	Evans et al. 1996
2	K2	Africa	South Africa	1000 - 1300 AD	human coprolites	Dioscoreacea pollens and Dicrocoelium sp.	Dittmar e Steyn 2004
3	Canopic jars	Africa	Nubia	2400 BC - 1500 AD	visceral content	-	Bouchet et al. 2003
4	Drobnitz girl	Europe	Prussia	600 BC - 500 AD	mummy	A. lumbricoides eggs	Szidat 1944
5	Karwinden Man	Europe	Prussia	600 BC - 500 AD	mummy	A. lumbricoides eggs	Szidat 1944
6	Vilshofen	Europe	Germany	150 - 140 BC	latrine	-	Specht 1963
7	Schleswig	Europe	Germany	Medieval period	soil from latrine	Ascaris sp. eggs	Herrmann 1985
8	Berlin	Europe	Germany	Medieval period	soil from latrine	Ascaris sp. eggs	Herrmann 1985
9	Breisach	Europe	Germany	Medieval period	soil from latrine	Ascaris sp. eggs	Herrmann 1985
10	Lübeck	Europe	Germany	Medieval period	soil from latrine	Ascaris sp. eggs	Herrmann 1985
11	Braunschweig	Europe	Germany	Medieval period	soil from latrine	Ascaris sp. eggs	Herrmann 1985
12	Halmeln	Europe	Germany	Medieval period	soil from latrine	Ascaris sp. eggs	Herrmann 1985
13	Höxter	Europe	Germany	Medieval period	soil from latrine	Ascaris sp. eggs	Herrmann 1985
14	Landshut	Europe	Germany	Medieval period	soil from latrine	Ascaris sp. eggs	Herrmann 1985
15	Freiburg	Europe	Germany	Medieval period	soil from latrine	Ascaris sp. eggs	Herrmann 1985
16	Göttingen	Europe	Germany	Medieval period	soil from latrine	Ascaris sp. eggs	Herrmann 1985
17	Marburg	Europe	Germany	Medieval period	soil from latrine	Ascaris sp. eggs	Herrmann 1985
18	Regensburg	Europe	Germany	Medieval period	soil from latrine	Ascaris sp. eggs	Herrmann 1985
19	Oldenburg	Europe	Germany	Medieval period	soil from latrine	Ascaris sp. eggs	Herrmann 1985
20	Bremerhaven	Europe	Germany	100 BC - 500 AD	human origin material	Trichuris ovis (or T. globulosa), A.lumbricoides, Toxocara canis, Oxyurus equi, Fasciola hepatica, Taenia saginata, T.solium and Diphyllobotriu m latum eggs	Jansen Jr J 1962
21	Hornstaad-Hörnle I	Europe	Germany	3197 - 3905 BC (Pfÿn Culture/ Neolithic)	coprolite	Diphyllobothrium sp., Fasciola sp., Dicro- coelium sp. eggs	Bouchet & Le Bailly 2011
22	Seekirch - Stockwiesen	Europe	Germany	3000 - 2900 BC	coprolite	Diphyllobothrium sp., Fasciola sp., Capillar- ia sp. eggs	Bouchet & Le Bailly 2011

Table 1. Global occurrences of *T. trichiura* from archaeological sites.

23	Sipplingen	Europe	Germany	3317 - 3306 BC	coprolite	Diphyllobothrium sp., Taenia sp., Fasciola	Bouchet & Le Bailly 2011
24	Sipplingen	Europe	Germany	3711 - 3709 BC	coprolite	sp., <i>Capillaria</i> sp. eggs Diphyllobothrium sp. , <i>Fasciola</i> sp. eggs	Bouchet & Le Bailly 2011
25	Torwiesen II	Europe	Germany	3283 - 281 BC	coprolite	Diphyllobothrium sp., Taenia sp., Fasciola sp., Capillaria sp. eggs	Bouchet & Le Bailly 2011
26	Wallhausen - Ziegelhütte	Europe	Germany	2900 BC -3700 BC	coprolite	Diphyllobothrium sp., Fasciola sp. eggs	Bouchet & Le Bailly 2011
27	Winchester	Europe	England	XI - XII AD	Mediaeval pit	A. lumbricoides and Dicrocoelium dendriti- cum eggs	Taylor 1955
28	Owlesbury, Winchester	Europe	England	1000 AD	soil sample (cesspit and latrine)	Ascaris sp. and Dicrocoelium sp. eggs	Pike 1967, Pike 1968
29	Southampton	Europe	England	XIII - XIV AD	soil sample from cesspits	Ascaris sp. and Dicrocoelium sp. eggs	Pike 1975
30	Worcester	Europe	England	X - XVI AD	Mediaeval latrine	Ascaris sp. eggs	Moore 1981, Greig 1981
31	York	Europe	England	IX - XII AD	coprolites and soil sediments from latrin and cessipits	-	Jones 1984
32	York	Europe	England (York)	2nd - 3rd century AD	Sewer System material	-	Wilson and Rackham, 1976
33	Coppergate	Europe	England (York)	10th - 11th century AD	material of pits	A. lumbricoides eggs	Hall et al. 1983
34	Lindow Man	Europe	England (Ches- hire)	2 BC - 119 AD	mummy	A. lumbricoides eggs	Jones 1986
35	Poundbury	Europe	England (Dor- set)	Not available period	organic material from human burials	A. lumbricoides eggs	Jones 1987
36	Southwark	Europe	England	Medieval period	soil sample	Ascaris sp. eggs	Rouffignac 1987
37	Brean Down	Europe	England (So- merset)	Bronze Age	soil sample	-	Jones et al. 1988
38	Union Terrace	Europe	England (York)	XIV - XVI AD	human feces from latrines	A. lumbricoides eggs	Jones et al. 1988
39	Estuary	Europe	England (Wal- es)	5740 - 5620 BC	peat deposits	-	Dark 2004
40	Stroosteeg	Europe	Holland (Ultre- cht	XIII - XIV AD	samples from cesspits	A. lumbricoides eggs	Boersema JH 1975
41	Swifterbant	Europe	Holland	5400 BP	cooprolites	-	Roever-Bonett 1979
42	Valkenburg	Europe	Holland (Rhine)	42 - 100 AD	soil sample ? (no latrines)	Ascaris sp. and Oxyuris equi eggs	Jansen & Over 1966
43	Alkmaar	Europe	Holland	1350 - 1650 AD	samples from mediae- val cesspits	A. lumbricoides eggs	Brinkkemper_2012
44	Amsterdam	Europe	Holland	1400 - 1575 AD	samples from mediae- val cesspits	A. lumbricoides eggs	Brinkkemper_2012
45	Brielle	Europe	Holland	1400 - 1500 AD	samples from mediae- val cesspits	A. lumbricoides eggs	Brinkkemper_2012
46	Coevorden	Europe	Holland	1600 - 1700 AD	samples from mediae- val cesspits	A. lumbricoides eggs	Brinkkemper_2012

47	Delft	Europe	Holland	1400 - 1825 AD	samples from mediae- val cesspits	A. lumbricoides eggs	Brinkkemper_2012
48	Den Bosch	Europe	Holland	1275 - 1775 AD	samples from mediae- val cesspits	A. lumbricoides eggs	Brinkkemper_2012
49	Den Haag	Europe	Holland	1650 - 1700 AD	samples from mediae- val cesspits	A. lumbricoides eggs	Brinkkemper_2012
50	Dordrecht	Europe	Holland	1500 - 1650 AD	samples from mediae- val cesspits	A. lumbricoides eggs	Brinkkemper_2012
51	Gorinchem	Europe	Holland	1300 - 1660 AD	samples from mediae- val cesspits	A. lumbricoides eggs	Brinkkemper_2012
52	Haarlem	Europe	Holland	1325 - 1750 AD	samples from mediae- val cesspits	A. lumbricoides eggs	Brinkkemper_2012
53	Kampen	Europe	Holland	1450 - 1650 AD	samples from mediae- val cesspits	A. lumbricoides eggs	Brinkkemper_2012
54	Kuinre	Europe	Holland	1525 - 1650 AD	samples from mediae- val cesspits	A. lumbricoides eggs	Brinkkemper_2012
55	Maastricht	Europe	Holland	1325 - 1800 AD	samples from mediae- val cesspits	A. lumbricoides eggs	Brinkkemper_2012
56	Rotterdam	Europe	Holland	1325 - 1500 AD	samples from mediae- val cesspits	A. lumbricoides eggs	Brinkkemper_2012
57	Utrecht	Europe	Holland	1500 - 1525 AD	samples from mediae- val cesspits	A. lumbricoides eggs	Brinkkemper_2012
58	Venlo	Europe	Holland	1500 - 1700 AD	samples from mediae- val cesspits	A. lumbricoides eggs	Brinkkemper_2012
59	Zaandam	Europe	Holland	1720 - 1760 AD	samples from mediae- val cesspits	A. lumbricoides eggs	Brinkkemper_2012
60	Salt mines, Alpes	Europe	Austria	2000 - 3000 BP	human excrements	A. lumbricoides eggs	Aspöck H, Flamm H 1973
61	Ötzi	Europe	Austria (Ötzal Alps)	5200 - 5300 BP	mummy	-	Aspöck, Horst, Herbert Auer 1995
62	Grauballe Man	Europe	Denmark (Jutland)	III - IV AD	mummy	-	Helbaek 1958
63	Tollund Man	Europe	Denmark (Jutland)	III - IV AD	mummy	-	Helbaek 1958
64	Ribe	Europe	Denmark (Ribe)	VIII e IX AD	coprolite	Ascaris sp., Taenia sp. and F. hepatica eggs	Nansen, P, Jørgensen 1977
65	Viking settlement	Europe	Denmark (Viborg)	1018 - 1030 years AD	environmental samples	A. lumbricoides and F. hepatica eggs	Søe et al 2015
66	Strasbourg	Europe	France (Stras- bourg)	XV - XVI AD	sediments from latrines	Ascaris sp. eggs	Legendre JP, Marie J 1986
67	Lutèce	Europe	France (Paris)	14th - 15th centuries AD	coprolites	Ascaris sp. and Taenia sp.eggs	Bouchet 1989
68	Paris	Europe	France (Paris)	XII - XVIII AD	samples from mediae- val cesspits	Ascaris sp., Toxocara sp., Acantocephala sp., and Ancylostoma sp. eggs	Bouchet F, Ervynck A 1991
69	Paris	Europe	France (Paris)	XIV-XV AD	sediment	Fasciola sp. and Dicrocoelium sp. eggs	Bouchet 1993
70	Napoleon Court and Carrousel	Europe	France	XI e XVI AD	coprolites and soil samples (pits)	Ascarissp., Metastrongylus sp., Heterakis sp., Fasciola sp. and Dicrocoelium sp. eggs	Bouchet 1995

71	Beauvais (Oise)	Europe	France (Picar- dia)	XIII - XVII AD	sediments from pits and garbage dumps	Ascaris sp., Heterakis sp. and Capillaria sp.	Bouchet 1991
72	Chalain	Europe	France (Jura)	3200 - 2980 BC	coprolites	-	Dommelier et al 2001
73	Montbeliard, Doubs	Europe	France	XV AD	latrine	A. lumbricoides eggs	Bouchet and Paicheler, 1995
74	Montbeliard, Doubs	Europe	France	15th - 16th century AD	organic material from latrines or cesspits	A. lumbricoides eggs	Gonçalves et al. 2003
75	Vincennes	Europe	France	800 AD	Sediments	A. lumbricoides eggs	Bouchet et al. 2003
76	Charavines	Europe	France (Isère)	Medieval period	sediment and coprolite	Ascaris sp., F. hepatica Parascaris equorum eggs	Bouchet 1996
77	Bobigny	Europe	France (Hôpital Avicenne)	2nd century BC - 1st century AD	burial samples	A. lumbricoides eggs	Rousset et al. 1996
78	Marly-le-Roy	Europe	France (Yveli- ne)	17th - 18th century AD	sediments from latrine	A. lumbricoides eggs	Bouchet et al. 1998
79	Clairvaux	Europe	France (Jura)	3100 - 2700 BC	coprolites	A. lumbricoides eggs	Dommelier et al 2001
80	Geispolsheim (German camp)	Europe	France (Alsace)	First World war	samples from barrels	A. lumbricoides and Taenia sp. eggs	Le Bailly et al. 2012
81	Kilianstollen (German gallery)	Europe	France (Cars- pach)	First World war	mummies	A. lumbricoides, Taenia sp. and Calodium sp. eggs	Le Bailly et al. 2014
82	Jaunay-Clan archaeologi- cal site	Europe	France (Jaunay- Clan)	2nd century AD	mummies (from cof- fins)		Dufour et al. 2016
83	France (Eastern)	Europe	France	284 - 1918 AD	sediments from ar- chaeological samples	Ascaris sp., T. soliumand Enterobius vermi- cularis eggs	Côté et al., 2016
84	France (Northern)	Europe	France	4300 BC - 3700 BC	sediments from ar- chaeological samples	Taenia sp. and Dicrocoelium sp. eggs	Côté et al., 2016
85	France (Northern)	Europe	France	150 AD - 1671 AD	sediments from ar- chaeological samples	D. dendriticumand Diphyllobothrium sp. eggs	Côté et al., 2016
86	France (Southern)	Europe	France	600 - 800 AD	sediments from ar-	Ascaris sp., D. dendriticum, F. hepatica and	Côté et al., 2016
87	Guadaloupe	Europe	France	1801 - 1900 AD	sediments from ar-		Côté et al., 2016
88	Raversijde	Europe	Belgium	16th century AD	sediments from latrine	A. lumbricoides eggs	Fernandes et al. 2005
89	Namur, Place d'Armes, (Z04 F128/ Z04 F54/ Z04 F48)	Europe	Belgium	IX - 1828 AD	soil samples from latrines and cesspools	Ascaris sp.,Taenia sp., F. hepatica and Diphyllobothrium sp. eggs	Rocha et al. 2006.
90	Grand square of Nivelles	Europe	Belgium (Nivel- les)	783 cal. AD - 1274 cal. AD	coprolites from burials	A. lumbricoides eggs	Rácz et al. 2015
91	Oslo	Europe	Norway	14th century AD	sample from cesspits	Ascaris sp. eggs	Schia 1979 Apud Jones 1982
92	Hulín	Europe	Czech Republic (Central Mora- via)	1600 - 1500 BC	sediments associates to skeleton	A. lumbricoides and hookworm eggs	Šebela et al. 1990
93	Hradební Street	Europe	Czech Republic (Chrudim)	14th - 18th centuries AD	Sediments (soil sam- ple)	A. lumbricoides, Toxocara canis (or T. cati), D. latum and F. hepaticaeggs	Witenberg 1961
94	Arbon	Europe	Switzerland (Thurgau)	3384 - 3370 BC	sedimens and coproli- tes	Ascaris sp. eggs	Dommelier 2001

95	Basilica of Saint Isidório	Europe	Spain (Léon)	X - XIII AD	mummy	A. lumbricoides eggs	Hidalgo-Argüello et al. 2003
96	Guanche Mummies	Europe	Spain (Canary Islands)	1200 AD cal 750	mummies	A.lumbricoides, E.vermicularis and hook- worms eggs	Jaeger et al 2016
97	Spain	Europe	Spain	5300 BC - 5100 BC	sediments from ar- chaeological samples	Ascaris sp., T. saginata, D. dendriticum and E.vermicularis eggs	Côté et al., 2016
98	Shillourokambos	Europe	Cyprus	8300 - 7000 years BC	sediments associates to human bones (burials)	Ascaris sp., Fasciola sp. and Taenia sp. eggs	Harter-Lailheugue et al. 2005
99	Khirokitia	Europe	Cyprus	8300 - 7000 years BC	sediments associates to human bones (burials)	Ascaris sp., Fasciola sp. and Taenia sp. eggs	Harter-Lailheugue et al. 2005
100	church in Vilnius	Europe	Lithuania	18th - 19th centuries AD	mummies	A. lumbricoides eggs	Morrow et al. 2014
101	Pompeii	Europe	Italy	80 BCE - 79 CE	not available	-	Heirbaut et al 2011
102	Nahal-Mishmar Valley	Asia	Israel (Dead Sea)	1800 years BP	No available	Entamoeba coli, E. histolytica, Giardia lambia and Chilomastix mesnili cysts	Witenberg 1961
103	Acre	Asia	Israel	13th century AD	sediments from latrine	A. lumbricoides and D. latum eggs	Mitchell & Stern 2000
104	Qumran	Asia	Israel (Dead Sea)	100 BCE - 68 CE	soil samples	Ascaris sp. and Taenia sp. eggs	Harter et al. 2004
105	Qumran	Asia	Israel (Dead Sea)	Not available period	soil samples	Ascaris sp., Taenia sp., E. vermicularis and Dicrocoelium sp. eggs	Zias et al. 2006
106	Iran	Asia	Iran	0550 BC - 450 BC	sediments from ar- chaeological samples	Ascaris sp., T. saginata, D. dendriticum and E. vermicularis eggs	Côté et al., 2016
107	Iran	Asia	Iran	0550 BC - 450 BC	sediments from ar- chaeological samples	Ascaris sp., D. Dendriticum and Taeniidae	Côté et al., 2016
108	Chinese mummy (Han Dinasty) Hubei Province	Asia	China	2142 BP	mummy	-	Cheng (1984)
109	Chinese mummy (Han Dinasty)	Asia	China	167 years BC	mummy	-	Chen & Hung 1981
110	Jiangling	Asia	China	2300 years BP	mummy	Clonorchis sinensis eggs	Wen-yuan et al. 1984, Su 1987
111	Phoenix Hill	Asia	China (Hubei Province)	Han dinasty	mummy	-	Yeh & Mitchell 2016
112	Jitan	Asia	China (Jiangsu Province)	Song Dynasty	mummy	-	Yeh & Mitchell 2016
113	Guangzhou	Asia	China (Guangdong Province)	Ming Dynasty	mummy	-	Yeh & Mitchell 2016
114	Yangzhou	Asia	China (Jiangsu Province)	Ming Dynasty	mummy	-	Yeh & Mitchell 2016
115	Fuqing	Asia	China (Fujan Province)	Ming Dynasty	mummy	-	Yeh & Mitchell 2016
116	Longyan	Asia	China (Fujan Province)	Ming Dynasty	mummy	-	Yeh & Mitchell 2016
117	Fuzhou	Asia	China (Fujan Province)	Ming Dynasty	mummy	-	Yeh & Mitchell 2016
118	Xuanquanzhi	Asia	China (Gansu Province)	111 BCE - 109 CE	mummy	-	Yeh & Mitchell 2016

119	Sannai Maruyama site	Asia	Japan (Aomori)	3500 - 6000 BP	sediments of lower	-	Kanehara & Kanehara 1995
120	Fujiwara Palace	Asia	Japan	694 - 710 years AD	Toilet samples	A. lumbricoides, Metagonimus yokogawai and C. sinensis eggs	Matsui et al. 2003
121	Schinchang-dong	Asia	Korea (Gwangju city)	100 years BC	soil sediments	A. lumbricoides eggs	KNM 1997
122	South of the Republic of Korea	Asia	Korea	2000 BC - 1400 AD	sediments to suspected privies	A. lumbricoides, C. sinensis and two uniden- tified species of flukes eggs	Han et al. 2003
123	Yangju	Asia	Korea	15th century AD	mummy	A. lumbricoides e C. sinensis eggs	Seo et al. 2007
124	Gongju (male mummy)	Asia	Korea	17th - early 18th centuries AD	mummy	A. lumbricoides, Paragonimus westermani eggs and Strongyloides stercoralis and Trichostrongylus spp. larvaes	Shin et al 2009
125	Gongju (woman mummy)	Asia	Korea	17th - early 18th centuries AD	mummy	A. lumbricoides, P. westermani and Taenia spp. eggs	Lee et al. 2011
126	Gangneung	Asia	Korea	17th century AD	mummy	-	Lee et al. 2009
127	Medieval tomb (Joseon Dinasty)	Asia	Korea	1755 years AD	sediments associates to human bones (tomb)	-	Oh et al. 2010
128	Seocheon	Asia	Korea	Medieval period	soil samples	-	Seo et al. 2010
129	Waegwan	Asia	Korea	Medieval period	soil samples	C. sinensis eggs	Seo et al. 2010
130	SN 1-2 (Tomb)	Asia	Korea	Medieval period	soil samples	C. sinensis eggs	Seo et al. 2010
131	3-7-1 SN (Tomb)	Asia	Korea	Medieval period	soil samples	-	Seo et al. 2010
132	SN 1-19-1 (Tomb)	Asia	Korea	Medieval period	soil samples	A. lumbricoides eggs	Seo et al. 2010
133	SN 1-19-2 (Tomb)	Asia	Korea	Medieval period	soil samples	A. lumbricoides eggs	Seo et al. 2010
134	HY HM (Tomb)	Asia	Korea	Medieval period	soil samples	A. lumbricoides and Paragonimus westerma- ni eggs	Seo et al. 2010
135	Seoul	Asia	Korea	14th - 19th centuries AD	soil samples	C. sinensis, D. latum and Ascaris sp. eggs	Shin et al 2011
136	Seoul	Asia	Korea	15th - 19th century AD	streambed, alley and gutter samples	Ascaris sp. eggs	Shin et al 2013
137	Jeolla-do	Asia	Korea	19th century AD	soil samples	Ascaris lumbricoides eggs	Kim et al. 2013
138	Hyangyang-ri	Asia	Korea	Bronze age	soil samples	-	Kim et al. 2013
139	Jangheung-eup	Asia	Korea	Bronze age	soil samples	-	Kim et al. 2013
140	Jangheung-gun	Asia	Korea	Bronze age	soil samples	-	Kim et al. 2013
141	Jeollanam-do	Asia	Korea	Bronze age	soil samples	-	Kim et al. 2013
142	Chilgok-gun, Taegu, Gyeongsangbuk	Asia	Korea	668—935 AD (Unified Shilla Dynasty)	sediments to suspected privies	A. lumbricoides, C. sinensis eggs and flukes	Han et at. 2003.
143	Gua-ri 319 (Kingdom of Baekje)	Asia	Korea	6th -7th century AD (Sabi period)	soil samples	C. sinensis and A. lumbricoides eggs	Shin et al 2014

