Brigham Young University
BYU ScholarsArchive

Synthesis and Evaluation of N6,5'-Bis-Ureido-5'-Amino-5'Deoxyadenosine Derivatives: Novel Nucleosides with Antiproliferative and Protein Kinase Binding Activities

Marcelio Oliveira
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd
Part of the Biochemistry Commons, and the Chemistry Commons

BYU ScholarsArchive Citation

Oliveira, Marcelio, "Synthesis and Evaluation of N6,5'-Bis-Ureido-5'-Amino-5'-Deoxyadenosine Derivatives: Novel Nucleosides with Antiproliferative and Protein Kinase Binding Activities" (2009). Theses and Dissertations. 1964.
https://scholarsarchive.byu.edu/etd/1964

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

Synthesis and Evaluation of $\mathrm{N}^{6}, 5^{\prime}$-Bis-ureido-5'-amino-5'-deoxyadenosine

Derivatives: Novel Nucleosides with Antiproliferative
and Protein Kinase Binding Activities
by
Marcélio de Moura Oliveira

A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of
Master of Science

Matt A. Peterson, Committee Chair Young Wan Ham, Committee Member Roger G. Harrison, Committee Member

Department of Chemistry and Biochemistry
Brigham Young University
December 2009

Copyright © 2009 Marcelio de Moura Oliveira
All Rights Reserved

ABSTRACT
Synthesis and Evaluation of $\mathrm{N}^{6}, 5^{\prime}$-Bis-ureido-5'-amino-5'-deoxyadenosine
Derivatives: Novel Nucleosides with Antiproliferative
and Protein Kinase Binding Activities
Marcélio de Moura Oliveira
Department of Chemistry and Biochemistry
Master of Science

A new series of $\mathrm{N}^{6}, 5^{\prime}$-bis-ureido- 5^{\prime}-amino- 5^{\prime}-deoxyadenosine derivatives was prepared and evaluated for anticancer activities using the NCI 60 panel of human cancers. Certain of the derivatives showed promising activities (low micromolar GI_{50} 's) against several of the representative cancers. These included cell lines from the following general cell types in the NCI 60: Leukemia, Breast, Central Nervous System, Non-Small Cell Lung, Ovarian, Prostate, Renal, and Colon cancers. Select compounds were also screened for their affinities for protein kinases. The synthesis of the compounds was straightforward and involved N^{6} acylation with arylisocyanates, preceded by activation and nucleophilic substitution of the 5^{\prime}-position to give the desired 5^{\prime}-azido- 5^{\prime}-deoxyadenosine derivatives. Reduction of the 5^{\prime}-azido function with either $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}$, or $\mathrm{Ph}_{3} \mathrm{P} / \mathrm{H}_{2} \mathrm{O}$, gave the desired 5^{\prime} -amino-5'-deoxyadenosine products. Acylation of the 5^{\prime}-amino group with N -methyl 4nitrophenylcarbamate gave the $\mathrm{N}^{6}, 5^{\prime}$-bis-ureido- 5^{\prime}-amino- 5^{\prime}-deoxyadenosine products. Yields ranged from good (50-75\%) to excellent (75-95\%) for all synthetic transformations.

Keywords: Anti-cancer agents, $\mathrm{N}^{6}, 5^{\prime}$ '-bis-ureido deoxyadenosine, protein kinases

ACKNOWLEDGMENTS

I would like to thank my family for its support over the last two years. I would like to thank my friends and colleagues Jadd Shelton and Chris Cuttler for all their help in developing synthesis as well as their companionship. I would like to thank my friend and advisor Dr. Matt A. Peterson for all his instructions, kindness, patience and humor during our work together. I would like to thank Dr. Roger G. Harrison and Dr. Young Wan Ham for being members of my graduate committee. I'm grateful for all the help from Ms. Janet Fonoimoana in all the paperwork and in all the various administrative details that were necessary to be made until now. Finally, I would like to thank the Department of Chemistry and Biochemistry at BYU for the financial support that was used for the development of this work, as well as for providing the wonderful environment that was shared with me over the last two years.

Thanks to all.

TABLE OF CONTENTS
Table of Contents vii
List of Figures viii
List of Schemes ix
List of Tables x
Introduction 1
Background 4
Results and Discussion 16
Conclusion 24
Experimental Section 25
Appendix 42
References 50

LIST OF FIGURES

Figure 1. Structures of cancer-related protein kinase inhibitors Imatinib, Gefitinib, and Erlotinib 2
Figure 2. Pharmacophore model of the ATP-binding site of protein kinases 3
Figure 3. Potential HIV integrase inhibitors prepared by Peterson et al 4
Figure 4. 3'-End processing of viral DNA by HIV integrase. 5
Figure 5. Strand transfer of viral DNA by HIV integrase 5
Figure 6. Putative binding of adenosine derivatives in the active site of HIV integrase 6
Figure 7. Inhibition of binding of protein kinases to ATP-binding site ligands by 1 11
Figure 8. Binding inhibition $\geq 30 \%$ observed in 11 of 353 protein kinases 12
Figure 9. Selective inhibition of binding of Alk6 by compound 1 13
Figure 10. Selective inhibition of binding to p38 protein kinases by 1 13
Figure 11. Selective inhibition of binding to PAK protein kinases by 1 13
Figure 12. Inhibition of cancer-related protein kinases by compound 1 15
Figure 13. Quadrants for SAR of compound 1. 16
Figure 14. Targets for structure activity study (SAR) 17
Figure 15. Structures of inventory compounds 22

LIST OF SCHEMES

Scheme 1. Synthesis of compounds 9 and 10 18
Scheme 2. Synthesis of compound 11 18
Scheme 3. Synthetic targets for more in-depth SAR. 23

LIST OF TABLES

Table 1. Activities of test compounds in biochemical assays.................................... 6
Table 2. Results of single dose growth inhibition assay.. 8
Table 3. Results of multi-dose inhibition assay for compound $1 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .$.
Table 4. Results of multi-dose inhibition assay for compound $2 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$
Table 5. Single dose growth inhibition assay for 9 and $10 \ldots \ldots$

Introduction

Protein kinases constitute a large family of homologous proteins involved with control of such key cellular processes as cell growth and differentiation, apoptosis, and signal transduction. Protein kinases catalyze phosphorylation of hydroxyl groups of serine, threonine, or tyrosine in a substrate protein. This phosphorylation is executed with transfer of the gamma phosphate group of ATP or GTP to the substrate protein. The phosphorylated protein then undergoes a series of binding events with downstream proteins, thus setting in motion the cascade of reactions typically involved in signal transduction. Signal transduction processes are extremely complex, with numerous instances of pathway "cross talk" and/or reversal of signal outcome that have been documented. The key role played by protein kinases in cell growth and differentiation has prompted their investigation as promising targets for anticancer drug design. ${ }^{1}$ The high incidence of these enzymes in cancer cells corroborates their importance as interesting targets in cancer treatment and the correlation between their aberrant expression and tumorigenesis has been well documented. ${ }^{2}$ In recent years, protein kinases have emerged as one of the most important targets for drug development research, and it is estimated that approximately 25% of all pharmaceutical research focuses on protein kinases. ${ }^{3}$ Studies show that approximately 90% of patients with chronic myeloid leukemia (CML) exhibit a chromosomal defect that results in a hyper expression of certain kinases. ${ }^{4}$ In addition, chemotherapy that targets protein kinases shows efficiency of about 90% when focused on inhibition of these enzymes. ${ }^{5}$

Some recently developed drugs that have been approved for cancer treatment that function as protein kinase inhibitors include Imatinib Mesilate (in chronic myeloid
leukemia) $;{ }^{6}$ Gefitinib (in non-small cell lung cancer) $;{ }^{7}$ and Erlotinib (in non-small cell lung cancer) (Figure 1). ${ }^{8}$

Figure 1. Structures of cancer-related protein kinase inhibitors Imatinib, Gefitinib and Erlotinib.

Among the various approaches to discovery of protein kinase inhibitors that have been evaluated to date, targeting the catalytic site with ATP-competitive inhibitors has proven most successful. ${ }^{9}$ Other approaches involving non-competitive or allosteric inhibitors have met with much more limited success. ${ }^{6}$ To date, over 50 crystal structures of protein kinases complexed with ATP site-directed inhibitors are now available, thus confirming the effectiveness of the ATP-binding site as a target for drug design.

The currently accepted pharmacophore model for the ATP-binding pocket of protein kinases is illustrated in Figure 2. This model consists of the following key features:
(1) Adenine binding region. This region consists of a bidentate hydrogen-bonding donor-acceptor motif in the hinge region. Hydrogen bonds between the protein backbone and N1 and N6 occur between a hinge region amide NH and carbonyl moiety, respectively. These interactions constitute the adenine anchoring interactions and many potent inhibitors exploit at least one of these hydrogen bond interactions.
(2) Hydrophobic pocket. This hydrophobic region flanks the region proximal to N6 of the adenine heterocycle. This pocket has been exploited by numerous inhibitors and plays an important role for inhibitor selectivity.
(3) Phosphate binding pocket. This pocket consists of positively charged amino acid residues such as lysine and/or arginine. Electrostatic interactions between the negatively charged phosphate and positively charged amino acid side chains occur in this region. This pocket appears to be the least important due to high solvent exposure, but it has been used to improve selectivity and gain additional binding affinity.
(4) Sugar binding region. This region, with very few exceptions, is hydrophilic and is designed to bind to the ribose hydroxyls through hydrogen-bond donor-acceptor interactions.
(5) Hyrophobic channel. This channel lies between the sugar binding and hinge regions and can exist in an open, solvent exposed, configuration. Since it is not utilized by ATP, it can be exploited to gain inhibitor binding affinity.

