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4 Laboratório de Hepatites Virais, Instituto Oswaldo Cruz/IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil,

5 Coordenação Estadual do COVID-19, AGEVISA/RO, Porto Velho, RO, Brazil, 6 Instituto de Medicina

Tropical da Faculdade de Medicina da USP, São Paulo, SP, Brazil, 7 Instituto de Biologia Molecular do
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Abstract

Genomic surveillance represents a strategy to understanding the evolutionary mechanisms,

transmission, and infectivity of different SARS-CoV-2 variants. We evaluated 603 individu-

als positive for SARS-CoV-2 from 34 municipalities of Rondônia between December 2021

to December 2022. Nasopharyngeal samples were collected, RNA was extracted and

screened using RT-qPCR for VOCs. RNA of the samples were sequenced and further ana-

lyzed for phylogeny, mutations, and lineages, totaling 96.19% of samples positive for Omi-

cron VOC in this cohort. We observed that most individuals had at least two doses, however

18.97% were not vaccinated with any dose. 554 sequences were amenable to analysis for

alignment and phylogenetic characterization; this group corresponded to the 27 subvariants

of the Omicron VOC; a total of 100 mutations were identified, 48% of which were found in

the S gene. In conclusion, the data demonstrated the rapid spread and persistence of Omi-

cron VOC in Rondônia during the 12-month study period. Although high frequency of muta-

tions was found in the analyzed samples, there were no individuals with a severe clinical

profile, demonstrating that vaccination had a positive effect in those cases.

Introduction

Severe Acute Respiratory Syndrome Virus 2 (SARS-CoV-2) has the RNA genome with high

mutational rate [1, 2]. To date, about 12,000 mutations have been reported, some are related to

increased infectivity, vaccine-escape and worsening of the clinical presentation. [1–3].
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Genomic surveillance is an appropriate approach that has supported the investigation and

circulation of cases of new variants and subvariants in circulation to support government deci-

sion making and implementation of health measures aimed at controlling SARS-CoV-2 infec-

tions [3–6].

Omicron VOC identified in November 2021 in South Africa, has approximately a total of

32 mutations concentrated mainly in the receptor binding domain (RBD) and Spike protein

(S). This VOC spread rapidly to 40 countries after only one month of its emergence [2, 7].

In Brazil, the first case of Omicron VOC was reported in November 2021 in the state of São

Paulo, remaining the dominant VOC throughout 2022 with 13,986,090 confirmed cases and

77,173 deaths in the country. Genomic surveillance detected that by February, the Omicron

variant was already dominant, reaching 99.8% of the samples analyzed [8–10].

In the first week of the year 2022 there was an increase in the number of cases of COVID-

19, demonstrating an atypical profile in Northern Brazil. This fact could be related to the entry

of Omicron VOC and its sublines with high transmissibility rates [11, 12]. Thus, the aim of

this study was to evaluate the epidemiological and genomic profile for confirmation about the

circulating SARS-CoV-2 variants in the Brazilian Western Amazon.

Materials and methods

Ethical aspects and study site

This study was conducted in the Laboratory of Molecular Virology at Fiocruz/RO, with

approval from the Research Ethics Committee of the Research Center for Tropical Medicine of

Rondônia-CEPEM/RO 4.000.086 and was carried out in accordance with the ethical principles

stipulated by the 1975 World Medical Assembly and the Ministry of Health (Resolution 466).

All experiments were conducted in accordance with the relevant guidelines and regulations

and were exempted from the requirements for informed consent due to the pandemic timing

making direct contact with the subjects impossible. In addition, the study poses no risk to sub-

jects due to the use of RNA from naso- or oropharyngeal samples already collected and

extracted for the diagnosis of COVID by the centers, with no need for additional collections.