144	Coton ri (Vingdom of	Acio	Voran	6th 7th contury AD	soil samples	C sinancis and A lumbricaidas agas	Ship at al 2014
144	Baekje)	Asia	Kolea	(Sabi period)	son samples	C. smensis and A. tumbricolites eggs	Shift et al 2014
145	Yongin	Asia	Korea	15th - 16th century AD	mummy	A. lumbricoides and Paragonimus westerma- ni eggs	Seo et al., 2014
146	Joseon Tombs	Asia	Korea	17th century AD	mummy	-	Seo et al., 2014
147	Elden Pueblo	North_America	United States	1070 - 1250 AD	soil from latrine	Ascaris sp. eggs	Hevly et al. 1979
148	Newport	North_America	United States	18th century AD	privies	Ascaris sp. eggs	Reinhard et al. 1986b
149	Wilmington	North_America	United States (Delaware)	19th century AD	privies	A. lumbricoides eggs	Fries et al. 1990
150	Williamsburg	North_America	United States	1720 AD	latrine (fecal layer)	A. lumbricoides eggs	Reinhard 1990
151	Fayette	North_America	United States (Michigan)	19th century AD	sediments from privies	-	Faulkner et al. 2000
152	Albany	North_America	United States	1600 - 1700 AD	privies	A. lumbricoides eggs	Fisher et al. 2007
153	San Bernardino	North_America	United States (California)	1880 - 1930 AD	sediments	A. lumbricoides and C. sinensis eggs	Reinhard et al. 2008
154	New Brunswick (New Jersey)	North_America	United States	1790-1899 AD	Sediments from latri- nes	A. lumbricoides eggs	Leles et al. 2010
155	Philadelphia	North_America	United States	Historical period	Sediments	A. lumbricoides eggs	Leles et al. 2010
156	Albany (112 & 114 Sheri- dan)	North_America	United States	ca 1840 - 1860 AD	Privy, wooden vault	A. lumbricoides eggs	Reinhard 2011
157	Albany (116 Sheridan)	North_America	United States	1800 AD - 1890 AD	Privy, barrel	A. lumbricoides eggs	Reinhard 2011
158	Albany (40 Howard Street)	North_America	United States	1830 AD - 1850 AD	not available	A. lumbricoides eggs	Reinhard 2011
159	Caltrans, California	North_America	United States	Not available period	sediment from latrine	A. lumbricoides eggs	Reinhard 2011
160	Five Points, New York	North_America	United States	Not available period	sediment from latrine	A. lumbricoides eggs	Reinhard 2011
161	Frederick Douglas, New York	North_America	United States	Not available period	sediment from latrine	A. lumbricoides eggs	Reinhard 2011
162	Gateway Mall, Pennsylva- nia	North_America	United States	Not available period	sediment from latrine	A. lumbricoides eggs	Reinhard 2011
163	Greenwich Village, New York	North_America	United States	Not available period	sediment from latrine	A. lumbricoides eggs	Reinhard 2011
164	Howard Street, New York	North_America	United States	Not available period	sediment from latrine	A. lumbricoides eggs	Reinhard 2011
165	Luteran Church, Pearl Street, Albany	North_America	United States	1600 - 1700 AD	Sediments from privy or trash pit	A. lumbricoides eggs	Reinhard, 2004; Fisher et al. 2007.
166	Albany (Luteran Church Lot)	North_America	United States	1770 - 1790 AD	not available	A. lumbricoides eggs	Reinhard 2011
167	Pennsylvania (Indenpen- dence Mall 1)	North_America	United States	Not available period	sediment from latrine	A. lumbricoides eggs	Reinhard 2011
168	Pennsylvania (Meadows Site)	North_America	United States	Not available period	sediment from latrine	A. lumbricoides eggs	Reinhard 2011

169	Albany (North of Pearl Street)	North_America	United States	1740 - 1760 AD	privy (surface)	A. lumbricoides eggs	Reinhard 2011
170	Albany (Picotte-DEC)	North_America	United States	1760 AD - 1855 AD	privy	A. lumbricoides eggs	Reinhard 2011
171	Providence, Rhode Island	North_America	United States	Not available period	sediment from latrine	A. lumbricoides eggs	Reinhard 2011
172	Albany (Quackenbush Square)	North_America	United States	ca 1830 AD	sediment from latrine	A. lumbricoides eggs	Reinhard 2011
173	Quackenbush Square, Rhode Island	North_America	United States	Not available period	sediment from latrine	A. lumbricoides eggs	Reinhard 2011
174	Queen Anne Square, Rhode Island	North_America	United States	Not available period	sediment from latrine	A. lumbricoides eggs	Reinhard 2011
175	Raritan Landing, New Jersey	North_America	United States	Not available period	sediment from latrine	A. lumbricoides eggs	Reinhard 2011
176	Ravensford, Carolina do Norte	North_America	United States	Not available period	sediment from latrine	A. lumbricoides eggs	Reinhard 2011
177	Sleepy Hollow, New York	North_America	United States	Not available period	sediment from latrine	A. lumbricoides eggs	Reinhard 2011
178	State Univ. Const.	North_America	United States	1760 AD	sediment from latrine	A. lumbricoides eggs	Reinhard 2011
179	Albany (State Univ. Const. 1/20)	North_America	United States	1800 AD	stone lined privy	A. lumbricoides eggs	Reinhard 2011
180	Albany (State univ. Const. 3)	North_America	United States	ca 1810 AD	stone lined privy	A. lumbricoides eggs	Reinhard 2011
181	Albany (State Univ. Const. 5/9)	North_America	United States	1800 AD	Well, reused as privy	A. lumbricoides eggs	Reinhard 2011
182	Albany (State Univ. Const. 7/38)	North_America	United States	1800 AD	Wooden box privy	A. lumbricoides eggs	Reinhard 2011
183	SUFC Site, New York	North_America	United States	Not available period	sediment from latrine	A. lumbricoides eggs	Reinhard 2011
184	Albany (Troy)	North_America	United States	ca 1870 AD - 1903 AD	sediment from latrine	A. lumbricoides eggs	Reinhard 2011
185	Tweed Courthhouse, New York	North_America	United States	Not available period	sediment from latrine	A. lumbricoides eggs	Reinhard 2011
186	Wheeling Annex, Virginia	North_America	United States	Not available period	sediment from latrine	A. lumbricoides eggs	Reinhard 2011
187	Ferryland	North_America	Canada (Newfoundland)	7th century AD	sediments from privies	Ascaris sp., Taenia sp. and Dicrocoeliumsp. eggs	Horne & Tuck 1996
188	Rio Zape, Durango, Méxi- co	North_America	Mexico	600 AD	coprolite	Ancylostimidae, E. vermicularis, Paragoni- mus sp. and Hymenolepidae eggs	Reinhard 2011
189	Cueva de los Muertos Chiquitos	North_America	Mexico (Du- rango)	1400 AD	coprolites	Echinostoma sp., Hymenolepis sp., Dipyli- dium caninum, A. duodenale and E. vermicu- laris eggs	Jiménez et al. 2012
190	Gentio II Cave	South_America	Brazil (Unaí)	3.490 ± 120 BP - 430 ± 70 BP	coprolites	Necator americanus eggs and larvae of nematodes	Ferreira et al. 1980
191	Gentio II Cave	South_America	Brazil (Unaí)	1600 BC	mummy	-	Ferreira et al. 1983
192	Boqueirão Soberbo	South_America	Brazil	$\begin{array}{c} 4905\pm85\text{ - }1325\pm60\\ BP\end{array}$	human coprolite (problable)	-	Ferreira et al. 1982, Gonçalves et al. 2003, Leles et al. 2008

193	Itacambira	South_America	Brazil	Colonial period	human coprolite (problable)	Adult trichurid	Araújo et al. 1984, Bianucci et al. 2015
194	Furna do Estrago	South_America	Brazil	2000 years BP	coprolites	-	Ferreira et al. 1989
195	Lapa Pequena	South_America	Brazil	8000 - 7000 BP	human coprolite	-	Gonçalves et al. 2003, Leles et al. 2008
196	Santa Elina	South_America	Brazil	4000 - 2000 BP	human coprolite	-	Gonçalves et al. 2003
197	Pedra Furada	South_America	Brazil	Not available period	problable human coprolite	-	Gonçalves et al. 2003
198	Cubatão I	South_America	Brazil	2460 - 2620 years BP	sediments associates to human bones (burial)	-	Leles 2010
199	Praça XV Cemetery	South_America	Brazil	18th - 19th centuries AD	sediments samples to individuals buried	A. lumbricoides and Taenia sp. eggs and E. vermicularis aDNA	Jaeger et al. 2013a , Jaeger & Iñiguez 2014
200	Nossa Senhora do Carmo Church	South_America	Brazil	16th - 19th centuries AD	sediments associates to human bones (burials)	A. lumbricoides eggs	Jaeger et al. 2013b
201	Lapa do Barreirinho I	South_America	Brazil	7755 ± 80 BP (SI- 5512)	coprolite		Confalonieri 1988
202	Orejas de Burro 1	South_America	Argentina	3720 - 3978 years cal BP	sediments associates to human bones (burial)	Capillaria sp. eggs and Eimeria macusani- ensis oocysts	Fugassa & Barberena 2006
203	El Potrero de Santa Lucía	South_America	Argentina	Bronze age	sediments	-	Pau et al. 2005
204	Nombre de Jesús	South_America	Argentina	16th century AD	sediments	Eimeria sp. cysts	Fugassa & Guichón 2006, Fugassa et al. 2006
205	El Plomo	South_America	Chile (Santiago)	450 AD	mummy	-	Pizzi & Schenone 1954
206	Lluta valley	South_America	Chile	Inca conquest	coprolites	E. vermicularis, D. pacificum and Hyme- nolepis nana eggs	Santoro et al. 2003
207	Tulán, San Pedro de Atacama	South_America	Chile	1080 - 950 BC	problable human coprolite	E.vermicularis and Trichostrongylus spp. eggs	Gonçalves et al. 2003
208	Pre - columbian mummy	South_America	Peru	Colonial period (Mur- ga Culture)	mummy	-	Fouant et al. 1982
209	San Geronimo archaeolo- gical site	South_America	Peru	1020 - 1156 AD (Chiribaya culture)	coprolite	-	Martinson et al. 2003

5.2) ARTIGO 2

Modelagem de Cenários Paleoepidemiológicos da Infecção por *Trichuris trichiura* no Brasil Pré-Colonial: oportunidades, desafios e perspectivas

Alexandre Fernandes¹, Diogo Souza Bezerra Rocha², Marinez Ferreira de Siqueira², Alena Mayo Iñiguez¹+

¹LABTRIP, Instituto Oswaldo Cruz - Fiocruz, Av Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brasil

²Unidade de Botânica Sistemática, Instituto de Pesquisa Jardim Botânico, Rua Pacheco Leão, 915, 22460-030, Rio de Janeiro, RJ, Brasil

+Corresponding author: alena@ioc.fiocruz.br

RESUMO

Trichuris trichiura é um nematódeo de ciclo monóxeno, caracterizado por parasitar especificamente o ser humano, quando da ingestão de água e alimentos contaminados com seus ovos que, liberados nas fezes, tornam-se viáveis em ambientes que apresentem condições ideais de temperatura e umidade. Tem caráter de distribuição geográfica mundial, infectando cerca de 1 bilhão de pessoas em 118 países, principalmente na Ásia, África e América Latina. O estudo de sua paleodistribuição é importante pois também contribui para uma melhor compreensão da origem e dispersão humana pelo globo. A paleodistribuição da tricuríase conta, até o momento, com 209 ocorrências em todo o globo, cujas datações vão desde o Paleolítico até o período Contemporâneo. Apenas 12 foram descritas para o território brasileiro. O número de evidências paleoparasitológicas no Brasil é ainda muito limitado, principalmente quando se pensa numa infecção parasitária de origem filogenética que foi introduzida no continente junto com seu hospedeiro humano durante o povoamento das Américas. Nesse sentido, foram utilizadas ferramentas de geoprocessamento e de Modelagem de Distribuição de Espécies (MDE) para verificar a possibilidades de proposição de cenários paleoepidemiológicos e como potencial instrumento de prospecção de sítios para estudos paleoparasitológicos brasileiros, sinalizando as localidades que apresentam as maiores oportunidades para o encontro de T. trichiura.

INTRODUÇÃO

Trichuris trichiura é um nematódeo pertencente ao gênero *Trichuris* (Roederer 1761), caracterizado por parasitar especificamente a espécie humana, desenvolvendo junto a ela um ciclo monóxeno (REY, 2008; HAWASH et al., 2016). Seus ovos, eliminados juntos às fezes do hospedeiro, necessitam de condições ideais de temperatura e umidade para que se tornem infectantes (NEVES; MELO; LINARDI, 2005). O modo de transmissão fecal-oral é decisivo à medida que as possibilidades de transmissão e dispersão de *T. trichiura* e sua distribuição pelo globo estão condicionadas à precariedade dos modos de vida adotados pelas pessoas, que geralmente habitam em condições de miséria. Diversos trabalhos têm destacado quea ausência ou precariedade das condições mínimas de saneamento fazem com que o parasita apresente um caráter de distribuição geográfica mundial, atingindo cerca de 1 bilhão de pessoas em 118 países, principalmente na Ásia, África e América Latina (STEPHENSON; HOLLAND; COOPER, 2000; DE SILVA et al., 2003; BOATIN et al., 2012; UTZINGER, 2012; CUTILLAS et al., 2014; PULLAN et al., 2014b; CALLEJÓN et al., 2015; CDC, 2017; JOURDAN et al., 2017).

O estudo da paleodistribuição de *T. trichiura* encontra respaldo na sua importância para a compreensão da própria origem e dispersão humana pelo globo (ARAUJO et al., 2008). Com isso, faz-se necessário o uso de conceitos da Paleoparasitologia para o melhor entendimento das ocorrências da tricuríase em diferentes momentos pré-históricos e históricos da humanidade. Essa ciência que investiga os parasitos (e seus vestígios) em materiais arqueológicos e paleontológicos como coprólitos, restos esqueletais ou mesmo sedimentos orgânicos etem proporcionado um novo entendimento a respeito da distribuição geográfica e temporal de diversos endo e ectoparasitos, além das condições de saúde ou mesmo a dieta e o estilo de vida do homem ancestral (FERREIRA LF; ARAÚJO A; CONFALONIERI UEC, 1979, 1988). Revisões pioneiras acerca da paleodistribuição de T. trichiura têm demonstrado a extensão das ocorrências e o quão antigo foram os casos da tricuríase no Brasil e no mundo (GONÇALVES; ARAUJO; FERREIRA, 2003; LELES, 2010b). Até o momento, 209 ocorrências já foram registradas em todo o globo das quais apenas 12 foram descritas para o território brasileiro, com datações desde o Paleolítico até o período Contemporâneo (FERNANDES; INIGUEZ, 2017). O número de evidências paleoparasitológicas no Brasil é ainda muito pequeno, principalmente quando se pensa numa infecção parasitária de origem filogenética que foi introduzida no continente junto com seu hospedeiro humano durante o povoamento da América. Considerando o número de sítios arqueológicos registrados no país de um total de 25.109 registros, de acordo com o banco de dados do IPHAN, (consultado até agosto de 2016) e as ferramentas de geoprocessamento e de Modelagem de Distribuição de Espécies (MDE), nós hipotetizamos que seria possível propor cenários paleoepidemiológicos para discutir a infecção no passado e consequentemente, funcionar como instrumento de prospecção de sítios para estudos paleoparasitológicos. A proposta de uma modelagem para estabelecer uma paleodistribuição de *T. trichiura* no Brasil poderá contribuir ainda mais para o entendimento de como essa enfermidade acometeu seus antigos habitantes e os processos ecológicos e culturais envolvidos. Entretanto, faz-se necessária uma metodologia que potencialize as chances em se encontrar sítios positivos. E é nesse escopo que esse trabalho se apresenta com a perspectiva de uma maior compressão da dinâmica da infecção e propositiva em indicar que localidades do Brasil apresentam as maiores oportunidades para o encontro e estudo do parasito.

De maneira geral, define-se MDE como um processamento computacional que combina dados de ocorrência de uma ou mais espécies e variáveis ambientais para a construção de um modelo representativo das condições por elas requeridas (ANDERSON; LEW; PETERSON, 2003). As MDEs são, por alguns autores, denominadas Modelagens Preditivas. Pretende-se, com isso, resolver o problema do uso de termos como Modelagem de Distribuição Geográfica e Modelagem de Nicho Ecológico, nomenclaturas que têm sido amplamente utilizadas na literatura científica, ora como sinônimos, ora como definições para entidades distintas, causando grande confusão conceitual (AUSTIN, 2002; SOBERON; PETERSON, 2005; GIANNINI et al., 2012). Uma MDE é a construção de um modelo que representa a distribuição geográfica de uma dada espécie. Tal distribuição depende das condições ambientais de uma região, por meio de análises de dados ambientais como tipos de vegetação, condições climáticas, ocorrências de populações, entre outros. O nicho ecológico, como proposto por Grinnell, representa o conjunto de condições ambientais necessárias para que ela viva e se reproduza em uma determinada área (SOBERÓN, 2007). Em outras palavras, pode-se dizer que o conjunto de regiões acessíveis para as espécies nas quais ambas as condições abióticas e bióticas são favoráveis para a manutenção de populações, e na qual as populações têm condições de se dispersar, refletirá suas distribuições geográficas (PETERSON et al., 2011).

Qualquer modelagem consiste em construir uma representação de comportamento ou de características de um processo (RUSSELL; NORVIG, 2004). Ela tem como objetivo extrair a melhor explicação para um conjunto de dados e representá-la de forma precisa e compacta. Quando um modelo também consegue representar exemplos do processo que não

foram usados em sua construção, o modelo tem alta capacidade de generalização e pode ser utilizado, posteriormente, para fazer predições (RODRIGUES, 2012).

O caráter de modelagem preditiva das MDEs tem permitido a sua aplicação nas análises de distribuição geográfica de determinadas espécies, a partir de extrapolações das características ambientais dos locais conhecidos de ocorrência das mesmas (GIANNINI et al., 2012). O interesse por esse tipo de modelagem se dá devido a grande capacidade em gerar rapidamente modelos capazes de responder, por exemplo, às perguntas correlacionadas a identificação de ameaças enfrentadas por uma determinada espécie, em seu local de ocorrência. Os modelos preditivos também podem ser trabalhados com o objetivo de responder a diversas questões do passado. Cada um dos modelos passa, com isso, a ter um caráter de Paleo-Modelagem de Distribuição do nicho modelado, cuja sigla é Paleo-MDE (VARELA; LOBO; HORTAL, 2011).

As técnicas de Paleo-MDEs são compostas por uma variedade de procedimentos matemáticos capazes de correlacionar os dados geográficos de ocorrência de uma espécie a um conjunto de variáveis ambientais espacialmente definidas (GUISAN; ZIMMERMANN, 2000; FRANKLIN et al., 2009). Os algoritmos, definidos como sequências finitas de comandos, executados por meio de códigos escritos em uma linguagem computacional (THOMAS H. CORMEN, CHARLES E. LEISERSON, RONALD L. RIVEST, 2002), são partes integrantes dessas metodologias. Estes podem ser classificados em 3 grupos básicos: (I) aqueles baseados no ajustamento estatístico dos dados ambientais e os de ocorrência de uma espécie de modo que possam ser correlacionados, teoricamente (exemplo: GLM e Maxent); (II) conjunto técnicas de aprendizado de máquina, capazes de detectar padrões espaciais complexos nos dados observados, sem assumir qualquer distribuição de probabilidade subjacente (exemplo: GARP) e: (III) conjunto de técnicas baseadas na teoria dos conjuntos, que utilizam apenas informações provenientes dos dados de ocorrência observados (exemplo: Bioclim), não exigindo a inclusão de dados de ausência, necessários para a aplicação dos dois grupos de técnicas anteriores (VARELA; LOBO; HORTAL, 2011).

MATERIAIS E MÉTODOS

Esse trabalho visou à construção de cenários paleoepidemiológicos de *T. trichiura* no Brasil pré-colonial, por meio do uso de informações das ocorrências arqueológicas georreferenciadas do parasito, descritas na literatura (Inclusive Fernandes A & Iñiguez AM, 2017, in press), utilizando uma análise multidisciplinar com aportes da Paleoparasitologia, do geoprocessamento e da construção de Paleo-MDEs.

No presente trabalho, foram utilizadas variáveis preditoras do WorldClim, equivalentes ao período do Ótimo Climático (Holoceno Médio ~ 6000 anos) e do EcoClimate (Pré-industrial – 1760 anos), além dos dados geográficos das ocorrências arqueológicas de *T. trichiura* em diversas regiões do globo, além dos algoritmos Bioclim, SVM, RF e Maxent. Foram escolhidos preditores cuja ação pode interferir na fisiologia ou na manutenção do ciclo biológico de *T. trichiura* (KEARNEY; PORTER, 2009). Além disso, foi evitado o uso de variáveis preditoras altamente correlacionadas, conforme recomendado pela literatura (GUISAN; THUILLER, 2005). Para o emprego dos algoritmos foi necessária a criação de pseudoausências, valores selecionados aleatoriamente nas áreas onde *T. trichiura* não foi registrado ou que apresentaram, a priori, condições ambientais de ocorrência inadequadas, método esse comumente empregado em trabalhos semelhantes (FERRIER; WATSON, 1997; ZANIEWSKI; LEHMANN; OVERTON, 2002; ENGLER; GUISAN; RECHSTEINER, 2004; LOBO; VERDU; NUMA, 2006).

Construção do banco de dados por meiode Sítios Arqueológicos

O banco de dados de sítios arqueológicos fornecido pelo Cadastro Nacional de Sítios Arqueológicos (CNSA), obtido no dia 07/08/2016, foi utilizado para identificar todos os registros contendo informações sobre Tradições que são grupos de elementos ou técnicas com persistência temporal produzidos pelos humanos (SOUZA, 1997; IPHAN, 2009) Foram considerados apenas aqueles classificados no banco como pertencentes ao período pré-colonial. As Tradições foram identificadas de acordo com as divisões e subdivisões propostas por Alfredo Mendonca de Souza (SOUZA, 1997). O banco de dados do CNSA possui 25.109 registros, cada um deles com até 199 atributos (colunas) preenchidos (Figuras 4 e 5).

