
Genomic Analyses, Gene Expression and Antigenic
Profile of the Trans-Sialidase Superfamily of
Trypanosoma cruzi Reveal an Undetected Level of
Complexity
Leandro M. Freitas1., Sara Lopes dos Santos1., Gabriela F. Rodrigues-Luiz1, Tiago A. O. Mendes1,

Thiago S. Rodrigues2, Ricardo T. Gazzinelli3, Santuza M. R. Teixeira3, Ricardo T. Fujiwara1, Daniella C.

Bartholomeu1*

1 Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, 2 Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte,

Brazil, 3 Departamento de Bioquı́mica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

Abstract

The protozoan parasite Trypanosoma cruzi is the etiologic agent of Chagas disease, a highly debilitating human pathology
that affects millions of people in the Americas. The sequencing of this parasite’s genome reveals that trans-sialidase/trans-
sialidase-like (TcS), a polymorphic protein family known to be involved in several aspects of T. cruzi biology, is the largest T.
cruzi gene family, encoding more than 1,400 genes. Despite the fact that four TcS groups are well characterized and only
one of the groups contains active trans-sialidases, all members of the family are annotated in the T. cruzi genome database
as trans-sialidase. After performing sequence clustering analysis with all TcS complete genes, we identified four additional
groups, demonstrating that the TcS family is even more heterogeneous than previously thought. Interestingly, members of
distinct TcS groups show distinctive patterns of chromosome localization. Members of the TcSgroupII, which harbor
proteins involved in host cell attachment/invasion, are preferentially located in subtelomeric regions, whereas members of
the largest and new TcSgroupV have internal chromosomal locations. Real-time RT-PCR confirms the expression of genes
derived from new groups and shows that the pattern of expression is not similar within and between groups. We also
performed B-cell epitope prediction on the family and constructed a TcS specific peptide array, which was screened with
sera from T. cruzi-infected mice. We demonstrated that all seven groups represented in the array are antigenic. A highly
reactive peptide occurs in sixty TcS proteins including members of two new groups and may contribute to the known cross-
reactivity of T. cruzi epitopes during infection. Taken together, our results contribute to a better understanding of the real
complexity of the TcS family and open new avenues for investigating novel roles of this family during T. cruzi infection.
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Introduction

The protozoan parasite Trypanosoma cruzi is the etiologic agent of

Chagas disease, a debilitating illness that is a major cause of

morbidity and mortality in several Latin America countries.

Approximately 10 million people carry the parasite, which causes

10,000 deaths annually [1]. During its life cycle, T. cruzi passes

through three developmental stages. In its insect vectors, the

parasite multiplies as extracellular epimastigotes, and in the

hindgut it differentiates into non-dividing trypomastigotes. These

infective forms are excreted in the feces after a blood meal and

may contaminate the puncture site or mucous membranes of a

mammalian host, where they can invade a variety of cell types.

Inside host cells, trypomastigotes differentiate into amastigotes,

which, after a limited number of cell divisions, differentiate into

trypomastigotes that are released into circulation upon host cell

rupture. This form can then infect another mammalian host cell or

be taken by the insect vector during the blood meal, where it

differentiates as epimastigotes.

The ability of T. cruzi to survive in the mammalian host is in part

due to the presence of a diverse surface membrane coat. In fact, a

remarkable feature of the T. cruzi genome is the massive expansion

of genes that encode polymorphic surface proteins, which include

the trans-sialidase and trans-sialidase like superfamily (hereafter

called TcS), MASP (mucin-associated surface protein), and

TcMUC mucins [2]. The TcS is the largest T. cruzi gene family,

which has more than 1,400 genes, half of which are apparently

functional. One of the most well-studied members of the TcS

superfamily is the trans-sialidase (TcTS) enzyme. T. cruzi is unable

to synthesize sialic acids de novo [3], a sugar modification present in
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T. cruzi proteins implicated in several key aspects of the T. cruzi-host

interaction. The sialylation of the parasite surface is possible due to

the activity of a modified sialidase that, instead of hydrolyzing sialic

acid, transfers alpha (2–3)-linked sialyl residues from sialoglycocon-

jugates and proteins from the host to the parasite cell-surface mucin

proteins (TcMUC) [4–6]. The rapid sialylation of TcMUC proteins

upon cell rupture confers a negatively charged coat that protects the

extracellular trypomastigotes from being killed by human anti-alpha

galactosyl antibodies [7].

The TcS gene family is highly polymorphic, and only a few

members have critical residues necessary for catalytic activity [8].

So far, four groups of TcS have been described based on sequence

similarity and functional properties. Group I contains active trans-

sialidases, namely TCNA and SAPA (shed acute-phase antigen),

and TS-epi proteins expressed in the trypomastigote and

epimastigote forms, respectively. Group II comprises members of

the gp85 surface glycoproteins TSA-1, SA85, gp90, gp82 and

ASP-2, which have been implicated in host cell attachment and

invasion. FL-160, a representative of group III, is a complemen-

tary regulatory protein that inhibits the alternative and classical

complement pathways. TsTc13, whose function is unknown, is the

representative of group IV and is included in the TcS superfamily

because it contains the conserved VTVxNVxLYNR motif, which

is shared by all known TcS members [8–13].

The TcS family was identified in the 1980s and, after the

publication of the T. cruzi genome [2], no comprehensive analysis

of its sequences has been performed. Here, by analyzing all the

full-length predicted TcS proteins present in the T. cruzi genome,

we identified four new groups. The TcS groups were characterized

based on presence of key TcS motifs, chromosomal localization,

expression profile and antigenic properties. Implications of the

TcS diversity for T. cruzi biology are discussed.