Biological samples and epidemiological data

The cohort of 603 individuals positive for SARS-CoV-2 were selected by convenience from

primary care clinics and reference centers in different municipalities of Rondônia state

between December 2021 to December 2022. Diagnosis of SARS-CoV-2 was carried out in

Laboratório Central de Saúde Pública de Rondônia (LACEN/RO) by RT-qPCR with One Step/

COVID-19 kits (IBMP, Brazil). Epidemiological data and vaccination status were collected

from medical records in the GAL/RO, SIVEP-Gripe and E-SUS databases.

Extraction of viral RNA

RNA was extracted from 140 μL of samples collected using nasopharyngeal swab in viral trans-

port medium; using QIAamp1 Viral RNA Mini Kits (QIAGEN, Germany) according to the

manufacturer’s instructions. RNA from each sample was eluted in 60 μL of AVE buffer for

viral load and inference testing.

Screening for Alpha, Beta, and Gamma VOCs

In order to screen for the Alpha, Beta and Gamma VOCs, the multiplex RT-qPCR protocol of

Vogels et al. was utilized [13]. Three targets were included in this multiplex: N1, deletion Δ69/

70 and deletion of SGF Δ3675–3677 in the ORF1a gene.
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The cycling process used for the reaction was 55˚C for 10 minutes for reverse transcription,

PCR activation at 95˚C for 1 minutes, 39 subsequent cycles of 10 seconds at 95˚C and 31 sec-

onds at 60˚C. Samples with Ct <35 for the N1 target alone were characterized as the Alpha

VOC, and samples with Ct<35 for the N1 target and Δ69/70 deletion were classified as Beta

or Gamma.

Screening for the Delta VOC

The inference test was performed using the primers and probes (Table 1) described by Yaniv

et al. with modifications [14]. The final reaction volume was 20 μL with a primer concentration

of 0.5 μM and a probe concentration of 0.2 μM. The reaction contained 5 μL of RNA sample

and the reaction steps were performed according to the manufacturer recommendations using

TaqMan Fast Virus 1-Step Master Mix (Applied Biosystems 1, California, USA).

The cycling process used for the reaction was 51˚C for 10 min for reverse transcription,

PCR activation at 95˚C for 1 min, 40 subsequent cycles of 10 s at 95˚C and 31 s at 60˚C; the

final step included fluorescence capture.

Screening for the Omicron VOC

All samples that were negative for Alpha, Beta, Gamma and Delta variants were subjected to

RT-qPCR genotyping for the Omicron variant. The reaction was performed using 5 μL of Taq-

Path™ 1-Step RTqPCR Master Mix (4x), 0.5 μL of TaqMan SARS-CoV-2 Mutation Panel Assay

(40X) for the SNP assay S:K417N, 5 μL of extracted RNA and a final volume of 20 μL. The

cycling used for the reaction was as follows: pre-reading at 60˚C for 30 seconds, Reverse Tran-

scription at 50˚C for 10 min, DNA polymerase activation at 95˚C for 2 minutes, 45 cycles at

95˚C for 3 seconds for denaturation and 60˚C for 30 seconds for annealing and extension,

ending with a post-reading at 60˚C for 30 seconds. The genotyping module of the Design &

Analysis Software Version: 2.6.0 (Thermo Fisher Scientific) was used for analysis, with a 95%

confidence interval for real-time data. Given that this mutation is described as prevalent only

in subvariants of Beta, Delta and Omicron, all samples positive for S:K417N and negative for

the other variants tested were classified as Omicron [15–17].

Quantification of viral load

The viral load of samples was determined using 5μL of viral RNA extracted using the Multiplex

One-Step RT-qPCR assay for detection of SARS-CoV-2 as developed by Queiroz et al, 2021 [18].

Complete genome sequencing of SARS-CoV-2

The sequencing of the complete SARS-CoV-2 genome was performed with the support of the

FIOCRUZ Genomic Surveillance Network. Samples with Ct values<25, based on quantitative

assays, were selected to allow for high genomic coverage. Nucleotide sequencing was

Table 1. RT-qPCR primers and probe for the Delta VOC.