Os dados geográficos dos sítios arqueológicos com informações de Tradições foram identificados por meio da análise do conteúdo dos atributos PC_Zona, PC_E, PC_N, Perímetro_1_Zona, Perímetro_1_E, Perímetro_1_N, Perímetro_2_Zona, Perímetro_2_E,

Perímetro_2_N, Perímetro_3_Zona, Perímetro_3_E, Perímetro_3_N, Perímetro_4_Zona, Perímetro_4_E, Perímetro_4_N, Datum que, quando disponíveis, foram padronizados para latitude e longitude (em graus decimais), no Sistema geodético mundial WGS84, utilizando a ferramenta de conversão do speciesLink. Foram selecionados todos os registros com coordenadas geográficas cujo valor foi descrito como VERDADEIRO no campo de atributo Pré colonial, em um total de 4034 registros.

Uma nova filtragem foi aplicada para a identificação de cada uma das Tradições précoloniais, considerando informações dos seguintes atributos: Lítico lascado, Lítico polido, Sobre material orgânico, Cerâmico, Sobre concha, Outros líticos, Artefatos industriais, Pintura, Gravura, Ausente arte rupestre, Outros materiais orgânicos, Outros materiais inorgânicos, Tradições artefatos líticos, Fases artefatos líticos, Complementos artefatos líticos, Outras artefatos líticos, Tradições artefatos cerâmicos, Fases artefatos cerâmicos, Complementos artefatos cerâmicos, Outras artefatos cerâmicos, Tradições arte rupestre, Estilos arte rupestre, Complementos arte rupestre, Outras arte rupestre. A partir dessa filtragem foram obtidos 2606 registros, contendo informações das seguintes Fases/Tradições: Umbu, Itaparica, Serranópolis, Arte rupestre, Humaitá, Sambagui, Itaipu,

Una, Hachurado-Zonada, Periperi, Borda incisa, Paredão/Guarita, Policroma, Vieira, Taquara, Corrugada, Marajoara, Subtradição Pintada, Aratu, Itararé, Inciso-Ponteada, Sapucai, Uru, Tupinambá, Maracá, Planalto, Sambaqui e Tupiguarani (Figura 1).

Figura 1: Diagrama metodológico de construção do banco de dados dos registros précoloniais

Os registros identificados foram utilizados na construção de uma linha do tempo contendo as faixas temporais de ocupação das seguintes Tradições, de acordo com os registros do CNSA: Umbu; Itaparica; Serranópolis; Arte Rupestre; Humaitá; Sambaqui; Itaipu; Una; Hachurado-Zonada; Tupiguarani; Borda Incisa; Paredão/Guarita; Policroma; Vieira; Taquara; Corrugada; Marajoara; Subtradição Pintada; Aratu; Itararé; Inciso-Ponteada; Sapucaí; Uru e Tupinambá. Os sítios arqueológicos pré-coloniais positivos para *T. trichiura* também estão dispostos na linha do tempo. Essa linha do tempo teve suas datas ajustadas para o presente uma vez que não foi manipulada com a utilização do software TimelineMaker. O ajuste das datas seguiu a proposta de Corrêa, descrita em 2017 (CORRÊA, 2017).

Construção da Paleo-MDE do Holoceno Médio

Para a produção das Paleo-MDEs do Holoceno Médio foram selecionados 30 registros paleoparasitológicos positivos para *T. trichiura* do banco de dados mundial, com datações anteriores *a* 2000 anos AP, ou seja, congruentes com a datação dos variáveis preditoras do WorldClim (HIJMANS et al., 2005; FERNANDES; IÑIGUEZ, 2017). AsPaleo-MDEs geradas foram selecionadas, de acordo com valores estatísticos descritos a seguir, projetadas no território brasileiro e depois reunidos, através do uso de média artimétrica, em uma projeção combinada (*ensemble forecasting*). Essa projeção combinada foi posteriormente comparada aos locais de ocorrência geográfica das Tradições identificadas durante o esquema de filtragem dos dados pré-coloniais.

A escolha das variáveis preditoras obedeceu aos seguintes critérios: (1) sua correlação com o ciclo biológico do parasito; (2) a datação equivalente às dos sítios arqueológicos positivos para *T. trichiura* e; (3) o baixo índice de valores de correlação entre elas, com o objetivo de evitar a multicolinearidade. As variáveis preditoras paleoclimáticas utilizadas para a criação das Paleo-MDEs para *T. trichiura* do Holoceno Médio foram Bio 05: Temperatura máxima do mês mais quente, Bio 06: Temperatura mínima do mês mais frio, e Bio 12: Precipitação Anual, provenientes do Sistema de modelos climáticos canadense CCSM4 e depositadas no WorldClim 1.4 (DANABASOGLU et al., 2012). O CCSM4 é um sistema que agrega e permite a manipulação simultânea de modelos da atmosfera terrestre, da superfície terrestre, dos oceanos, e do gelo marinho, possibilitando aos pesquisadores a realização de pesquisas em diferentes momentos do passado, presente e futuro do planeta.

Os algoritmos Bioclim, Maxent, Random Forest e SVM, foram utilizados para a produção do modelo de predição (CORTES; VAPNIK, 1995; TIN KAM HO, 1998; ELITH et al., 2006, 2011; HIJMANS; GRAHAM, 2006; MEROW; SMITH; SILANDER, 2013) e as análises foram feitas em ambiente R (R DEVELOPMENT CORE TEAM, 2014).

A quantificação dos erros produzidos por cada algoritmo foi necessária para a avaliação do modelo. O índice TSS foi utilizado para como métrica de desempenho. A TSS significa a Taxa de acerto de presença e taxa de acerto de ausência. Apresenta valores entre 0 e 1 dos quais os valores acima de 0,6 são considerados bons modelos. Valores de TSS entre 0,2 e 5,9 são regulares e abaixo de 0,2, ruins e não devem ser considerados. Os modelos de projeção combinada apresentaram valores de TSS iguais ou maiores que 0,7. Outros parâmetros, como A AUC e a Taxa de omissão foram considerados.

O processo de pós-modelagem está representado pela produção de uma projeção combinada, empregada ao final da seleção dos algoritmos estatisticamente significativos, ou seja, com valores de TSS menores que 0,7, com o objetivo de aumentar a confiabilidade do estudo (ARAUJO; NEW, 2007; GIANNINI et al., 2012). Essa metodologia consiste na criação de um modelo de consenso em que as áreas de alta adequabilidade sejam as áreas em que todos ou a maioria dos modelos indicaram como sendo propícias para a ocorrência de *T. trichiura*. Os mesmos procedimentos de avaliação estatística e pós-modelagem foram empregados na produção dos modelos do Período Pré-Industrial (1760).

Construção das Paleo-MDEs do Período Pré-industrial (1760)

Uma vez que alguns registros arqueológicos positivos para *T. trichiura* distam muito temporalmente do Holoceno Médio, fez-se uso das variáveis preditoras do EcoClimate, cuja datação é referente ao ano de 1760, nomeados pelo banco de dados como Período Pré-Industrial. Para isso, foram escolhidos 158 registros paleoparasitológicos positivos para *T. trichiura* do banco de dados mundial, com datações entre 2000 a 1500 anos AP, temporalmente equivalentes à datação das variáveis preditoras paleoclimáticas utilizadas do EcoClimate (LIMA-RIBEIRO, 2015; FERNANDES; IÑIGUEZ, 2017). As mesmas variáveis preditoras climáticas utilizadas na construção da MDE do Holoceno Médio foram empregadas nessa modelagem. Entretanto, como mencionado, as do Ecoclimate se diferenciam por serem temporalmente mais recentes que as do WorldClim, além de diferir no Sistema de modelos climáticos: o Ecolimate utiliza o modelo climático CMPI5/PMIP3 (BRACONNOT et al., 2011, 2012; LIMA-RIBEIRO, 2015). Os mesmos algoritmos e o ambiente R utilizados na modelagem anterior foram aplicados para a produção dos Paleo-MDEs, conforme o proposto na literatura (CORTES; VAPNIK, 1995; TIN KAM HO, 1998; ELITH et al., 2006, 2011;

HIJMANS; GRAHAM, 2006; MEROW; SMITH; SILANDER, 2013; R DEVELOPMENT CORE TEAM, 2014).

Um segundo grupo de Paleo-MDEs do Período Pré-Industrial (1760) foi construído, somando-se a esse as variáveis preditoras diretamente correlacionadas ao solo sendo elas o percentual de silte e de argila e o pH em H₂0 e KCl, a uma profundidade de 2m As informações do solo foram obtidas por meio do SoilGrids e suas resoluções ajustadas para se tornarem equivalentes às do Ecoclimate ("SoilGrids", 2017).

RESULTADOS

Construção do banco de dados de Sítios Arqueológicos

No total, 9461 registros do banco de dados das Tradições tiveram as suas coordenadas geográficas recuperadas e puderam ser georreferenciados. Os registros que contiveram informações incorretas das coordenadas geográficas não puderam ser plotados. O conjunto de registros georreferenciados delimitados pelo território brasileiro (ou seja, aqueles que continham os valores corretos das coordenadas geográficas) foi organizado em um novo banco de dados, contendo 8533 registros. Em seguida, extraiu-se o conjunto considerando apenas os dados pré-coloniais, para um total de 6183 registros. Desses, 4304 registros continham informações sobre as Tradições culturais e 2606 registros puderam ser categorizados. Esses registros foram utilizados na construção da linha do tempo das Tradições (Figura 2).

Figura 2. Linha do tempo contendo informações temporais das Tradições. (1) Umbu; (2) Itaparica; (3) Serranópolis; (4) Arte Rupestre; (5) Humaitá; (6) Sambaqui; (7) Itaipu; (8) Una; (9) Hachurado-Zonada; (10) Tupiguarani; (11) Borda Incisa; (12) Paredão/Guarita; (13) Policroma; (14) Vieira; (15) Taquara; (16) Corrugada; (17) Marajoara; (18) Subtradição Pintada; (19) Aratu; (20) Itararé; (21) Inciso-Ponteada; (22) Sapucaí; (23) Uru; (24) Tupinambá. As Tradições 1, 2, 3, 4, 5, 6, 7, 8 e 9 foram utilizadas nas modelagens do Holoceno Médio; As Tradições 1, 4, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, e 19, para o Período Pré-Industrial; As Tradições de 20 a 24, embora identificadas, não foram utilizadas. A linha do tempo teve suas datas ajustadas para o presente uma vez que não foi manipulada com a utilização do software TimelineMaker. O ajuste das datas seguiu a proposta de Corrêa, descrita em 2017 (CORRÊA, 2017)
Construção das Paleo-MDEs do Holoceno Médio

Foi feito o modelo de nicho da espécie utilizando a informação ambiental associada dos 209 pontos de ocorrência confirmados em todo o mundo (Figura 3), obtidos através de um trabalho de revisão (FERNANDES; IÑIGUEZ, 2017). Foram utilizados 30 desses pontos mundiais de ocorrência, datados dos períodos Paleolítico/Mesolítico, Neolítico e Bronze/Ferro. Os sítios arqueológicos brasileiros utilizados nas nessas modelagens foram: Lapa Pequena, Lapa do Barreirinho I, Boqueirão Soberbo e Santa Elina. Esses modelos foram projetados no Brasil com o intuito de indicar a extensão das possíveis áreas de ocorrência de *T. trichiura* em diferentes períodos pré-históricos, com base nos percentuais de adequabilidade.

Figura 3. Paleodistribuição de *T. trichiura*. Modificado de Fernandes e Iñiguez, 2017 (FERNANDES; IÑIGUEZ, 2017).

A tabela 1 apresenta os valores de acurácia obtidos para cada uma das partições geradas pelos algoritmos empregados no estudo. Os resultados do Bioclim e Maxent (um de cada), além de todos os produzidos pelos algoritmos Random Forest SVM foram utilizados para a composição do *ensemble* (Figura 4)

Algoritmo	Partição	TSS	AUC	Índice de omissão
Bioclim	1	0,58	0,76	0,00
Bioclim	2	0,38	0,71	0,00
Bioclim	3	0,88	0,99	0,24
Maxent	1	0,77	0,93	0,24
Maxent	2	0,59	0,82	0,02
Maxent	3	0,88	0,97	0,37
Random Forest	1	0,99	1,00	0,09
Random Forest	2	0,89	0,89	0,00
Random Forest	3	0,99	1,00	0,11
SVM	1	0,88	0,98	0,01
SVM	2	0,89	0,99	0,01
SVM	3	0,88	0,97	0,01

Tabela 1: Valores de acurácia dos algoritmos para a criação da projeção combinada do Holoceno Médio aplicado ao terrirório brasileiro

Figura 4: Paleo-MDE para a distribuição de *T. trichiura* no Brasil, durante o Holoceno Médio. Os triângulos roxos referem-se a sítios arqueológicos sabidamente positivos para *T. trichiura*

O modelo apresentou um maior percentual de adequabilidade localizado nas regiões sudeste e sul do país (Figura 4). Além disso, aponta para uma região de adequabilidade superior a 40% nas regiões oeste e noroeste do estado do Amazonas. Partes de Roraima e do Amapá também contém localidades com valores de adequabilidade semelhantes.

Construção das Paleo-MDEs do Período Pré-Industrial (1760)

O modelo de nicho obtido da paleodistribuição de *T. trichiura* também foi empregado na construção das Paleo-MDEs do Período Pré-industrial, que diferem entre si pelo emprego das variáveis preditoras do solo na segunda modelagem. Foram utilizados 158 pontos de ocorrência mundial de *T. trichiura*, datados entre 2000 a 1500 anos AP, além dos sítios arqueológicos Boqueirão Soberbo e Gruta do Gentio II, em ambos modelos. A figura 5 corresponde à projeção combinada dos algoritmos estatisticamente significativos (tabela 2). O mesmo racional foi empregado para a produção da projeção combinada que utilizou as variáveis preditoras do solo (Figura 6) e cujos valores estatísticos estão dispostos na tabela 3.

Figura 5: Paleo-MDE para a distribuição de *T. trichiura* no Brasil, durante o Período Pré-Industrial (1760). Os triângulos roxos referem-se a sítios arqueológicos sabidamente positivos para *T. trichiura*.

Algoritmo	Partição	TSS	AUC	Índice de omissão
Bioclim	1	0,64	0,87	0,00
Bioclim	2	0,70	0,89	0,00
Bioclim	3	0,54	0,84	0,00
Maxent	1	0,74	0,94	0,00
Maxent	2	0,92	0,99	0,30
Maxent	3	0,77	0,95	0,02
Random Forest	1	0,92	0,99	0,02
Random Forest	2	1,00	1,00	0,87
Random Forest	3	0,93	0,98	0,00
SVM	1	0,92	0,97	-0,02
SVM	2	1,00	1,00	0,50
SVM	3	0,94	0,99	0,02

Tabela 2: Valores de acurácia de cada uma das partições geradas pelos algoritmos para a criação da projeção combinada Pré-Industrial (1760), representada pela figura 5.

Figura 6: Paleo-MDE para a distribuição de *T. trichiura* no Brasil, durante o Período Pré-Industrial (1760), considerando as variáveis do solo. Os triângulos roxos referem-se a sítios arqueológicos sabidamente positivos para *T. trichiura*.

Algoritmo	Partição	TSS	AUC	Índice de omissão
Bioclim	1	0,70	0,91	0,00
Bioclim	2	0,67	0,90	0,00
Bioclim	3	0,60	0,85	0,00
Maxent	1	0,86	0,97	0,01
Maxent	2	0,84	0,96	0,00
Maxent	3	0,88	0,98	0,07
Random Forest	1	0,97	1,00	0,01
Random Forest	2	0,92	0,99	0,00
Random Forest	3	0,97	1,00	0,02
SVM	1	0,97	1,00	0,03
SVM	2	0,92	0,97	0,00
SVM	3	0,97	0,98	0,00

Tabela 3: Valores de acurácia de cada uma das partições geradas pelos algoritmos para a criação da projeção combinada Pré-Industrial (1760), considerando as variáveis de solo.

Paleo-MDEs de T. trichiura durante o Holoceno Médio e o período Pré-Industrial (1760)

O modelo consenso de adequabilidade para a ocorrência de *T. trichiura* durante o Holoceno Médio demonstra a ocorrência de 5 sítios arqueológicos positivos para o helminto em regiões com percentual de adequabilidade superiores a 41% (Figuras 7 e 8). São eles: Boqueirão Soberbo, Barreirinho I, Gruta do Gentio II e Lapa Pequena, na região sudeste e Cubatão I, na região sul. Os sítios Furna do Estrago e Pedra Furada, localizados na região nordeste e Santa Elina, na região centro-oeste, ficaram localizados em regiões de adequabilidade inferiores a 10%. As ocorrências de cada uma das Tradições são descritas a seguir, juntamente com a Paleo-MDE de *T. trichiura* para o Holoceno Médio.

Umbu

O padrão da distribuição geográfica dos sítios arqueológicos Umbu é, essencialmente, constituído de ocorrências nas regiões sudeste e sul do país. São as regiões que apresentam os maiores valores de adequabilidade, dispostos entre 51 a 100%, durante o Holoceno Médio (Figura 7). Dois sítios arqueológicos localizados fora dessa região (os sítios denominados Topo Pastagem Assunção I e II, situados em Mato Grosso), apresentaram os menores valores de adequabilidade, durante o período.

Itaparica

Os sítios arqueológicos da Tradição Itaparica apresentam um padrão de distribuição geográfico que se estende da região centro-oeste até as regiões nordeste e sudeste. Os sítios arqueológicos RCU-07 A (localizado em Goiás), Barranca, Cristais Lontra, Nelore e Antônio de Paula (Minas Gerais) são os únicos dessa tradição com percentuais de adequabilidade a partir de 31%.

Serranópolis

O único sítio arqueológico da Tradição Serranópolis identificado nesse estudo (denominado Rio Bezerra I) está localizado em uma região de baixa adequabilidade.

Arte Rupestre

A grande maioria dos sítios arqueológicos identificados nesse estudo como possuidores de arte rupestre estão localizado na região nordeste do país. A maior parte deles não ocorreu em áreas com altos valores de adequabilidade uma vez que o modelo consenso aponta serem as regiões sudeste e sul àquelas que apresentam esses valores.

Humaitá

A distribuição geográfica dos sítios arqueológicos Humaitá é congruente com as áreas com maiores percentuais de adequabilidade do modelo consenso durante o Holoceno.

Sambaqui

O modelo do Holoceno Médio aponta que apenas 04, dos 60 sambaquis identificados nesse estudo, foram localizados em regiões de baixa adequabilidade. São eles: Sítios 03 e 17 (Ceará) PA-JO-58-Araçar (Pará), Lagoa Bonita 06/Morro do Mutum (Espirito Santo) e Ponte de Pedra 2 (Mato Grosso).

Itaipu

Todos os 04 sítios arqueológicos da Tradição Itaipu identificados (Chapada do "A" IV, Limeira e Ponta de Ubu III e V) localizaram-se próximo às regiões de adequabilidade superiores a 51%, ao serem observados junto à projeção combinada do Holoceno Médio (Figura 8).

Una

Todos os 5 sítios arqueológicos da Tradição Una estão localizados na região Sudeste (Minas Gerais e Rio de Janeiro) e estão localizados dentro da região com altos valores de adequabilidade

Hachurada-Zonada

O único sítio arqueológico da Tradição Hachurada-Zonada, o PA-JO-61 Jutaizinho, está localizado em uma região de baixa adequabilidade da projeção combinada do Holoceno Médio.

Tupiguarani

Os sítios Tupiguarani identificados apresentam uma distribuição por todas as regiões do Brasil, concentrando-se mais nas regiões nordeste, sudeste e sul. Muitos desses sítios, portanto, estão em áreas com valores de adequabilidade superiores a 51%, considerando o período do Holoceno Médio.

Figura 7: Distribuições geográficas dos sítios arqueológicos das Tradições Umbu, Itaparica, Serranópolis, Arte Rupestre, Humaitá e Sambaqui, durante frente à projeção combinada do Holoceno Médio.

Figura 8: Distribuições geográficas dos sítios arqueológicos das Tradições Itaipu, Uma, Hachurado-Zonada e Tupiguarani, durante frente à projeção combinada do Holoceno Médio. Os triângulos roxos representam os sítios positivos para *T. trichiura*. Os triângulos pretos, os sítios arqueológicos, identificados de acordo com as Tradições.

Os modelos consensos de adequabilidade para a ocorrência de T. trichiura durante o período Pré-Industrial (1760) foram empregados para as análises junto às Tradições temporalmente próximas ao período. Dois sítios arqueológicos positivos para o helminto também foram utilizados nessa abordagem: Boqueirão Soberbo e Gruta do Gentio II. Altos valores de adequabilidade ocorreram apenas em três grandes áreas da projeção combinada: no sul de Minas Gerais; entre os estados de Paraná e Santa Catarina, e no sul do Rio Grande do Sul. As figuras 9,10 e 11 representam as distribuições geográficas de diferentes Tradições, frente à projeção combinada do período. As ocorrências de cada uma das Tradições são descritas a seguir, juntamente com a Paleo-MDE de *T. trichiura*.

Umbu

Cinco sítios arqueológicos localizados na divisa entre Mato Grosso do Sul e São Paulo (Córrego do Macaco 1, Córrego da Jacutinga 1,2 e 3 e sítio Caluê) ocorreram em áreas de baixo percentual de adequabilidade, quando observada a modelagem dessa Tradição junto ao modelo consenso Pré-Industrial (Figura 9).

Borda Incisa

Muitos sítios dessa cultura foram situados em regiões de baixa adequabilidade.

Paredão/Guarita

Todos os 16 sítios arqueológicos classificados como Paredão/Guarita localizaram-se em áreas de baixa adequabilidade.

Policroma

O mesmo fenômeno observado com os sítios arqueológicos Paredão/Guarita foi observado com os da Tradição Policroma.

Arte Rupestre

A maior parte deles dos sítios arqueológicos não ocorreu em áreas com altos valores de adequabilidade uma vez que o modelo consenso aponta serem as regiões sudeste e sul àquelas que apresentam esses valores, quando consideramos o modelo consenso do Período Pré-Industrial.

Humaitá

A distribuição geográfica dos sítios arqueológicos Humaitá é congruente com as áreas com maiores percentuais de adequabilidade do modelo consenso durante o Período Pré-Industrial.

Vieira

Uma vez que os sítios arqueológicos da Tradição Vieira estão concentrados na porção sul do estado do Rio Grande do Sul, estes se localizaram em uma região com altos percentuais de adequabilidade.