Figure 2. Pharmacophore model of the ATP-binding site of protein kinases. ${ }^{9}$

Background

Recently, $N^{6}, 5^{\prime}$-bis-ureidoadenosine compounds $\mathbf{1 - 7}$ were synthesized by Peterson et al. and select members of these compounds showed interesting cytotoxic properties against MT2 lymphoma cells in vitro (Figure 3). ${ }^{10}$

Figure 3. Potential HIV integrase inhibitors prepared by Peterson et al.

3

The original motivation for preparing these compounds was their potential utility as HIV integrase inhbitors. HIV integrase is one of three enzymes encoded for by HIV. These include reverse transcriptase, protease, and integrase. HIV integrase possesses two enzymatic activities: (1) 3^{\prime}-end processing, and (2) strand transfer. Each activity involves an Mg^{2+} - promoted chemical reaction in which the Mg^{2+} and associated amino acid residues are in close proximity to the 3^{\prime}-hydroxyl of a 2^{\prime}-deoxyadenosine residue of the viral DNA substrate (Figures 4 and 5).

Figure 4. 3 '-End processing of viral DNA by HIV integrase.

Figure 5. Strand transfer of viral DNA by HIV integrase.

Peterson et al. reasoned that appropriately derivatized adenosine analogues with metalbinding moieties attached to the 3^{\prime}-position might be expected to bind to the active site of HIV integrase and thus inhibit the enzyme (Figure 6). Unfortunately, compounds 1-7 were devoid of anti-HIV activity and failed to exhibit measurable inhibition of HIV integrase at the concentrations tested (Table 1).

Figure 6. Putative binding of adenosine derivatives in the active site of HIV integrase.

Table 1. Activities of test compounds in biochemical assays

			$\mathrm{IC}_{50}{ }^{d}(\mu \mathrm{M})$		
Compd	$\mathrm{ED}_{50}{ }^{a}(\mu \mathrm{M})$	$\mathrm{CT}_{50}{ }^{b}(\mu \mathrm{M})$	$\mathrm{CT}_{5}{ }^{c}(\mu \mathrm{M})$	EP^{e}	ST^{f}
$\mathbf{1}$	>13	37.8	6.2	>10	>10
$\mathbf{2}$	>17	22.6	11.3	>10	>10
$\mathbf{3}$	>34	58.5	23.2	>10	>10
$\mathbf{4}$	>19	21.9	9.3	>10	>10
$\mathbf{5}$	>98	385	143	>10	>10
$\mathbf{6}$	>149	812	162	>10	>10
$\mathbf{7}$	>62	175	21	>10	>10

${ }^{a}$ Inhibitory concentration required to protect MT-2 cells from 50% viral induced cell death. ${ }^{b}$ Cytotoxic concentration required to inhibit cell growth by 50%.
${ }^{c}$ Cytotoxic concentration required to inhibit cell growth by 5%.
${ }^{\mathrm{d}}$ Inhibitory concentration required to inhibit IN 3 '-end processing (EP) or strand transfer (ST) by 50%.
${ }^{e} 3^{\prime}$-End processing.
${ }^{f}$ Strand transfer.
The interesting cytotoxicities of compounds 1-4 prompted our evaluation of these compounds in the NCI 60 human cancer screen. The NCI 60 human cancer screen is a free service offered by the US National Cancer Institute as a rapid means of screening potential anti-cancer agents as a service to the public. The assay consists of colorimetric
determination of total cell count based on a sulphorhodamine-red protein assay. ${ }^{11}$ The screening process is a two-tiered process involving a rapid single dose assay (performed at $10 \mu \mathrm{M}$ compound concentration), followed by more extensive multi-dose testing. The results for the single dose assay for compounds $\mathbf{1 - 4}$ are illustrated in Table 2. Compounds 1 and 2 showed promising antiproliferative activities against most of the leukemias, and several other cell lines were also of interest. Importantly, COLO 205 was inhibited by nearly 100% in the single dose assay by compound 2 . Compounds 3 and 4 were much less active, suggesting that perhaps the lactone moiety is saponified to the free carboxylic acid in the assay conditions and may not be able to traverse the cell member to interact with their supposed intracellular target(s). The promising activities of compounds $\mathbf{1 - 2}$ in the single dose assay assured their candidacy for the multi-dose screen. The results from these assays are shown in Tables 3 and 4.

Compounds 1 and 2 showed low $\mu \mathrm{M}$ inhibition of all six leukemias tested (Tables 3 and 4). A significant number of cell lines from the other subclasses were also inhibited at the low $\mu \mathrm{M}$ level. Compound 2 appeared to be somewhat more toxic than compound $\mathbf{1}$ toward the leukemia cell lines as evidenced by LC_{50} values for 2 ranging from 9.43-59.0 $\mu \mathrm{M}$ for leukemias SR, HL-60(TB), and RPMI-8226; in contrast to the LC_{50} values for compound $\mathbf{1}$ which were $>100 \mu \mathrm{M}$ for all leukemias except RPMI-8226. LC_{50} values for compounds 1 and 2 were identical for leukemia RPMI-8226 (i.e., $59.0 \mu \mathrm{M}$). Compound $\mathbf{1}$ was more toxic than 2 (16 cell lines showed LC_{50} values $<100 \mu \mathrm{M}$ for $\mathbf{1}$ while only three cell lines showed the same sensitivity for compound 2). A majority of cell lines showed LC_{50} values > $100.0 \mu \mathrm{M}$ for compound 2. Compound $\mathbf{1}$ showed greater efficacy in cell growth inhibition than compound 2. For example, a total of 35 cell lines had GI_{50}

Table 2. Results of Single Dose Growth Inhibition Assay (GI Percent at $10 \mu \mathrm{M})^{a}$

Cell Line	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	Cell Line	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Leukemia					CNS Cancer				
CCRF-CEM	50	-	92	94	SF-268	59	33	103	100
HL-60(TB)	45	-33	87	83	SF-295	16	-41	100	103
K-562	59	16	93	81	SF-539	53	0	98	104
MOLT-4	50	-11	85	70	SNB-19	94	37	106	103
RPMI-8226	11	-75	98	105	SNB-75	63	-7	94	97
SR	28	-56	90	90	U251	34	-15	110	96
Non-Small Cell Lung Cancer			Ovarian Cancer						
A549/ATCC	22	2	95	120	IGROV1	51	-37	91	92
EKVX	64	21	103	102	OVCAR-3	80	8	95	92
HOP-62	79	60	98	94	OVCAR-4	61	19	106	106
HOP-92	63	-34	87	71	OVCAR-5	100	44	96	97
NCI-H226	76	41	106	99	OVCAR-8	65	20	103	96
NCI-H23	92	48	105	90	SK-OV-3	94	41	106	102
NCI-H322M	91	79	100	101	Renal Cancer				
NCI-H460	48	18	112	114	786-0	76	48	105	98
NCI-H522	80	66	107	106	A498	71	46	100	94
Colon Cancer					ACHN	69	12	101	95
COLO 205	43	-100	104	110	CAKI-1	82	43	101	100
HCC-2998	62	-13	106	93	RXF393	-45	-68	-29	-23
HCT-116	17	17	100	98	SN12C	61	17	118	113
HCT-15	56	12	91	92	TK-10	44	7	101	99
HT29	27	-26	109	110	UO-31	57	-7	79	64
KM12	43	17	106	106	Breast Cancer				
SW620	71	24	105	106	BT-549	82	26	104	100
Melanoma					HS578T	44	4	111	105
LOXIMVI	50	19	93	63	MCF7	18	3	92	98
MALME-3M	55	12	97	100	MDA-MB-231/ATCC	51	15	123	99
M14	67	34	107	105	MDA-MB-435	54	8	109	102
SK-MEL-2	54	-4	91	70	NCI/ADR-RES	86	54	102	97
SK-MEL-28	84	8	118	107	T-47D	27	-34	103	92
SK-MEL-5	58	26	106	110	Prostate Cancer				
UACC-557	88	6	122	125	DU-145	63	25	109	110
UACC-62	80	34	107	99	PC-3	47	-21	97	100

${ }^{a}$ Growth inhibition percent calculated as:
$\left.\left[\left(T_{i}-T_{z}\right) / C-T_{z}\right)\right] \times 100$ for $T_{i} T_{z}$
$\left.\left[\left(\mathrm{T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{z}}\right) / \mathrm{T}_{\mathrm{z}}\right)\right] \mathrm{X} 100$ for $\mathrm{T}_{\mathrm{i}}<\mathrm{T}_{\mathrm{z}}$
Where $\mathrm{T}_{\mathrm{z}}=$ absorbance at $\mathrm{t}=0 ; \mathrm{T}_{\mathrm{i}}=$ absorbance at $\mathrm{t}=48 \mathrm{~h}$ (10 $\mu \mathrm{M}$ test compound);
$\mathrm{C}=$ absorbance of control at $\mathrm{t}=48 \mathrm{~h}$

Table 3. Results of Multi-Dose Growth Inhibition Assay for compound $1(\mu \mathrm{M})^{a}$