Name Description Sequence 5’-3’

Delta_CoV Sense GTTTATTACCACAAAAACAACAAAAG

Delta_CoV Antisense GGCTGAGAGACATATTCAAAAGTG

Delta_CoV Probe Cy3- TGGATGGAAAGTGGAGTTTATTCTAGT- BHQ 2

Adapted from: Karin Yaniv. Accessed on: July 5th, 2021.

https://doi.org/10.1371/journal.pone.0285742.t001
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performed using Illumina MiSeq or NextSeq platforms and the COVIDSEQ Kit (Illumina, San

Diego, CA, USA) [19].

FASTQ reads were generated by the Illumina pipeline in BaseSpace. Consensus sequences

were generated using DRAGEN COVID LINEAGE 3.5.1 to 3.5.3, according to the most

updated version of this application in each sequencing run. Subsequently, the quality of the

consensus files was analyzed using the Nextclade v1.5.2 tool [20], those with more than 1%

"Ns" ambiguities had the FASTQ files imported into Geneious Prime 2021 for trimming and

assembly using a custom workflow employing the BBDuk and BBMap tools (v38.84) and the

NC_045512.2 RefSeq as a template with careful visual inspection. Using both approaches, we

generated consensus sequences with average depth coverage greater than 800X, excluding

duplicate reads. The genome-wide consensus sequences of SARS-CoV-2 were initially assigned

to viral lineages using the Pango Lineage web application [21].

Data acquisition and Maximum-Likelihood (ML) phylogeny

Available high quality (>29 kb) whole genomes (<1% of N) of BA.* sampled in Brazil

(n = 363) were downloaded from the GISAID EpiCoV database on January 5th, 2023. The

sequences were aligned using MAFFT v.7.487 [22]. The best model of nucleotide substitution

was measured (GTR+G+I) using ModelFinder [23] and the phylogenetic tree was recon-

structed using the maximum likelihood method in the program IQ-TREE v.2.1.3 [24]. Branch

support values were obtained using Ultrafast Bootstrap with 1,000 replicates. The tree was

visualized and edited with FigTree v.1.4.4 [25]. SARS-CoV-2 genomes were classified into line-

ages using the available software Pangolin [26] and mutations were analyzed with Nextclade

Beta [27].

Statistical analysis

Descriptive analyses were represented through central tendency and dispersion measure-

ments. A Chi-square test was used for statistical inference with a significance level of 5%

(p<0.05). Statistical analysis was performed and graphics were generated using the software R

v4.0.3.

Results

In the cohort of 603 SARS-CoV-2 positive samples, 96.19% (580/603) corresponded to the

Omicron VOC and 3.81% (23/603) to the Delta variant, without detection of either Gamma,

Alpha or Beta VOCs; the data were confirmed by three RT-qPCR screening assays for VOCs

described in methodology.

These cases were identified since December 1, 2021, to December 7, 2022 in 34 municipali-

ties in the state of Rondônia (65.38%), demonstrating a wide distribution of the variant. The

first collection period, December 2021 and January 2022, we observed higher prevalence in the

North, West and South regions of state; sequentially, in the second period, February 2022 and

March 2022, notifications came from the most populous municipalities in the state, such as

Porto Velho, Ji-paraná and Ariquemes.

After the periods described on the map, we continued genomic surveillance until December

2022 and identified another 167 sequences characterized as Omicron, in which 58.68% are pre-

dominantly from the state capital,, with no other variants identified.

The median age of the population analyzed was 39 years old (SD 16.74), with ages ranging

from 5 month to 95 years old; 50.69% (294/580) were female and 49.31% (286/580) were male.

The main symptoms reported by patients included headache in 49.83% (289/580), cough with

49.48% (287/580) and fever in 42.24% (245/580) of cases. Dyspnea, disturbance of smell and
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taste were less reported symptoms with 7.24% (42/580), 2.59% (15/580) and 2.41% (14/580) of

patients, respectively. Only 5.86% (34/580) of patients fell into the asymptomatic group.