Itaipu

Os sítios arqueológicos desta Tradição se localizaram em regiões de baixa adequabilidade.

Una

A distribuição desses sítios junto à projeção combinada do Período Pré-Industrial (1760) foi semelhante à do Holoceno Médio.

Taquara

O estudo identificou 355 sítios arqueológicos da Tradição Taquara localizados em áreas de alta adequabilidade.

Corrugada

O único sítio arqueológico da Tradição identificado nesse estudo (Baixo Rio D'Una I) está localizado em Santa Catarina, região com valores de adequabilidade superiores a 21% no modelo consenso Pré-Industrial.

Tupiguarani

O padrão observado foi semelhante ao que ocorreu junto à projeção combinada do Holoceno Médio.

Aratu

Trinta e oito sítios arqueológicos dessa Tradição foram localizados na área com maiores valores de adequabilidade do modelo consenso Pré-Industrial, situada em Minas Gerais.

Figura 9: Distribuições geográficas dos sítios arqueológicos das Tradições Umbu, Borda Incisa, Paredão/Guarita, Policroma, Arte Rupestre e Humaitá frente à projeção combinada do Período Pré-Industrial (1760). Os triângulos roxos representam os sítios positivos para *T. trichiu-ra*. Os triângulos pretos, os sítios arqueológicos, identificados de acordo com as Tradições

Figura 10: Distribuições geográficas dos sítios arqueológicos das Tradições Vieira, Itaipu, Uma e Taquara frente à projeção combinada do Período Pré-Industrial (1760). Os triângulos roxos representam os sítios positivos para *T. trichiura*. Os triângulos pretos, os sítios arqueológicos, identificados de acordo com as Tradições.

Figura 11: Distribuições geográficas dos sítios arqueológicos das Tradições Corrugada, Tupiguarani e Aratu frente à projeção combinada do Período Pré-Industrial (1760). Os triângulos roxos representam os sítios positivos para *T. trichiura*. Os triângulos pretos, os sítios arqueológicos, identificados de acordo com as Tradições.

O modelo do período Pré-industrial que considerou variáveis ambientais do solo (Figura 11) mostrou ainda maior retração geográfica das áreas com maior percentual de adequabilidade, embora tenha revelado a ocorrência de uma extensão de adequabilidade no nordeste do país. As figuras 12, 13 e 14 também representam o confronto entre os dados de ocorrência das tradições, os sítios positivos para *T. trichiura* e a projeção combinada para o período, considerando as variáveis do solo. As ocorrências de cada uma das Tradições são descritas a seguir, juntamente com a Paleo-MDE de *T. trichiura*.

Umbu

Grande parte dos sítios arqueológicos passou a se localizar em áreas de baixa adequabilidade, fenômeno já observado no modelo consenso anterior.

Borda Incisa

Novamente, os sítios arqueológicos Borda Incisa localizaram-se em regiões de baixa adequabilidade, considerando esse modelo consenso Pré-Industrial.

Paredão/Guarita

Todos os 16 sítios arqueológicos classificados como Paredão/Guarita também se localizaram em áreas de baixa adequabilidade.

Policroma

O mesmo fenômeno observado com os sítios arqueológicos Paredão/Guarita foi observado com os da Tradição Policroma (Figuras 32 e 36).

Arte Rupestre

Houve um aumento na mancha de adequabilidade com valores acima de 31% na região nordeste, quando desse modelo consenso Pré-Industrial e, consequentemente, um aumento no número de sítios arqueológicos contemplados nessa área. Cerca de 32 sítios foram localizados em áreas com percentual de adequabilidade superior a 61%. Dezoito sítios arqueológicos, dentre eles a Furna do Estrago, foram localizados em regiões com percentuais de adequabilidade superiores a 71%.

Humaitá

Grande parte desses sítios é colocada em uma área de baixa adequabilidade junto a esse modelo consenso.

Vieira

Um padrão semelhante aos dos modelos consenso anteriores pôde ser observado.

Itaipu

Os sítios arqueológicos novamente ocorreram em áreas de baixa adequabilidade, como já observado no modelo consenso Pré-Industrial anterior.

Una

Todos os 5 sítios arqueológicos da Tradição Una foram localizados em regiões com percentuais de adequabilidade de até 40%.

Taquara

Grande parte dos sítios arqueológicos não se localizou em áreas com percentuais de adequabilidade acima de 40%.

Corrugada

O único sítio arqueológico da Tradição identificado nesse estudo (Baixo Rio D'Una I) está localizado em Santa Catarina, região com valores de adequabilidade superiores a 21%.

Tupiguarani

Grande parte dos sítios arqueológicos Tupiguarani passou a se localizar em áreas com percentuais de adequabilidade inferiores a 20%.

Aratu

Um número maior de sítios Aratu passa a se localizar em áreas com baixos percentuais de adequabilidade.

Figura 12: Distribuições geográficas dos sítios arqueológicos das Tradições Umbu, Borda Incisa, Paredão/Guarita, Policroma, Arte Rupestre e Humaitá frente à projeção combinada do Período Pré-Industrial (1760), considerando as variáveis de solo. Os triângulos roxos representam os sítios positivos para *T. trichiura*. Os triângulos pretos, os sítios arqueológicos, identificados de acordo com as Tradições.

Figura 14: Distribuições geográficas dos sítios arqueológicos das Tradições Corrugada, Tupiguarani e Aratu frente à projeção combinada do Período Pré-Industrial (1760), considerando as variáveis de solo. Os triângulos roxos representam os sítios positivos para *T. trichiura*. Os triângulos pretos, os sítios arqueológicos, identificados de acordo com as Tradições

DISCUSSÃO

Atualmente, a prevalência da tricuríase no Brasil tem se concentrado em alguns estados das regiões sudeste e nordeste do Brasil além de Rondônia, na região centro-oeste, e, pontualmente com altos índices, em algumas localidades da Amazônia (CHAMMARTIN et al., 2014) As três projeções combinadas utilizadas para propor uma paleodistribuição de T. trichiura, apresentam perfis geográficos muito semelhantes entre si, concentrando as áreas de maior adequabilidade de ocorrência do tricurídeo nas regiões sudeste e sul do país. A Paleo-MDE do Holoceno Médio, embora congruente com as prevalências na Amazônia e em estados como Minas Gerais, mostra, no entanto, um perfil de maior adequabilidade se direcionando para a região Sul do país (Figura 4). O perfil é semelhante com a Paleo-MDE do Período Pré-Industrial, ocorrendo uma diminuição nas áreas com percentuais de adequabilidade superiores a 31 a 40%, embora destaque-se o recrudescimento em áreas como o sul de Minas Gerais, Paraná, Santa Catarina e Rio Grande do Sul (Figura 5). Por fim observa-se no segundo modelo consenso do Período Pré-Industrial um grande aumento nas áreas de baixas adequabilidades e localidades da região nordeste. Minas Gerais e Rio Grande do Sul com percentuais de adequabilidade acima de 30% (Figura 6). Outro fator é a quantidade de variáveis preditoras utilizadas: Chammartin e colaboradores (2014) fizeram uso de 14 variáveis preditoras para a construção de seus modelos enquanto foram aplicadas de 3 a 7 variáveis na construção das Paleo-MDEs e entende-se que quão menor for o número de variáveis empregadas, menores as chances de efeitos relativos à multicolinearidade (problema comum em regressões, no qual as variáveis independentes possuem relações lineares exatas ou aproximadamente exatas).

A Paleo-MDE do Holoceno Médio indica que as distribuições geográficas dos sítios arqueológico Umbu, Arte Rupestre, Humaitá, Sambaqui e Tupiguarani, localizados no sul do Brasil, ocorreram em regiões com os maiores percentuais de adequabilidade para esse modelo. A epidemiologia atual, entretanto, não aponta para essas áreas como as com maiores índices de prevalência para a tricuríase (CHAMMARTIN et al., 2014), Os sítios da Tradição Una ocorreram em regiões onde ainda hoje a tricuríase é prevalente. Cerca de 27 sítios da Tradição Itaparica localizam-se onde hoje há uma prevalência com valores acima de 5% (Minas Gerais, Bahia, Pernambuco, Piauí e Rio Grande do Norte). O modelo, no entanto, foi congruente com a ocorrência em Minas Gerais. Os sítios arqueológicos das Tradições Serranópolis e Hachurada-Zonada estão localizados em áreas com valores nulos

de prevalência atual e em regiões de baixos percentuais de adequabilidade (inferiores à 20%).

A primeira Paleo-MDE do Período Pré-Industrial (1760) corrobora com os percentuais de adequabilidade das Tradições Umbu, Humaitá, Arte Rupestre e Tupiguarani observados com a projeção consenso do Holoceno Médio. Os sítios arqueológicos das últimas duas Tradições citadas, no entanto, localizam-se em áreas com prevalências atuais que podem exceder os 50% (CHAMMARTIN et al., 2014). Já, os sítios da Tradição Itaipu agora contiveram baixos valores de adequabilidade, comparando as duas Paleo-MDEs. O modelo apresentou valores de adequabilidade acima de 51% para a região onde geograficamente estão localizados os sítios da Tradição Taquara (em um total de 355 sítios). Esses sítios distam, no entanto, das áreas de maior prevalência atualmente.

Os sítios das Tradições Vieira e Una (estes pela segunda vez) localizaram-se em áreas com altos percentuais de adequabilidade, comparando com a Paleo-MDE do Holoceno Médio, e em áreas de baixa prevalência, atualmente. O mesmo pode ser dito do sítio arqueológico da Tradição Corrugada.

Os sítios arqueológicos das Tradições Borda Incisa e Paredão/Guarita não se localizam em regiões de alta adequabilidade para a Paleo-MDE do Período Industrial (e a região também não foi apontada com elevados valores de adequabilidade na modelagem para o Holoceno Médio) e estão fora das áreas de prevalência atuais.

A segunda Paleo-MDE do Período Pré-Industrial, que considerou também variáveis de solo, apresentou um padrão de adequabilidade distinto das projeções consenso anteriores. Entretanto foi o único a apontar áreas da região nordeste que ainda hoje apresentam valores de prevalência superiores a 5%, além de confirmar localidades de Minas Gerais onde casos de tricuríase ainda são prevalentes. Desse modo, as Tradições Arte Rupestre, Tupiguarani e Aratu apresentariam sítios arqueológicos geograficamente localizados em regiões atualmente prevalentes para *T. trichiura*. Cabe enfatizar aqui que alguns autores sugeriram, por meio de estudos de regressão logística, que o número de pontos de ocorrência de uma amostra deva ser, no mínimo, 10 vezes maior que o número de variáveis preditoras envolvidas (PEDUZZI et al., 1996). Ou seja, quanto mais variáveis preditoras forem incluídas na modelagem mais restritas podem ser suas previsões (BEAUMONT; HUGHES; POULSEN, 2005; BULLUCK et al., 2006; SOBERÓN, 2010). Portanto, o emprego de um maior número de variáveis preditoras na segunda Paleo-MDE do Período Pré-Industrial pode ter influenciado negativamente na modelagem, tornando-a mais restritiva.

Há de ser considerado que as Paleo-MDEs produzidas nesse estudo contém vieses quanto ao esforço de pesquisa e os processos tafonômicos diferenciados em cada localidade de ocorrência dos achados e isso pode ter refletido para uma não sobreposição da todalidade dos modelos ao que se espera para a prevalência de T. trichiura no Brasil, como proposto por Chammartin e colaboradores (CHAMMARTIN et al., 2014). Fernandes e Iñez (2017) observaram que houve, por exemplo, um esforço de pesquisa priorizando os dados europeus e norte-americanos e asiáticos, principalmente a partir do Período Medieval, em detrimento de regiões como a África ou mesmo a Oceania (FERNANDES; IÑIGUEZ, 2017). Com isso, a paleodistribuição utilizada como parte das Paleo-MDEs aqui apresentadas pode ter contribuído para a ocorrência de padrões de áreas de adequabilidade, em grande parte, não congruentes com o perfil epidemiológico do parasito. Processos tafonômicos diferenciados, a depender do tipo de amostra, de sua localização e de sua antiguidade, também podem ter contribuído para o perfil paleoepidemiológico atualmente aceito para a tricuríase. Isso porque esses fatores irão agir diretamente sobre a qualidade de preservação do material arqueológico e amostras oriundas de locais cujos processos tafonômicos agem de forma mais severa podem levar ao diagnóstico negativo e a conclusão errônea de que o parasito não era infectava humanos da mesma região (DE SOUZA; DE CARVALHO; LESSA, 2003a). Além disso, os modos de vida diferenciados em padrões culturais podem ter levado os povos de algumas Tradições a estarem mais susceptíveis à infecção por T. trichiura, que outros.

De maneira geral, todas as projeções combinadas apontaram para as mesmas áreas de altas adequabilidades às ocorrências de *T. trichiura* tanto no Holoceno quanto no Médio quanto no Período Pré-Industrial e o uso combinado dessa metodologia com as informações do cenário epidemiológico atual da tricuríase no Brasil, pode ser utilizado na predição de regiões que contenham sítios arqueológicos positivos compartilhados por seus habitantes.

BIBLIOGRAFIA

- ANDERSON, R. P.; LEW, D.; PETERSON, A. T. Evaluating predictive models of species' distributions: criteria for selecting optimal models. Ecological Modelling, v. 162, n. 3, p. 211–232, 15 abr. 2003. Disponível em: http://www.sciencedirect.com/science/article/pii/S0304380002003496>. Acesso em: 14 out. 2017.
- ARAUJO, A.; REINHARD, K. J.; FERREIRA, L. F.; GARDNER, S. L. Parasites as probes for prehistoric human migrations? Trends in Parasitology, v. 24, n. 3, p. 112– 115, 2008.
- ARAUJO, M.; NEW, M. Ensemble forecasting of species distributions. Trends in Ecology & Evolution, v. 22, n. 1, p. 42–47, 1 jan. 2007. Disponível em: http://www.sciencedirect.com/science/article/pii/S016953470600303X. Acesso em: 2 nov. 2017.
- AUSTIN, M. . Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecological Modelling, v. 157, n. 2–3, p. 101–118, 30 nov. 2002. Disponível em: http://www.sciencedirect.com/science/article/pii/S0304380002002053>. Acesso em: 14 out. 2017.
- BEAUMONT, L. J.; HUGHES, L.; POULSEN, M. Predicting species distributions: Use of climatic parameters in BIOCLIM and its impact on predictions of species' current and future distributions. Ecological Modelling, v. 186, n. 2, p. 250–269, 2005.
- BOATIN, B. a.; BASÁÑEZ, M. G.; PRICHARD, R. K.; AWADZI, K.; BARAKAT, R. M.; GARCÍA, H. H.; GAZZINELLI, A.; GRANT, W. N.; MCCARTHY, J. S.; N'GORAN, E. K.; OSEI-ATWENEBOANA, M. Y.; SRIPA, B.; YANG, G. J.; LUSTIGMAN, S. A research agenda for helminth diseases of humans: Towards control and elimination. PLoS Neglected Tropical Diseases, v. 6, n. 4, p. 1–10, 2012.
- BRACONNOT, P.; HARRISON, S.; OTTO-BLIESNER, B.; PETERSCHMITT, J.-Y. Paleoclimate Modeling intercomparison Project. Clivar Exchanges, v. 16, n. 56, p. 15–19, 2011. Disponível em: https://www.wcrpclimate.org/images/modelling/WGCM/WGCM15/20Oct/BRACONNOT_PMIP3.pdf >. Acesso em: 22 out. 2017.
- BRACONNOT, P.; HARRISON, S. P.; KAGEYAMA, M.; BARTLEIN, P. J.; MASSON-DELMOTTE, V.; ABE-OUCHI, A.; OTTO-BLIESNER, B.; ZHAO, Y. Evaluation of climate models using palaeoclimatic data. Nature Climate Change, v. 2, n. 6, p. 417–424, 25 mar. 2012. Disponível em: http://www.nature.com/doifinder/10.1038/nclimate1456>. Acesso em: 22 out. 2017.
- BULLUCK, L.; FLEISHMAN, E.; BETRUS, C.; BLAIR, R. Spatial and temporal variations in species occurrence rate affect the accuracy of occurrence models. Global Ecology and Biogeography, v. 15, n. 1, p. 27–38, 2006.
- CALLEJÓN, R.; GUTIÉRREZ-AVILÉS, L.; HALAJIAN, A.; ZURITA, A.; DE ROJAS, M.; CUTILLAS, C. Taxonomy and phylogeny of Trichuris globulosa Von Linstow, 1901 from camels. A review of Trichuris species parasitizing herbivorous. Infection, Genetics and Evolution, v. 34, p. 61–74, 2015. Disponível em: http://linkinghub.elsevier.com/retrieve/pii/S1567134815002439>.
- CDC. Trichuriasis Epidemiology & Risk Factors. Disponível em: https://www.cdc.gov/parasites/whipworm/epi.html. Acesso em: 18 out. 2017.
- CHAMMARTIN, F.; GUIMARÃES, L. H.; SCHOLTE, R. G.; BAVIA, M. E.; UTZINGER, J.; VOUNATSOU, P. Spatio-temporal distribution of soil-transmitted helminth infections in Brazil. Parasites & Vectors, v. 7, n. 1, p. 440, 2014. Disponível

em: <http://www.ncbi.nlm.nih.gov/pubmed/25230810>.

- CORRÊA, Â. A. DATAÇÕES NA BIBLIOGRAFIA ARQUEOLÓGICA BRASILEIRA A PARTIR DOS SÍTIOS TUPI. Cadernos do LEPAARQ (UFPEL), v. 14, n. 27, p. 379, 29 jun. 2017. Disponível em: https://periodicos.ufpel.edu.br/ojs2/index.php/lepaarq/article/view/9595>. Acesso em: 22 out. 2017.
- CORTES, C.; VAPNIK, V. Support-vector networks. Machine Learning, v. 20, n. 3, p. 273–297, set. 1995. Disponível em: http://link.springer.com/10.1007/BF00994018>.
- CUTILLAS, C.; DE ROJAS, M.; ZURITA, A.; OLIVEROS, R.; CALLEJÓN, R. Trichuris colobae n. sp. (Nematoda: Trichuridae), a new species of Trichuris from Colobus guereza kikuyensis. Parasitology research, v. 113, n. 7, p. 2725–32, 2014. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/24853537>.
- DANABASOGLU, G.; BATES, S. C.; BRIEGLEB, B. P.; JAYNE, S. R.; JOCHUM, M.; LARGE, W. G.; PEACOCK, S.; YEAGER, S. G. The CCSM4 ocean component. Journal of Climate, v. 25, n. 5, p. 1361–1389, 2012.
- DE SILVA, N. R.; BROOKER, S.; HOTEZ, P. J.; MONTRESOR, A.; ENGELS, D.; SAVIOLI, L. Soil-transmitted helminth infections: Updating the global picture. Trends in Parasitology, v. 19, n. 12, p. 547–551, 2003.
- DE SOUZA, S. M. F. M.; DE CARVALHO, D. M.; LESSA, A. Paleoepidemiology: Is There a Case to Answer? Memorias do Instituto Oswaldo Cruz, v. 98, n. SUPPL. 1, p. 21–27, 2003.
- ELITH, J.; GRAHAM, C. H.; ANDERSON, R. P.; DUDIK, M.; FERRIER, S.; GUISAN, A.; HIJMANS, R. J.; HUETTMANN, F.; LEATHWICK, J. R.; LEHMANN, A.; LI, J.; LOHMANN, L. G.; LOISELLE, B. A.; MANION, G.; MORITZ, C.; NAKAMURA, M.; NAKAZAWA, Y.; OVERTON, J. M.; PETERSON, A. T.; PHILLIPS, S. J.; RICHARDSON, K.; SCACHETTI-PEREIRA, R.; SCHAPIRE, R. E.; SOBERON, J.; WILLIAMS, S.; WISZ, M. S.; ZIMMERMANN, N. E. Novel methods improve prediction of species' distributions from occurrence data. Ecography, v. 29, n. 2, p. 129–151, 2006.
- ELITH, J.; PHILLIPS, S. J.; HASTIE, T.; DUDÍK, M.; CHEE, Y. E.; YATES, C. J. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, v. 17, n. 1, p. 43–57, jan. 2011. Disponível em: http://doi.wiley.com/10.1111/j.1472-4642.2010.00725.x. Acesso em: 15 out. 2017.
- ENGLER, R.; GUISAN, A.; RECHSTEINER, L. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. Journal of Applied Ecology, v. 41, n. 2, p. 263–274, abr. 2004. Disponível em: ">http://doi.wiley.com/10.1111/j.0021-8901.2004.00881.x>.
- FERNANDES, A.; IÑIGUEZ, A. M. Paleoparasitology of trichuriasis: a Cronological and Geoespacial Review. PLoS ONE, v. no prelo, 2017.
- FERREIRA LF; ARAÚJO A; CONFALONIERI UEC. Subsídios para a paleoparasitologia do Brasil. I. Parasitos encontrados em coprólitos no município de Unaí, MGResumos de IV Congresso Brasileiro de ParasitologiaCampinas, 1979.
- FERREIRA LF; ARAÚJO A; CONFALONIERI UEC. Paleoparasitologia no Brasil. [s.l.] PEC/ENSP, 1988.
- FERRIER, S.; WATSON, G. An evaluation of the effectiveness of environmental surrogates and modelling techniques in predicting the distribution of biological diversity. Environment Australia, 1997.
- FRANKLIN, J.; WEJNERT, K. E.; HATHAWAY, S. A.; ROCHESTER, C. J.; FISHER, R. N. Effect of species rarity on the accuracy of species distribution models for reptiles

and amphibians in southern California. Diversity and Distributions, v. 15, n. 1, p. 167–177, 1 jan. 2009. Disponível em: http://doi.wiley.com/10.1111/j.1472-4642.2008.00536.x. Acesso em: 1 nov. 2017.

