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Abstract

Background: Telehealth has been widely used for new case detection and telemonitoring during the COVID-19 pandemic. It
safely provides access to health care services and expands assistance to remote, rural areas and underserved communities in
situations of shortage of specialized health professionals. Qualified data are systematically collected by health care workers
containing information on suspected cases and can be used as a proxy of disease spread for surveillance purposes. However, the
use of this approach for syndromic surveillance has yet to be explored. Besides, the mathematical modeling of epidemics is a
well-established field that has been successfully used for tracking the spread of SARS-CoV-2 infection, supporting the
decision-making process on diverse aspects of public health response to the COVID-19 pandemic. The response of the current
models depends on the quality of input data, particularly the transmission rate, initial conditions, and other parameters present in
compartmental models. Telehealth systems may feed numerical models developed to model virus spread in a specific region.

Objective: Herein, we evaluated whether a high-quality data set obtained from a state-based telehealth service could be used
to forecast the geographical spread of new cases of COVID-19 and to feed computational models of disease spread.

Methods: We analyzed structured data obtained from a statewide toll-free telehealth service during 4 months following the first
notification of COVID-19 in the Bahia state, Brazil. Structured data were collected during teletriage by a health team of medical
students supervised by physicians. Data were registered in a responsive web application for planning and surveillance purposes.
The data set was designed to quickly identify users, city, residence neighborhood, date, sex, age, and COVID-19–like symptoms.
We performed a temporal-spatial comparison of calls reporting COVID-19–like symptoms and notification of COVID-19 cases.
The number of calls was used as a proxy of exposed individuals to feed a mathematical model called “susceptible, exposed,
infected, recovered, deceased.”

Results: For 181 (43%) out of 417 municipalities of Bahia, the first call to the telehealth service reporting COVID-19–like
symptoms preceded the first notification of the disease. The calls preceded, on average, 30 days of the notification of COVID-19
in the municipalities of the state of Bahia, Brazil. Additionally, data obtained by the telehealth service were used to effectively
reproduce the spread of COVID-19 in Salvador, the capital of the state, using the “susceptible, exposed, infected, recovered,
deceased” model to simulate the spatiotemporal spread of the disease.
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Conclusions: Data from telehealth services confer high effectiveness in anticipating new waves of COVID-19 and may help
understand the epidemic dynamics.

(JMIR Public Health Surveill 2023;9:e40036) doi: 10.2196/40036
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Introduction

Telehealth encompasses the distinct ways of interaction between
patients and their health care providers. The growing popularity
of virtual visits stems from the possibility of faster contact,
elimination of transportation time [1], and by providing initial
care in remote areas without adequate health care [2], making
health care more efficient. Telehealth services can be used for
diagnosis, treatment, follow-up, and screening purposes [3].
During the COVID-19 pandemic, telehealth services have been
widely used for screening suspected cases [4,5], as limited
physical contact reduces everyone’s exposure to COVID-19.
This successful strategy safely provides access to health care
services and expands assistance to remote rural areas and
underserved communities in situations of shortage of specialized
health professionals [3]. Using health information platforms,
health care workers can systematically collect qualified data on
suspected cases. Such data can be used as a proxy for the spread
of infectious diseases for health surveillance [6-11].

The mathematical modeling of epidemics is a well-established
field that has been successfully used for tracking the spread of
SARS-CoV-2 infection, supporting the decision-making process
on diverse aspects of public health response to the COVID-19
pandemic. Such models are usually defined as compartmental
models. The population under study is divided into
compartments based on qualitative characteristics, with different
assumptions about the nature and rate of transfer across
compartments. The urgency of the COVID-19 pandemic has
motivated the need for more research in this area, with several
models for this pandemic outbreak being presented in the last
few years [12-18]. The response of the current models depends
on the quality of input data, particularly the transmission rate,
initial conditions, and other parameters present in compartmental
models. Telehealth systems may feed numerical models
developed to model virus spread in a specific region.

Here, we report using a high-quality data set obtained from a
state-based telehealth service for disease surveillance both for
forecasting the geographical spread of new cases of COVID-19
and feeding an advanced computational model that tries to
reproduce the virus spread dynamics. We used data from a
toll-free telehealth service of the 14.8 million population from
the state of Bahia, Brazil [19], to simulate the spatiotemporal
spread of COVID-19 using a compartmental model with
diffusion in Salvador, the state capital.