Materials and Methods

Sequence diversity of the T. cruzi TcS family
Genome information and sequences were retrieved from

TriTrypDB (http://TriTrypDB.org). Only complete TcS se-

quences totaling 508 sequences were analyzed. The DNA and

the translated sequences were aligned using ClustalW 2.0 software

with the default parameters [14]. These alignments were used to

calculate the total (mean) nucleotide and protein diversity using

MEGA4 [15] with three different methods: p-distance (nucleotide

and protein sequences), Kimura-2-parameter (nucleotide sequenc-

es) and Poisson correction (protein sequences). The diversity error

was estimated using bootstrap resampling with 1,000 replications.

Spatial projection and hierarchical clustering
To identify the clusters formed by the TcS protein sequences

and by the 39 sequences flanking the TcS coding regions (300

nucleotides downstream to the stop codons), we calculated the

pairwise distance and generated the distance matrixes. The

distances between the sequences were generated using the package

PHYLIP [16,17]. To provide a visual representation of each

distance matrix, we used the multidimensional scaling (MDS) plot

with two dimensions (2D). The K-means method [18] was used to

define ten clusters. The MDS, hierarchical clustering, statistical

analyses and graphing were performed using the R software

platform [19].

TcS cluster distribution on T. cruzi chromosomes and
protein representation

To define the chromosomal distribution of the TcS groups, we

used as reference the genome assembly reported in [20], where

pairs of homologous chromosomes were arbitrarily built as having

the same size. The chromosomal coordinates of the TcS genes,

regardless from each homologous chromosome they are derived,

were retrieved from the TriTrypDB (http://TriTrypDB.org) and

plotted on the chromosomes. The colors of each coding region

were the same as the colors used in the MDS protein clusters. The

relative positions in the chromosomes were calculated by dividing

the start codon coordinate of each gene by the total length of the

chromosome. The values found were used to produce a histogram

and to compare the distribution of each cluster and the

pseudogenes on the chromosomes.

FRIP coordinates were found using the motif xRxP as a query.

Only those occurrences located before the Asp-box and/or closer

to the N-terminal extremity were considered. The Asp-box was

found using the motif SxDxGxTW as a query, allowing up to 1

mismatch, and the TcS signature motif was searched using the

VTVxNVxLYNR sequence as a query. In all query motifs, x

represents any amino acid. The motifs were searched using the

software PatMatch [21]. The signal peptide and the GPI anchor

additional site were predicted using the software SignalP [22] and

GPI-SOM [23], respectively. Repetitive sequences were identified

using the AA-repeatFinder developed by our group (http://gicab.

decom.cefetmg.br/bio-web). Only repeats with more than 10

amino acids were reported. The figures depicting the TcS genome

distribution and the protein sequences were constructed using Perl

(Practical Extraction and Report Language) scripts and the

Bio::Graphics module, part of the Bioperl toolkit (http://www.

bioperl.org).

Parasite cultures and RNA extraction
Epimastigotes of the CL Brener clone of T. cruzi were

maintained in a logarithmic growth phase at 28uC in liver infusion

tryptose (LIT) medium supplemented with 10% fetal bovine

serum. Amastigote and trypomastigote forms were obtained from

infected L6 cells grown in Dulbecco’s Modified Eagle Medium

supplemented with 5% fetal bovine serum, at 37uC and 5% CO2,

as described [24]. Total RNA was isolated using the RNeasy kit

(Qiagen).

Real-time RT-PCR
Primers specific for each cluster were designed using Allele ID 7

(Premier Biosoft, Demo version), and the primer specificity was

verified using e-PCR and the entire parasite genome as a template.

The primers selected are listed in Table S1. Real-time PCR

reactions were performed in an ABI 7500 sequence detection

system (Applied Biosystems). Reactions in triplicate were prepared

containing 1 mM forward and reverse primers, SYBR Green

Supermix (Bio-Rad), and each diluted template cDNA. Standard

curves were performed for each experiment for each pair of primers

using serially diluted T. cruzi CL Brener genomic DNA and were

used in the calculation of the relative quantity (Rq) values for each

sample. qRT-PCRs for the constitutively expressed GAPDH gene

were performed to normalize the expression of the TcS genes.

Results were analyzed with an ANOVA test, and graphics were

constructed in GraphPad Prism 5.0 (GraphPad Inc.).

Epitope prediction, spot peptide array and immunoblot
The 508 complete TcS proteins were submitted for linear B-cell

epitope prediction using the Bepipred algorithm [25]. Peptides

with 15 amino acids and with prediction scores above 1.3 were

selected. Peptides with 70% identity over 70% of the peptide

length with T. cruzi proteins other than TcS were excluded. For

synthesis, we selected those peptides with higher occurrences

within a group and with higher prediction scores. The peptides

T. cruzi Trans-Sialidase/Sialidase-Like Family
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synthesized are listed in Table S2. The peptides were covalently

synthesized in pre-activated cellulose membranes according to the

SPOT synthesis technique [26]. Membranes were blocked with

5% BSA and 4% sucrose in PBS and were incubated for one hour

and 30 minutes with diluted mice sera (1:500) in blocking solution.

After washing, the membrane was incubated with secondary

antibody IgG (Sigma) diluted to 1:2000 in blocking solution and,

after a second washing, revealed by ECL Plus Western blotting (GE

Healthcare). The spots were visualized by fluorescence scanning.