Cell Line	GI_{50}	TGI	LC_{50}	Cell Line	GI_{50}	TGI	LC_{50}
Leukemia				CNS Cancer			
CCRF-CEM	6.69	88.6	>100.0	SF-268	6.53	27.0	92.5
HL-60(TB)	3.01		>100.0	SF-295	5.73	>100.0	>100.0
K-562	3.59	32.9	>100.0	SF-539	5.19	>100.0	>100.0
MOLT-4	2.39	23.3	>100.0	SNB-19	29.0	>100.0	>100.0
RPMI-8226	1.09	4.57	59.0	SNB-75	4.56	>100.0	>100.0
SR	2.23	7.07	>100.0	U251	4.69	20.9	76.0
Non-Small Cell Lung Cancer				Ovarian Cancer 385			
A549/ATCC	4.18	19.2	79.1				
EKVX	17.7	>100.0	>100.0	OVCAR-3	4.59	17.2	91.3
HOP-62	8.96	26.4	73.1	OVCAR-4	1.23	>100.0	>100.0
HOP-92	<0.01		41.2	OVCAR-5	31.1	>100.0	>100.0
NCI-H226	>109	>100.0	>100.0	OVCAR-8	4.92	77.2	>100.0
$\mathrm{NCI}-\mathrm{H} 23$	33.3	>100.0	>100.0	SK-OV-3	21.0	>100.0	>100.0
$\mathrm{NCI}-\mathrm{H} 322 \mathrm{M}$	>100.0	>100.0	>100.0				
$\mathrm{NCl}-\mathrm{H} 460$	5.54	2.5.0	>100.0	Renal Cancer			
$\mathrm{NCI}-\mathrm{H} 522$	4.36	85.7	>100.0	$\begin{aligned} & 786-0 \\ & \text { A498 } \end{aligned}$	2.00 3.34	5.21 17.1	$\begin{gathered} 17.9 \\ >100.0 \end{gathered}$
Colon Cancer				ACHN	8.55	>100.0	>100.0
COLO 205	3.84	>100.0	>100.0	CAKI-1	29.7	>100.0	>100.0
HCC-2998	>100.0	>100.0	>100.0	RXF393	2.01	4.63	19.5
HCT-116	3.20	16.1	45.6	SN12C	9.10	>100.0	>100.0
HCT-15	8.50	>100.0	>100.0	TK-10	12.4	40.5	>100.0
HT29	4.20	>100.0	>100.0	UO-31	12.1	29.5	71.7
KM12	3.95	20.9	>100.0	Breast Cancer 12.1			
SW620	4.80	28.4	>100.0	MCF7	3.42	45.1	>100.0
Melanoma				NCI/ADR-RES	>100.0	>100.0	>100.0
LOX IMVI	5.46	>100.0	>100.0	MDA-MB-231/ATCC	3.96	41.3	>100.0
MALME-3M	10.3	>100.0	>100.0	HS578T	3.60	53.6	>100.0
M14	2.51	11.6	7.86	MDA-MB-435	6.21	>100.0	>100.0
SK-MEL-2	5.42	33.1	>100.0	BT-549	>100.0	>100.0	>100.0
SK-MEL-28	6.85	20.2	48.7	T-47D	2.55	>100.0	>100.0
SK-MEL-5	4.34	>100.0	>100.0	Prostate Cancer			
UACC-257	5.68	>100.0	>100.0	PC-3	2.25	4.85	12.5
UACC-62	>100.0	>100.0	>100.0	DU-145	4.97	19.4	78.4

${ }^{a} \mathrm{GI}_{50}=$ concentration at which cell growth is inhibited by $50 \% ; \mathrm{TGI}=$ concentration required to achieve total growth inhibition; $\mathrm{LC}_{50}=$ concentration required to achieve 50% reduction in measured protein after 48 h test period. TGI signifies a cytostatic effec; LC_{50} signifies a cytotoxic effect.
$\left.\left[\left(\mathrm{T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{Z}}\right) / \mathrm{C}-\mathrm{T}_{\mathrm{z}}\right)\right] \mathrm{X} 100=50$ for GI_{50}
$\mathrm{T}_{\mathrm{i}}=\mathrm{T}_{\mathrm{z}}$ for TGI
$\left.\left[\left(\mathrm{T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{Z}}\right) / \mathrm{T}_{\mathrm{z}}\right)\right] \mathrm{X} 100=-50$ for LC_{50}
Where $\mathrm{T}_{\mathrm{z}}=$ absorbance at $\mathrm{t}=0 ; \mathrm{T}_{\mathrm{i}}=$ absorbance at $\mathrm{t}=48 \mathrm{~h}$;
$\mathrm{C}=$ absorbance of control at $\mathrm{t}=48 \mathrm{~h}$

Table 4. Results of Multi-Dose Growth Inhibition Assay for compound $2(\mu \mathrm{M})^{a}$

Cell Line	GI_{50}	TGI	LC_{50}	Cell Line	GI_{50}	TGI	LC_{50}
Leukemia				CNS Cancer			
CCRF-CEM	6.37	>100.0	>100.0	SF-268	8.29	>100.0	>100.0
HL-60(TB)	1.81	4.34	16.4	SF-295	9.09	>100.0	>100.0
K-562	3.12	>100.0	>100.0	SF-539	22.3	>100.0	>100.0
MOLT-4	2.23	2.23	>100.0	SNB-19	>100.0	>100.0	>100.0
RPMI-8226	1.58	1.58	59.0	SNB-75	12.7	>100.0	>100.0
SR	1.27	1.27	9.43	U251	5.66	>100.0	>100.0
Non-Small Cell	Il Lung C	ancer		Ovarian Cancer			
A549/ATCC	9.35	>100.0	>100.0	IGROV1	3.72	65.7	>100.0
EKVX	26.4	>100.0	>100.0	OVCAR-3	7.11	>100.0	>100.0
HOP-62	24.9	>100.0	>100.0	OVCAR-4	53.0	>100.0	>100.0
HOP-92	2.71	24.3	>100.0	OVCAR-5	38.2	>100.0	>100.0
$\mathrm{NCI}-\mathrm{H} 226$	41.9	>100.0	>100.0	OVCAR-8	9.02	>100.0	>100.0
$\mathrm{NCI}-\mathrm{H} 23$	>100.0	>100.0	>100.0	SK-OV-3	52.7	>100.0	>100.0
NCI-H322M	>100.0	>100.0	>100.0				
NCI-H460	7.49	>100.0	>100.0	Renal Cancer			
$\mathrm{NCI}-\mathrm{H} 522$	11.1	>100.0	>100.0	$\begin{aligned} & 786-0 \\ & \text { A498 } \end{aligned}$	9.01 3.87	$\begin{gathered} >100.0 \\ 40.3 \end{gathered}$	$\begin{aligned} & >100.0 \\ & >100.0 \end{aligned}$
Colon Cancer				ACHN	14.4	>100.0	>100.0
COLO 205	12.3	>100.0	>100.0	CAKI-1	53.8	>100.0	>100.0
HCC-2998	30.6	>100.0	>100.0	RXF393	9.74	38.0	>100.0
HCT-116	4.20	>100.0	>100.0	SN12C	85.3	>100.0	>100.0
HCT-15	6.47	>100.0	>100.0	TK-10	20.5	>100.0	>100.0
HT29	5.37	>100.0	>100.0	UO-31	7.79	>100.0	>100.0
KM12	23.9	>100.0	>100.0	Breast Cancer	7.79	>100.0	>100.0
SW620	>100.0	>100.0	>100.0	MCF7	5.59	>100.0	>100.0
Melanoma				NCI/ADR-RES	>100.0	>100.0	>100.0
LOX IMVI	7.30	>100.0	>100.0	MDA-MB-231/ATCC	12.3	>100.0	>100.0
MALME-3M	14.1	>100.0	>100.0	HS578T	5.79	>100.0	>100.0
M14	15.2	>100.0	>100.0	MDA-MB-435	10.9	>100.0	>100.0
SK-MEL-2	14.9	83.1	>100.0	BT-549	29.0	>100.0	>100.0
SK-MEL-28	7.77	>100.0	>100.0	T-47D	13.9	>100.0	>100.0
SK-MEL-5	5.81	>100.0	>100.0	Prostate Cancer			
UACC-257	22.6	>100.0	>100.0	PC-3			
UACC-62	41.9	>100.0	>100.0	DU-145	1.66	>100.0	>100.0

${ }^{a} \mathrm{GI}_{50}=$ concentration at which cell growth is inhibited by 50%; TGI $=$ concentration required to achieve total growth inhibition; $\mathrm{LC}_{50}=$ concentration required to achieve 50% reduction in measured protein after 48 h test period. TGI signifies a cytostatic effec; LC_{50} signifies a cytotoxic effect.
$\left.\left[\left(\mathrm{T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{Z}}\right) / \mathrm{C}-\mathrm{T}_{\mathrm{z}}\right)\right] \mathrm{X} 100=50$ for GI_{50}
$\mathrm{T}_{\mathrm{i}}=\mathrm{T}_{\mathrm{z}}$ for TGI
$\left.\left[\left(\mathrm{T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{Z}}\right) / \mathrm{T}_{\mathrm{z}}\right)\right] \mathrm{X} 100=-50$ for LC_{50}
Where $\mathrm{T}_{\mathrm{z}}=$ absorbance at $\mathrm{t}=0 ; \mathrm{T}_{\mathrm{i}}=$ absorbance at $\mathrm{t}=48 \mathrm{~h}$;
$\mathrm{C}=$ absorbance of control at $\mathrm{t}=48 \mathrm{~h}$
values $\leq 6 \mu \mathrm{M}$ for $\mathbf{1}$, whereas only 14 cell lines were inhibited at similar levels for compound 2.

A COMPARE ${ }^{12}$ analysis of the GI_{50} data for compound 1 suggested that protein kinases might be molecular targets for this type of compound. Kinases for which there was significant correlation between kinase expression and cytotoxicity of compound $\mathbf{1}$ included EGFR, ERBB2, ERBB3, PTK2, and PTK6, each of which has been implicated in cancer.

To verify actual binding of compound $\mathbf{1}$ to cancer- and other disease-related protein kinases, compound $\mathbf{1}$ was screened against a commercially available panel of protein kinases (KinomeScan ${ }^{\text {TM }}$, Ambit Biosciences). ${ }^{13}$ The KinomeScan ${ }^{\text {TM }}$ assay is a competitive binding assay based on phage-display of protein kinases and immobilized ATP-binding site ligands. ${ }^{14}$ Binding of protein kinases expressed on the surface of bacteriaphage T7 to immobilized ATP-binding site ligands was inhibited by compound $\mathbf{1}$ for 11 of the 353 protein kinases evaluated. ${ }^{15}$ Binding inhibition for these 11 kinases was $\geq 30 \%$ while a majority of the kinases were unaffected by $\mathbf{1}$ showing binding inhibitions of $\leq 10 \%$ (Figure 7).