Methods

Telehealth

Service and Data Collection
Telecoronavirus was a toll-free phone-teletriage service offered
to the population of the state of Bahia, Brazil (population of
14.8 million, 417 municipalities, located in the northeast of the
country; Multimedia Appendix 1) [19]. Risk screening was
provided for cases suspected of COVID-19 from March 24,
2020, to July 31, 2020, during the first epidemic wave, starting
18 days after the first confirmed case of COVID-19 in the state.
This toll-free service operated 7 days a week and was publicized
statewide by the state government through television, the
internet, social media, billboards, radio, and newspapers. In
total, 77% (320/417) of all cities in Bahia and all sanitary
districts of the state capital, Salvador, accessed the telehealth
service.

Structured data were collected during teletriage by a health team
of medical students supervised by physicians. Data were
registered in a responsive web application for planning and
surveillance purposes. The data set was designed to quickly
identify users, city, residence neighborhood, date, sex, age, and
COVID-19–like symptoms (fever, cough, breathlessness,
rhinorrhea, and gustatory or olfactory disorder). For this study,
the call reporting at least one of those symptoms was considered
a suspected case of COVID-19.

Strategies to improve the service quality were applied, including
educational and technical support for the health care team,
updating the online application based on clinical protocols, and
monitoring the quality of information registered by the health
care team, as previously described [19]. Data of telehealth
service were categorized according to the phone call date, the
type of COVID-19–like symptom reported by the user, and the
city of residence. For Salvador, the state capital, calls were
categorized according to the COVID-19–like symptoms and
the user’s health district. The COVID-19 cases’ notification
date and their related geolocation in the state of Bahia were
obtained through the Brazilian Ministry of Health. For Salvador,
notification data were obtained through the Salvador Municipal
Health Department. We further quantified the cities of the state
of Bahia and the districts of Salvador, where phone calls
reporting symptoms of COVID-19 preceded the first notification
of the disease. The lag in days between the first call and the first
notification dates was also annotated.

Ethical Considerations
Anonymized consolidated data were provided by the Bahia
State Health Secretary for research purposes. The ethics
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committee of the School of Medicine of Bahia approved the
project (approval number 4459774, on 12/13/2020). The
requirement for obtaining informed consent was waived due to
the characteristics of the research.

Data Source and Preparation for Study
We extracted Telecoronavirus data for Salvador inhabitants
(population: 2.88 million; surface area: 692.818 km²) for use
in the prediction model. The call records were grouped in
epidemiological weeks and residential areas informed by
Telecoronavirus users. Additionally, they were grouped in
sanitary districts using the list of neighborhoods comprising
each of the 13 sanitary districts of the city of Salvador. Official
numbers of COVID-19 confirmed cases were also obtained by
sanitary districts.

Use of Telehealth Data for Feeding Epidemiological
Modeling
We further tested the hypothesis that telehealth systems can
help feed numerical models developed to predict a virus spread
in a specific region using a spatiotemporal model presented in
[12,20-22] and explained as follows.

The Susceptible, Exposed, Infected, Recovered, Deceased
Model for COVID-19
The COVID-19 dynamics may be modeled as compartmental
models, in which the population under study is divided into
compartments and has assumptions about the nature and time
rate of transfer from one compartment to another [23]. These
models have been used extensively in biological, ecological,
and chemical applications [24-26]. They allow for an
understanding of the processes at work and predict the dynamics
of the epidemic. One of the simplest compartmental models is
the “susceptible, infected, removed” model proposed in 1927
by Kermack and McKendrick [27], in which the population is
divided into susceptible, infected, and recovered compartments.
This basic “susceptible, infected, removed” model can be
extended in several ways by enriching the number of
compartments, as the “susceptible, exposed, infectious,
recovered, deceased” model. Here, we work with a
spatiotemporal “susceptible, exposed, infectious, recovered,
deceased” model, presented in [20-22], given by,