The membrane was submitted to the same experimental

conditions using sera from uninfected mice. Densitometry

measures and analysis of each peptide was performed using Image

Master Platinum (GE), and the relative density (Rd) cut-off for

positivity was determined as 2.0. Graphics were constructed in

GraphPad Prism 5.0 (GraphPad Inc.).

Ethics Statement
All animal procedures were approved by the animal care ethics

committee of the Federal University of Minas Gerais (Protocol #
143/2009).

Results

Sequence clustering reveals eight groups of the trans-
sialidase/trans-sialidase-like superfamily (TcS) of T. cruzi

Despite the fact that four TcS groups were previously described

[8,13,27], and only one group corresponds to the active trans-

sialidase proteins, a much larger number of members of this gene

family was annotated in public databases as trans-sialidases. To

sort out which members correspond to the previously defined

groups and to eventually identify new groups, we performed

cluster analysis on all predicted TcS proteins identified in the CL

Brener genome, excluding those annotated as partial and/or

pseudogenes. A total of 508 TcS members were used to perform

pairwise alignments resulting in a distance matrix that was used to

generate a multidimensional scaling (MDS) plot (Figure 1). K-

means method was then used to define ten clusters or groups

(Figure 1A). Clustering with larger numbers of groups resulted in

the fragmentation of previous clusters, without shuffling the

members among them, indicating the robustness of the clustering

of the family in ten groups (data not shown). Three members were

located far from the others in the spatial distribution and therefore

are the most divergent members of the family. One of them,

Tc00.1047053505699.10, is the only representative of the group

shown in black, and the Tc00.1047053509265.120 and

Tc00.1047053507699.230 formed the brown group. Manual

inspection of these three proteins revealed that their N-terminal

regions are longer or shorter compared to the other TcS

sequences: Tc00.1047053505699.10 contains an extra 260 amino

acids at its N-terminal, whereas Tc00.1047053509265.120 and

Tc00.1047053507699.230 have a deletion of approximately 160

and 450 amino acids, respectively, in their N-terminal region. The

truncated sequences of these two proteins were due to the location

of these genes in contig ends. Because gene prediction regarding

the initial start codon could not be corrected for these three

anomalous sequences, both black and brown groups were

excluded from further analysis. The list of proteins belonging to

each group is available in the supporting material (Table S3).

Protein and DNA sequences of the eight remaining groups

were then aligned and the intra-cluster diversity was calculated

using the p-distance, the Kimura-2-parameter and the Poisson

correction methods, as described in the material and methods

section. The groups are formed from different numbers of

members and show distinct diversity indexes (Table 1). Groups

labeled in red and dark green are the largest groups, with 227

and 117 members, respectively, totaling 68% of the TcS

members. No clear correlation between the number of members

and the diversity indexes was found. For instance, small groups

(blue and orange) have similar diversity indexes of the largest

ones (Table 1).

Figure 1. Multidimensional scaling (MDS) plot of the TcS protein sequences. The pairwise alignments of the 508 TcS complete members
were performed and the distance matrix was used to generate a multidimensional scaling (MDS) plot. K-means method was used to define the
clusters or groups. (A) Pattern of dispersion of all 508 TcS protein sequences resulting in 10 TcS groups. (B) Pattern of dispersion of 505 TcS protein
sequences in eight TcS groups. Previously characterized TcS sequences were mapped on the MDS. TcSgroupI - blue; TcSgroupII - dark green;
TcSgroupIII - light blue; TcSgroupIV - magenta; TcSgroupV - red; TcSgroupIV - gray; TcSgroupVII - orange and TcSgroupVIII - purple.
doi:10.1371/journal.pone.0025914.g001
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We next mapped on the MDS plot the TcS proteins

representative from each of the four previously known groups

(Figure 1B). As expected, the characterized TcS members mapped

into different MDS clusters. TCNA, SAPA and TS-epi, all active

trans-sialidase proteins belonging to the previously defined group

I, clustered together in the blue group (hereafter named

TcSgroupI). From a total of 19 TcSgroupI members, 11 have

the critical catalytic residues (Figure S1). GP82, GP90, Tc85-

11_SA85-1.1 and ASP-2, all representatives of the previously

defined group II, mapped onto the dark green cluster (TcSgrou-

pII). Finally, FL-160 and Ts13, which belong to sialidase groups

III and IV, mapped onto the light blue (TcSgroupIII) and

magenta (TcSgroupIV) clusters, respectively. None of the TcS

proteins previously characterized mapped onto the clusters that

are red (the largest TcS group), gray, orange or purple, hereafter

named TcSgroup V, VI, VII and VIII, respectively.

Identifying key sialidase signature motifs in the eight
MDS clusters

To characterize each of the eight groups, we initially searched

for all the key signature motifs as they are described in the

literature [8,13] and mapped them into the MDS plot (Figure S2).

The canonical VTVxNVxLYNR motif was found in only 328 of

508 TcS sequences used in this study. This result prompted us to

investigate whether the other proteins annotated as TcS have a

degenerate form of this motif or do not have this motif at all. To

this end, we performed ClustalW alignment of all 508 TcS

proteins and retrieved the alignment block containing this motif.

Visual inspection of this region reveals that 159 sequences have a

degenerate version of this motif. Hence, 487 (96%) of the TcS

sequences have the canonical or degenerate forms of the

VTVxNVxLYNR motif. The remaining sequences do not contain

this motif because they have a truncated C-terminal region

resulting from premature stop codons and/or frameshifts.

Therefore, as previously described, this motif is a signature of

the TcS family that is found in all its members. As shown in

Figure 2, although variations on the VTVxNVxLYNR motif are

observed, the motif is highly conserved within each cluster.

