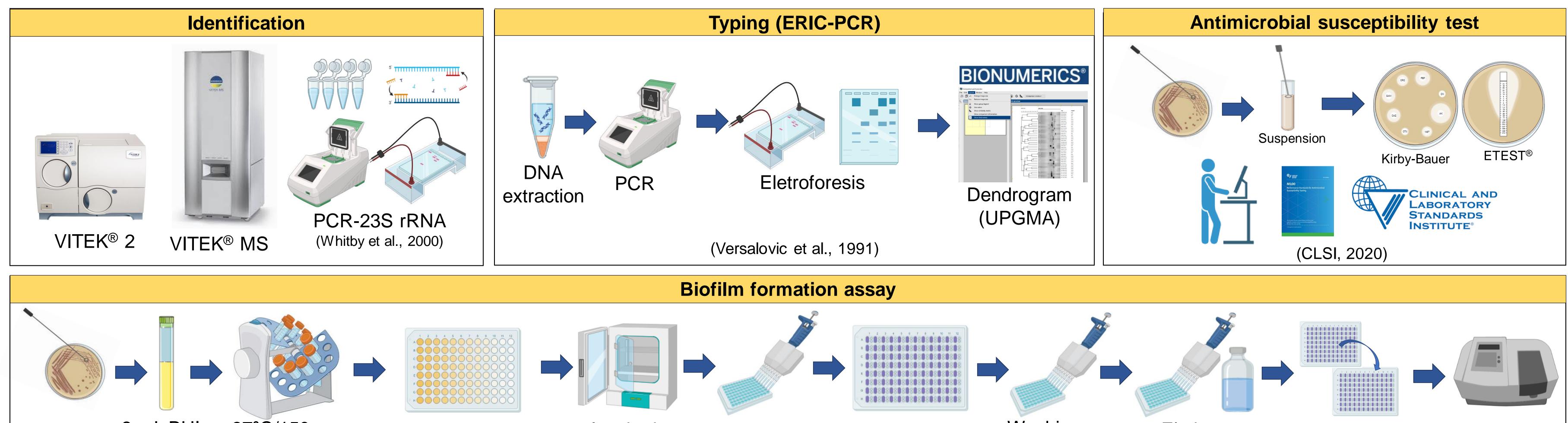
PHENOTYPICAL AND MOLECULAR CHARACTERIZATION OF Stenotrophomonas maltophilia STRAINS ISOLATED FROM PATIENTS DURING COVID-19 PANDEMIC FIOCRUZ SANTOS, M.C.S.¹; MIRANDA, C.A.C.²,*; PASCHOAL, R. P.³; VILLAS BÔAS, M.H.S.⁴; BRANDÃO, M.L.L.¹

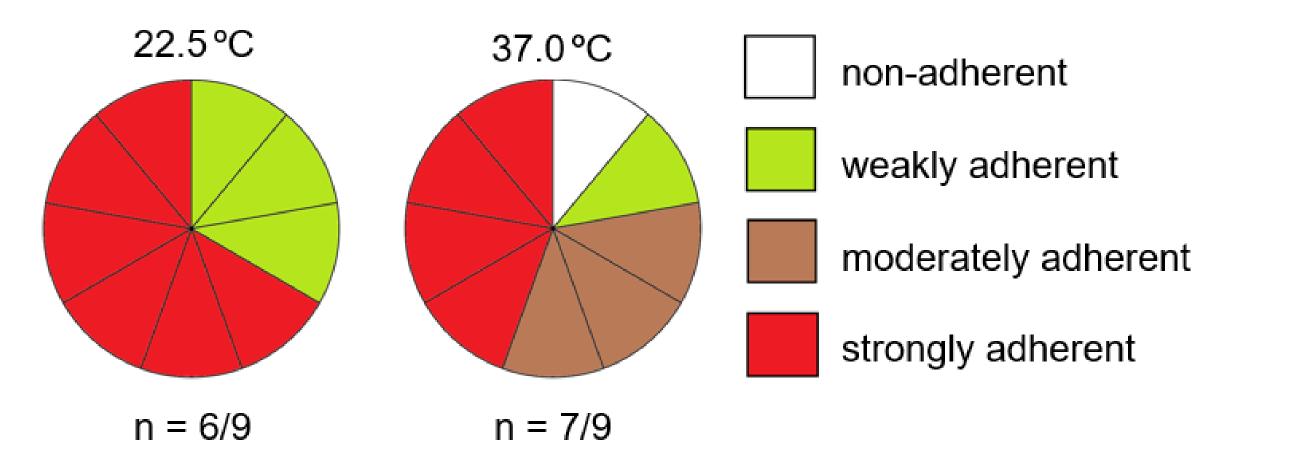
¹Laboratório de Controle Microbiológico, Bio-Manguinhos/Fiocruz; ²Laboratório Interdisciplinar de Pesquisas Médicas, IOC/Fiocruz; ³Hospital de Força Aérea do Galeão, Força Aérea Brasileira; ⁴Laboratório de Microbiologia de Alimentos e Saneantes, INCQS/Fiocruz *Corresponding author: catia.chaia@ioc.fiocruz.br