Regarding vaccination, 18.97% (110/580) were not vaccinated, and among those vaccinated,

7.76% (45/580) had only one dose, 43.28% (251/580) with two, 26.21% (152/580) with three,

and 3.79% (22/580) with four doses. The immunizers received by the study population were

COVISHIELD, Sinovac, Comirnaty1 | Pfizer Brazil, and Janssen-Cilag. There were 5 deaths

in this study, 3 unimmunized individuals with a mean age of 75 years and 2 with the first and

second dose of vaccine with a mean age of 93 years. The deaths were from individuals infected

by subvariants BA.1 (1/5), BA.1.1 (3/5), and BA.5.1 (1/5). Individuals had a mean of 5 days

(SD 3.6 days) of symptoms until diagnosis. The viral load of the cohort had an interquartile

median of 7.08 Log10/mL, and less than 0.52% (3/580) of individuals had a quantifiable viral

load after 14 days of symptoms and one individual symptomatic up to 19 days (Fig 1).

Among the 603 samples tested by RT-qPCR, 580 samples were selected for sequencing, tak-

ing into consideration the viral load and multiplex tests for exclusion of other VOCS. Of the

sequenced samples 95.52% (n = 554) had good quality metrics for phylogeny and mutation

analysis. Fig 2 demonstrated the maximum likelihood phylogeny in relation to the clade classi-

fication of the Omicron variant.

The analyses of the sequenced samples corresponded to 30.14% (167) BA.1; 18.05% (100)

BA.1.1; 6.14% (34) BA.1.1.1; 0.18% (1) BA.1.1.14; 0.18% (1) BA.1.1.15; 0.18% (1) BA.1.1.18;

1.26% (7) BA.1.14; 12.82% (71) BA.1.14.1; 0.18% (1) BA.1.14.2; 0.90% (5) BA.1.15; 2.17% (12)

BA.1.17.2; 0.18% (1) BA.1.20; 0.36% (2) BA.1.9; 2.35% (13) BA.2; 0.18% (1) BA.2.12.1; 0.18%

(1) BA.2.36; 0.72% (4) BA.2.56; 0.18% (1) BA.2.81; 1.81% (10) BA.4; 0.18% (1) BA.4.1; 9.93%

(55) BA.5.1; 0.18% (1) BA.5.1.15; 8.84% (49) BA.5.2.1; 0.36% (2) BA.5. 6; 0.54% (3) BE.9;

Fig 1. Viral load measured by the number of days after onset of symptoms.

https://doi.org/10.1371/journal.pone.0285742.g001
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1.62% (9) BF.5 and 0.18% (1) BQ.1.1. To date, no cases of XBB.1.5 have been reported in the

state of Rondônia.

We identified 100 mutations (Fig 3) with a frequency greater than 2%. The S gene presented

48% (48/100) mutations, followed by 24% (24/100) in ORF1a, 8% (8/100) in ORF1b, 7% (7/

100) in N, and 13% (13/100) distributed among the other genes (ORF3a; M; E; ORF6 and

ORF9b).

Mutations previously identified as signatures for the Omicron VOC genomes were ana-

lyzed. The N gene region presented four mutations (E31-32del, G204R, R203K and P13L) and

the ORF1a gene three mutations (T3255I, P3395H and S3675-3677del) with a frequency of

100%. The N679K and P681H substitutions, considered signature over other variants, showed

a frequency of 100%, along with a substitution in N501Y present in 99.64% of the sequences,

all of which were characterized as changes in the Spike protein. Six other mutations (D614G,

D796Y, G339D, H655Y, N764K, N969K, and Q954H) were found in this region at high

frequency.

Fig 2. Maximum likelihood phylogenetic tree presenting 554 sequences obtained in this study and 363 genomes

retrieved from GISAID. The samples are indicated as blue circles. The tree was rooted with the most ancestral

sequence (EPI_ISL_402123).

https://doi.org/10.1371/journal.pone.0285742.g002
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Discussion

The emergence and persistence of Omicron VOC worldwide was also evaluated in the state of

Rondônia, located in the Northern Region of Brazil. The first case in the state was identified

on December 1, 2021, and then we continued the analysis until December 2022, completing a

total of 580 samples consistently characterized through genomic surveillance.