Where s(x, t), e(x, t), i(x, t), r(x, t), and d(x, t) denote the
densities of the susceptible, exposed, infected, recovered, and
deceased populations, respectively. The sum of all the

compartments, except for d(x, t), is represented by npop, which
is the total living population. βi and βe denote the transmission
rates between symptomatic and susceptible individuals and
asymptomatic and susceptible individuals, respectively (units
1/days), a denotes the incubation period (units 1/days), γe

corresponds to the asymptomatic recovery rate (units 1/days),
γi the symptomatic recovery rate (units 1/days), δ represents the
mortality rate (units 1/days), and νs, νe, νi, νr are the diffusion
parameters of the different population groups as denoted by the
subscripted letters: units km²/(persons.days).

To use this model, we need to define all parameters that govern
the system of equations and the initial population of each
compartment. Note that all these parameters can be considered
time- and space-dependent. We need to infer several hypotheses
about the initial conditions, especially those related to the
exposed compartment, consisting of asymptomatic cases, which
are more challenging to estimate.

Model Construction for Salvador, Bahia
We define the beginning of the simulation as April 1, 2020, and
simulate 180 days. The initial infected population is set
according to the 7 days moving average data provided by the
Brazilian Ministry of Health, following the procedure in [12]
and [28]. The susceptible population is based on the estimation
of the population of each Sanitary district, given by the Brazilian
Institute for Geography and Statistics. Recovered and deceased
populations start with zero assigned cases (ie, we consider that
nobody died or recovered from COVID-19 at the beginning of
the simulation).

The exposed compartment is the most nontrivial compartment
to assign an initial condition. In previous works, the estimation
was based on the amount of the infected population. It was
considered that the exposed population could be about 10 times
the number of the infected [29]. Here, we consider the 7-day
moving average data from telehealth on April 1, 2020, as the
initial exposed population. The telehealth data indicated rises
in cases approximately 2 weeks before the notification system.
Therefore, the calls may indicate a better estimation than the
relation with the infected, especially at the epidemic’s beginning.

Each compartment’s population is divided by the area of each
sanitary district and distributed in the 12 areas as people/km².
Table 1 shows the differences between how the initial exposed
population is considered in this work (related to the telehealth
system) and how it would be represented when using the old
approach (by multiplying the number of infected individuals
by 10). Without the need for any calculation, it is possible to
see that there is no correlation between the numbers of each
approach.

The biological parameters of the simulation are defined based

on the literature, as α = 1/7 day–1, γi = 1/24 day–1, γe = 1/6

day–1, δ = 1/160 day–1 [21]. On the other hand, the contact rate
and the diffusion coefficient have to be estimated. They are
based on the social distancing estimation, representing the
homestay rate for Bahia.
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Table 1. Initial exposed population (people/km2) based on 10 times the number of infected and the telehealth calls.

TelehealthTen times the number of infectedSanitary district

53.0027.14Barra Rio Vermelho

34.578.57Brotas

13.422.86Centro Histórico

17.704.29Liberdade

23.425.71Boca do Rio

43.578.57Cabula/Beiru

36.1410.00Itapuã

25.854.29Pau da Lima

30.287.14Subúrbio Ferroviário

18.422.86Itapagipe

26.577.14São Caetano or Valéria

10.282.86Cajazeiras

Results

The telehealth service received a total of 111,795 calls, 83,175
(74%) of which reporting at least one COVID-19 symptom
(fever, cough, breathlessness, rhinorrhea, and gustatory or
olfactory disorder) during the first 4 months of the COVID-19
epidemic in the state of Bahia (Figure 1). Olfactory or gustatory
dysfunction (smell and taste change), considered highly specific
for COVID-19 during the first wave of the pandemic [30-32],
was reported in 47% of the calls, suggesting a high frequency
of COVID-19 cases among users of the telehealth service.

Calls were registered by 320 (77%) out of 417 cities of Bahia
State. The majority of these users of the telehealth service were
female (48,873, 60%), with a median age of 38 (IQR 28-49)
years. The demand for the service progressively increased
between the first and ninth week, with a peak in the 23rd week.

In the 4th month of operation, we observed a reduction in the
number of daily calls to values close to those at the beginning
of the service (Table 2).