- GIANNINI, T. C.; SIQUEIRA, M. F.; ACOSTA, A. L.; BARRETO, F. C. C.; SARAIVA, A. M.; ALVES-DOS-SANTOS, I. Desafios atuais da modelagem preditiva de distribuição de espécies. Rodriguésia, v. 63, n. 3, p. 733–749, set. 2012. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2175-78602012000300017&lng=pt&tlng=pt. Acesso em: 14 out. 2017.
- GONÇALVES, M. L. C.; ARAUJO, A.; FERREIRA, L. F. Human intestinal parasites in the past: New findings and a review. Memorias Do Instituto Oswaldo Cruz, v. 98, n. Suppl. I, p. 103–118, 2003.
- GUISAN, A.; THUILLER, W. Predicting species distributions: offering more than simple habitat models. Ecology Letters, v. 8, n. 9, p. 993–1009, 2005.
- GUISAN, A.; ZIMMERMANN, N. E. Predictive habitat distribution models in ecology. Ecological Modelling, v. 135, n. 2–3, p. 147–186, 5 dez. 2000. Disponível em: http://www.sciencedirect.com/science/article/pii/S0304380000003549>. Acesso em: 1 nov. 2017.
- HAWASH, M. B. F.; BETSON, M.; AL-JUBURY, A.; KETZIS, J.; LEEWILLINGHAM, A.; BERTELSEN, M. F.; COOPER, P. J.; LITTLEWOOD, D. T. J.; ZHU, X.-Q.; NEJSUM, P. Whipworms in humans and pigs: origins and demography. Parasites & vectors, v. 9, n. 1, p. 37, 2016. Disponível em: http://www.scopus.com/inward/record.url?eid=2-s2.0-84960394838&partnerID=tZOtx3y1>.
- HIJMANS, R. J.; CAMERON, S. E.; PARRA, J. L.; JONES, P. G.; JARVIS, A. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, v. 25, n. 15, p. 1965–1978, 1 dez. 2005. Disponível em: http://doi.wiley.com/10.1002/joc.1276>. Acesso em: 14 out. 2017.
- HIJMANS, R. J.; GRAHAM, C. H. The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology, v. 12, n. 12, p. 2272–2281, dez. 2006. Disponível em: http://doi.wiley.com/10.1111/j.1365-2486.2006.01256.x>. Acesso em: 15 out. 2017.
- IPHAN. Cadastro Nacional de Sítios Arqueológicos CNSA / SGPA. Disponível em: http://portal.iphan.gov.br/sgpa/?consulta=cnsa. Acesso em: 25 out. 2016.
- JOURDAN, P. M.; LAMBERTON, P. H. L.; FENWICK, A.; ADDISS, D. G. Soiltransmitted helminth infections. The Lancet, 4 set. 2017. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/28882382>. Acesso em: 14 out. 2017.
- KEARNEY, M.; PORTER, W. Mechanistic niche modelling: Combining physiological and spatial data to predict species' ranges. Ecology Letters, v. 12, n. 4, p. 334–350, 2009.
- LELES, D. Paleogenética e paleoepidemiologia de Ascaris sp. (Linnaeus, 1758) e Trichuris sp. (Roederer, 1761). 2010.
- LIMA-RIBEIRO, M. S. EcoClimate: a database of climate data from multiple models for past, present, and future for macroecologists and biogeographers. Biodiversity Informatics, v. 10, 2015. Disponível em: https://journals.ku.edu/index.php/jbi/article/view/4955>.
- LOBO, J. M.; VERDU, J. R.; NUMA, C. Environmental and geographical factors affecting the Iberian distribution of flightless Jekelius species (Coleoptera: Geotrupidae). Diversity <html_ent glyph="@amp;" ascii="&"/> Distributions, v. 12, n. 2, p. 179–188, mar. 2006. Disponível em: <http://doi.wiley.com/10.1111/j.1366-9516.2005.00214.x>.
- MEROW, C.; SMITH, M. J.; SILANDER, J. A. A practical guide to MaxEnt for modeling

species' distributions: what it does, and why inputs and settings matter. Ecography, v. 36, n. 10, p. 1058–1069, out. 2013. Disponível em: http://doi.wiley.com/10.1111/j.1600-0587.2013.07872.x. Acesso em: 15 out. 2017.

- NEVES, D. P.; MELO, A. L. De; LINARDI, P. M. Parasitologia Humana. São Paulo: Atheneu, 2005.
- PEDUZZI, P.; CONCATO, J.; KEMPER, E.; HOLFORD, T. R.; FEINSTEIN, a R. A simulation study of the number of events per variable in logistic regression analysis. Journal of clinical epidemiology, v. 49, n. 12, p. 1373–1379, 1996.
- PETERSON, A. T.; SOBERÓN, J.; PEARSON, R. G.; MEYER, R. P. A. E. M.; NAKAMURA, M.; ARAÚJO, M. B. Ecological Niches and Geographic Distributions (MPB-49) (Monographs in Population Biology). [s.l.] Princeton University Press, 2011.
- PULLAN, R. L.; SMITH, J. L.; JASRASARIA, R.; BROOKER, S. J. Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasites & Vectors, v. 7, n. 1, p. 37, 21 jan. 2014. Disponível em: http://parasitesandvectors.biomedcentral.com/articles/10.1186/1756-3305-7-37>. Acesso em: 14 out. 2017.
- R DEVELOPMENT CORE TEAM. R: A Language and Environment for Statistical ComputingR Foundation for Statistical Computing, 2014. Disponível em: http://www.r-project.org/>.
- REY, L. Parasitologia: parasitos e doenças parasitárias do homem nos trópicos ocidentais. 4. ed. [s.l.] Guanabara Koogan, 2008.
- RODRIGUES, E. S. da C. Teoria da Informação e Adaptatividade na Modelagem de Distribuição de Espécies. 2012. USP, 2012. Disponível em: <file:///C:/Users/Alexandre/Downloads/Tese_Elisangela_Silva_da_Cunha_Rodrigue s (1).pdf>.
- RUSSELL, S.; NORVIG, P. Inteligência Artificial: tradução da segunda edição. Rio de Janeiro: Elsevier, 2004.
- SOBERÓN, J. Grinnellian and Eltonian niches and geographic distributions of speciesEcology Letters, 2007.
- SOBERÓN, J. M. Niche and area of distribution modeling: A population ecology perspective. Ecography, v. 33, n. 1, p. 159–167, 2010.
- SOBERON, J.; PETERSON, A. T. Interpretation of Models of Fundamental Ecological Niches and Species' Distributional Areas. Biodiversity Informatics, v. 2, n. 0, 13 jan. 2005. Disponível em: https://journals.ku.edu/index.php/jbi/article/view/4. Acesso em: 14 out. 2017.
- SoilGrids. Disponível em: < http://isric.org/explore/soilgrids>.
- SOUZA, A. M. de. Dicionario de arqueologia. Rio de Janeiro: Associacao de Docentes da Estacio de Sa, 1997.
- STEPHENSON, L. S.; HOLLAND, C. V; COOPER, E. S. The public health significance of Trichuris trichiura. Parasitology, v. 121 Suppl, p. S73–S95, 2000.
- THOMAS H. CORMEN, CHARLES E. LEISERSON, RONALD L. RIVEST, C. S. Algoritmos. [s.l: s.n.]
- TIN KAM HO. The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, v. 20, n. 8, p. 832–844, 1998. Disponível em: http://ieeexplore.ieee.org/document/709601/>.
- UTZINGER, J. A research and development agenda for the control and elimination of human helminthiases. PLoS Neglected Tropical Diseases, v. 6, n. 4, p. 2–8, 2012.
- VARELA, S.; LOBO, J. M.; HORTAL, J. Using species distribution models in paleobiogeography: A matter of data, predictors and concepts. Palaeogeography,

Palaeoclimatology, Palaeoecology, v. 310, n. 3–4, p. 451–463, 1 out. 2011. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0031018211004044>. Acesso em: 24 out. 2017.

ZANIEWSKI, A. E.; LEHMANN, A.; OVERTON, J. M. Predicting species spatial distributions using presence-only data: A case study of native New Zealand ferns. Ecological Modelling, v. 157, n. 2–3, p. 261–280, 2002. Disponível em: <isi:000179241300012%5Cnfile://e/documentos/Bibliograf?a/691fernsnewzealand.pdf>.

6 CONCLUSÕES

A Paleodistribuição mudial da tricuríase mostra uma maior extensão e frequência da infecção no Velho Mundo, com destaque para a Europa e a Ásia.

A paleodistribuição da tricuríase no período Paleolítico/Mesolítico demostra o menor número de ocorrências de populações infectadas o que pode estar relacionado à dificuldade do estabelecimento da tricuríase frente aos hábitos caçadores-coletores predominantes à época, aos processos tafonômicos e à antiguidade das amostras, e ainda por um viés de esforço científico, priorizando mais essas regiões em detrimento de outras como a África, por exemplo.

A diversidade parasitária observada durante o período Paleolítico/Mesolítico, no entanto, sugere alguns grupos, possivelmente mais estabelecidos territorialmente, podem ter contribuído para a instauração da infecção em algumas regiões do globo. Os achados no Brasil demonstram, além disso, a amplitude da distribuição mundial durante o Paleolítico.

As coinfecções com helmintos de outros animais no período Neolítico indica que o homem, já tinha se estabelecido em diversas regiões do continente com uma relação próxima com os animais possivelmente decorrente dos processos de domesticação.

As ocorrências na Ásia e na América do Sul confirmam a ampla distribuição da tricuríase durante o período Neolítico.

O Período do Bronze/Ferro, em relação ao Neolítico, demostra um aumento da frequência da tricuríase na Europa, na Ásia e na América do Sul, vinculada a uma grande diversidade de parasitos de animais domesticados, especialmente na Europa, confirmando os processos civilizatórios dessa região.

Embora o aumento no número de ocorrências tenha sido percebido na América do Sul, durante o período correlato, a baixa diversidade parasitária pode ter sido reflexo da persistente condição de caçador-coletor de seus habitantes e no processo mais tardio de estabelecimento das civilizações dessa região. O grande número de ocorrências em diferentes partes da Europa durante o Período Medieval demonstrou que a tricuríase já estava bem estabelecida nesse território expandindo-se ainda mais para outros continentes como Ásia e Américas do Norte e Sul;

A Paleodistribuição do Período Moderno/Contemporâneo confirma os perfis das paleodistribuições anteriores além de demonstrar o aumento no número de ocorrências na América do Norte. Percebeu-se também um aumento na co-ocorrência entre Ascaris sp. e *T. trichiura*, em relação aos demais períodos estudados.

Segundo a revisão cronológica e geoespacial, se observa um esforço de pesquisa, priorizado regiões como a Europa, a Ásia e a América do Norte.

As três projeções combinadas utilizadas para propor uma paleodistribuição de *T. trichiura* no Brasil, durante diferentes momentos do período pré-colonial, apresentam perfis geográficos muito semelhantes entre si, concentrando as áreas de maior adequabilidade de ocorrência do tricurídeo nas regiões sudeste e sul do país.

O emprego da metodologia para construção de Paleo-MDEs associada às informações do cenário epidemiológico atual da tricuríase no Brasil, pode ser indicado na predição de regiões que contenham sítios arqueológicos positivos para a tricuríase.

7 REFERÊNCIAS

- ALLOUCHE, O.; TSOAR, A.; KADMON, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, v. 43, n. 6, p. 1223–1232, 12 set. 2006. Disponível em: ">http://doi.wiley.com/10.1111/j.1365-2664.2006.01214.x>.
- ANDERSON, R. P.; LEW, D.; PETERSON, A. T. Evaluating predictive models of species' distributions: criteria for selecting optimal models. Ecological Modelling, v. 162, n. 3, p. 211–232, 15 abr. 2003. Disponível em: http://www.sciencedirect.com/science/article/pii/S0304380002003496>. Acesso em: 14 out. 2017.
- ANDREWS, J. R. Ascaris egg in coprolite material. **The New Zealand medical journal**, v. 89, n. 633, p. 274, 11 abr. 1979. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/286922>.
- ANEMONE, R.; EMERSON, C.; CONROY, G. Finding fossils in new ways: An artificial neural network approach to predicting the location of productive fossil localities. Evolutionary Anthropology, v. 20, n. 5, p. 169–180, 2011.
- ANEMONE, R. L.; CONROY, G. C.; EMERSON, C. W. GIS and paleoanthropology: Incorporating new approaches from the geospatial sciences in the analysis of primate and human evolution. American Journal of Physical Anthropology, v. 146, n. S53, p. 19–46, 2011. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/22101686>.
- APPELT, S.; ARMOUGOM, F.; BAILLY, M. Le; ROBERT, C.; DRANCOURT, M. Polyphasic analysis of a middle ages coprolite microbiota, Belgium. PLoS ONE, v. 9, n. 2, p. 1–8, 2014.
- ARAÚJO, A.; CONFALONIERI, U.; FERREIRA, L. Encontro de ovos de Trichostrongylidae e Trichuris trichiura em corpo mumificado do período colonial brasileiro. Rev Centr Cienc Biol Saúde, v. 1, p. 11–16, 1984.
- ARAUJO, A.; REINHARD, K.; FERREIRA, L. F.; PUCU, E.; CHIEFFI, P. P. Paleoparasitology: the origin of human parasites. Arquivos de Neuro-Psiquiatria, v. 71, n. 9B, p. 722–726, set. 2013. Disponível em: ">http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0004-282X2013001000722&lng=en&tlng=en>">http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0004-282X2013001000722&lng=en&tlng=en>">http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0004-282X2013001000722&lng=en&tlng=en>">http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0004-282X2013001000722&lng=en&tlng=en>">http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0004-282X2013001000722&lng=en&tlng=en>">http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0004-282X2013001000722&lng=en&tlng=en>">http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0004-282X2013001000722&lng=en&tlng=en>">http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0004-282X2013001000722&lng=en&tlng=en>">http://www.scielo.php?script=sci_arttext&pid=S0004-282X2013001000722&lng=en&tlng=en>">http://www.scielo.php?script=sci_arttext&pid=S0004-282X2013001000722&lng=en&tlng=en>">http://www.scielo.php?script=sci_arttext&pid=S0004-282X2013001000722&lng=en&tlng=en>">http://www.scielo.php?script=sci_arttext&pid=S0004-282X2013001000722&lng=en&tlng=en>">http://www.scielo.php?script=sci_arttext&pid=S0004-282X2013001000722&lng=en&tlng=en>">http://www.scielo.php?script=sci_arttext@scielo.php?script=sci_arttext@scielo.php?script=sci_arttext@scielo.php?script=sci_arttext@scielo.php?script=sci_arttext@scielo.php?script=sci_arttext@scielo.php?script=sci_arttext@scielo.php?scielo.php
- ARAÚJO, A.; REINHARD, K.; FERREIRA, L. F.; PUCU, E.; CHIEFFI, P. P. Paleoparasitologia: A origem dos parasitas humanos. Arquivos de Neuro-Psiquiatria,

v. 71, n. 9 B, p. 722–726, 2013.

- ARAUJO, A.; REINHARD, K. J.; FERREIRA, L. F.; GARDNER, S. L. Parasites as probes for prehistoric human migrations? Trends in Parasitology, v. 24, n. 3, p. 112–115, 2008.
- ARAUJO, M.; NEW, M. Ensemble forecasting of species distributions. Trends in Ecology & Evolution, v. 22, n. 1, p. 42–47, 1 jan. 2007. Disponível em: http://www.sciencedirect.com/science/article/pii/S016953470600303X. Acesso em: 2 nov. 2017.
- ASHFORD, R. Parasites of Homo sapiens. London: CRC Press, 2003.
- ASPÖCK, H.; AUER, H.; PICHER, O. The mummy from the Hauslabjoch: a medical parasitology perspective. Associazione Microbiologi Clinici Italiani, v. 3, n. 4, p. 245–255, 1995. Disponível em: ">https://scholar.google.com.br/scholar?q=Aspöck%2C+Auer+e+Picher%2C+1995&btnG=&hl=pt-BR&as_sdt=0%2C5>. Acesso em: 28 dez. 2016.
- ASPÖCK, H.; AUER, H.; PICHER, O. Trichuris trichiura eggs in the neolithic glacier mummy from the Alps. Parasitology Today, v. 12, n. 7, p. 255–256, jul. 1996.
 Disponível em: http://linkinghub.elsevier.com/retrieve/pii/0169475896300082.
 Acesso em: 28 dez. 2016.
- ASPÖCK, H.; AUER, H.; PICHER, O. Parasites and parasitic diseases in prehistoric human populations in Central Europe. Helminthologia, v. 36, n. 3, p. 139–145, 1999. Disponível em: http://www.saske.sk/pau/helminthologia/issues99_3.htm. Acesso em: 28 dez. 2016.
- ASPÖCK, H.; FLAMM, H.; PICHER, O. Intestinal parasites in human excrements from prehistoric salt-mines of the Hallstatt period (800-350 B.C.). Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Erste Abteilung Originale. Reihe A: Medizinische Mikrobiologie und Parasitologie, v. 223, n. 4, p. 549–58, maio 1973. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/4146831>.
- AUDY, J. R. The localization of disease with special reference to the zoonoses. **Transactions** of the Royal Society of Tropical Medicine and Hygiene, v. 52, n. 4, p. 308–28; discussion 329-34, jul. 1958. Disponível em: <http://www.ncbi.nlm.nih.gov/pubmed/13581130>.
- AUSTIN, M. . Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecological Modelling, v. 157, n. 2–3, p. 101–118, 30

nov.2002.Disponívelem:<http://www.sciencedirect.com/science/article/pii/S0304380002002053>.Acessoem:14 out. 2017.

- BARRETT, R.; KUZAWA, C. W.; MCDADE, T.; ARMELAGOS, G. J. EMERGING AND RE-EMERGING INFECTIOUS DISEASES: The Third Epidemiologic Transition. Annual Review of Anthropology, v. 27, n. 1, p. 247–271, 21 out. 1998. Disponível em: http://www.annualreviews.org/doi/10.1146/annurev.anthro.27.1.247>. Acesso em: 2 out. 2017.
- BEAUMONT, L. J.; HUGHES, L.; POULSEN, M. Predicting species distributions: Use of climatic parameters in BIOCLIM and its impact on predictions of species' current and future distributions. Ecological Modelling, v. 186, n. 2, p. 250–269, 2005.
- BEER. The relationship between Trichuris trichiura (Linnaeus 1758) of man and Trichuris suis (Schrank 1788) of the pig. Res Vet Sci, v. 20, n. 1, p. 47–54, 1976.
- BENNETT, M.; BEGON, M. E. Virus zoonoses--a long-term overview. Comparative immunology, microbiology and infectious diseases, v. 20, n. 2, p. 101–9, fev. 1997. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/9208195>.
- BETHONY, J.; BROOKER, S.; ALBONICO, M.; GEIGER, S. M.; LOUKAS, A.; DIEMERT, D.; HOTEZ, P. J. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. The Lancet, v. 367, n. 9521, p. 1521–1532, 6 maio 2006. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/16679166>. Acesso em: 27 set. 2017.
- BETHONY, J. M.; COLE, R. N.; GUO, X.; KAMHAWI, S.; LIGHTOWLERS, M. W.; LOUKAS, A.; PETRI, W.; REED, S.; VALENZUELA, J. G.; HOTEZ, P. J. Vaccines to combat the neglected tropical diseases. Immunological Reviews, v. 239, n. 1, p. 237– 270, jan. 2011. Disponível em: http://doi.wiley.com/10.1111/j.1600-065X.2010.00976.x. Acesso em: 27 set. 2017.
- BIANUCCI, R.; TORRES, E. J. L.; SANTIAGO, J. M. F. D.; FERREIRA, L. F.; NERLICH, A. G.; SOUZA, S. M. M. de; GIUFFRA, V.; CHIEFFI, P. P.; BASTOS, O. M.; TRAVASSOS, R.; SOUZA, W. de; ARAÚJO, A. Trichuris trichiura in a post-Colonial Brazilian mummy. Memórias do Instituto Oswaldo Cruz, v. 110, n. 1, p. 145–7, 2015. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/25742276>.
- BLOCK, S.; SALTRÉ, F.; RODRÍGUEZ-REY, M.; FORDHAM, D. A.; UNKEL, I.; BRADSHAW, C. J. A. Where to Dig for Fossils: Combining Climate-Envelope, Taphonomy and Discovery Models. PLOS ONE, v. 11, n. 3, p. e0151090, 30 mar. 2016. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/27027874>. Acesso em:

10 mar. 2017.

- BOATIN, B. a.; BASÁÑEZ, M. G.; PRICHARD, R. K.; AWADZI, K.; BARAKAT, R. M.; GARCÍA, H. H.; GAZZINELLI, A.; GRANT, W. N.; MCCARTHY, J. S.; N'GORAN, E. K.; OSEI-ATWENEBOANA, M. Y.; SRIPA, B.; YANG, G. J.; LUSTIGMAN, S. A research agenda for helminth diseases of humans: Towards control and elimination. PLoS Neglected Tropical Diseases, v. 6, n. 4, p. 1–10, 2012.
- BOERSEMA JH, J. J. Helminth infections in Medieval Utrecht. **Trop Geo Med**, v. 27, p. 441, 1975.
- BOUCHET. Etude parasitologique des coprolithes et des sediments de trois ensembles clos medievaux de la rue de lutece. **Revue d'Archéométrie**, v. 13, p. 13–21, 1989.
- BOUCHET, F. Étude parasitologique des chantiers archéologiques de Beauvais (Oise). **Revue** archéologique de Picardie, v. 3, n. 1, p. 293–294, 1991. Disponível em: http://www.persee.fr/web/revues/home/prescript/article/pica_0752-

5656_1991_num_3_1_1636>. Acesso em: 19 jan. 2017.

- BOUCHET, F. Apport de la parasitologie sur les chantiers archéologiques : l'exemple de la ville de Paris. Journées d'archéologie d'Ile de France, 1993.
- BOUCHET, F. Recovery of Helminth Eggs from Archeological Excavations of the Grand Louvre (Paris, France). The Journal of Parasitology, v. 81, n. 5, p. 785–787, 1995. Disponível em: http://www.jstor.org/stable/3283976>.
- BOUCHET, F. Apport de la paléoparasitologie au chantier archéologique de Charavines. Actes des congrès de la Société d'archéologie médiévale, v. 5, n. 1, p. 42–45, 1996.
- BOUCHET, F.; BENTRAD, S.; PAICHELER, J. Enquête épidémiologique sur les helminthiases à la cour de Louis XIV. médecine/sciences, v. 14, n. 4, p. 463, ago. 1998. Disponível em: http://hdl.handle.net/10608/1064>. Acesso em: 19 jan. 2017.
- BOUCHET, F.; ERVYNCK, A.; RAVESCHOT, P. Rijk, maar proper parasitologisch onderzoek van een put uit de Schepenhyuisstraat. **Stadsarcheologie**, v. 15, p. 8–13, 1991.
- BOUCHET, F.; HARTER, S.; LE BAILLY, M. The State of the Art of Paleoparasitological Research in the Old World. **Memorias do Instituto Oswaldo Cruz**, v. 98, n. SUPPL. 1, p. 95–101, 2003.
- BOUCHET, F.; LE BAILLY, M. Os achados na Europa. In: FERREIRA, L. F.; REINHARD,
 K. J.; ARAÚJO, A. (Ed.). Fundamentos da Paleoparasitologia. Rio de Janeiro: Fiocruz, 2011.
- BOUCHET, F.; PETREQUIN, P.; PAICHELER, J.; DOMMELIER, S. Première approche

paléoparasitologique du site néolithique de Chalain (Jura, France). Bulletin de la Société de pathologie exotique, v. 88, n. 5, p. 265–268, 1995.