We also searched for the Asp box motif found in bacterial and

viral sialidases [28], using as query the SxDxGxTW sequence,

where x is any amino acid. A total of 135 sequences have this

motif, of which 133 belong to the previously described TcS groups

I (blue), II (dark green) and IV (magenta) (Figure 2). The two other

sequences having this motif belong to the TcSgroupV (red) and

TcSgroupVI (gray). This result is in agreement with previous

reports showing that TcSgroupIII (light blue) does not have this

motif [29]. To investigate whether TcSgroupIII as well as

sequences from the other four new groups have a degenerate

form of the Asp box, we searched for a degenerated version of this

motif, as described in the material and methods section. This

search increased the number of positive Asp box sequences to 383.

Only one additional degenerate position was found, resulting in

the consensus SxDxGxxW. Although the majority of them have

one (220) or two Asp boxes (154), a few (9) have three. Considering

this new consensus motif, the Asp box is found in a large majority

of the members from TcSgroupI (blue, 17 of 19 members),

TcSgroupII (dark green, 114/117), and TcSgroupIV (magenta,

24/25) and is also present in the new groups TcSgroupV (red,

188/227) and TcSgroupVI (gray, 36/39). On the other hand, as

previously described, it is missing in TcSgroupIII (lightblue) and

has only a few occurrences in the new groups TcSgroupVII

(orange, 1/17) and TcSgroupVIII (purple, 3/46) (Figure 2).

The FRIP motif was searched using the pattern xRxP (where x

is any amino acid). Because this is a small and degenerate

sequence, we considered only those occurrences that are before

the Asp-box and/or closest to the N-terminal region [30]. A total

of 205 TcS proteins contain the FRIP motif, which is found in the

majority of the members of TcSgroupI (blue, 68%), TcSgroupIII

Table 1. Diversity indexes of nucleotide, protein and 39UTR sequences of the TcS family.

DNA Protein

Number of
members p-distance K2p p-distance Poisson correction

TcSgroupI
Blue

19 0.371/0.004 0.690/0.029 0.494/0.009 0.881/0.027

TcSgroupII
Dark green

117 0.264/0.004 0.340/0.007 0.419/0.010 0.558/0.018

TcSgroupIII
Light blue

15 0.209/0.005 0.263/0.008 0.366/0.010 0.492/0.023

TcSgroupIV
Magenta

25 0.179/0.003 0.226/0.005 0.250/0.008 0.320/0.012

TcSgroupV
Red

227 0.252/0.004 0.316/0.006 0.396/0.009 0.513/0.015

TcSgroupVI
Gray

39 0.246/0.004 0.312/0.007 0.394/0.009 0.513/0.016

TcSgroupVII
Orange

17 0.298/0.004 0.425/0.009 0.448/0.009 0.651/0.020

TcSgroupVIII
Purple

46 0.215/0.004 0.270/0.006 0.353/0.009 0.453/0.013

TcS family 508 0.413/0.004 0.662/0.011 0.574/0.090 0.912/0.023

39UTR 495 0.573/0.007 1.086/0.029 - -

P-distance was used to measure the diversity of the coding regions, proteins and 39 flanking sequences, with kimura-2-parameters and Poisson correction only to DNA
coding and protein sequences, respectively.
doi:10.1371/journal.pone.0025914.t001
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Figure 2. Prototype of each TcS group. The motifs are shown only when they occur in the majority of the proteins within the group. The Asp-
box and VTVxNVxLYNR logos are shown above each motif. The numbers within parentheses indicate the number of occurrences of a given motif. The
length of the proteins within the groups may vary. Graphical representations are not to scale.
doi:10.1371/journal.pone.0025914.g002
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(light blue, 87%), TcSgroupIV (magenta, 88%), TcSgroupVII

(orange, 76%) and TcSgroupVIII (purple, 87%).

To identify repetitive regions on TcS sequences, we used the

AA-repeat finder program (http://gicab.decom.cefetmg.br/bio-

web). Only repeats with more than 10 amino acids were

considered. We found that repeats are more frequent in the

TcSgroupI (blue) and TcSgroupIV (magenta) clusters. These two

groups have the largest repetitive regions, which encompass up to

884 amino acids. In fact, although we identified new repeats in

these two groups, the largest repeats are those corresponding to

the known DSSAH(S/G)TPSTP(A/V) repeat found in TS SAPA

and the TcTs13 EPKSA-repeat. On the other hand, TcSgroupV

(red), TcSgroupVI (gray) and TcSgroupVII (orange) groups have

only 1, 2.5 and 6% of their members, respectively, with repetitive

domains whereas no repeat was found in members of the

TcSgroupIII (light blue). All repeats identified in this study are

shown in Table S4.

In the prototype representation of the eight TcSgroups shown in

Figure 2, it is possible to identify three patterns of motif

occurrence. The TcSgroupI (blue) and TcSgroupIV (magenta)

clusters have the most complex structure, with the FRIP, Asp box

and VTVxNVxLYNR motifs and the C-terminal repeats,

although the sequences of the VTVxNVxLYNR motif and the

C-terminal tandem repeats are distinct. TcSgroupII (dark green),

TcSgroupV (red) and TcSgroupVI (gray) clusters contain the Asp

box and VTVxNVxLYNR motifs. TcSgroupIII (light blue),

TcSgroupVII (orange) and TcSgroupVIII (purple) clusters only

have the FRIP and VTVxNVxLYNR motifs, which have a

consensus sequence that is group-specific. This pattern of motif

occurrence is in agreement with the space distribution of the TcS

groups in the MDS (Figure 1). TcS groups I and IV that have all

motifs are centered in the MDS, whereas TcSgroups II, V and VI

are clustered in the bottom and TcSgroups III, VII and VIII are

clustered in the left top region. A graphical representation for each

of the 508 TcS proteins can be found in Figure S3.