Figure 7. Inhibition of binding of protein kinases to ATP-binding site ligands by 1.

Selective inhibition of protein kinases is a desirable property and suggests that compound $1 \mathrm{and} /$ or derivatives may have considerable potential in therapeutic applications. ${ }^{16}$ Kinases for which binding was inhibited by $\geq 30 \%$ included EGFR, TYK2, FLT3, CSNK2A2, PAK3, MARK3, BTK, IKK- α, CSNK1G2, RPS6KA1, and BMPR1B, each of which has been implicated in various forms of cancer (Figure 8).

Figure 8. Binding inhibition $\geq 30 \%$ observed in 11 of 353 protein kinases.

Binding inhibition was greatest for BMPR1B (or ALK6), a protein kinase recently implicated in estrogen receptor positive breast cancer. ${ }^{17}$ The relatively pronounced inhibition of binding of ALK6 compared to other members of the ALK family of protein kinases suggests that $\mathbf{1}$ might be a useful probe for elucidating the role played by ALK6 in BMP-mediated signaling (Figure 9). ${ }^{18}$ Selective inhibition of binding was also observed for other protein kinase families (e.g.; p38 and PAK kinase families, Figures 10 and 11).

Figure 9. Selective inhibition binding of Alk6 by compound 1.

Figure 10. Selective inhibition of binding to p38 protein kinases by compound 1.

Figure 11. Selective inhibition of binding to PAK protein kinases by compound 1.

Compound $\mathbf{1}$ was also screened for its ability to inhibit a panel of cancer-related protein kinases (Figure 12). Activities for several of the protein kinases were modestly enhanced at $20 \mu \mathrm{M}$ compound concentration and two of the kinases (FMS and PAK4) were inhibited. The assay employed was based on inhibition of phosphorylation of an unnatural protein substrate in the presence of radio-labeled ATP. While this assay has been validated as a means of discovering protein kinase inhibitors in vitro, the relevance of the results obtained with an unnatural protein substrate remains somewhat in question. The modest inhibition of PAK4 and FMS in vitro therefore may not be particularly relevant in a biological context.

Figure 12. Inhibition of cancer-related protein kinases by compound $1(20 \mu \mathrm{M})$.

Results and Discussion

In order to explore the structural features required for anti-proliferative activity, we sought to prepare a series of compounds that would probe the importance of substituents in the SE and SW quadrants of compound 1 (Figure 13).

Figure 13. Quadrants for SAR of compound 1.

Based on the assumption that compound 1 exerts its effect as an ATP-binding site competitive inhibitor, we assumed for this initial Structure Activity Relationship Study (SAR) that substituents in the NE and NW quadrants are necessary for binding in the hydrophobic pocket and phosphate binding pockets, respectively (see ATP binding site pharmacophore model in Figure 2). The relatively poor anti-proliferative activities of compounds 3 and 4 suggested that the bulky 2^{\prime}-O-TBS group is necessary for activity. However, the lability of the lactone moieties possessed by 3 and 4 (i.e. susceptibility to saponification and/or acylation by endogenous amines) did not preclude other reasons for the poor anti-proliferative activity, namely poor bioavailability caused by saponification to the carboxylic acid or reaction with nucleophilic amino acid side chains.

Saponification of the lactone moiety would yield a negatively charged carboxylate that would not be expected to diffuse across the cell membrane, and acylation of basic amino acid side chains such as lysine might result in a significant decrease in intracellular concentration of $\mathbf{3}$ and $\mathbf{4}$ via covalent linkage to "by-stander" proteins. Both of these mechanisms could account for the lack of activity exhibited by compounds $\mathbf{3}$ and 4. In order to test whether the lack of activity exhibited by 3 and 4 was due to one of these mechanisms, or perhaps due to their lack of a bulky substituent at the 2^{\prime} position, compounds 9-11 were chosen as synthetic targets (Figure 14).

Figure 14. Targets for structure activity study (SAR)

The synthetic approach to compounds $\mathbf{9} \mathbf{- 1 1}$ is illustrated in Schemes 1 and 2, respectively. The synthesis of compounds 9-11 began with compound $\mathbf{1 2}$ which was prepared via a literature procedure. Treatment of compound 12 with phenylisocyanate in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 5 days gave compound 13 in 87% isolated yield. It was found that diphenylurea is formed as a byproduct in this reaction (via hydrolysis of phenylisocyanate from adventitious water), and that the complex between the diphenylurea byproduct and compound 13 was almost completely insoluble in most common chromatography solvents.

Scheme 1. Synthesis of compound 9 and 10.

Scheme 2. Synthesis of compound 11.

The diphenylurea byproduct formed even when compound $\mathbf{1 2}$ was dried under vacuum or via azeotropic removal of water by evaporation of benzene. Removal of the reaction solvents prior to chromatography also seemed to give larger amounts of the diphenylurea byproduct and complicated getting the crude reaction material back into solution in order to be able to apply it to the chromatography column. We found that simply running the reaction at rather high dilution and then direct addition of the reaction mixture to a chromatography column avoided the problem of complex formation between diphenylurea and compound 13. The highest yields were obtained for compound 13 when this procedure was followed.

Compound 13 was converted to compound 9 in 87% yield via a one-pot tandem reduction of the azide followed by acylation of the resulting amine intermediate with p nitrophenyl N -methylcarbamate. p-Nitrophenyl N -methylcarbamate is a safe and easy-to- handle alternative to the more dangerous reagent methylisocyanate. ${ }^{19}$ Compound $\mathbf{9}$ was converted to compound 10 via TFA-promoted (trifluoracetic acid) hydrolysis of the acetal. Chromatography using an $\mathrm{EtOAc} / \mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}$ mixture (4:2:1) gave compound $\mathbf{1 0}$ in 75% yield.

Compound 11 was prepared from compound $\mathbf{1 4}$ via a three-step procedure. Silylation of compound 14 to give 15 was accomplished by treating 14 with TBSCl (3 equiv) and imidazole (excess). Application of this method to the preparation of 15 gave desired product in 71% yield. Conversion of $\mathbf{1 5}$ to $\mathbf{1 1}$ was accomplished using reagents and conditions similar to those used to prepare compound 9 from compound 12. Compound 16 and diphenylurea had nearly identical $\mathrm{R}_{\mathrm{f}} \mathrm{S}$ in EtOAc/hexanes solvents, but good separation (by TLC) could be achieved using neat $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Flash chromatography of $\mathbf{1 6}$ using 4 column lengths of neat $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by $\mathrm{EtOAc} /$ Hexanes (3:7) gave product
which was mostly pure of the diphenylurea. However, residual "TLC-visible" quantities could be seen in the purified material. Fortunately, diphenylurea byproduct was easily separated out at the next step since it has a significantly higher R_{f} than compound 11.

Compounds 9 and 10 were submitted to the NCI for screening against the NCI 60 . Interestingly, compounds $\mathbf{9}$ and $\mathbf{1 0}$ had very little anti-proliferative activity at $10 \mu \mathrm{M}$ compound concentration (Table 5). This result strongly suggests that the bulky $2^{\prime}-O$-TBS group is necessary for optimum anti-proliferative activity.

To further probe structural features that might lead to anti-cancer activity, compounds from the chemical inventory in the Peterson group were submitted for screening (Figure 15). The results from these assays are illustrated in the Appendix. It is interesting to note that from this SAR it appears that the following substitution patterns are necessary for optimal anti-proliferative activity: (1) N-phenylurea in the NE quadrant; (2) N-methylurea or -urethane in the NW quadrant; (3) O-TBS substitution in the SE quadrant. Substitution in the SW was also evaluated and results from the NCI screening of compound $\mathbf{1 1}$ shed important light on the importance of a bulky $3^{\prime}-O$-TBS. Importantly, such substitution did not abrogate the anti-proliferative activities imparted by the NE, NW, and SE substitutions. Compound $\mathbf{1 1}$ is significantly easier to prepare than either compounds $\mathbf{1}$ or $\mathbf{2}$ and provides a synthetically versatile template for more in-depth SAR studies. Synthetic targets for this study are illustrated in Scheme 3. Discussion of the synthesis of this library of compounds follows.

Table 5. Single Dose Growth Inhibition Assay for $\mathbf{9}$ and 10 (GI Percent at $10 \mu \mathrm{M})^{a}$

Cell Line	9	10	Cell Line	9	10
Leukemia			CNS Cancer		
CCRF-CEM	95	100	$\begin{aligned} & \text { SF-268 } \\ & \text { SF-295 } \end{aligned}$	91	99
HL-60(TB)	84	79		119	123
K-562	90	60	SF-539	84	91
MOLT-4	103		SNB-19 SNB-75	85	89
RPMI-8226	87	90		60	66
			U251	94	86
Non-Small Cell Lung Cancer			Ovarian Cancer 89		Ovarian Cancer
A549/ATCC	103	99			85
EKVX	102	113	OVCAR-4	90	92
HOP-62	99	96	OVCAR-5	109	102
HOP-92	14	71	OVCAR-8	100	105
NCl-H226	109	99	SK-OV-3	79	77
$\mathrm{NCI}-\mathrm{H} 23$	87	95			
$\mathrm{NCl}-\mathrm{H} 322 \mathrm{M}$	101	95	Renal Cancer		
NCl-H460 $\mathrm{NCl}-\mathrm{H} 522$	101	101			
NCI-H522	104	92	786-0 A498	105	106
Colon Cancer			ACHN	105	99
HCC-2998	96	78	CAKI-1	73	55
HCT-116	81	89	RXF393	97	114
HCT-15	98		SN12C	95	96
HT29	99	97	TK-10	134	152
KM12	90	89	UO-31	74	98
SW620	91	98	Breast Cancer BT-549		
Melanoma			HS578T	102	93
LOX IMVI	100	99	MCF7	85	91
MALME-3M	76	97	MDA-MB-231	107	90
M14	89	108	MDA-MB-468	100	98
SK-MEL-2	104	117	T-47D	75	78
SK-MEL-28	92	100			
SK-MEL-5	86	94	Prostate Can		
UACC-257	107	105	DU-145	94	95
UACC-62	92	88	PC-3	71	85

${ }^{a}$ Growth inhibition percent calculated as:
$\left.\left[\left(\mathrm{T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{Z}}\right) / \mathrm{C}-\mathrm{T}_{\mathrm{Z}}\right)\right] \mathrm{X} 100$ for $\mathrm{T}_{\mathrm{i}} \quad \mathrm{T}_{\mathrm{Z}}$
$\left.\left[\left(\mathrm{T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{z}}\right) / \mathrm{T}_{\mathrm{z}}\right)\right] \mathrm{X} 100$ for $\mathrm{T}_{\mathrm{i}}<\mathrm{T}_{\mathrm{z}}$
Where $\mathrm{T}_{\mathrm{z}}=$ absorbance at $\mathrm{t}=0 ; \mathrm{T}_{\mathrm{i}}=$ absorbance at $\mathrm{t}=48 \mathrm{~h}$ (10 $\mu \mathrm{M}$ test compound);
$\mathrm{C}=$ absorbance of control at $\mathrm{t}=48 \mathrm{~h}$

Figure 15. Structures of inventory compounds.