- BRACONNOT, P.; HARRISON, S.; OTTO-BLIESNER, B.; PETERSCHMITT, J.-Y. Paleoclimate Modeling intercomparison Project. Clivar Exchanges, v. 16, n. 56, p. 15– 19, 2011. Disponível em: https://www.wcrpclimate.org/images/modelling/WGCM/WGCM15/20Oct/BRACONNOT_PMIP3.pdf>. Acesso em: 22 out. 2017.
- BRACONNOT, P.; HARRISON, S. P.; KAGEYAMA, M.; BARTLEIN, P. J.; MASSON-DELMOTTE, V.; ABE-OUCHI, A.; OTTO-BLIESNER, B.; ZHAO, Y. Evaluation of climate models using palaeoclimatic data. Nature Climate Change, v. 2, n. 6, p. 417–424, 25 mar. 2012. Disponível em: http://www.nature.com/doifinder/10.1038/nclimate1456>. Acesso em: 22 out. 2017.

BREIMAN, L. Random Forests. Machine Learning, v. 45, n. 1, p. 5–32, 2001.

BRINKKEMPER, O.; VAN HAASTER, H. Eggs of intestinal parasites whipworm (trichuris) and mawworm (ascaris): Non-pollen palynomorphs in archaeological samples. Review of Palaeobotany and Palynology, v. 186, p. 16–21, 2012. Disponível em: http://dx.doi.org/10.1016/j.revpalbo.2012.07.003>.

BRITTON, P.; KENT, A.; JONNY. TimeMaps.

- BROOKER, S.; CLEMENTS, A. C. A.; BUNDY, D. A. P. Global Epidemiology, Ecology and Control of Soil-Transmitted Helminth Infections. In: Advances in parasitology. [s.l: s.n.]62p. 221–261.
- BROOKER, S.; MICHAEL, E. The potential of geographical information systems and remote sensing in the epidemiology and control of human helminth infections. Advances in parasitology, v. 47, p. 245–88, 2000. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/10997209>. Acesso em: 26 abr. 2017.
- BULLUCK, L.; FLEISHMAN, E.; BETRUS, C.; BLAIR, R. Spatial and temporal variations in species occurrence rate affect the accuracy of occurrence models. Global Ecology and Biogeography, v. 15, n. 1, p. 27–38, 2006.
- CALLEJÓN, R.; GUTIÉRREZ-AVILÉS, L.; HALAJIAN, A.; ZURITA, A.; DE ROJAS, M.; CUTILLAS, C. Taxonomy and phylogeny of Trichuris globulosa Von Linstow, 1901 from camels. A review of Trichuris species parasitizing herbivorous. Infection, Genetics and Evolution, v. 34, p. 61–74, 2015. Disponível em: http://linkinghub.elsevier.com/retrieve/pii/S1567134815002439>.

CALLEN, E. O.; CAMERON, T. W. M. A prehistoric diet revealed in coprolites. New
Scientist, v. 8, n. 190, p. 35–40, 1960.

- CÂMARA, G.; MEDEIROS, C. B.; CASANOVA, M.; HEMERLY, A.; MAGALHÃES, G. (ed.). 1996- Camara Anatomia de SIGs. [s.l: s.n.]
- CDC. Trichuriasis Epidemiology & Risk Factors. Disponível em: https://www.cdc.gov/parasites/whipworm/epi.html. Acesso em: 18 out. 2017.
- CHAMMARTIN, F.; GUIMARÃES, L. H.; SCHOLTE, R. G.; BAVIA, M. E.; UTZINGER, J.; VOUNATSOU, P. Spatio-temporal distribution of soil-transmitted helminth infections in Brazil. **Parasites & Vectors**, v. 7, n. 1, p. 440, 2014. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/25230810>.
- CHAMMARTIN, F.; SCHOLTE, R. G. C.; GUIMARÃES, L. H.; TANNER, M.; UTZINGER, J.; VOUNATSOU, P. Soil-transmitted helminth infection in South America: A systematic review and geostatistical meta-analysis. The Lancet Infectious Diseases, v. 13, n. 6, p. 507–518, 2013. Disponível em: http://dx.doi.org/10.1016/S1473-3099(13)70071-9>.
- CHEN, L. B.; HUNG, T. [Scanning electron microscopic view of parastic worm ova in an ancient corpse (author's transl)]. Zhongguo yi xue ke xue yuan xue bao. Acta Academiae Medicinae Sinicae, v. 3, n. 1, p. 64–5, mar. 1981. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/6458400>. Acesso em: 3 jan. 2017.
- CHENG, T. O. Glimpses of the past from the recently unearthed ancient corpses in China. **Annals of Internal Medicine**, v. 101, n. 5, p. 714–715, 1 nov. 1984. Disponível em: <http://annals.org/article.aspx?doi=10.7326/0003-4819-101-5-714>. Acesso em: 29 dez. 2016.
- CONFALONIERI, U. Paleoparasitologia do Gênero Trichuris Roederer, 1761, com um Estudo Paleoepidemiológico sobre a Origem do Trichuris trichiura (Linn., 1771), Stiles, 1901 na América (Nematoda, Trichuridae). 1983. 1983.
- CONROY, G. C. Creating, displaying, and querying interactive paleoanthropological maps using GIS: An example from the Uinta Basin, Utah. **Evolutionary Anthropology**, v. 15, n. 6, p. 217–223, 2006.
- COOPER, E. S.; BUNDY, D. A. Trichuris is not trivial. **Parasitology today (Personal ed.)**, v. 4, n. 11, p. 301–6, nov. 1988. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/15463011>. Acesso em: 14 out. 2017.
- CORRÊA, Â. A. DATAÇÕES NA BIBLIOGRAFIA ARQUEOLÓGICA BRASILEIRA A
PARTIR DOS SÍTIOS TUPI. Cadernos do LEPAARQ (UFPEL), v. 14, n. 27, p. 379,
29 jun. 2017. Disponível em:

<https://periodicos.ufpel.edu.br/ojs2/index.php/lepaarq/article/view/9595>. Acesso em: 22 out. 2017.

- CORTES, C.; VAPNIK, V. Support-vector networks. Machine Learning, v. 20, n. 3, p. 273–297, set. 1995. Disponível em: http://link.springer.com/10.1007/BF00994018.
- CÔTÉ, N. M. L.; DALIGAULT, J.; PRUVOST, M.; BENNETT, E. A.; GORGÉ, O.; GUIMARAES, S.; CAPELLI, N.; LE BAILLY, M.; GEIGL, E.-M.; GRANGE, T. A New High-Throughput Approach to Genotype Ancient Human Gastrointestinal Parasites. PLOS ONE, v. 11, n. 1, p. e0146230, 11 jan. 2016. Disponível em: <http://www.ncbi.nlm.nih.gov/pubmed/26752051>. Acesso em: 19 jan. 2017.
- CRISTIANINI, N.; SHAWE-TAYLOR, J. An introduction to support vector machines: and other kernel-based learning methods. [s.l.] Cambridge University Press, 2000.
- CUTILLAS, C.; DE ROJAS, M.; ZURITA, A.; OLIVEROS, R.; CALLEJÓN, R. Trichuris colobae n. sp. (Nematoda: Trichuridae), a new species of Trichuris from Colobus guereza kikuyensis. **Parasitology research**, v. 113, n. 7, p. 2725–32, 2014. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/24853537>.
- DA ROCHA, G. C.; HARTER- LAILHEUGUE, S.; LE BAILLY, M.; ARAÚJO, A.; FERREIRA, L. F.; DA SERRA-FREIRE, N. M.; BOUCHET, F. Paleoparasitological remains revealed by seven historic contexts from "Place d'Armes", Namur, Belgium. Memorias do Instituto Oswaldo Cruz, v. 101, n. SUPPL. 2, p. 43–52, 2006.
- DA ROCHA, G. C.; SERRA-FREIRE, N. M. Paleoparasitology at "Place d'Armes{"}, Namur, Belgium: a biostatistics analysis of trichurid eggs between the Old and New World. Revista Brasileira De Parasitologia Veterinaria, v. 18, n. 3, p. 70–74, 2009.
- DANABASOGLU, G.; BATES, S. C.; BRIEGLEB, B. P.; JAYNE, S. R.; JOCHUM, M.; LARGE, W. G.; PEACOCK, S.; YEAGER, S. G. The CCSM4 ocean component. Journal of Climate, v. 25, n. 5, p. 1361–1389, 2012.
- DARK, P.; ALLEN, J. R. L.; ASPÖCK, H.; AUER, H.; PICHER, O.; PLATZER, W.;
 FERREIRA, L. F.; DE ARAÚJO, A. J. G.; CONFALONIERI, U. E. C.; FERREIRA, L.
 F.; DE ARAÚJO, A. J. G.; CONFALONIERI, U. E. C.; HORNE, P. D.; KLIKS, M. M.;
 KNIGHTS, B. A.; DICKSON, C. A.; DICKSON, J. H.; BREEZE, D. J.; PIKE, A. W.;
 BIDDLE, M.; REINHARD, K. J.; HEVLY, R. H.; ANDERSON, G. A.; STUIVER, M.;
 REIMER, P. J.; BARD, E.; BECK, J. W.; BURR, G. S.; HUGHEN, K. A.; KROMER,
 B.; MCCORMAC, G.; VAN DER PLICHT, J.; SPURK, M. New evidence for the antiquity of the intestinal parasite Trichuris (whipworm) in Europe. Antiquity, v. 78, n. 301, p. 676–681, 2004.

- DE SILVA, N. R.; BROOKER, S.; HOTEZ, P. J.; MONTRESOR, A.; ENGELS, D.; SAVIOLI, L. Soil-transmitted helminth infections: Updating the global picture. Trends in Parasitology, v. 19, n. 12, p. 547–551, 2003.
- DE SOUZA, S. M. F. M.; DE CARVALHO, D. M.; LESSA, A. Paleoepidemiology: Is There a Case to Answer? **Memorias do Instituto Oswaldo Cruz**, v. 98, n. SUPPL. 1, p. 21–27, 2003a.
- DE SOUZA, S. M. F. M.; DE CARVALHO, D. M.; LESSA, A. Paleoepidemiology: is there a case to answer? Memorias do Instituto Oswaldo Cruz, v. 98 Suppl 1, p. 21–7, 2003b. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/12687758. Acesso em: 3 fev. 2017.
- DIGGLE, P. J.; GIORGI, E. Model-Based Geostatistics for Prevalence Mapping in Low-Resource Settings. Journal of the American Statistical Association, v. 111, n. 515, p. 1096–1120, 2 jul. 2016. Disponível em: https://www.tandfonline.com/doi/full/10.1080/01621459.2015.1123158. Acesso em: 10 mar. 2017.
- DINNIK, N. Independent Species Trichocephalus trichiurus (L., 1771) and Trichocephalus suis (Schrank, 1788). apud UEC Confalonieri 1983. Paleoparasitologia do Gênero Trichuris Roederer, 1761, com um Estudo Paleoepidemiológico sobre a Origem do Trichuris trichiura. 1938. Universidade Federal Rural do Rio de Janeiro, 1938.
- DITTMAR, K.; STEYN, M. Paleoparasitological analysis of coprolites from K2, an Iron Age archaeological site in South Africa: the first finding of Dicrocoelium sp. eggs. **The Journal of parasitology**, v. 90, n. 1, p. 171–173, 2004.
- DOMMELIER, E. Contribuition à L'étude Paléoparasitologique des Sites Néolithiques em Environnement Lacustre dans les Domaines Jurassien et Péri-alpin. 2001. Université de Reims, 2001. Disponível em: <https://scholar.google.com.br/scholar?hl=pt-

BR&q=Contribuition+a%60+L'e'tude+Pale'oparasitologique+des+Sites+Ne'olithiques +em+Environnement+Lacustre+dans+les+Domaines+Jurassien+et+Pe'+ri-+alpin.&btnG=&lr=>.

 DOMMELIER ESPEJO, S. Contribuition a` L'e'tude Pale'oparasitologique des Sites Ne'olithiques em Environnement Lacustre dans les Domaines Jurassien et péri- alpin.
 2001. Disponível em: https://scholar.google.com.br/scholar?hl=pt-BR&q=Contribuition+a%60+L'e'tude+Pale'oparasitologique+des+Sites+Ne'olithiques +em+Environnement+Lacustre+dans+les+Domaines+Jurassien+et+Pe'+ri-

+alpin.&btnG=&lr=>. Acesso em: 28 dez. 2016.

- DOMMELIER, S.; BENTRAD, S.; PAICHELER, J.-C.; PÉTREQUIN, P.; BOUCHET, F. Parasitoses liées à l'alimentation chez les populations néolithiques du lac de Chalain (Jura, France). Anthropozoologica, v. 27, p. 41–49, 1998.
- DUFOUR, B.; SEGARD, M.; BAILLY, M. Le. A First Case of Human Trichuriasis from a Roman Lead Coffin in France. **The Korean Journal of Parasitology**, v. 54, n. 5, p. 625–629, 31 out. 2016. Disponível em: <http://www.ncbi.nlm.nih.gov/pubmed/27853119>. Acesso em: 29 dez. 2016.
- ELEZ, J.; CUEZVA, S.; FERNANDEZ-CORTES, A.; GARCIA-ANTON, E.; BENAVENTE, D.; CAÑAVERAS, J. C.; SANCHEZ-MORAL, S. A GIS-based methodology to quantitatively define an Adjacent Protected Area in a shallow karst cavity: The case of Altamira cave. Journal of Environmental Management, v. 118, p. 122–134, 2013. Disponível em: http://dx.doi.org/10.1016/j.jenvman.2013.01.020>.
- ELITH, J.; GRAHAM, C. H.; ANDERSON, R. P.; DUDIK, M.; FERRIER, S.; GUISAN, A.;
 HIJMANS, R. J.; HUETTMANN, F.; LEATHWICK, J. R.; LEHMANN, A.; LI, J.;
 LOHMANN, L. G.; LOISELLE, B. A.; MANION, G.; MORITZ, C.; NAKAMURA,
 M.; NAKAZAWA, Y.; OVERTON, J. M.; PETERSON, A. T.; PHILLIPS, S. J.;
 RICHARDSON, K.; SCACHETTI-PEREIRA, R.; SCHAPIRE, R. E.; SOBERON, J.;
 WILLIAMS, S.; WISZ, M. S.; ZIMMERMANN, N. E. Novel methods improve
 prediction of species' distributions from occurrence data. Ecography, v. 29, n. 2, p. 129–151, 2006.
- ELITH, J.; LEATHWICK, J. R. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annual Review of Ecology, Evolution, and Systematics, v. 40, n. 1, p. 677–697, 2009. Disponível em: http://www.annualreviews.org/doi/10.1146/annurev.ecolsys.110308.120159>.
- ELITH, J.; PHILLIPS, S. J.; HASTIE, T.; DUDÍK, M.; CHEE, Y. E.; YATES, C. J. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, v. 17, n. 1, p. 43–57, jan. 2011. Disponível em: http://doi.wiley.com/10.1111/j.1472-4642.2010.00725.x. Acesso em: 15 out. 2017.
- ENGLER, R.; GUISAN, A.; RECHSTEINER, L. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. Journal of Applied Ecology, v. 41, n. 2, p. 263–274, abr. 2004. Disponível em: ">http://doi.wiley.com/10.1111/j.0021-8901.2004.00881.x>.

- EVANS, A. C.; MARKUS, M. B.; MASON, R. J.; STEEL, R. Late stone-age coprolite reveals evidence of prehistoric parasitism. South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde, v. 86, n. 3, p. 274–5, mar. 1996. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/8658307>. Acesso em: 6 fev. 2017.
- FERNANDES, A.; FERREIRA, L. F.; GONÇALVES, M. L. C.; BOUCHET, F.; KLEIN, C. H.; IGUCHI, T.; SIANTO, L.; ARAUJO, A. Intestinal parasite analysis in organic sediments collected from a 16th-century Belgian archeological site. Cadernos de saude publica / Ministerio da Saude, Fundacao Oswaldo Cruz, Escola Nacional de Saude Publica, v. 21, n. 1, p. 329–332, 2005. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/15692668>. Acesso em: 18 jan. 2017.
- FERNANDES, A.; IÑIGUEZ, A. M. Paleoparasitology of trichuriasis: a Cronological and Geoespacial Review. **PLoS ONE**, v. no prelo, 2017.
- FERREIRA, L.; ARAÚJO, A.; CONFALONIERI, U. Untitled note. **Paleopathol News**, v. 38, p. 5, 1982.
- FERREIRA, L. F. O fenômeno parasitismo. Revista da Sociedade Brasileira de Medicina Tropical, v. 7, n. 4, p. 261–277, ago. 1973. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0037-86821973000400006&lng=pt&tlng=pt>.
- FERREIRA, L. F.; ARAÚJO, A.; CONFALONIERI, U.; DE LIMA, J. M. Trichuris trichiura eggs in human coprolites from the archaeological site of "Furna do Estrago", Brejo da Madre de Deus, Pernambuco, Brazil. Memorias do Instituto Oswaldo Cruz, v. 84, n. 4, p. 581, 1989. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/2487454>. Acesso em: 30 jan. 2017.
- FERREIRA, L. F.; DE ARAÚJO, A. J.; CONFALONIERI, U. E. The finding of eggs and larvae of parasitic helminths in archaeological material from Unai, Minas Gerais, Brazil.
 Transactions of the Royal Society of Tropical Medicine and Hygiene, v. 74, n. 6, p. 798–800, 1980. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/7010700.
 Acesso em: 30 jan. 2017.
- FERREIRA, L. F.; DE ARAÚJO, A. J.; CONFALONIERI, U. E. The finding of helminth eggs in a Brazilian mummy. Transactions of the Royal Society of Tropical Medicine and Hygiene, v. 77, n. 1, p. 65–67, 1983.
- FERREIRA, L. F.; REINHARD, K. J.; ARAÚJO, A. Foundations of Paleoparasitology. Rio de Janeiro: Editora Fiocruz, 2014.
- FERREIRA LF; ARAÚJO A; CONFALONIERI UEC. Subsídios para a paleoparasitologia

do Brasil. I. Parasitos encontrados em coprólitos no município de Unaí, MGResumos de IV Congresso Brasileiro de ParasitologiaCampinas, 1979.

- FERREIRA LF; ARAÚJO A; CONFALONIERI UEC. Paleoparasitologia no Brasil. [s.l.] PEC/ENSP, 1988.
- FERREIRA, M. Iniciação à análise geoespacial: teoria, técnicas e exemplos para geoprocessamento. São Paulo: Unesp, 2014.
- FERRIER, S.; WATSON, G. An evaluation of the effectiveness of environmental surrogates and modelling techniques in predicting the distribution of biological diversity. Environment Australia, 1997.
- FOUANT, M.; ALLISSON, M.; ENRIQUE, G.; GUILLERMO, F. Parasitos Intestinales entre los indigenas precolombinos. **Chungara**, v. 9, p. 285–299, 1982.
- FRANKLIN, J.; WEJNERT, K. E.; HATHAWAY, S. A.; ROCHESTER, C. J.; FISHER, R. N. Effect of species rarity on the accuracy of species distribution models for reptiles and amphibians in southern California. **Diversity and Distributions**, v. 15, n. 1, p. 167– 177, 1 jan. 2009. Disponível em: http://doi.wiley.com/10.1111/j.1472-4642.2008.00536.x. Acesso em: 1 nov. 2017.
- FRÍAS, L.; LELES, D.; ARAÚJO, A. Studies on protozoa in ancient remains A review. Memorias do Instituto Oswaldo Cruz, v. 108, n. 1, p. 1–12, 2013.
- FUGASSA, M.; BARBERENA, R. Cuevas y zoonosis antiguas: paleoparasitología del sitio Orejas de Burro 1 (Santa cruz, Argentina). Magallania, v. 34, n. 2, p. 57–62, 2006. Disponível em: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=s0718-22442006000200006&lng=es&nrm=iso>.
- FUGASSA, M.; GUICHÓN, R. Nuevos aportes a la paleoparasitologia del sítio arqueológico "Nombre de Jesús" (S.XVI), Cabo Virgenes, Argentina. Revista Argentina de Antropología Biológica, v. 8, n. 1, 2006.
- FUGASSA, M. H.; ARAÚJO, A.; GUICHÓN, R. A. Quantitative paleoparasitology applied to archaeological sediments. Memorias do Instituto Oswaldo Cruz, v. 101, n. SUPPL. 2, p. 29–33, 2006.
- GIANNINI, T. C.; SIQUEIRA, M. F.; ACOSTA, A. L.; BARRETO, F. C. C.; SARAIVA, A. M.; ALVES-DOS-SANTOS, I. Desafios atuais da modelagem preditiva de distribuição de espécies. Rodriguésia, v. 63, n. 3, p. 733–749, set. 2012. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2175-

78602012000300017&lng=pt&tlng=pt>. Acesso em: 14 out. 2017.

GONCALVES, M. L. C.; ARAUJO, a; FERREIRA, L. F. Human intestinal parasites in the

past: Nw findings and a review. **Memorias Do Instituto Oswaldo Cruz**, v. 98, n. Suppl. I, p. 103–118, 2003.