During the first month of operation (April 2020), calls reporting
COVID-19–like symptoms were registered in 205 cities,
including areas from the north and east of the state. By this time,
COVID-19 cases were notified in 136 cities (Figure 2). The
first call to the telehealth service preceded the first COVID-19
notification in 181 (43%) out of 417 municipalities of Bahia.
In these municipalities, the call occurred on average 30 (IQR
11-42) days before the notification. Additionally, for 68 (38%)
of these 181 municipalities, the symptoms registered in the
telehealth service included olfactory and gustatory disorders.
These symptoms specific for COVID-19 were reported on
average 14 (IQR 6-31) days before the first notified COVID-19
case (Multimedia Appendix 2).

Figure 1. Flowchart of calls for Telecoronavirus service according to local and presence of COVID-19–like symptoms.
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Table 2. Symptoms reported by users and the number of monthly calls.

State (n=83,175)Other cities (n=21,378)Salvador (n=61,797)Characteristic

38 (28, 49)37 (27, 48)39 (29, 50)Age (years), median (IQR)

Month, n (%)

227 (0.3)49 (0.2)178 (0.3)March

13,473 (16)3464 (16)10,009 (16)April

28,049 (34)4822 (23)23,227 (38)May

29,377 (35)8634 (40)20,743 (34)June

12,049 (14)4409 (21)7640 (12)July

48,873 (60)12,558 (60)36,315 (60)Sex: female, n (%)

40,969 (49)10,468 (49)30,501 (49)Fever, n (%)

41,594 (50)11,287 (53)30,307 (49)Cough, n (%)

21,572 (26)6054 (28)15,518 (25)Shortness of breath, n (%)

37,989 (47)9248 (44)28,741 (47)Smell or taste change, n (%)

We also analyzed the spatial-temporal distribution of calls and
notified cases in the districts of Salvador, the state capital. In
all districts, an increase in the number of calls reporting
COVID-19–like symptoms preceded an elevation in the number
of notifications of COVID-19 (Figure 3).

Next, we evaluated if the data obtained with the telehealth
service could be helpful in feeding a mathematical model to

predict disease spread in Salvador. We simulated 180 days of
the epidemic. To validate the results of our model with the
available data, we compared the number of notified COVID-19
cases. First, we showed the values obtained for the whole city
(Figure 4). Then, we integrated the values of the sanitary
districts and plotted them in time. The simulation provides
curves of accumulated infection similar to the data of notified
cases.

Figure 2. Spatial distribution of calls related to COVID-19–like symptoms (orange) and notifications (green) by months of operation of the Telecoronavirus
in Bahia state.
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Figure 3. Seven-day rolling average of number of calls reporting COVID-19–like symptoms (blue line) and number of confirmed cases of COVID-19
(red line) in the period of operation of the telehealth service in Salvador, Bahia state, Brazil. (A) All cities. (B) Stratified by sanitary district.

Figure 4. Comparison between simulation and real data of cases at Salvador (total). Dashed blue lines: real data. Pink line: simulation with exposed
population based on telehealth calls.

Discussion

Principal Findings
A critical challenge in predicting the spread of cases, especially
in locals with a low test rate, is to timely estimate the number
of suspected cases. Here, we demonstrated that curated data
obtained from a telehealth service could be helpful in
anticipating areas with new cases of COVID-19. A rise in calls
referring to COVID-19–like illness preceded, in about two
weeks, the increase in the notification of COVID-19 in the
majority of Bahia state cities demonstrating the potential utility
of this instrument for syndromic surveillance in the early phase
of the epidemic curve. Additionally, it contains relevant

information about the disease under investigation, such as the
profile of the affected population, type, and frequency of
symptoms, which can help characterize susceptible populations,
which is important in the context of epidemics caused by new
infectious agents. Calls captured in the telehealth service were
also valuable in feeding a numerical disease spread model. Data
obtained by a toll-free telehealth service can achieve the goals
required for surveillance purposes, such as the following: (1)
to be collected early after disease onset, (2) to represent the
majority of the population in the covered area, and (3) to be
rapidly accessed by the decision-making officials [5,33].