NSC: 749605

NSC: 749604
 NSC: 749602

NSC: 749601

NSC: 749600

Scheme 3. Synthetic targets for more in-depth SAR.

Compounds 23a-d were prepared by treating 15 with the appropriate isocyanate in dilute $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. The reactions generally required 5 days at ambient temperature. Workup for 23a-d was similar to that for compound $\mathbf{1 6}$ and could be achieved by simple chromatography of the crude reaction mixture to give 23a-d in good yields. Reduction of the azide using standard hydrogenation conditions $\left(\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}\right)$ proved problematic for 23b,c as these compounds have moieties which are susceptible to hydrogenolysis. Successful reduction of the azide was achieved by Staudinger reduction conditions $\left(\mathrm{Ph}_{3} \mathrm{P}\right.$ followed by $\mathrm{H}_{2} \mathrm{O}$) which afforded the desired products $(\mathbf{2 4 b}, \mathbf{c})$ in acceptable yields.

Compounds 24a-d are currently being screened for antiproliferative activity and that data will be published as soon as it is available.

Conclusion

A series of $N^{6}, 5^{\prime}$-bis-ureidoadenosine derivatives was prepared and tested for activities in antiproliferative assays against the NCI 60 panel of human cancers. From this study it is concluded that a $2^{\prime}-O$-TBS group is necessary (but not sufficient) for growth inhibition, as is also true for the $5^{\prime}-$ and N^{6}-ureido substitutions. When occurring individually in the absence of the other, neither 5^{\prime} - nor N^{6}-ureido or N^{6}-carbamoyl substitution gave rise to potent growth inhibition, even in the presence of the essential $2^{\prime}-$ O-TBS moiety, as evidenced by the almost complete lack of activity for compounds $\mathbf{1 7}$ 21 (Figure 15 and Appendix). Substitution of a carbamoyl group for the urea in the NW quadrant gave compound 22 which also exhibited comparable activities to compound $\mathbf{1}$. Very recently obtained data suggests that the synthetically-more-accessible compound $\mathbf{1 1}$ may exhibit activities comparable to the more challenging lead compound $\mathbf{1}$ (see Appendix for single-dose antiproliferative data for compound 11; NSC 750689). Compound 11 offers a synthetically viable alternative for preparing more extensive compound libraries based on the easier-to-prepare bis- O-TBS-substituted adenosine template (e.g. compounds $\mathbf{2 4 a - d}$). We are currently pursuing this line of research and results from such studies will be reported shortly.

Experimental Section

General Experimental

Flash chromatography was carried out using 230-400 mesh silica gel. Preparative TLC was performed using Merck Kieselgel $60 \mathrm{~F}_{254}$ sheets. UV spectra were obtained in MeOH and water. ${ }^{1} \mathrm{H}$ NMR spectra were obtained on either a Varian 300 MHz or a Varian 500 MHz spectrometer using internal references at $\delta 7.27\left(\mathrm{CDCl}_{3}\right)$ and $\delta 2.50\left(\mathrm{DMSO}-d_{6}\right)$. ${ }^{13} \mathrm{C}$ NMR spectra were obtained using internal references at $\delta 77.3\left(\mathrm{CDCl}_{3}\right)$ and $\delta 39.5$ (DMSO- d_{6}). High resolution mass spectra were obtained by using FAB and ESI techniques. Commercially available reagents were used as supplied. All water sensitive reactions were performed in flame-dried flasks under Nitrogen or Argon. Solvents used in the reactions were dried by passing through columns of activated alumina under Argon.

5'-azido-5'-deoxy-2', 3'-O-isopropylidene- N^{6}-(N-phenylcarbamoyl)adenosine (13).

To a flame dried flask containing compound 12 ($454 \mathrm{mg}, 1.37 \mathrm{mmol}$) was added phenylisocyanate ($190 \mathrm{mg}, 1.6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16 \mathrm{~mL})$. The resulting solution was stirred protected from moisture until TLC indicated that starting material had been consumed (5 d). The crude solution was added directly to a flash chromatography column and eluted $(50 \rightarrow 75 \% \mathrm{EtOAc} /$ hexanes $\rightarrow 10 \% \mathrm{MeOH} / \mathrm{EtOAc})$. Appropriate fractions were pooled and volatiles were evaporated under reduced pressure to give 5^{\prime} -azido-5'-deoxy-2', $\quad 3^{\prime}-O$-isopropylidene- N^{6}-(N-phenylcarbamoyl)adenosine (491 mg , $79 \%):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 11.71(\mathrm{~s}, 1 \mathrm{H}), 8.66(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~s}$, $1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J$ $=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{dd}, J=6.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dd}, J=6.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{dd}, J=$ 9.0, 5.0 Hz, 1H), $3.63(\mathrm{dd}, J=9.5,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 151.2,151.1,150.2,149.9,142.1,137.9,129.1,124.1,121.1,120.4$, $115.1,90.7,85.3,84.1,81.8,52.3,27.2,25.4 ; \mathrm{MS}(\mathrm{FAB}) m / z 452.17923\left(\mathrm{MH}^{+}\right.$ $\left.\left[\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{9} \mathrm{O}_{4}\right]=452.17948\right)$.

5'-Deoxy-2', 3'-O-isopropylidene-5'-[(N-methylcarbamoyl)amino]- N^{6}-(N phenylcarbamoyl)adenosine (9).

A solution of $\mathbf{1 3}(70 \mathrm{mg}, 0.16 \mathrm{mmol})$ and $10 \% \mathrm{Pd}-\mathrm{C}(40 \mathrm{mg})$ in EtOAc (10 mL) was vigorously stirred for 15 h under an atmosphere of H_{2} (balloon pressures). p-Nitrophenyl N -methylcarbamate (43 mg, 0.22 mmol) and anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}(45 \mathrm{mg}, 0.43 \mathrm{mmol})$ were added, and the resulting mixture was stirred for 4 h under N_{2}. Solids were removed via filtration (celite/EtOAc $\rightarrow \mathrm{MeOH}$), and volatiles were evaporated under reduced pressure. The crude residue was chromatographed ($5 \rightarrow 10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give $\mathbf{9}$ (65 mg, 87\%): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 12.10(\mathrm{~s}, 1 \mathrm{H}), 9.79(\mathrm{~s}, 1 \mathrm{H}), 8.69(\mathrm{~s}, 1 \mathrm{H})$, $8.68(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=8.8,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.15(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~m}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=6.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{dd}, J=$ $6.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.77$ (m, 1H), 4.52 (dd, $J=6.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ (ddd, $J=13.8,7.4$, $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dt}, J=3.8,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 159.2, 152.6, 150.9, 150.34, 150.30, 143.3, 137.2, $129.2,124.9,121.5,121.2,114.6,91.6,85.9,83.9,81.6,41.8,27.4,26.9,25.4$; MS (FAB) $m / z 483.2099\left(\mathrm{MH}^{+}\left[\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{8} \mathrm{O}_{5}\right]=483.2099\right)$.

5'-Deoxy-5'-[(N-methylcarbamoyl)amino]- N^{6}-(N-phenylcarbamoyl)adenosine (10).
A solution of $9(10 \mathrm{mg}, 0.021 \mathrm{mmol})$, TFA $(100 \mu \mathrm{~L})$, and $\mathrm{H}_{2} \mathrm{O}(25 \mu \mathrm{~L})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500$ $\mu \mathrm{L}$) was vigorously stirred at ambient temperature until TLC indicated complete conversion to baseline product (4h). Volatiles were removed under reduced pressure (\leq $\left.25^{\circ} \mathrm{C}\right)$ and the crude was purified via flash chromatography $\left(\mathrm{EtOAc} / \mathrm{iPrOH} / \mathrm{H}_{2} \mathrm{O}\right)$ to give 10 (7 mg, 75\%): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 11.75(\mathrm{~s}, 1 \mathrm{H}), 10.21(\mathrm{~s}, 1 \mathrm{H}), 8.71(\mathrm{~s}, 1 \mathrm{H})$, $8.70(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.10(\mathrm{~s}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=$ $3.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=14.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=14.3$, $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.49\left(\mathrm{~s}, 3 \mathrm{H}\right.$; overlaps with DMSO); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 159.1, $151.4,151.2,151.1,150.2,143.4,138.9,129.4,123.7,121.1,119.9,87.9,84.9,73.6,71.6$, 42.2, 26.8; $\mathrm{MS}(\mathrm{FAB}) m / z 443.17757\left(\mathrm{MH}^{+}\left[\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{8} \mathrm{O}_{5}\right]=443.17859\right)$.