- GONÇALVES, M. L. C.; ARAUJO, A.; FERREIRA, L. F. Human intestinal parasites in the past: New findings and a review. Memorias Do Instituto Oswaldo Cruz, v. 98, n. Suppl. I, p. 103–118, 2003.
- GONÇALVES, M. L. C.; ARAÚJO, A.; FERREIRA, L. F. Human Intestinal Parasites in the Past: New Findings and a Review. Memorias do Instituto Oswaldo Cruz, v. 98, n. SUPPL. 1, p. 103–118, 2003.
- GREIG, J. The investigation of a medieval barrel-latrine from Worcester. Journal of Archaeological Science, v. 8, n. 3, p. 265–282, set. 1981. Disponível em: http://linkinghub.elsevier.com/retrieve/pii/0305440381900030>. Acesso em: 18 jan. 2017.
- GUERRA, L.; PIOVANO, E. L.; CÓRDOBA, F. E.; TACHIKAWA, K.; ROSTEK, F.; GARCIA, M.; BARD, E.; SYLVESTRE, F. Climate change evidences from the end of the Little Ice Age to the Current Warm Period registered by Melincué Lake (Northern Pampas, Argentina). Quaternary International, v. 438, p. 160–174, 2017.
- GUISAN, A.; THUILLER, W. Predicting species distributions: offering more than simple habitat models. **Ecology Letters**, v. 8, n. 9, p. 993–1009, 2005.
- GUISAN, A.; ZIMMERMANN, N. E. Predictive habitat distribution models in ecology. Ecological Modelling, v. 135, n. 2–3, p. 147–186, 5 dez. 2000. Disponível em: http://www.sciencedirect.com/science/article/pii/S0304380000003549. Acesso em: 1 nov. 2017.
- HALL, A.; JONES, A.; KENWARD, H. Cereal bran and human faecal remains from archaeological deposits. In: Site, Environment and Economy. BAR International Series, Anais...1983.
- HAN, E.-T.; GUK, S.-M.; KIM, J.-L.; JEONG, H.-J.; KIM, S.-N.; CHAI, J.-Y. Detection of Parasite Eggs from Archaeological Excavations in the Republic of Korea. Mem Inst Oswaldo Cruz, Rio de Janeiro, v. 98, p. 123–126, 2003.
- HARTER-LAILHEUGUE, S.; BOUCHET, F. Paleoparasitological investigations in funerary contexts along the nile. **Paleopathology Newsletter**, v. 128, p. 5–9, 2004.
- HARTER-LAILHEUGUE, S.; LE MORT, F.; VIGNE, J.-D.; GUILAINE, J.; LE BRUN, A.; BOUCHET, F. Premières données parasitologiques sur les populations humaines précéramiques chypriotes: VIIIe et VIIe millénaires av. J.-C. v. 31, p. 43–54, 2005.
- HARTER, S.; BOUCHET, F.; MUMCUOGLU, K. Y.; ZIAS, J. E. Toilet practices among

Members of the Dead Sea Scrolls Sect at Qumran (100 BC-68 AD). Revue de Qumrân, v. 21, n. 84, p. 579–584, 2004.

- HAWASH, M. B. F.; BETSON, M.; AL-JUBURY, A.; KETZIS, J.; LEEWILLINGHAM, A.; BERTELSEN, M. F.; COOPER, P. J.; LITTLEWOOD, D. T. J.; ZHU, X.-Q.; NEJSUM, P. Whipworms in humans and pigs: origins and demography. Parasites & vectors, v. 9, n. 1, p. 37, 2016. Disponível em: http://www.scopus.com/inward/record.url?eid=2-s2.0-84960394838&partnerID=tZOtx3y1.
- HEIRBAUT, E.; JONES, A.; WHEELER, W. Archaeometry: methods and analysis. In: JANSEN, G. C. M., KOLOSKI-OSTROW, A. O., MOORMANN, E. M. (Ed.). Roman Toilets: Their Archaeology and Cultural History. [s.l: s.n.]p. 7–20.
- HELBAEK, H. Grauballemandens sidste måltid. Kuml, p. 83–116, 1958.
- HERMANN, B. Parastiologisch-Epidemiologische Auswertungen Mittelalterlicher Kloaken. Zeitschrift für Archäologie des Mittelalters, v. 13, p. 131–161, 1985.
- HEVLY, R. H.; KELLY, R. E.; ANDERSON, G. A.; OLSEN, S. J. Comparative effects of climatic change, cultural impact, and volcanism in the paleoecology of flagstaff, Arizona A.D. 900-1300. p. 487–523, 1979.
- HIDALGO-ARGÜELLO, M. R.; DÍEZ BAÑOS, N.; FREGENEDA GRANDES, J.; PRADA MARCOS, E. Parasitological analysis of Leonese royalty from Collegiate-Basilica of St. Isidoro, León (Spain): helminths, protozoa, and mites. The Journal of parasitology, v. 89, n. 4, p. 738–743, ago. 2003. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/14533684. Acesso em: 19 jan. 2017.
- HIJMANS, R. J.; CAMERON, S. E.; PARRA, J. L.; JONES, P. G.; JARVIS, A. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, v. 25, n. 15, p. 1965–1978, 1 dez. 2005. Disponível em: http://doi.wiley.com/10.1002/joc.1276>. Acesso em: 14 out. 2017.
- HIJMANS, R. J.; GRAHAM, C. H. The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology, v. 12, n. 12, p. 2272–2281, dez. 2006. Disponível em: http://doi.wiley.com/10.1111/j.1365-2486.2006.01256.x. Acesso em: 15 out. 2017.
- HOHNER, L.; MÜLLER, K. Vergleichende Grössenbestimmungen an Eiern von Peitschenwürmern des Menschen und des Schweines. apud UEC Confalonieri 1983. Paleoparasitologia do Gênero Trichuris Roederer, 1761, com um Estudo Paleoepidemiológico sobre a Origem do Trichuris trichiura (Lin. 1965. Universidade Federal Rural do Rio de Janeiro, 1965.

- HORNE, P. D.; TUCK, J. A. Archaeoparasitology at a 17th Century Colonial Site in Newfoundland. The Journal of Parasitology, v. 82, n. 3, p. 512–515, jun. 1996. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/8636865>. Acesso em: 26 jan. 2017.
- HOTEZ, P. J.; FENWICK, A.; SAVIOLI, L.; MOLYNEUX, D. H. Rescuing the bottom billion through control of neglected tropical diseases. **The Lancet**, v. 373, n. 9674, p. 1570–1575, 2009.
- HOTEZ, P. J.; SAVIOLI, L.; FENWICK, A. Neglected tropical diseases of the Middle East and North Africa: review of their prevalence, distribution, and opportunities for control. PLoS neglected tropical diseases, v. 6, n. 2, p. e1475, 28 fev. 2012. Disponível em: http://dx.plos.org/10.1371/journal.pntd.0001475>. Acesso em: 27 set. 2017.
- IÑIGUEZ, A. M. Paleoparasitologia Molecular e Paleogenética para o Estudo das Doenças Infecto-Parasitarias do Passado : Princípios, Metodologia e Agravos. In: L. LUNA; C. ARANDA; J. SUBY (Ed.). Avances Recientes de la Bioarqueología Latinoamericana. Buenos Aires: GIB, 2014. p. 285–319.
- IPHAN. Cadastro Nacional de Sítios Arqueológicos CNSA / SGPA. Disponível em: ">http://portal.iphan.gov.br/sgpa/?consulta=cnsa>. Acesso em: 25 out. 2016.
- JAEGER, L. H.; GIJÓN-BOTELLA, H.; DEL CARMEN DEL ARCO-AGUILAR, M.; MARTÍN-OVAL, M.; RODRÍGUEZ-MAFFIOTTE, C.; DEL ARCO-AGUILAR, M.; ARAÚJO, A.; IÑIGUEZ, A. M. Evidence of Helminth Infection in Guanche Mummies: Integrating Paleoparasitological and Paleogenetic Investigations. The Journal of parasitology. 102. n. 2, 2016. V. p. 222 - 8abr. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/26641720>.
- JAEGER, L. H.; IÑIGUEZ, A. M. Molecular paleoparasitological hybridization approach as effective tool for diagnosing human intestinal parasites from scarce archaeological remains. PloS one, v. 9, n. 8, p. e105910, 2014. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/25162694>.
- JAEGER, L. H.; TAGLIORETTI, V.; DIAS, O.; IÑIGUEZ, A. M. Paleoparasitological analysis of human remains from a European cemetery of the 17th-19th century in Rio de Janeiro, Brazil. International Journal of Paleopathology, v. 3, n. 3, p. 214–217, 2013a.
- JAEGER, L. H.; TAGLIORETTI, V.; FUGASSA, M. H.; DIAS, O.; NETO, J.; IÑIGUEZ, A. M. Paleoparasitological results from XVIII century human remains from Rio de Janeiro, Brazil. Acta Tropica, v. 125, n. 3, p. 282–286, 2013b.

- JANSEN, J.; OVER, H. Het voorkomen van parasieten in terpmateriaal uit Noordwest Duitsland. **Tijdschr Diergeneesk**, v. 87, p. 1377–1379, 1962.
- JANSEN, J.; OVER, H. J. Observations on helminth infections in a roman army-camp. In: **Proceedings of the First International Congress of Parasitology**. [s.l: s.n.]p. 791.
- JIMÉNEZ, F. A.; GARDNER, S. L.; ARAÚJO, A.; FUGASSA, M.; BROOKS, R. H.; RACZ, E.; REINHARD, K. J. Zoonotic and Human Parasites of Inhabitants of Cueva de Los Muertos Chiquitos, Rio Zape Valley, Durango, Mexico. Journal of Parasitology, v. 98, n. 2, p. 304–309, 2012.
- JONES, A. K. G. Human parasite remains: prospects for a quantitative approach. In: HALL, A.R., KENWARD, H. K. (Ed.). Environmental Archaeology in the Urban Context. [s.l.] The Council for British Archaeology, 1982. p. 66–77.
- JONES, A. K. G. Intestinal parasite ova from archaeological deposits: evidence of widespread faecal contamination in Viking age York. In: Paleopathology 5th European Members Meeting, Siena - Italy. Anais... Siena - Italy: 1984.
- JONES, A. K. G. Parasitological investigations on Lindow man. IM Stead, JB Bourke, D Brothwell, Lindow Man-The Body in the Bog, British Museum Publications, p. 136–139, 1986.
- JONES, A. K. G.; HUTCHINSON, A. R.; NICHOLSON, C. The worms of Roman horses and other finds of intestinal parasite eggs from unpromising deposits. Antiquity, v. 62, n. May, p. 275–276, 1988.
- JOURDAN, P. M.; LAMBERTON, P. H. L.; FENWICK, A.; ADDISS, D. G. Soil-transmitted helminth infections. The Lancet, 4 set. 2017. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/28882382>. Acesso em: 14 out. 2017.
- KANEHARA, M.; KANEHARA, M. In the forefront of research, Jomon people suffered from parasites. Gekkan Rekishi Kaido, v. 84, 1995.
- KEARNEY, M.; PORTER, W. Mechanistic niche modelling: Combining physiological and spatial data to predict species' ranges. **Ecology Letters**, v. 12, n. 4, p. 334–350, 2009.
- KENDALL, T.; NATIONAL MUSEUM OF AFRICAN ART (U.S.); MUSEUM OF FINE ARTS, B. Kerma and the Kingdom of Kush, 2500-1500 B.C.: the archaeological discovery of an ancient Nubian empire. [s.l.] National Museum of African Art, Smithsonian Institution, 1996.
- KHUROO, M. S.; KHUROO, M. S.; KHUROO, N. S. Trichuris dysentery syndrome: a common cause of chronic iron deficiency anemia in adults in an endemic area (with videos). Gastrointestinal endoscopy, v. 71, n. 1, p. 200–4, jan. 2010. Disponível em:

http://www.ncbi.nlm.nih.gov/pubmed/19879568>. Acesso em: 14 out. 2017.

- KIM, M. J.; SHIN, D. H.; SONG, M. J.; SONG, H. Y.; SEO, M. Paleoparasitological surveys for detection of helminth eggs in archaeological sites of Jeolla-do and Jeju-do. Korean Journal of Parasitology, v. 51, n. 4, p. 489–492, 2013.
- KNM. Shinchang-dong wetland site National, I. Reporto on the research of antiquities of the Kwangju Museum. Kwangju Natl. Museum, v. 33, p. 159–166, 1997.
- LAMBERTON, P. H. L.; JOURDAN, P. M. Human Ascariasis: Diagnostics Update. Current Tropical Medicine Reports, v. 2, n. 4, p. 189–200, 3 dez. 2015. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/26550552>. Acesso em: 14 out. 2017.
- LE BAILLY, M.; LANDOLT, M.; BOUCHET, F. First World War German soldier intestinal worms: an original study of a trench latrine in France. The Journal of parasitology, v. 98, n. 6, p. 1273–5, 2012. Disponível em: <http://www.ncbi.nlm.nih.gov/pubmed/22924925>.
- LE BAILLY, M.; LANDOLT, M.; MAUCHAMP, L.; DUFOUR, B. Intestinal parasites in first world war german soldiers from "Kilianstollen", carspach, France. **PLoS ONE**, v. 9, n. 10, p. 1–6, 2014.
- LE BAILLY, M.; MAICHER, C.; DUFOUR, B. Archaeological occurrences and historical review of the human amoeba, Entamoeba histolytica, over the past 6000 years. Infection, Genetics and Evolution, v. 42, p. 34–40, 2016. Disponível em: http://dx.doi.org/10.1016/j.meegid.2016.04.030>.
- LE ROY, M.; RIVOLLAT, M.; MENDISCO, F.; PEMONGE, M. H.; COUTELIER, C.; COUTURE, C.; TILLIER, A. marie; ROTTIER, S.; DEGUILLOUX, M. F. Distinct ancestries for similar funerary practices? A GIS analysis comparing funerary, osteological and aDNA data from the Middle Neolithic necropolis Gurgy ???Les Noisats??? (Yonne, France). Journal of Archaeological Science, v. 73, p. 45–54, 2016.
- LEE, H. J.; SHIN, D. H.; SEO, M. Discovery of Taeniid eggs from a 17th century tomb in Korea. Korean Journal of Parasitology, v. 49, n. 3, p. 327–329, 2011.
- LEE, I. S.; LEE, E. J.; PARK, J. B.; BAEK, S. H.; OH, C. S.; LEE, S. D.; KIM, Y. S.; BOK, G. D.; HONG, J. W.; LIM, D. S.; SHIN, M. H.; SEO, M.; SHIN, D. H. Acute traumatic death of a 17th century general based on examination of mummified remains found in Korea. Annals of Anatomy, v. 191, n. 3, p. 309–320, 2009.
- LEGENDRE, J.; MARIE, J.; RIEB, J. Contribution à l'Étude de l'État Sanitaire de la Population Strasbourgeoise à la Fin du Moyen-Age. [s.l.] Archéologie et Médecine, APDCA, Juan-les-Pins, 1987.

- LELES, D. "Paleogenética e paleoepidemiologia de Ascaris sp. (Linnaeus, 1758) e Trichuris sp. (Roederer, 1761)". p. 218, 2010a.
- LELES, D. Paleogenética e paleoepidemiologia de Ascaris sp. (Linnaeus, 1758) e Trichuris sp. (Roederer, 1761). 2010b.
- LELES, D.; ARAÚJO, A.; FERREIRA, L. F.; VICENTE, A. C. P.; IÑIGUEZ, A. M. Molecular paleoparasitological diagnosis of Ascaris sp. from coprolites: New scenery of ascariasis in pre-Columbian South America times. Memorias do Instituto Oswaldo Cruz, v. 103, n. 1, p. 106–108, fev. 2008. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0074-

02762008000100017&lng=en&nrm=iso&tlng=en>. Acesso em: 30 jan. 2017.

- LELES, D.; REINHARD, K. J.; FUGASSA, M.; FERREIRA, L. F.; IÑIGUEZ, A. M.; ARAÚJO, A. A parasitological paradox: Why is ascarid infection so rare in the prehistoric Americas? Journal of Archaeological Science, v. 37, n. 7, p. 1510–1520, 2010.
- LIBRADO, P.; GAMBA, C.; GAUNITZ, C.; DER SARKISSIAN, C.; PRUVOST, M.;
 ALBRECHTSEN, A.; FAGES, A.; KHAN, N.; SCHUBERT, M.; JAGANNATHAN, V.;
 SERRES-ARMERO, A.; KUDERNA, L. F. K.; POVOLOTSKAYA, I. S.; SEGUIN-ORLANDO, A.; LEPETZ, S.; NEUDITSCHKO, M.; THÈVES, C.; ALQURAISHI, S.;
 ALFARHAN, A. H.; AL-RASHEID, K.; RIEDER, S.; SAMASHEV, Z.; FRANCFORT,
 H.-P.; BENECKE, N.; HOFREITER, M.; LUDWIG, A.; KEYSER, C.; MARQUES-BONET, T.; LUDES, B.; CRUBÉZY, E.; LEEB, T.; WILLERSLEV, E.; ORLANDO, L.
 Ancient genomic changes associated with domestication of the horse. Science, v. 356, n.
 6336, p. 442–445, 2017. Disponível em:
 .
- LIMA-RIBEIRO, M. S. EcoClimate: a database of climate data from multiple models for past, present, and future for macroecologists and biogeographers. Biodiversity Informatics, v. 10, 2015. Disponível em: https://journals.ku.edu/index.php/jbi/article/view/4955>.
- LOBO, J. M.; VERDU, J. R.; NUMA, C. Environmental and geographical factors affecting the Iberian distribution of flightless Jekelius species (Coleoptera: Geotrupidae).
 Diversity <html_ent glyph="@amp;" ascii="&"/> Distributions, v. 12, n. 2, p. 179–188, mar. 2006. Disponível em: <http://doi.wiley.com/10.1111/j.1366-9516.2005.00214.x>.
- LUTZ, A. O Schistosomum mansoni e a Schistosomatose segundo observações, feitas no

Brazil. Mem. Inst. Oswaldo Cruz vol.11 no.1 Rio de Janeiro 1919, v. 11, n. 1, p. 109– 140, 1919.

- MARDER, O.; MALINSKY-BULLER, A.; SHAHACK-GROSS, R.; ACKERMANN, O.;
 AYALON, A.; BAR-MATTHEWS, M.; GOLDSMITH, Y.; INBAR, M.;
 RABINOVICH, R.; HOVERS, E. Archaeological horizons and fluvial processes at the Lower Paleolithic open-air site of Revadim (Israel). Journal of Human Evolution, v. 60, n. 4, p. 508–522, 2011. Disponível em: http://dx.doi.org/10.1016/j.jhevol.2010.01.007>.
- MAREAN, C. W.; ABE, Y.; NILSSEN, P. J.; STONE, E. C. Estimating the minimum number of skeletal elements (MNE) in zooarchaeology: a review and a new image-analysis GIS approach. American antiquity, v. 66, n. 2, p. 333–48, abr. 2001. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/20043371. Acesso em: 10 mar. 2017.
- MARTINSON, E.; REINHARD, K. J.; BUIKSTRA, J. E.; DE LA CRUZ, K. D. Pathoecology of Chiribaya Parasitism. Memorias do Instituto Oswaldo Cruz, 2003.
- MATSUI, A.; KANEHARA, M.; KANEHARA, M. Palaeoparasitology in Japan--discovery of toilet features. Memorias do Instituto Oswaldo Cruz, v. 98 Suppl 1, n. 1995, p. 127– 136, 2003.
- MEROW, C.; SMITH, M. J.; SILANDER, J. A. A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter. Ecography, v. 36, n. 10, p. 1058–1069, out. 2013. Disponível em: http://doi.wiley.com/10.1111/j.1600-0587.2013.07872.x. Acesso em: 15 out. 2017.
- MITCHELL, P. D. Human parasites in the Roman World: health consequences of conquering an empire. **Parasitology**, v. Jan 8, p. 1–11, 2016. Disponível em: http://www.journals.cambridge.org/abstract_S0031182015001651>.
- MITCHELL, P.; STERN, E. Parasitic intestinal helminth ova from the latrines of the 13th century crusader hospital of St John in Acre, Israel. ... Association 13th Biennial European Members Meeting ..., p. 21–22, 2000. Disponível em: ">https://scholar.google.com.br/scholar?q=Parasitic+intestinal+helminth+ova+from+the+latrines+of+the+13th+century+crusader+h&btnG=&hl=pt-BR&as_sdt=0%2C5>">https://scholar.google.com.br/scholar?q=Parasitic+intestinal+helminth+ova+from+the+latrines+of+the+13th+century+crusader+h&btnG=&hl=pt-BR&as_sdt=0%2C5>">https://scholar.google.com.br/scholar?q=Parasitic+intestinal+helminth+ova+from+the+latrines+of+the+13th+century+crusader+h&btnG=&hl=pt-BR&as_sdt=0%2C5>">https://scholar.google.com.br/scholar?q=Parasitic+intestinal+helminth+ova+from+the+latrines+of+the+13th+century+crusader+h&btnG=&hl=pt-BR&as_sdt=0%2C5>">https://scholar.google.com.br/scholar?q=Parasitic+intestinal+helminth+ova+from+the+latrines+of+the+13th+century+crusader+h&btnG=&hl=pt-BR&as_sdt=0%2C5>">https://scholar.google.com.br/scholar?q=Parasitic+intestinal+helminth+ova+from+the+latrines+of+the+13th+century+crusader+h&btnG=&hl=pt-BR&as_sdt=0%2C5>">https://scholar.google.com/scholar?q=Parasitic+helminth+ova+from+the+latrines+of+the+13th+century+crusader+h&btnG=&hl=pt-BR&as_sdt=0%2C5>">https://scholar.google.com/scholar?q=Parasitic+helminth+ova+from+the+latrines+of+the+13th+century+crusader+h&btnG=&hl=pt-BR&as_sdt=0%2C5>">https://scholar.google.com/scholar?q=Parasitic+helminth+ova+from+the+latrines+of+the
- MONSERUD, R. A.; LEEMANS, R. Comparing global vegetation maps with the Kappa statistic. **Ecological Modelling**, v. 62, n. 4, p. 275–293, ago. 1992. Disponível em: http://linkinghub.elsevier.com/retrieve/pii/030438009290003W>.
- MOORE, P. D. Life seen from a medieval latrine. Nature, v. 294, n. 5842, p. 614-614, 1981.

Disponível em: http://www.scopus.com/inward/record.url?eid=2-s2.0-0141693810&partnerID=tZOtx3y1.