First, in an outbreak caused by a pathogen of airborne
transmission, such as COVID-19, the fear of contamination
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reduces seeking face-to-face medical assistance. The majority
of individuals with mild symptoms avoid being exposed in
clinical care facilities, reducing the number of individuals who
get tested, and therefore confirmed infections may be
underestimated. From the patient perspective, telehealth
assistance becomes more attractive. Accordingly, a substantial
increase in telemedicine service was detected in the first weeks
of the pandemic [5,34]. Consequently, data from telehealth
services become more suitable for surveillance purposes than
laboratory-confirmed infection or electronic medical records
obtained from health care units.

Second, telehealth services can cover a population from a wide
geographic area. The service offered via telephone dismisses
reading or writing skills, digital literacy, or internet access and
can be used by all age groups and social strata. If the service is
toll-free, most of the population may be covered, which is
especially important for low- to middle-income countries, as
observed in this case.

Third, data sets containing time-sensitive information collected
from telehealth services can be accessed simultaneously by
public health authorities for syndromic surveillance. Automating
data extraction and real-time interpretation of information in
the context of relevant public health emergencies is still
challenging. Structured surveys designed for telescreening
assistance, as described here, can serve this purpose and offer
daily reports for the stakeholders. Although several aspects,
such as technical or operational, ethical, and legal points, should
be addressed to use these data for disease surveillance, analysis
of real-time data obtained from telehealth services is feasible.
It has already been performed for contact tracing, screening,
and monitoring clinical conditions in emergency response to
epidemics [35] and can support decision-making on public
health policy.

Our result suggests that the data set from a telehealth service
may also be helpful as input to a mathematical model to predict
COVID-19 spread. The initial conditions of the exposed and
infected populations are essential to short-term predictions. The
estimate of exposure may be challenging since this population
has no symptoms. Therefore, the hypothesis of assuming the
number of exposed as the number of calls might be better than
an estimation based on the number of infected, since the
telehealth data indicated rises in cases approximately 2 weeks
before the notification system.

The simulation for a city of about 2.9 million inhabitants showed
that most sanitary districts had a good agreement between the
actual data and the simulation. The simulation overestimated
the cases in 1 district area and underestimated them in 2 areas.

Other districts had an excellent agreement until day 100 and
lost accuracy afterward. A loss of accuracy in a fast-changing
infectious disease is expected since it is challenging to reproduce
long-term predictions. The simulation may still be improved
due to several aspects needing to be considered. For example,
we used estimates for parameters such as transmission rate and
diffusion, and it would be possible to use a machine learning
mechanism to find the best ones for this case. Moreover, we
define that all sanitary districts would receive the same input
parameters, and we know that different regions might have
performed differently regarding the population’s behavior and
restriction policies. Besides, we used only spatial spread
mechanisms due to diffusion and further use of different
approaches, as convection and source terms could have offered
better estimates. However, the central idea of this report is to
show that telehealth data impact a robust algorithm that worked
well to simulate the COVID-19 behavior of different regions
(Italy, Brazil, and the United States [12]).

Collecting real-time data may help predictors forecast new
surges and prepare the population, authorities, and health
systems. Moreover, we may infer that our hypothesis works
since our simulation with the telehealth data have provided
promising results.

Limitations
Our study has some limitations. We used COVID-19–like
symptoms as a proxy for confirmed infection. Although this is
not accurate, the number of phone calls and the trend in service
assessment may suggest the direction and amount of disease
spread early on. It shall also be stressed that confirmatory tests
may not be available in the early stages of a new epidemic
infection. In such cases, the use of the syndromic approach, as
employed here, is a critical element for predicting infection
spreading. Another significant limitation is that the telehealth
service was not equally publicized in all cities, which may have
implications for interpreting surveillance data in some areas.

Conclusion
In conclusion, data from telehealth services help model
COVID-19 spread and may be helpful in other health situations.
Telehealth data and digital health technologies for monitoring
disease spread may be especially useful considering the
resurgence of new SARS-CoV-2 variants [36]. Data collected
from primary health care systems can be used for monitoring
the dynamics of COVID-19 cases and the geographic
localization of cases. Considering the continuous expansion of
telehealth and telemedicine tools in the health care system, the
availability of such data may prove a critical tool for modern
epidemiology.
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