Mapping the TcS groups on T.cruzi chromosomes
It is known that TcS genes can be found in T. cruzi subtelomeric

regions or in internal positions in the chromosomes that are

associated with other genes that encode surface proteins [2].

Subtelomeric regions are defined here as sequences extending

from the telomeric hexamer repeats to the first nonrepetitive

sequence. We investigated whether there is any bias on the

chromosome localization of the TcS clusters. Figure 3 shows the

chromosomal distribution of the TcS groups. A total of 60

complete TcS genes (not including partial or pseudogenes) can be

found associated with the subtelomeric regions. One of them

belongs to the brown cluster, which, as mentioned above, was

excluded from our analysis. The majority of the subtelomeric TcS

genes (36 members, 61%) belongs to TcSgroupII (dark green), 7

members from TcSgroupIV (magenta) and 10 from TcSgroupVIII

(purple) (Figures 3 and 4). No TcSgroupIII (light blue) or

TcSgroupVI (gray) genes are located at these regions. Interest-

ingly, with one exception, all members of the largest TcS cluster

(TcSgroup V, red) are at internal locations in the chromosomes

(Figures 3, 4A and 4B). We have also found that the subtelomeric

regions are enriched for TcS pseudogenes (Figure 4C), which is in

agreement with the hypothesis that these regions were subject to

intense rearrangement [54].

Expression profile of the TcS genes belonging to distinct
groups

To characterize the expression profile of TcS genes belonging to

distinct groups, we have performed real-time RT-PCR using

member-specific primers, designed as described in the material

and methods section. The expression of 12 TcS genes derived

from six TcS groups was evaluated throughout the three parasite

developmental stages using GAPDH mRNA levels, whose

expression is constitutive throughout the parasite life cycle, for

internal normalization (Figure 5). As a control, we used primers to

amplify the cDNAs from the alpha-tubulin and amastin genes,

whose mRNA levels we have previously shown to be up-regulated

in epimastigotes and amastigotes, respectively [24,31]. The

majority of the TcS transcripts are expressed in trypomastigotes

and/or amastigote forms. Interestingly, within a group, the

expression profile may be highly variable. For example, the

TcS5 gene that belongs to TcSgroupII is highly expressed in

trypomastigote forms, whereas the TcS27 from the same group

shows a much lower level of expression in the trypomastigote and

amastigote forms and is barely detected in epimastigotes. Also,

TcS9 and TcS33 from TcSgroupIV are more expressed in

trypomastigotes and amastigotes; however, TcS34, which is from

the same group, is scarcely expressed in all the development stages.

The new groups also display a variable expression profile. A very

low level of expression was verified for the two genes analyzed

from TcSgroupV in all the developmental stages (Figure 5) as well

as in the blood trypomastigotes (data not shown). On the other

hand, the gene TcS32 from TcSgroupVII is more expressed in the

trypomastigotes. The two members of TcSgroupVIII show a

variable expression profile, with TcS24 more expressed in

trypomastigotes and TcS25 more expressed in amastigotes.

Analyzing sequence conservation of the 39 flanking
region of TcS groups

It is well established that, in Trypanosomatids, the 39UTR

regions are involved in post-transcriptional control mechanisms

that confer stage-specific gene expression. To investigate whether

the 39 flanking sequences of TcS genes that belong to the same

groups are conserved, we performed pairwise alignments of the

300 nt downstream of the stop codon of the TcSs, and the distance

matrix was used to generate the MDS projection. We decided to

analyze 300 nt downstream from the stop codon because this is the

mean average length of the T. cruzi 39UTRs [32]. The sequences

were then color-coded according to the protein clusters showed in

Figure 1. TcS genes already characterized as well as those genes

whose expression levels were analyzed by real-time RT-PCR

(Figure 5) were then mapped onto the MDS projection (Figure 6).

We could not find a very clear association between the protein and

the 39 flanking region distances. For example, members of the

TcSgroupV (red) form a robust cluster at the protein level and are

much more variable according to the analysis of the 39 flanking

region. Also, the 39 flanking regions of TcSgroupII (dark green)

members are scattered in three MDS areas. On the other hand,

the 39 flanking regions of the TcSgroupVIII (purple) members

clustered together, which suggests that similar mechanisms may

control the expression of some of their genes. Interestingly, the 39

flanking regions of SAPA and TCNA, both active trans-sialidase

enzymes expressed in the trypomastigote forms (TcSgroupI), are

clustered very close. Also, the 39 flanking region of the TS-epi, an

active trans-sialidase that is expressed in the epimastigote stage

that also belongs to TcSgroupI, is located farther away from the

SAPA and TCNA sequences. Moreover, the 39 flanking region of

gp90 and gp82, both expressed in the metacyclic trypomastigotes,

and ASP-2, expressed in the amastigote stage, all belong to

TcSgroupII and are very close in the MDS projection.

Interestingly, although Tc85-11_SA85-1.1 and TsTc13 are

expressed in the trypomastigote stage, they are divergent at the

protein level (Figure 1) and belong to different TcS groups (II and
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IV, respectively); they have similar 39 flanking regions, which

suggests that similar mechanisms for gene regulation may act on

both genes.