- MORROW, J. J.; LARSEN, A. S.; PIOMBINO-MASCALI, D.; JANKAUSKAS, R.; KOZAKAITE, J.; ARAÚJO, A.; REINHARD, K. J. Taphonomic considerations of a whipworm infection in a mummy from the Dominican Church of the Holy Spirit, Vilnius, Lithuania. **International Journal of Paleopathology**, v. 7, p. 83–87, 2014.
- NANSEN, P, JØRGENSEN, R. Fund af parasitæg i arkæologisk materiale fra det vikingetidige Ribe. Nord Vet-Med, v. 29, p. 263–266, 1977.
- NEUBAUER, W. Images of the invisible-prospection methods for the documentation of threatened archaeological sites. **Naturwissenschaften**, v. 88, n. 1, p. 13–24, 2001.
- NEVES, D. P.; MELO, A. L. De; LINARDI, P. M. Parasitologia Humana. São Paulo: Atheneu, 2005.
- O'CONNELL, E. M.; NUTMAN, T. B. Molecular Diagnostics for Soil-Transmitted Helminths. **The American journal of tropical medicine and hygiene**, v. 95, n. 3, p. 508–13, 7 set. 2016. Disponível em: <http://www.ncbi.nlm.nih.gov/pubmed/27481053>. Acesso em: 8 ago. 2017.
- OH, C. S.; SEO, M.; CHAI, J. Y.; LEE, S. J.; KIM, M. J.; PARK, J. B.; SHIN, D. H. Amplification and sequencing of Trichuris trichiura ancient DNA extracted from archaeological sediments. Journal of Archaeological Science, v. 37, n. 6, p. 1269– 1273, 2010a. Disponível em: http://dx.doi.org/10.1016/j.jas.2009.12.029>.
- OH, C. S.; SEO, M.; CHAI, J. Y.; LEE, S. J.; KIM, M. J.; PARK, J. B.; SHIN, D. H. Amplification and sequencing of Trichuris trichiura ancient DNA extracted from archaeological sediments. Journal of Archaeological Science, v. 37, n. 6, p. 1269– 1273, 2010b.
- OJHA, S. C.; JAIDE, C.; JINAWATH, N.; ROTJANAPAN, P.; BARAL, P. Geohelminths: public health significance. The Journal of Infection in Developing Countries, v. 8, n. 01, 15 jan. 2014. Disponível em: http://www.jidc.org/index.php/journal/article/view/3183>. Acesso em: 20 jul. 2017.
- OMRAN, A. R. The epidemiologic transition. A theory of the epidemiology of population change. **The Milbank Memorial Fund quarterly**, v. 49, n. 4, p. 509–538, 1971.
- PAU, D.; PEREZ TORT, G.; PETETTA, L.; CORONEL, D. Hallazgo de huevos de Ascaris ssp. en sedimentos arqueológicos contenidos en la cavidad pélvica-estomacal de restos humanos. Bol Chil Parasitol, v. 60, n. t2, p. 327, 2005.
- PEDUZZI, P.; CONCATO, J.; KEMPER, E.; HOLFORD, T. R.; FEINSTEIN, a R. A

simulation study of the number of events per variable in logistic regression analysis. **Journal of clinical epidemiology**, v. 49, n. 12, p. 1373–1379, 1996.

- PETERSON, A. T.; SOBERÓN, J.; PEARSON, R. G.; MEYER, R. P. A. E. M.; NAKAMURA, M.; ARAÚJO, M. B. Ecological Niches and Geographic Distributions (MPB-49) (Monographs in Population Biology). [s.l.] Princeton University Press, 2011.
- PHILLIPS, S.; DUDÍK, M.; SCHAPIRE, R. A maximum entropy approach to species distribution modeling. Proceedings of the Twenty-First International Conference on Machine Learning, p. 655–662, 2004. Disponível em: http://dl.acm.org/citation.cfm?id=1015412>.
- PHILLIPS, S. J.; ANDERSON, R. P.; SCHAPIRE, R. E. Maximum entropy modeling of species geographic distributions. Ecological Modelling, v. 190, n. 3–4, p. 231–259, jan. 2006. Disponível em: http://linkinghub.elsevier.com/retrieve/pii/S030438000500267X>.
- PIERS D. MITCHELL. Human parasites in the Roman World: health consequences of conquering an empire. Parasitology, v. Jan 8, p. 1–11, 2016. Disponível em: http://www.journals.cambridge.org/abstract S0031182015001651>.
- PIKE. Parasite eggs: the organic content of cesspit soil from Southampton and their significance for the archaeologist and biologist. In: C PLATT, R. C.-S. (Ed.). Excavations in Mediaeval Southampton 1953-1969. [s.l.] Leicester University Press, 1975. p. 347–348.
- PIKE, A. W. The recovery of parasite eggs from ancient cesspit and latrine deposits: an approach to the study of early parasite infections. In: Diseases in antiquity. A survey of the diseases, injuries and surgery of early populations. [s.l: s.n.]p. 184–188.
- PIKE, A. W. Recovery of helminth eggs from archaeological excavations, and their possible usefulness in providing evidence for the purpose of an occupationNature, 1968.
- PIZZI, T.; SCHENONE, H. Discovery of eggs of Trichuris trichiura in the contents of the intestines of an Inca archeological body. Boletin chileno de parasitologia, v. 9, n. 3, p. 73–5, 1954. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/13230186>. Acesso em: 30 jan. 2017.
- POULIN, R.; MORAND, S. The diversity of parasites. **The Quarterly review of biology**, v. 75, n. 3, p. 277–93, set. 2000. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/11008700>.

- PULLAN, R. L.; SMITH, J. L.; JASRASARIA, R.; BROOKER, S. J. Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasites & vectors, v. 7, n. 1, p. 37, 2014a. Disponível em: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3905661&tool=pmcentrez &rendertype=abstract>.
- PULLAN, R. L.; SMITH, J. L.; JASRASARIA, R.; BROOKER, S. J. Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasites
 & Vectors, v. 7, n. 1, p. 37, 21 jan. 2014b. Disponível em: http://parasitesandvectors.biomedcentral.com/articles/10.1186/1756-3305-7-37.
 Acesso em: 14 out. 2017.
- R DEVELOPMENT CORE TEAM. R: A Language and Environment for Statistical ComputingR Foundation for Statistical Computing, 2014. . Disponível em: http://www.r-project.org/>.
- RÁCZ, S. E.; DE ARAÚJO, E. P.; JENSEN, E.; MOSTEK, C.; MORROW, J. J.; VAN HOVE, M. L.; BIANUCCI, R.; WILLEMS, D.; HELLER, F.; ARAÚJO, A.; REINHARD, K. J. Parasitology in an archaeological context: analysis of medieval burials in Nivelles, Belgium. Journal of Archaeological Science, v. 53, p. 304–315, 2015.
- REINHARD, K. J. Archaeoparasitology in North America. American Journal of Physical Anthropology, v. 82, n. 2, p. 145–163, jun. 1990. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/2193523>. Acesso em: 26 jan. 2017.
- REINHARD, K. J. Os achados na América do Norte. In: FERREIRA, L. F.; REINHARD, K. J.; ARAÚJO, A. (Ed.). Fundamentos da Paleoparasitologia. Rio de Janeiro: Fiocruz, 2011. p. 353–375.
- REINHARD, K. J.; ARAÚJO, A. Archaeoparasitology. In: Encyclopedia of Archaeology.
 Deborah M. ed. New York: Elsevier, Academic Press, 2008. p. 494–501.
- REINHARD, K. J.; CONFALONIERI, U. E.; HERRMANN, B.; FERREIRA, L. F.; ARAÚJO, A.; LUIZ FERNANDO FERREIRA; ARAÚJO, A. Recovery of oarasite remains from coprolites and latrines: Aspects of paleoparasitological technique. Homo, v. 37, p. 217–239, 1986.
- REY, L. Parasitologia: parasitos e doenças parasitárias do homem nos trópicos ocidentais. 4. ed. [s.l.] Guanabara Koogan, 2008.
- ROBERTS, L.S., JANOVY JR, J. Foundations of parasitology. 8th ed ed. [s.l.] McGraw-Hill Professional Publishing, 2008.

- RODRIGUES, E. S. da C. Teoria da Informação e Adaptatividade na Modelagem de Distribuição de Espécies. 2012. USP, 2012. Disponível em: <file:///C:/Users/Alexandre/Downloads/Tese_Elisangela_Silva_da_Cunha_Rodrigues (1).pdf>.
- ROEVER-BONETT, H. et al. Helminth eggs and gregarines from coprolites from the excavations at Swifterbant. **Helenium**, v. 19, p. 7–12, 1979.
- ROUFFIGNAC, C. Mediaeval man and his worms. Biologist, v. 34, p. 187-190, 1987.
- ROUSSET, J. J.; HERON, C.; METROT, P. [Human helminthiasis at the Gauls]. Histoire des sciences medicales, v. 30, n. 1, p. 41–6, 1996. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/11624833. Acesso em: 13 jan. 2017.
- RUFFER, M. A. Note on the Presence of "Bilharzia Haematobia" in Egyptian Mummies of the Twentieth Dynasty [1250-1000 B.C.]. British medical journal, v. 1, n. 2557, p. 16, 1 jan. 1910a. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/20764829. Acesso em: 3 fev. 2017.
- RUFFER, M. a. Note on the Presence of "Bilharzia Haematobia" in Egyptian Mummies of the Twentieth Dynasty [1250-1000 B.C.]. **British medical journal**, v. 1, n. 2557, p. 16, 1910b.
- RUSSELL, S.; NORVIG, P. Inteligência Artificial: tradução da segunda edição. Rio de Janeiro: Elsevier, 2004.
- SANTORO, C.; DORSEY VINTON, S.; REINHARD, K. J. Inca Expansion and Parasitism in the Lluta Valley: Preliminary Data. Memorias do Instituto Oswaldo Cruz, v. 98, n. SUPPL. 1, p. 161–163, 2003.
- ŠEBELA, L.; VOJTKOVÁ, L.; VOJTEK, J. Intestinal Parasites in Man of Old Bronze Age. Anthropologie (Brno), v. 28, n. 1, p. 105–107, 1990.
- SEO, M.; GUK, S.-M.; KIM, J.; CHAI, J.-Y.; BOK, G. D.; PARK, S. S.; OH, C. S.; KIM, M. J.; YI, Y. S.; SHIN, M. H.; KANG, I. U.; SHIN, D. H. Paleoparasitological Report on the Stool From a Medieval Child Mummy in Yangju, Korea. Journal of Parasitology, v. 93, n. 3, p. 589–592, 2007. Disponível em: ">http://www.ncbi.nlm.nih.gov/pubmed/17626351%0Ahttp://www.bioone.org/doi/abs/10.1645/GE-905R3.1>.
- SEO, M.; OH, C. S.; CHAI, J. Y.; LEE, S. J.; PARK, J. B.; LEE, B. H.; PARK, J.-H.; CHO, G. H.; HONG, D.-W.; PARK, H. U.; SHIN, D. H. The Influence of Differential Burial Preservation on the Recovery of Parasite Eggs in Soil Samples from Korean Medieval Tombs. Journal of Parasitology, v. 96, n. 2, p. 366–370, abr. 2010. Disponível em:

http://www.ncbi.nlm.nih.gov/pubmed/19954260>. Acesso em: 5 jan. 2017.

- SHIN, D. H.; CHAI, J. Y.; PARK, E. A.; LEE, W.; LEE, H.; LEE, J. S.; CHOI, Y. M.; KOH, B. J.; PARK, J. B.; OH, C. S.; BOK, G. D.; KIM, W. L.; LEE, E.; LEE, E. J.; SEO, M. Finding ancient parasite larvae in a sample from a male living in late 17th century Korea. **The Journal of parasitology**, v. 95, n. 3, p. 768–71, jun. 2009. Disponível em: <http://www.ncbi.nlm.nih.gov/pubmed/19071966>.
- SHIN, D. H.; OH, C. S.; LEE, S. J.; CHAI, J. Y.; KIM, J.; LEE, S. D.; PARK, J. B.; CHOI, I.; LEE, H. J.; SEO, M. Paleo-parasitological study on the soils collected from archaeological sites in old district of Seoul City. Journal of Archaeological Science, v. 38, n. 12, p. 3555–3559, 2011.
- SHIN, D. H.; OH, C. S.; SHIN, Y. M.; CHO, C. W.; KI, H. C.; SEO, M. The pattern of ancient parasite egg contamination in the private residence, alley, ditch and streambed soils of Old Seoul City, the Capital of Joseon Dynasty. International Journal of Paleopathology, v. 3, n. 3, p. 208–213, 2013. Disponível em: <http://dx.doi.org/10.1016/j.ijpp.2013.04.002>.
- SHIN, D. H.; SHIM, S.; KIM, M. J.; OH, C. S.; LEE, M.; JUNG, S. B.; LEE, G. II; CHAI, J.-Y.; SEO, M. V-shaped pits in regions of ancient Baekje kingdom paleoparasitologically confirmed as likely human-waste reservoirs. The Korean journal of parasitology, v. 52, n. 5, p. 569–73, 2014. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/25352710>.
- SOBERÓN, J. Grinnellian and Eltonian niches and geographic distributions of speciesEcology Letters, 2007. .
- SOBERÓN, J. M. Niche and area of distribution modeling: A population ecology perspective. **Ecography**, v. 33, n. 1, p. 159–167, 2010.
- SOBERON, J.; PETERSON, A. T. Interpretation of Models of Fundamental Ecological Niches and Species' Distributional Areas. Biodiversity Informatics, v. 2, n. 0, 13 jan. 2005. Disponível em: https://journals.ku.edu/index.php/jbi/article/view/4. Acesso em: 14 out. 2017.
- SØE, M. J.; NEJSUM, P.; FREDENSBORG, B. L.; KAPEL, C. M. O. DNA typing of ancient parasite eggs from environmental samples identifies human and animal worm infections in Viking-age settlement. Journal of Parasitology, v. 101, n. 1, p. 57–63, 2015. Disponível em: http://www.journalofparasitology.org/doi/abs/10.1645/14-650.1
- SoilGrids. Disponível em: http://isric.org/explore/soilgrids>.

- SONDAK, V. Independence of the whipworm species Trichocephalus trichiura and the swine whipworm Trichocephalus suis. **Parasitol Sbornik**, n. 10, p. 197, 1948.
- SOUZA, A. M. de. **Dicionario de arqueologia**. Rio de Janeiro: Associacao de Docentes da Estacio de Sa, 1997.
- SPECHT, kw. Eine interessante Erdprobe aus einer Abortgrube in Römerkastell Künzing. v. 21, p. 90–94, 1963.
- STEPHENSON, L. S.; HOLLAND, C. V; COOPER, E. S. The public health significance of Trichuris trichiura. Parasitology, v. 121 Suppl, p. S73–S95, 2000.
- SU, T. C. A scanning electron microscopic study on the parasite eggs in an ancient corpse from a tomb of Chu Dynasty, the Warring State, in Jiangling County, Hubei Province. Journal of Tongji Medical University = Tong ji yi ke da xue xue bao, v. 7, n. 1, p. 63–4, 1987. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/3298670>. Acesso em: 29 dez. 2016.
- SZIDAT. Über die Erahaltungsfähigkeit von Helmintheneierm in Vor-und Frühgeschtlichen Moorleichen. **Parasitology Research**, v. 13, n. 3, p. 265–274, 1944.
- TAYLOR, E. L. Parasitic helminths in mediaeval remains. Veterinary Record, v. 67, n. 12, p. 216–218, 1955.
- THOMAS H. CORMEN, CHARLES E. LEISERSON, RONALD L. RIVEST, C. S. Algoritmos. [s.l: s.n.]
- TIN KAM HO. The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, v. 20, n. 8, p. 832–844, 1998. Disponível em: http://ieeexplore.ieee.org/document/709601/>.
- TOBLER, W. A computer movie simulating urban growth in the Detroit region. Economic Geography, v. 46, n. 2, p. 234–240, 1970.
- UTZINGER, J. A research and development agenda for the control and elimination of human helminthiases. **PLoS Neglected Tropical Diseases**, v. 6, n. 4, p. 2–8, 2012.
- VAPNIK, V. N. The nature of statistical learning theory. [s.l: s.n.]
- VARELA, S.; LOBO, J. M.; HORTAL, J. Using species distribution models in paleobiogeography: A matter of data, predictors and concepts. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 310, n. 3–4, p. 451–463, 1 out. 2011. Disponível em: http://www.sciencedirect.com/science/article/pii/S0031018211004044>. Acesso em: 24 out. 2017.
- VASCONCELOS, R. S.; KOVALESKI, D. F.; JUNIOR, Z. C. T. Doenças Negligenciadas: Revisão da Literatura Sobre As Intervenções Propostas. Saúde & Transformação

Social, v. 6, n. 2, p. 114–131, 2016.

- VOS, T.; BARBER, R. M.; BELL, B. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet, v. 386, n. 9995, p. 743–800, ago. 2015. Disponível em: http://linkinghub.elsevier.com/retrieve/pii/S0140673615606924>.
- WANG, T.; HAMANN, A.; SPITTLEHOUSE, D.; CARROLL, C. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE, v. 11, n. 6, p. 1–17, 2016.
- WEN-YUAN, Y.; DE-XIANG, W.; GUANG-FANG, S.; ZHONG-BI, W.; REN-SHENG, T. Parasitologische Untersuchung einer alten Leiche aus der Chu-Dynastie der Streitenden Reiche aus dem Mazhuan-Grab Nr. 1, Kreis Jiangling, Provinz Hubei. Acta Academiae Medicinae Wuhan, v. 4, n. 1, p. 23–27, mar. 1984. Disponível em: http://link.springer.com/10.1007/BF02856945. Acesso em: 29 dez. 2016.
- WHO. The global burden of disease 2004. Update, World Health Organization, 2004.
- WHO. Global burden of disease/metrics.
- WILHELMSON, H.; DELL'UNTO, N. Virtual taphonomy: A new method integrating excavation and postprocessing in an archaeological context. American Journal of Physical Anthropology, v. 157, n. 2, p. 305–321, 2015.
- WILLS, W. H.; DRAKE, B. L.; DORSHOW, W. B. Prehistoric deforestation at Chaco Canyon? Proceedings of the National Academy of Sciences of the United States of America, v. 111, n. 32, p. 11584–91, 2014. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/25071220>.
- WILSON, A.; RACKHAM, D. J. Parasite Eggs. In: BUCKLAND, P. C. (Ed.). The Environmental Evidence from the Church Street Roman Sewer System. York: Council for British Archaeology, 1976. p. 32–33.
- WITENBERG, G. Human parasites in archaeological findings. Bulletin of the Israel Exploration Society, v. 25, p. 86, 1961. Disponível em: http://www.cabdirect.org/abstracts/19660801693.html. Acesso em: 29 dez. 2016.
- WOOD, J. R.; WILMSHURST, J. M.; WAGSTAFF, S. J.; WORTHY, T. H.; RAWLENCE, N. J.; COOPER, A. High-resolution coproecology: Using coprolites to reconstruct the habits and habitats of New Zealand's extinct upland Moa (Megalapteryx didinus). PLoS ONE, v. 7, n. 6, 2012.
- XAVIER, S. C. das C. Análise espacial como ferramenta para definição de áreas de risco de

emergência de surtos de doença de Chagas aguda no Estado do Pará / Spatial analysis as a tool to define areas at risk of emergence of outbreaks of acute Chagas' disease in the State of P. p. 139, 2013. Disponível em: <a href="http://bases.bireme.br/cgibin/wxislind.exe/iah/online/?IsisScript=iah/iah.xis&src=google&base=LILACS&lang="http://bases.bireme.br/cgi-bin/wxislind.exe/iah/online/?IsisScript=iah/iah.xis&src=google&base=LILACS&lang="http://bases.bireme.br/cgi-bin/wxislind.exe/iah/online/?IsisScript=iah/iah.xis&src=google&base=LILACS&lang="http://bases.bireme.br/cgi-bin/wxislind.exe/iah/online/?IsisScript=iah/iah.xis&src=google&base=LILACS&lang="http://bases.bireme.br/cgi-bin/wxislind.exe/iah/online/?IsisScript=iah/iah.xis&src=google&base=LILACS&lang="http://bases.bireme.br/cgi-bin/wxislind.exe/iah/online/?IsisScript=iah/iah.xis&src=google&base=LILACS&lang=

- YEH, H.-Y.; MITCHELL, P. D. Ancient Human Parasites in Ethnic Chinese Populations. The Korean journal of parasitology, v. 54, n. 5, p. 565–572, 2016. Disponível em: <a href="http://www.ncbi.nlm.nih.gov/pubmed/27853113%0Ahttp://www.pubmedcentral.nih.gov/pubmed/27853113%0Ahttp://www.pubmedcentral.nih.gov/pubmed/27853113%0Ahttp://www.pubmedcentral.nih.gov/pubmed/27853113%0Ahttp://www.pubmedcentral.nih.gov/pubmed/27853113%0Ahttp://www.pubmedcentral.nih.gov/pubmed/27853113%0Ahttp://www.pubmedcentral.nih.gov/pubmed/27853113%0Ahttp://www.pubmedcentral.nih.gov/pubmed/27853113%0Ahttp://www.pubmedcentral.nih.gov/pubmed/27853113%0Ahttp://www.pubmedcentral.nih.gov/pubmed/27853113%0Ahttp://www.pubmedcentral.nih.gov/pubmed/27853113%0Ahttp://www.pubmedcentral.nih.gov/pubmed/2785312%0Ahttp://www.pubmedcentral.nih.gov/pubmed/2785312%0Ahttp://www.pubmedcentral.nih.gov/pubmed/2785312%0Ahttp://www.pubmedcentral.nih.gov/pubmedce
- ZANIEWSKI, A. E.; LEHMANN, A.; OVERTON, J. M. Predicting species spatial distributions using presence-only data: A case study of native New Zealand ferns. Ecological Modelling, v. 157, n. 2–3, p. 261–280, 2002. Disponível em: <isi:000179241300012%5Cnfile://e/documentos/Bibliograf?a/691fernsnewzealand.pdf>.
- ZIAS, J. E.; TABOR, J. D.; HARTER-LAILHEUGUE, S. Toilets at Qumran, the Essenes, and the scrolls: New Anthropological Data and Old Theories. Revue de Qumrân, v. 22, n. 88, p. 631–640, 2006.