5'-Azido-2', 3^{\prime} '-bis-O-tert-butyldimethylsilyl-5'-deoxyadenosine (15).

A solution of $\mathbf{1 4}(50 \mathrm{mg}, 0.17 \mathrm{mmol}), \mathrm{TBSCl}(77 \mathrm{mg}, 0.51 \mathrm{mmol})$, and imidazole (93 $\mathrm{mg}, 1.4 \mathrm{mmol})$ in dry DMF $(0.25 \mathrm{~mL})$ was stirred at ambient temperature and protected from moisture for 2 days. The crude reaction mixture was added directly to a flash column and eluted using 50\% ethyl acetate/hexanes (2 columns), and 75% ethyl acetate/hexanes (3 columns) as eluents. Appropriate fractions were evaporated and the solvents were removed under reduced pressure. Recrystallization from benzene gave $\mathbf{1 5}$ (64 mg, 72.1\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.36(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 2 \mathrm{H})$, $5.91(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}$, $J=9.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H})$, $0.13(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}),-0.15(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 156.0,153.1$, $149.7,140.2,120.7,90.0,83.1,74.4,72.6,51.8,25.98,25.88,18.22,18.06,-4.23,-4.53,-$ 4.68, -4.75; MS $521.2851(\mathrm{ES}) m / z\left([\mathrm{M}+\mathrm{H}]^{+}\left[\mathrm{C}_{22} \mathrm{H}_{41} \mathrm{~N}_{8} \mathrm{O}_{3} \mathrm{Si}_{2}\right]=521.2835\right)$.

5^{\prime}-Azido- $2^{\prime}, 3^{\prime}$-bis-O-tert-butyldimethylsilyl-5'-deoxy- N^{6}-(N-phenylcarbamoyl)adenosine (16).

A solution of compound $\mathbf{1 5}(125 \mathrm{mg}, 0.240 \mathrm{mmol})$ and phenylisocyanate $(0.29 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.9 \mathrm{~mL})$ was stirred at ambient temperature until TLC indicated complete consumption of starting material (5 days). The crude reaction mixture was added directly to a flash chromatography column and eluted with $20 \rightarrow 30 \%$ EtOAc/hexanes to give 16 (130 mg, 85\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 11.78(\mathrm{~s}, 1 \mathrm{H}), 8.61(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{bs}, 1 \mathrm{H})$, $8.33(\mathrm{bs}, 1 \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.97(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{t}, \mathrm{J}=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{t}, \mathrm{J}=4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, \mathrm{J}=6.3,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}$, $3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}),-0.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 151.3,150.8,150.1$, $142.5,138.0,129.0,123.9,121.2,120.4,89.7,82.9,74.7,72.3,51.6,25.8,25.7,18.0$, 17.9, $-4.38,-4.68,-4.84,-4.88$; MS $(\mathrm{FAB}) m / z 640.3204\left(\mathrm{MH}^{+}\left[\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{~N}_{9} \mathrm{O}_{4} \mathrm{Si}_{2}\right]\right)=$ 640.3206.

$2^{\prime}, 3^{\prime}$-Bis-O-tert-butyldimethylsilyl-5'-deoxy-5'-(N-methylcarbamoyl)amino- $N^{6}-(N-$ phenylcarbamoyl)adenosine (11).

A solution of $\mathbf{1 6}(123 \mathrm{mg}, 0.192 \mathrm{mmol})$ and $10 \% \mathrm{Pd}-\mathrm{C}(50 \mathrm{mg})$ in EtOAc (10 mL) was stirred overnight under an atmosphere of H_{2} (balloon pressures). The mixture was filtered (celite) and volatiles were evaporated. The crude material was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ and p-nitrophenyl- N -methyl-carbamate ($45 \mathrm{mg}, 0.229 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ ($60 \mu \mathrm{~L}, 0.60 \mathrm{mmol}$) were then added. The mixture was stirred at ambient temperature until TLC showed reaction was complete $(9 \mathrm{~h})$. The crude mixture was added to a flash chromatography column and eluted with $75 \% \mathrm{EtOAc} /$ hexanes $\rightarrow 5 \% \mathrm{MeOH} / \mathrm{EtOAc}$ to give $11(111 \mathrm{mg}, 86 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 11.92(\mathrm{bs}, 1 \mathrm{H}), 9.03(\mathrm{bs}, 1 \mathrm{H})$, $8.67(\mathrm{~s}, 1 \mathrm{H}), 8.61(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}), 7.39(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.51(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.74-4.73(\mathrm{~m}, 1 \mathrm{H}), 4.64(\mathrm{dd}, \mathrm{J}=$ 7.5, 4.5 Hz, 1 H), $4.36(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{ddd}, \mathrm{J}=14.5$, 9.0, 2.5 Hz, 1H), 3.19 (dt, J = 14.5, 3.1 Hz, 1H), 2.72 (d, J = $4.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.95$ (s, 9H), $0.70(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}),-0.13(\mathrm{~s}, 3 \mathrm{H}),-0.49(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}) \delta 159.1,152.9,151.0,150.4,150.3,144.1,137.1,129.2,125.0,121.8,121.2$, 88.0, 87.8, 75.9, 73.5, 41.6, 26.8, 25.9, 25.6, 18.0, 17.7, -4.53, -4.79, -5.65; MS (FAB) $m / z 671.3525\left(\mathrm{MH}^{+}\left[\mathrm{C}_{31} \mathrm{H}_{51} \mathrm{~N}_{8} \mathrm{O}_{5} \mathrm{Si}_{2}\right]\right)=671.3516$.

5^{\prime}-Azido-2', 3^{\prime}-bis-O-tert-butyldimethylsilyl-5'-deoxy- N^{6}-[N-(4-methoxyphenyl)carbamoyl]adenosine (23a).

A solution of compound $\mathbf{1 5}(100 \mathrm{mg}, 0.19 \mathrm{mmol})$ and 4-methoxyphenylisocyanate (0.24 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.4 \mathrm{~mL})$ was stirred at ambient temperature until TLC indicated complete consumption of starting material (6 days). The crude reaction mixture was added directly to a flash chromatography column and eluted with $50 \% \mathrm{EtOAc} / \mathrm{Hexanes}$ to give 23a ($104 \mathrm{mg}, 82 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 11.60(\mathrm{~s}, 1 \mathrm{H}), 8.61(\mathrm{~s}, 1 \mathrm{H}), 8.53$ $(\mathrm{s}, 1 \mathrm{H}), 8.36(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.98(\mathrm{~d}$, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=9.5$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{dd}, J=13.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=13.0,5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $0.94(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}),-0.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 156.3,151.5,150.8,150.2,150.1,142.5,131.0,122.2,121.2,114.2$, 89.7, 82.9, 74.7, 72.3, 55.5, 51.6, 25.8, 25.7, 18.0, 17.9, -4.4, -4.7, -4.85, -4.90; MS (ES) $m / z\left([\mathrm{M}+\mathrm{H}]^{+} 670.3335\left[\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{~N}_{9} \mathrm{O}_{5} \mathrm{Si}_{2}\right]=670.3317\right)$.

5^{\prime}-Azido-2', 3^{\prime}-bis-O-tert-butyldimethylsilyl-5'-deoxy- N^{6}-[N-(4-chlorophenyl)carbamoyl]adenosine (23b).

A solution of compound $\mathbf{1 5}(60 \mathrm{mg}, 0.12 \mathrm{mmol})$ and 4-chlorophenylisocyanate (0.14 $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.8 \mathrm{~mL})$ was stirred at ambient temperature until TLC indicated complete consumption of starting material (6 days). The crude reaction mixture was added directly to a flash chromatography column and eluted with $10 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give 23b ($40 \mathrm{mg}, 50 \%$). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 11.91(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{~s}, 1 \mathrm{H}), 8.63(\mathrm{~s}$, $1 \mathrm{H}), 8.43(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.00(\mathrm{~d}, J=3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.85(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=9.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75$ (dd, $J=13.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=13.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.13$ $(\mathrm{s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}),-0.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 151.6$, $150.9,150.2,143.0,136.9,129.2,129.0,121.7,89.9,83.1,75.0,72.5,51.8,26.00,25.89$, 18.26, 18.12, -4.17, -4.47, -4.63, -4.67; MS (ES) $m / z\left([\mathrm{M}+\mathrm{H}]^{+} 674.2819\right.$ $\left.\left[\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{ClN}_{9} \mathrm{O}_{4} \mathrm{Si}_{2}\right]=674.2816\right)$.

5^{\prime}-Azido- $2^{\prime}, 3^{\prime}$-bis-O-tert-butyldimethylsilyl-5'-deoxy- N^{6}-[N-(4-nitrophenyl)carbamoyl]adenosine (23c).

A solution of compound $\mathbf{1 5}(100 \mathrm{mg}, 0.20 \mathrm{mmol})$ and 4-nitrophenylisocyanate (0.24 $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.4 \mathrm{~mL})$ was stirred at ambient temperature until TLC indicated complete consumption of starting material (4 days). The crude reaction mixture was added directly to a flash chromatography column and eluted with $10 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give 23c ($97 \mathrm{mg}, 71 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 12.39(\mathrm{~s}, 1 \mathrm{H}), 8.69(\mathrm{~s}, 1 \mathrm{H}), 8.64(\mathrm{~s}$, $1 \mathrm{H}), 8.38(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.02(\mathrm{~d}, J=4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.86(\mathrm{t}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{t}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=8.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ $(\mathrm{dd}, J=13.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=13.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.14$ $(\mathrm{s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}),-0.14(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 151.2, $150.9,150.7,149.9,144.4,143.6,143.0,125.3,121.6,119.7,90.0,83.3,75.1,72.5,51.8$, $26.0,25.9,18.3,18.1,-4.14,-4.42,-4.58,-4.67$; MS $685.3057(\mathrm{ES}) m / z\left([\mathrm{M}+\mathrm{H}]^{+}\right.$ $\left.\left[\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{~N}_{10} \mathrm{O}_{6} \mathrm{Si}_{2}\right]=685.3062\right)$.