Antigenicity of the TcS groups
Because the antigenicity of some members of the sialidase family

was already reported [33,34], we decided to investigate whether

other peptides derived from the TcS family are also antigenic. To

this end, we have performed linear B-cell epitope prediction on all

508 complete members of the TcS family. A total of 40 peptides

with 15 residues, high prediction scores and high occurrences

within the TcS group were synthesized in a solid support by the

spot synthesis technique and screened with sera from animals

infected with T. cruzi. The list of all peptides used in this study is

shown in the Table S2. As shown in Figure 7, 11 TcS peptides

derived from distinct groups displayed antigenic properties based

on a cut-off signal well above background. In agreement with

previous studies, peptides corresponding to the SAPA (D5 and D8)

[33] and to the TsTc13 repeats (B5) [34] are highly antigenic. We

have also identified new epitopes specific to the previously

characterized TcSgroups I and IV (D9 and D10, and B10,

respectively). At least one peptide from each of the new TcSgroups

-V, VI, VII and VIII - was recognized by sera of infected animals

(A1, C3, A10 and B4, and A5, respectively). The peptide C3

occurs in the largest number of members (60 in total) from the new

TcS groups V and VI and from the previously characterized TcS

groups II and IV.

Discussion

The TcS superfamily, the largest T. cruzi multigene family [2],

was described more than 20 years ago and, after the T. cruzi

genome release, no comprehensive analysis of the diversity of this

gene family was reported. Here, by analyzing all the 508 TcS

complete genes present in the T. cruzi CL Brener genome [2], we

demonstrated that this family displays an even greater variability

Figure 3. Mapping of TcS genes on T. cruzi chromosomes. Each CL Brener chromosome is comprised of 2 homologous chromosomes as
proposed by [20]. The genes are color coded according to the color of the corresponding clusters of Figure 1. A total of 374 TcS genes could be
mapped on the chromosomes. The remaining genes belong to contigs that could not be assigned to a specific chromosome, according to Weatherly
et al., 2009, and are not represented in the figure. Only chromosomes containing TcS genes are shown. Black dots represent telomeric repeats.
TcSgroupI - blue; TcSgroupII - dark green; TcSgroupIII - light blue; TcSgroupIV - magenta; TcSgroupV - red; TcSgroupIV - gray; TcSgroupVII - orange
and TcSgroupVIII - purple.
doi:10.1371/journal.pone.0025914.g003
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than previously thought, as shown by means of the diversity

indexes and the MDS projection. Based on their pattern of

dispersion, we identified eight groups of TcS sequences, four of

which were never described before (Figure 1). The distances

among the clusters are consistent with the level of similarity and

function of the previously described TcS sequences. All proteins

that display trans-sialidase activity clustered together (TcSgroupI,

blue). Another cluster was formed (TcSgroupII, dark green) from

TcS proteins that have no trans-sialidase activity but that are

capable of binding to b-galactose, laminin [35], fibronectin [36],

collagen [37,38], and cytokeratin [39] and are involved in cell

adhesion and invasion. The third TcS group encompasses proteins

Figure 4. Distribution of each TcS group along the T. cruzi chromosomes. (A) Histograms showing the frequency of the TcS genes along the
chromosomes. The length of all chromosomes was normalized as 1. The relative position of each gene was calculated by dividing the coordinate of
the first nucleotide of the open reading frame by the length of the chromosome. (B) Representation of each group in Figure 1, showing the genes
that localize in telomeric regions (black dots for the TcSgroupV and red dots for the other TcS groups). TcSgroupI - blue; TcSgroupII - dark green;
TcSgroupIII - light blue; TcSgroupIV - magenta; TcSgroupV - red; TcSgroupIV - gray; TcSgroupVII - orange and TcSgroupVIII - purple. (C) Histogram
showing the distribution of TcS pseudogenes along the T. cruzi chromosomes.
doi:10.1371/journal.pone.0025914.g004
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involved in the regulation of the complement system (CRP -

complement regulatory proteins). Previously characterized mem-

bers of this group are the CRPs [29,40], which include the FL-160

[41]. Recently, using data from the T. cruzi CL Brener genome

project, Beucher and Norris (2008) identified CRP paralogs based

on sequence similarity with a functional characterized CRP

(GenBank accession number AAB49414). Also, these authors

divided the CRPs into two groups, HSG (high similarity group,

with more than 80% identity with AAB49414) and LSG (low-

similarity group, with sequence identity between 54 and 62% with

AAB49414) [29]. Here we could verify that all HSGs, and

excluding two exceptions, the LSGs, fell into TcSgroupIII (light

blue). These two members, which do not belong to TcSgroupIII,

were clustered within TcSgroupVII (orange). In fact, they are the

two most divergent sequences of the LSG subgroup [29] and

correspond to members of the TcSgroupVII that are closest to the

TcSgroupIII (Figure S4). Further investigation is necessary to

verify whether these two proteins as well as other members of the

TcSgroupVII have complement regulatory activity. Finally, a

member of the TcSgroupIV that was previously described

corresponds to the TsTc13 family, whose function is unknown.

Based on the pattern of dispersion of the TcS groups in the MDS

projection and the occurrence and sequence of key TcS motifs, we

hypothesize that the new groups V and VI and the previously

described TcS groupII are more related among each other when

compared to the other groups. The same is valid for the new

groups VII and VIII and the TcS group III. For instance, TcS

groups II, V and VI are the only ones that do not have the FRIP

motif and their consensus sequences of the VTVxNVxLYNR

motif are very similar. Also, TcS groups III, VII and VIII share

the same pattern of motif occurrence and are clustered in a similar

region in the MDS projection.