INTRODUCTION


Antimicrobial resistance threatens the effective prevention and treatment of an ever-increasing range of infections caused by bacteria (WHO, 2020). During COVID-19 pandemic, the incidence of bacterial infection in hospitalized COVID-19 patients was high, especially those caused by multidrug-resistant Gram-negative bacteria as *Stenotrophomonas maltophilia* (CHONG et al., 2021). *S. maltophilia* is an emerging multidrug-resistant global opportunistic pathogen, being more commonly associated with respiratory infections in humans. The aim of this study was to characterize *S. maltophilia* strains isolated from hospitalized patients during COVID-19 pandemic.

METHODOLOGY

February-September/2021 Rio de Janeiro/RJ S. maltophilia (n=9)


- nine patients (8 males and 1 female) with ages varying from 64 to 86 years;
- two with COVID-19 co-infection, five only with S. maltophilia;
- Clinical specimens included tracheal swab (n=4), blood (n=2), sputum (n=1), lung mass (n=1), and soft tissue fragment (n=1).

3 mL BHI 37°C/150 rpm Washing 96-well polystyrene Incubation Washing Violet crystal Elution Transfer 150 µL to a Absorbance $H_2O(5X)$ 22.5 and 37°C Ethanol 96% PBS (5X) 0.41%/ 45 min 600 nm plates new microplate (Umeda et al., 2017)

RESULTS AND CONCLUSIONS

All strains were identified as *S. maltophilia* by VITEK[®]2 and MALDI-TOF (Fig 1) and were positive using 23S PCR. Nine distinct band profiles were obtained by ERIC-PCR (Fig. 1). All strains were susceptible to cefiderocol, minocycline, and resistant to ceftazidime. Five (55.5%) were resistant to ticarcillin-clavulanate and four (44.5%) susceptible, increased exposure. Three (33.3%) were resistant to chloramphenicol and six (66.7%) intermediate. One (11.1%) strain was resistant to trimethoprim-sulfamethoxazole and one (11.1%) to levofloxacin. Six (66.7%) strains were classified as strongly adherent and three were weakly adherent at 22.5°C. Four (44.5%) strains were classified as strongly, three (33.3%) as moderately, one weakly and one non-adherent at 37.0°C (Fig 2).