5^{\prime}-Azido- $2^{\prime}, 3^{\prime}$-bis- O-tert-butyldimethylsilyl- 5^{\prime}-deoxy- N^{6}-(N-benzylcarbamoyl)-
adenosine (23d).

A solution of compound $\mathbf{1 5}(70 \mathrm{mg}, 0.14 \mathrm{mmol})$ and benzylisocyanate $(0.16 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.8 \mathrm{~mL})$ was stirred at ambient temperature until TLC indicated complete consumption of starting material (8 days). The crude reaction mixture was added directly to a flash chromatography column and eluted with $10 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give 23 d (65 $\mathrm{mg}, 69 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 9.97(\mathrm{bs}, 1 \mathrm{H}), 8.78(\mathrm{bs}, 1 \mathrm{H}), 8.48(\mathrm{~s}, 1 \mathrm{H}), 8.42$ (s,1H), 7.42-6.95 (m, 5H), $5.98(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}$, $J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{dd}, J=10.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=9.3$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=13.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=13.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H})$, $0.84(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}),-0.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}) \delta 154.2,151.0,150.5,142.4,138.8,128.6,127.4,127.3,121.2,89.7,82.8,74.8$, $72.3,51.6,44.0,29.8,25.81,25.70,18.04,17.90,-4.38,-4.70,-4.85$; MS 654.3367 (ES) $m / z\left([\mathrm{M}+\mathrm{H}]^{+}\left[\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{~N}_{9} \mathrm{O}_{4} \mathrm{Si}_{2}\right]=654.3362\right)$.

$2^{\prime}, 3^{\prime}$-Bis-O-tert-butyldimethylsilyl-5'-deoxy- N^{6}-[N-(4-methoxyphenyl)carbamoyl]-5'(N -methylcarbamoyl)aminoadenosine (24a).

A solution of $25(80 \mathrm{mg}, 0.14 \mathrm{mmol})$ and p-methoxyphenylisocyanate $(0.17 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.74 \mathrm{~mL})$ was stirred at ambient temperature and protected from moisture until the reaction was complete (6 d). The crude mixture was added directly to a flash chromatography column and eluted with $30 \% \mathrm{EtOAc} /$ Hexanes $\rightarrow 4 \% \mathrm{MeOH} / \mathrm{EtOAc}$ to give 24a ($56 \mathrm{mg}, 57 \%$). ${ }^{1} \mathrm{H}$ NMR (Acetone- $\left.d_{6}, 300 \mathrm{MHz}\right) \delta 11.98(\mathrm{~s}, 1 \mathrm{H}), 9.55(\mathrm{bs}, 1 \mathrm{H})$, $9.00(\mathrm{~s}, 1 \mathrm{H}), 8.90(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.40-6.32(\mathrm{~m}$, $1 \mathrm{H}), 6.19(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{dd}, J=4.4,7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.59(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.77-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.62-$ $3.54(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.73(\mathrm{~s}, 9 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.17(\mathrm{~s}$, $3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}),-0.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (Acetone- $\left.d_{6}, 75 \mathrm{MHz}\right) \delta 158.9,156.3,151.6$, $151.4,151.0,150.9,150.4,143.9,131.5,131.4,121.7,121.6,114.0,87.9,87.3,75.2,73.6$, $54.8,41.8,25.5,25.2,17.8,17.5,-5.14,-5.19,-5.33,-6.22$; MS 701.3611 (ES) m / z $\left([\mathrm{M}+\mathrm{H}]^{+}\left[\mathrm{C}_{32} \mathrm{H}_{53} \mathrm{~N}_{8} \mathrm{O}_{6} \mathrm{Si}_{2}\right]=701.3621\right)$.

$2^{\prime}, 3^{\prime}$-Bis-O-tert-butyldimethylsilyl- N^{6}-[N-(4-chlorophenyl)carbamoyl]-5'-deoxy-5'(N-methylcarbamoyl)aminoadenosine (24b).

A solution of 23b ($60 \mathrm{mg}, 0.09 \mathrm{mmol}$) and triphenylphosphine ($35 \mathrm{mg}, 0.13 \mathrm{mmol}$) in THF (0.6 mL) was stirred at ambient temperature for 15 min . Water ($20 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$) was added and the mixture was refluxed for 1.5 h at $85^{\circ} \mathrm{C}$. The resulting product was evaporated and chromatographed using $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}(4: 2: 1)$ to give the reduction product as a white powder. This product was mixed with N-methyl- p-nitrophenylcarbamate ($26 \mathrm{mg}, 0.13 \mathrm{mmol}$) and triethylamine ($50 \mu \mathrm{~L}, 0.36 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2.3 \mathrm{~mL})$ and stirred for 5 h at room temperature. Volatiles were removed under reduced pressure and the crude material was chromatographed using 30% acetone $/$ hexanes $\rightarrow 5 \%$ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give 24b (50 mg, 79\%). ${ }^{1} \mathrm{H}$ NMR (Acetone- $\left.d_{6}, 300 \mathrm{MHz}\right) \delta 12.30(\mathrm{~s}$, 1H), $9.86(\mathrm{~s}, 1 \mathrm{H}), 9.03(\mathrm{~s}, 1 \mathrm{H}), 8.77(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.34(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{dd}$, $J=4.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.60(\mathrm{~m}, 2 \mathrm{H})$, $2.72(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.73(\mathrm{~s}, 9 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}),-0.05(\mathrm{~s}$, $3 \mathrm{H}),-0.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (Acetone- $\left.d_{6}, 75 \mathrm{MHz}\right) \delta 159.1,151.5,151.4,151.0,150.9$, $150.2,144.1,137.6,128.8,128.5,127.8,121.3,120.9,87.9,87.1,75.2,73.5,41.9,26.4$,
$26.3,25.5,25.3,17.8,17.5,-5.13,-5.19,-5.32,-6.16$; MS $705.3126(\mathrm{ES}) m / z\left([\mathrm{M}+\mathrm{H}]^{+}\right.$ $\left.\left[\mathrm{C}_{31} \mathrm{H}_{51} \mathrm{~N}_{8} \mathrm{O}_{5} \mathrm{Si}_{2}\right]=705.3145\right)$.

$2^{\prime}, 3^{\prime}$-Bis-O-tert-butyldimethylsilyl-5'-deoxy-5'-(N-methylcarbamoyl)- $N^{6}-[N-(4-$
nitrophenyl)carbamoyl]aminoadenosine (24c).
A solution of 23c ($50 \mathrm{mg}, 0.09 \mathrm{mmol}$) and triphenylphosphine ($29 \mathrm{mg}, 0.11 \mathrm{mmol}$) in THF (0.5 mL) was stirred at ambient temperature for 15 min . Water ($20 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$) was added and the mixture was refluxed for 1.5 h at $85^{\circ} \mathrm{C}$. The resulting product was evaporated and chromatographed using $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}(4: 2: 1)$ to give the reduction product as a white powder. This product was mixed with N-methyl- p-nitrophenylcarbamate ($22 \mathrm{mg}, 0.11 \mathrm{mmol}$) and triethylamine ($40 \mu \mathrm{~L}, 0.29 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.9 \mathrm{~mL})$ and stirred for 5 h at room temperature. Volatiles were removed under reduced pressure and the crude material was chromatographed using 30% acetone/hexanes $\rightarrow 3 \%$ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give 24c ($47 \mathrm{mg}, 73 \%$). ${ }^{1} \mathrm{H}$ NMR (Acetone- $\left.d_{6}, 300 \mathrm{MHz}\right) \delta 12.77$ (s, $1 \mathrm{H}), 9.60(\mathrm{~s}, 1 \mathrm{H}), 8.94(\mathrm{~s}, 1 \mathrm{H}), 8.82(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.02(\mathrm{~d}, J=9.3 \mathrm{~Hz}$, $2 \mathrm{H}), 6.33-6.30(\mathrm{~m}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dd}$, $J=4.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, $2 \mathrm{H}), 2.74(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.72(\mathrm{~s}, 9 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}),-0.04$ (s, 3H), -0.14 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (Acetone- $\left.d_{6}, 75 \mathrm{MHz}\right) \delta 159.9,152.2,152.0,151.8$, $150.9,145.9,145.0,143.9,125.8,122.0,120.2,120.1,88.9,88.1,75.9,74.4,42.8,42.7$, $27.3,27.1,26.4,26.1,18.7,18.4,-4.2,-4.3,-4.4,-5.3$; MS $716.3366(\mathrm{ES}) \mathrm{m} / \mathrm{z}\left([\mathrm{M}+\mathrm{H}]^{+}\right.$ $\left.\left[\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{~N}_{9} \mathrm{O}_{7} \mathrm{Si}_{2}\right]=716.3353\right)$.

N^{6}-[N-Benzylcarbamoyl]-2', 3^{\prime}-bis-O-tert-butyldimethylsilyl-5'-deoxy- 5^{\prime}-(N methylcarbamoyl)aminoadenosine (24d).