Trypanosoma brucei genome encodes active trans-sialidases

expressed in the insect form of the parasite [42]. Although no

active trans-sialidase was identified in Trypanosoma rangeli, siali-

dases/sialidase-like proteins similar to TcS groups I, II and III

were found, and several of these members are expressed in the

epimastigote and trypomastigote forms of the parasite [43,44].

The evolution of the TcS family suggests a gene ancestor encoding

an active trans-sialidase expressed in insect forms of the genus

Trypanosoma and several rounds of duplication and diversification

would give rise to trans-sialidases expressed in mammalian forms

[45]. Later in evolution T. rangeli, would have lost the active trans-

sialidase, retaining the sialidase activity. These evidences along

with the centered location of TcSgroupI in the MDS projection

suggest that extensive expansion and sequence diversification of

trans-sialidases similar to TcSgroupI would have originated other

groups and functions.

Although the TcS family displays a high degree of sequence

variation (Table 1), several motifs are conserved. The most

conserved is the VTVxNVxLYNR motif, which is located

upstream from the carboxyl terminus of all the TcS full-length

members (Figure 2). Recently, it has been demonstrated that a

version of this motif (VTVTNVFLYNRPLN), referred to as the

FLY motif, may act as a virulence factor [46,47]. BALB/c mice

administered with FLY-synthetic peptide are more susceptible to

T. cruzi infection, displaying increased systemic parasitaemia and

mortality [47]. Also, it has been shown that the FLY motif binds to

endothelial cells of the heart, suggesting that it might contribute to

the parasite tropism to this organ [10]. We identified the exact

sequence of the FLY peptide in 28 members of TcSgroupII.

Because a very similar version of this motif (ATVANV-

FLYNRPLN, in which mismatches are indicated in bold and

are underlined) is also found in 23 members of TcSgroupIV, we

speculate that, as several TcSgroupII members, this group may

also participate in host cell attachment/invasion.

Two other motifs, FRIP (xRxP) and Asp box, can be found in

various groups of the TcS family. The FRIP motif, which is closest

to the N-terminal, is involved in binding the carboxylate group of

sialic acid [48]. This motif is found not only in TcSgroupI, but also

in the majority of the members of the TcS groups III, IV, VII and

VIII (Figure 2). Although this motif is involved in binding sialic

acid, it has been shown that enzymatically inactive members of the

sialidase family in T. cruzi still preserve carbohydrate binding

properties [49,50]. The Asp box follows the FRIP motif and can

be repeated up to five times in the sequences of viral, bacterial,

trypanosomatid and mammalian sialidases. Although its function

is unknown, it is worth noting that the Asp box occurs in secreted

proteins and in proteins that act on, or interact with, carbohy-

drates [51]. Recently, it has been shown that at least some inactive

trans-sialidases act as lectin-like proteins able to interact with the

carbohydrate portion of glycoconjugates, only if they are sialylated

[52]. The authors hypothesized that these inactive trans-sialidase

proteins could bind to host surfaces that are rich in sialyl-donor

glycoconjugates (functioning as anchors), facilitating the active

enzyme to more efficiently undertake the sialyl-transferring

activity. Here, we have shown that, in addition to TcSgroupI,

members of TcSgroupIV have both FRIP and Asp box motifs

Figure 5. Expression profile of TcS genes by qRT-PCR. Relative quantity (Rq) calculations were based on specific standard curves for each TcS
gene. Rq values of each cDNA sample (TcS Rq) were normalized with the GAPDH gene (GAPDH Rq), a gene constitutively expressed throughout the
parasite life cycle. Alpha-tubulin and amastin were used as controls for genes more expressed in epimastigote and amastigote stages.
doi:10.1371/journal.pone.0025914.g005

Figure 6. Multidimensional scaling (MDS) plot of the 39

flanking regions of the TcS genes. A total of 300 nucleotides
downstream from the stop codon of each gene were analyzed.
Sequences smaller than 300 nucleotides were excluded. Previously
characterized genes were mapped on the MDS.
doi:10.1371/journal.pone.0025914.g006
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Figure 7. Antigenic profile of TcS peptides. The top panel shows a representative result of immunoblot employing a SPOT synthesis membrane
and pools of sera from T. cruzi-infected mice (A) and from control uninfected mice (B). The reaction was revealed with secondary anti-total IgG
antibody. The bottom panel shows the relative intensity of the signal of each spot estimated based on a comparison of the reactivity in immunoblots
with sera from T. cruzi-infected mice to the background levels, determined by reactivity with sera from uninfected mice. A signal was scored as
reactive when relative intensity (RI)$2. The peptides analyzed for each TcS group are as follows: TcS group I, D5–D10; TcS group III, C9-D4; TcS group
IV, B5-C1, C3; TcS group V, A1, C2, C3, C7; TcS group VI, C2–C8; TcS group VII, A9-B4; TcS group VIII, A2–A8.
doi:10.1371/journal.pone.0025914.g007
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(Figure 2) and therefore may also display carbohydrate binding

properties.

After mapping all TcS groups on the T. cruzi chromosomes [20],

we found no association between a group and a specific

chromosomal location (Figure 3). Interestingly, we found a

distinctive pattern of gene distribution along the chromosomes

for members of the TcS groups II and V, with the former clearly

enriched at the end of the chromosomes, whereas the latter is

concentrated in the middle of the chromosomes (Figure 4).