-20	60 40	80	100	Key	Pacient	Туре	Gender	Age	Origem	Date	MIN	LVX	SXT	Bionumber	MALDI TOF/MS (%)	Biofilm (22.5°C) B	ofilm (37.0ºC)
			-	 SM008/22	G	N-Covid.	М	74	soft tissue fragment	Feb/2021	S	I	S	I	S. maltophilia (96.5)	3	2
_			-	SM009/22	G	N-Covid.	Μ	74	blood	Feb/2021	S	S	S	V	S. maltophilia (92.1)	3	2
			-	SM003/21	С	Covid-19	F	68	tracheal swab	Sep/2021	S	S	S	II	S. maltophilia (96.1)	3	3
			-	SM004/22	D	Covid-20	М	72	tracheal swab	Feb/2021	S	S	S	III	S. maltophilia (92.1)	3	3
			-1	SM005/22	Е	N-Covid.	Μ	77	tracheal swab	Feb/2021	S	S	R	II	S. maltophilia (99.9)	1	0
			- [SM001/21	А	N-Covid.	Μ	64	tracheal swab	Jun/2021	S	S	S	I	S. maltophilia (80.1)	3	3
			-1	SM010/22	G	N-Covid.	М	74	blood	Mar/2021	S	S	S	V	S. maltophilia (80.1)	1	2
			-	SM006/22	F	N-Covid.	Μ	83	lung mass	Feb/2021	S	S	S	IV	S. maltophilia (93.5)	1	1
			-	SM002/21	В	N-Covid.	М	86	sputum	Jun/2021	S	S	S	II	S. maltophilia (96.1)	3	3

Figure 1. Cluster analysis of *S. maltophilia* strains (n=9) patterns resolved by ERIC-PCR. The dendrogram was evaluated using Dice coefficient and Unweighted Pair-Group Method with Arithmetic mean (UPMGA) with BioNumerics software. Legend: Male (M), Female (F), Susceptible (S), Intermediate (I), Resistant (R), Levofloxacin (LVX), Minocycline (MIN), Sulfamethoxazole-trimethoprim (SXT), Matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF/MS).

The Antimicrobial susceptibility test was similar between strains, neither with they were from patients co-infected with COVID-19 or not. All strains presented different ERIC-PCR profiles, indicating that they were not clonal, and possible have different origins. Considering the necessity to use broadspectrum antibiotics in cases of bacterial infections, especially in cases of co-infection with COVID-19, the resistant found to four classes of

Figure 2. Biofilm formation of *S. maltophilia* strains (n=9) in 96-well polystyrene plates in at 22.5 and 37.0°C.

antimicrobial agents (β -lactam, cephems, folate pathway antagonists, and fluoroquinolones) is worrisome. In conclusion, the continuing monitoring of the antimicrobial susceptibility profile and clonality of *S. maltophilia* is important to understand the epidemiology of this bacteria.

REFERENCES

CHONG, W.H. et al. State-of-the-art review of secondary pulmonary infections in patients with COVID-19 pneumonia. **Infection**, v. 11, p. 1–15, 2021.

CLSI. Performance Standards for Antimicrobial Susceptibility Testing. CLSI supplement M100, PA, USA, 2020.

UMEDA, N. S. et al. Phenotypic characterization of *Cronobacter* spp. strains isolated from foods and clinical specimens in Brazil. **Food Research International**, v. 102, p. 61-67, 2017.

VERSALOVIC, J. et al. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. **Nucleic Acids Research**, v. 19, n. 24, p. 6823-6831, 1991.

YINSAI, O. et al. Genotypic Diversity, Antibiotic Resistance, and Virulence Phenotypes of Stenotrophomonas maltophilia Clinical Isolates from a Thai University Hospital Setting. **Antibiotics (Basel)**, v. 12, n. 2, p. 410, 2023.

WHITBY, P. W. et al. Identification and Detection of *Stenotrophomonas maltophilia* by rRNA-Directed PCR. Journal of Clinical Microbiology, v. 38, n. 12, p. 4305–4309, 2000.

WHO.. COVID-19 Clinical management: living guidance. WHO: Genebra, 2020.

ACKNOWLEDGMENT

This study was financed in part by CNPq: "Grant Chamada CNPq/MCTI/FNDCT Nº 18/2021 - Faixa A - Grupos Emergentes N.º do Processo 407747/2021-4". This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. This project has been approved by the HFAG Research Ethics Committee and is registered on the Brazil Platform with CAAE code: 55303721.0.0000.5250.

Instituto Nacional de Controle de Qualidade em Saúde