A solution of 23c (126 mg, 0.184 mmol$)$ and triphenylphosphine ($76 \mathrm{mg}, 0.29 \mathrm{mmol}$) in THF (1.2 mL) was stirred at ambient temperature for 15 min . Water ($45 \mu \mathrm{~L}, 2.5 \mathrm{mmol}$) was added and the mixture was refluxed for 1.5 h at $85^{\circ} \mathrm{C}$. The resulting product was evaporated and chromatographed using $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}(4: 2: 1)$ to give the reduction product as a white powder. This product was mixed with N-methyl- p-nitrophenylcarbamate ($57 \mathrm{mg}, 0.29 \mathrm{mmol}$) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(53 \mathrm{mg}, 0.5 \mathrm{mmol})$ in EtOAc (8.0 mL), and stirred for 5 h at room temperature. Volatiles were removed under reduced pressure and the crude material was chromatographed using 30% acetone/hexanes $\rightarrow 3 \%$ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give 24d ($65 \mathrm{mg}, 52 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 10.43(\mathrm{bs}, 1 \mathrm{H})$, $9.33(\mathrm{bs}, 1 \mathrm{H}), 8.91(\mathrm{bs}, 1 \mathrm{H}), 8.55(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 2 \mathrm{H}), 6.34(\mathrm{bs}$, $1 \mathrm{H}), 6.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{bs}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.49$ (dd, $J=4.8$, $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{ddd}, J=14.8$, $8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dt}, J=11.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H})$, $0.69(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}),-0.12(\mathrm{~s}, 3 \mathrm{H}),-0.49(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}) \delta 159.5,156.2,151.7,150.9,150.5,144.1,138.2,128.9,127.6,126.9,120.8$,
$88.6,86.6,77.3,73.9,44.3,41.5,29.9,26.9,26.1,25.7,18.2,17.9,-4.3,-4.6,-5.5 ; \mathrm{MS}$ $685.3666(\mathrm{ES}) m / z\left([\mathrm{M}+\mathrm{H}]^{+}\left[\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{~N}_{8} \mathrm{O}_{5} \mathrm{Si}_{2}\right]=685.3672\right)$.

Appendix

Developmental Therapeutics Program One Dose Mean Graph		NSC: 749804 / 1	Cenc: 1.D0EE 5 Molar	Teat Diater d	an 28, 20x89
		Experiment ID: 0	10541	Repport Data:	Feh 17, 2008
PaneliCell Lhe	Growith Percent	Mean Growth Percent - Growth Percent			
CCRF-CEM	8288 89.08		\underline{E}		
	84.25		E		
MOLT-4 RP4	74.47 9.65		-		
Non-Small Cell Lung Cancer A54 AXATCC					
EKVX	74.63				
H0P-62	9127		-		
HMCP- H	81.18 80.17				
NCI-H23	$\begin{array}{r}108.89 \\ \\ \hline 0.84\end{array}$				
NCI- 4 460	1000.54		,		
Colon Cancer					
COLO 205 HCO 108.54 10483					
HCT-116 83.94					
CNS Cancer					
Melanoma					
MALME-3MM14					
MOAMB-435 84.84					
IGROV13					
OHCAR-3OVCAR-4					
NCIARR-RES					
Plenal Cancer					
7886 $\mathbf{M 9 6}$ 8721 9794					
RXF 398SN12C					
Proula Cliser DU-148 $\mathbf{8 5 2 1}$ 9265					
Breast Cancer					
MCF7 MOAM-231/ATC 89.23 硅					
BT-549	78.88		\square		
T-470	82.17		\square		
Mean ${ }^{\text {g3. }} 88$					
$\begin{array}{ll}\text { Della } \\ \text { Ringe } & \mathbf{2 1 . 3 7} \\ \end{array}$					
	150	100	0	-100	-150

References:

${ }^{1}$ Pawson, T. Protein molecules and signaling networks, Nature 1995, 373, 573-580.
${ }^{2}$ (a) Egan, S. E.; Weinberg, R. A. The pathway to signal achievement, Nature 1993, 365, 781-782; (b) Blume-Jensen, P.; Hunter, T. Oncogenic kinase signaling, Nature 2001, 411, 355-365; (c) Hanahan, D.; Weinberg, R. A. The hallmarks of cancer, Cell 2000, 100, 57-70.
${ }^{3}$ Dancey, J.; Sausville, E. Issues and progress with protein kinase inhibitors for cancer treatment, Nat Rev Drug Discovery 2003, 2, 296-313.
${ }^{4}$ (a) Michael, W. N.; Deininger M.; Druker, B. J. Specific Targeted Therapy Of Chronic Myelogenous Leukemia With Imatinib, Pharmacol. Reviews. 2003, 55, No. 3, (b) Kantarjian, H.; Kurzrock, R.; Talpaz, M. Philadelphia chromosome-negative chronic myelogenous leukemia and chronic myelomonocytic leukemia, Hematol. Oncol. Clin. North Am. 1990, 4, 389-404.
${ }^{5}$ Kantarjian, H. M.; Cortes J. New Strategies In Chronic Myeloid Leukemia. Int. J. Hematology, 2006, 83, 289-293
${ }^{6}$ Deininger, M.; Druker, B. J. Specific Targeted Therapy of Chronic Myelogenous Leukemia with Imatinib, Pharmacol Rev. 2003, 55(3), 401-423,
${ }^{7}$ Sordella, R.; Bell, D.; Haber, D.; Settleman, J. Gefitinib-Sensitizing EGFR Mutations in Lung Cancer Activate Anti-Apoptotic Pathways, Science, 2004, 305, 1163-1167.
${ }^{8}$ Tsao, M. Sakurada, A.; Cutz, J. C.; Zhu, C. Q.; Kamel-Reid, S.; Squire, J.; Lorimer, I.; Zhang, T.; Liu, N.; Daneshmand, M.; Marrano, P.; Santos, G. D.; Lagarde, A.; Richardson, F.; Seymour, L.; Whitehead, M.; Ding, K. Y.; Pater, J.; Shepherd, F. A.

Erlotinib in Lung Cancer - Molecular and Clinical Predictors of Outcome, New Eng. J. Med. 2005, 353, 133-144.

9 (a) Fabbro, D.; Ruetz, S.; Buchdunger, E.; Cowan-Jacob, S. W.; Fendrich, G.;
Liebetanz, J.; Mestan, J.; O’Reilly, T.; Traxler, P.; Chaudhuri, B.; Fretz, H.; Zimmerman, J.; Meyer, T.; Caravatti, G.; Furet, P.; Manley, P. W. Protein Kinases as Targets for Anticancer Agents: From Inhibitors to Useful Drugs, Pharm. Ther. 2002, 93, 79-98.
${ }^{10}$ Peterson, M. A.; Ke, P.; Shi, H.; Jones, C.; McDougall, B. R.; Robinson, W. E. Design, Synthesis, and Antiviral Evaluation of Some 3'-Carboxymethyl-3'-Deoxyadenosine Derivatives, Nucleos. Nucleotid. Nucl. 2007, 26, 499-519.
${ }^{11}$ Vichai, V.; Kirtikara, K. Sulorhodamine B colorimetric assay for cytotoxicity screening, Nature Protocols. 2006, 1, 1112-1116.
${ }^{12}$ Paull, K. D.; Shoemaker, R. H.; Hodes, L.; Monks, A.; Scudiero, D. A.; Rubinstein, L.; Plowman, J.; Boyd, M. R. Display and Analysis of Patterns of Differential Activity of Drugs Against Human Tumor Cell Lines: Development of Mean Graph and COMPARE Algorithm, J. Natl. Cancer Inst. 1989, 81, 1088-92.
${ }^{13}$ Ambit Biosciences. March, $2009<$ http://www.ambitbio.com/>
${ }^{14}$ Fabian, M.A.; Biggs, W. H. III; Treiber, D. K.; Atteridge, C. E.; Azimioara, M. D.; Benedetti, M. G.; Carter, T. A.; Ciceri, P.; Edeen, P. T.; Floyd, M.; Ford, J. M.; Galvin, M.; Gerlach, J. L.; Grotzfeld, R. M.; Herrgard, S.; Insko, D. E.; Insko, M. A.; Lai, A. G.; Lélias, J.-M.; Mehta, S. A.; Milanov, Z. V.; Velasco, A. M.; Wodicka, L. M.; Patel, H. K.; Zarrinkar, P. P.; Lockhart, D. J . A Small Molecule-Kinase Interaction Map for Clinical Kinase Inhibitors, Nature Biotech. 2005, 23, 329-336.
${ }^{15}$ Peterson, M. A.; Oliveira, M.; Christiansen, M. A.; Cutler, C. E. Preliminary SAR Analysis of Novel Antiproliferative N6,5'-Bis-ureidoadenosine Derivatives, Bioorg. Med. Chem. Lett. 2009, 19, 6775-6779.
${ }^{16}$ Karaman, M. W.; Herrgard, S.; Treiber, D. K.; Gallant, P.; Atteridge, C. E., Campbell, B. T.; Chan, K. W.; Ciceri, P.; Davis, M. I.; Edeen, P. T.; Faraoni, R.; Floyd, M.; Hunt, J. P.; Lockhart, D. J.; Milanov, Z. V.; Morrison, M. J.; Pallares, G.; Patel, H. K.; Pritchard, S.; Wodicka, L. M.; Zarrinkar, P. P. A Quantitative Analysis of Kinase Inhibitor Selectivity, Nature Biotech. 2008, 26, 127-132.
${ }^{17}$ (a) Helms, M. W.; Packeisen, J.; August, C.; Schittek, B.; Boecker, W.; Brandt, B. H.; Buerger, H. First Evidence Supporting a Potential Role for the BMP/SMAD Pathway in the Progression of Oestrogen Receptor-positive Breast Cancer, J. Pathol. 2005, 206, 366-376.
(b) Alarmo, E.-L.; Kuukasjärvi, T.; Karhu, R.; Kallioniemi, A. A Comprehensive Expression Survey of Bone Morphogenetic Proteins in Breast Cancer Highlights the Importance of BMP4 and BMP7. Breast Cancer Res. Treat. 2007, 103, 239-246.
${ }^{18}$ Anderson, G. J.; Darshan, D. Small-Molecule Dissection of BMP Signaling, Nature Chem. Biol. 2008, 4, 15-16.
${ }^{19}$ Peterson, M. A.; Shi, H.; Ke, P. A Simple and Efficient Biphasic Method for the Preparation of 4-Nitrophenyl N -Methyl- and N -Alkylcarbamates, Tetrahedron Lett. 2006, 47, 3405-3407.