Trypanosoma brucei and Plasmodium falciparum have a sophisticated

strategy for immune evasion, known as antigenic variation, which

allows the parasites to adapt to the host environment through

exposing and changing specific variable antigenic surface proteins

[53–58]. In these parasites, the genes that encode surface proteins

that are involved in antigenic variation are preferentially located at

subtelomeric regions because these are favorable genomic

environments that facilitate gene switching, expression, expansion

and generations of new variants [53,55]. Because we found an

enrichment of TcS pseudogenes within subtelomeres (Figure 4C),

we speculate that these T. cruzi regions have also been subjected to

intense rearrangement. T. cruzi does not undergo antigenic

variation but instead co-expresses several variable surface proteins,

among which is TcS [59]. Nevertheless, the subtelomeric location

of TcSgroupII may facilitate the generation of new variants. In

fact, in silico simulations suggested that both mutation and gene

conversion may contribute to the generation of diversity in the

TcS family [60,61]. Gene conversion may be frequent in

subtelomeric regions, and therefore could promote a faster

diversification of TcSgroupII. This scenario may be particularly

important for this group because several of its members have been

implicated in host cell attachment/invasion, and T. cruzi has the

ability to infect a broad range of host cells. Therefore, it is possible

that the large repertoire of peptides derived from TcSgroupII may

contribute to this phenomenon.

Co-expression of several members of the TcS family has been

described in the mammalian stages of the parasite [59]. Here, we

show that the levels of expression are not homogeneous between

and within the TcS groups (Figure 5). It is well known that the

39UTRs are implicated in the control of the gene expression of

several T. cruzi genes that are regulated during the life cycle.

Although we have not mapped the 39UTRs of the genes selected for

expression analysis, for a few genes, it was possible to find a

correlation between the expression profile and the sequence

similarity in their 39 flanking regions. For example, SAPA and

TCNA genes, which are both active trans-sialidases expressed in

trypomastigotes, have almost identical 39 flanking regions (Figure 6).

On the other hand, the 39 flanking sequences of the genes TcS8 and

TcS25 are quite similar (75% identity) despite the fact that their

pattern of expression is very distinct (Figures 5 and 6). In this case, it

is possible that cis-acting regulatory elements present in regions

other than the 39UTR may modulate their expression. It is also

unclear what the proportion of the total TcS repertoire is expressed

and whether the repertoire and/or the level of expressed genes may

change during the parasite infection. High-throughput RNA

sequencing approaches will clarify these questions.

We have also investigated the antigenic profile of peptides

derived from distinct groups of the TcS family (Figure 7). Besides

the known epitopes derived from the repetitive sequences of the

SAPA and TcTS13 proteins, new B-cell epitopes were identified in

members from both previously described and new TcS groups.

Nine of the 14 reactive peptides are found in more than one TcS

member. Specifically, the highly reactive peptide C3 (Figure 7)

occurs in the largest number of proteins (60 in total) including

members of the two new TcS groups V and VI. Also, similar but

not identical sequences of this peptide were found in more than

150 TcS members. The cross-reaction among several epitopes and

the sequence variability of the TcS family might contribute to the

simultaneous presence of B-cell related epitopes during an

infection. In fact, it has been proposed that cross-reactivity among

the T. cruzi epitopes could be an evasion mechanism that drives the

immune system into a series of spurious and non-neutralizing

antibody responses [62]. In this regard, it has been shown that

subtle differences at amino acid positions in or around the active

site of the TcS proteins that have trans-sialidase activity might

delay the immune response and avoid inhibiting the complete

enzymatic makeup of the parasite [63]. This scenario may

represent an evolutionary pressure driving the diversification of

TcSgroupI, which harbors the active trans-sialidases. Whether a

similar mechanism is involved in the diversification of the other

TcS groups remains to be addressed.

The diversity of the TcS family may be even greater than

reported here since the current assembly of the CL Brener genome

is fragmented [2,20], and therefore additional TcS genes may not

be part of the dataset analyzed in this study. Nevertheless, based

on the nearly complete repertoire of TcS sequences, we can now

design probes and antibodies specific for each group, to be

employed in more assertive strategies to investigate the role of this

complex family during T. cruzi infection.

Supporting Information

Figure S1 Partial alignment of active trans-sialidase
proteins. FRIP and Asp-box motifs, and critical amino acids

residues involved in trans-sialidase activity are shaded in gray. The

amino acid positions are relative to the first methionine. Only N-

terminal region of the active trans-sialidase proteins is shown.

(DOCX)

Figure S2 Multidimensional scaling plot of the TcS
proteins indicating the presence of characteristic TcS
motifs. TcS proteins with the motifs are represented by red dots.

(A) SXDXGXTW motif; (B) VTVXNVXLYNR motif; (C)

SXDXGXTW motif allowing 1 mismatch; (D) sequences with

VTVXNVXLYNR motif found in the alignment block of the 505

TcS derived from the eight clusters identified in this study; (E)

FRIP (XRXP) motif. X represents any amino acid.

(DOCX)

Figure S3 Prototype of each TcS protein. The peptide

signal is represented in gray, FRIP in green, Asp-box in blue,

VTVXNVXLYNR in red, repeats in black and GPI anchor

addition site in orange.

(TIF)

Figure S4 Divergent CRP – complement regulatory
proteins. Protein sequences involved in the regulation of

complement system identified by Beucher and Norris (2008).

Sequences were mapped on the MDS showed in Figure 1. HSG

sequences (high similarity group) and LSG sequences (low-

similarity group) are indicated by red and black squares,

respectively.

(DOCX)

Table S1 Primers used in the Real-time RT-PCR
reactions.
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Table S2 TcS peptides analyzed by immunoblotting.
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Table S3 List of members of each TcS group.
(XLS)
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