In parallel with the emergence of Omicron VOC, questions have arisen regarding the fre-

quency of symptoms reported during the period of infection. In this study, the most described

symptoms were similar to those detected in individuals infected by other variants, as infected

presenting headache, cough and fever. Unlike the first SARS-CoV-2 cases reported in the early

2020s, a low frequency of individuals infected with Omicron VOC demonstrated symptoms

such as taste and smell disturbances [28, 29].

In this cohort, 81% of the individuals received at least 1 dose of the COVID-19 vaccine and

there is evidence that immunization reduced the more severe cases. However, it is worth not-

ing that the 5 deaths recorded were from unvaccinated individuals or without booster doses,

presenting advanced age, highlighting the importance of following vaccination protocols [30].

Individuals infected with the Omicron variant had high viral load up to 9 days after symp-

tom onset, with values of this parameter decreasing from 10 days [31, 32]. Similarly, the cohort

in this study showed high levels and maintenance of viral load for up to 10 days after symptom

onset, with a mean of 5 days.

The Omicron variant was first detected in the state of Rondônia in December 2021 while

the Delta variant was still predominant. After the introduction of Omicron, it subsequently

became predominant, accounting for approximately 100% of the samples analyzed in February

2022. A previously published review article demonstrated that Omicron average basic and

effective reproduction numbers were 8.2 and 3.6, respectively, meaning a 2.5- to 3.8-fold

Fig 3. Dot plot demonstrating the frequency of mutations identified in the set of 554 samples analyzed by NGS. The labels of mutations with frequencies<2% have

been hidden.

https://doi.org/10.1371/journal.pone.0285742.g003
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higher transmissibility than the Delta variant, which may be partially explained by the higher

number of mutations, higher transmissibility and greater capability for immune escape [33].

Even with the largest portion of the study population with full immunization, Our findings

showed the presence of the 27 subvariants of the Omicron VOC, evidencing that the profile of

this VOC exhibits reduced susceptibility to vaccine-induced neutralizing antibodies and risk

of new waves of infection [34]. One study showed that neutralizing activity was reduced

against BA.2.12.1 and BA.4/BA.5 compared to BA.1 [35]. Another study showed that the

BQ.1.1 subvariant showed enhanced resistance against sera from healthcare workers vacci-

nated with 3 doses [36]. Evidence demonstrating the need for protection against future SARS--

CoV-2 variants.

The Omicron variant has a highly transmissible profile due to a higher number of muta-

tions than the other variants [37]. Mutations in the Spike protein play a signature role in other

VOCs, such as N679K, P681H, and N501Y were visualized in all sequences, and this persis-

tence of mutations is directly linked to the increased rates of infectivity, the high transmission

capacity, and the potential for rapid dispersal of this variant [38–41].

This characteristic is visualized among popular gene variations, such as D614G, which was

found with high frequency among the sequences, reported in studies that analyze the epistatic

interaction aiming at the transmissibility that the virus achieves in infection [42–44].

The Omicron sequences analyzed here carried the H655Y mutation in a high proportion

when compared to other alterations, this same mutation was also characterized in variant

B.1.1.33 [45], characterizing with a common mutation between the strains.

In conclusion, the data demonstrated the rapid spread of Omicron VOC by the state of

Rondônia, Western Amazon region, throughout 2022 in a dominant manner, with 27 subvar-

iants. Although there were a high number of mutations in the sequenced samples, the patients

did not present a severe clinical profile, demonstrating that vaccination had a positive effect in

these cases. In addition, there was no identification of XBB.1.5.

Supporting information

S1 Table. SARS-CoV-2 genomes. All genome sequences and associated metadata in this data-

set are published in GISAID’s EpiCoV database. To view the contributors of each individual

sequence with details such as accession number, Virus name, Collection date, Originating Lab

and Submitting Lab and the list of Authors, visit 10.55876/gis8.230107pn.

(PDF)
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