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One aspect of personalized medicine is aiming at identifying specific targets for therapy
considering the gene expression profile of each patient individually. The real-world
implementation of this approach is better achieved by user-friendly bioinformatics
systems for healthcare professionals. In this report, we present an online platform that
endows users with an interface designed using MEAN stack supported by a Galaxy
pipeline. This pipeline targets connection hubs in the subnetworks formed by the
interactions between the proteins of genes that are up-regulated in tumors. This strategy
has been proved to be suitable for the inhibition of tumor growth and metastasis in vitro.
Therefore, Perl and Python scripts were enclosed in Galaxy for translating RNA-seq
data into protein targets suitable for the chemotherapy of solid tumors. Consequently,
we validated the process of target diagnosis by (i) reference to subnetwork entropy,
(ii) the critical value of density probability of differential gene expression, and (iii) the
inhibition of the most relevant targets according to TCGA and GDC data. Finally, the
most relevant targets identified by the pipeline are stored in MongoDB and can be
accessed through the aforementioned internet portal designed to be compatible with
mobile or small devices through Angular libraries.

Keywords: systems biology, translational oncology, personalized medicine, Galaxy, MEAN stack, angular, protein–
protein network, Shannon entropy

INTRODUCTION

The worldwide estimate of people diagnosed with cancer was 18.1 million in 20171 and it is
predicted by the World Health Organization (WHO) to be 27 million new cases worldwide by
2030. On its own, breast cancer (BC) continues to be among the most frequent cancer around the
world alongside the prostate one. Moreover, BC, alone accounts for almost 2.1 million new cases
diagnosed annually worldwide, causing an estimate of 600,000 deaths every year (Bray et al., 2018).
Because of these dire statistics, BC has received huge attention from both the academic and the

1https://ourworldindata.org/cancer
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industry, which resulted in a large corpus of publication
(culminating at 25,000 in 20192) and publicly available datasets.

In addition, the well-known heterogeneity of breast cancer has
justified the genomic study of tumors on a large scale in search
for tumor subtypes that could allow a better understanding of the
tumor biology and could serve as support for the establishment
of genetic signatures, which, when validated in clinical trials,
could pave the way for an increasingly specific and more precise
treatment than the clinical parameters currently in use.

It is a more in-depth knowledge of tumor biology that has
allowed for greater individualization of available treatments and
has made it possible to overcome the relapse and resistance
eventually observed with traditional treatments (Naito and
Urasaki, 2018). In addition, clinical experience has shown that
knowledge of the individual characteristics of each tumor may
contribute to better therapeutic results with less toxicity.

According to the one-size-fits-all approach of chemotherapy,
treatment should fit every individual of a population. As a
consequence, it is intrinsically imprecise since it does not take
into account the genetic peculiarities of each patient. Thus, a
one-size-fits-all treatment approach does not work for everyone
and may cause harmful side effects. By contrast, personalized
oncology, which can be placed into a wider paradigm shift called
personalized medicine, involves the tailoring of medical treatment
to the individual characteristics or symptoms and responses of a
patient during all stages of care.

The paradigm of one-size-fits-all treatment is now undergoing
a shift toward personalized oncology with the identification
of molecular pathways predicting both tumor biology as well
as response to therapy. Most of those achievements have
been inserted into mathematical and computational models
by different groups, which can be used to test therapies and
hypothesis; the one presented herein fall into this category.

A new taxonomy of disease based on molecular and
environmental determinants rather than signs and symptoms
has been proposed (Collins and Varmus, 2015). The paradigm
revolution lies in the change from a clinician selecting a generic
therapy on a heuristic basis to one based on molecular facts, a
process called evidence-based medicine (Masic et al., 2008).

The tools of systems biology made it possible to analyze the
huge amount of data delivered by high throughput technologies
(broadly named Big Data, Willems et al., 2019). At the moment,
the most common strategy for implementing high throughput
technologies in oncology is to map mutations that promote
suppressor and oncogenes (Guo et al., 2014; Campbell et al.,
2020), which is a typical activity of pharmacogenomics. Briefly,
pharmacogenomics aims at understanding why individuals
respond differently to medicines on a genetic level. Consequently,
it enables one to predict an individual’s response to a drug
according to genetic information and allows one to choose
the most appropriate medication according to an individual’s
genetic composition. Furthermore, when the molecular diagnosis
is performed, targeted therapy is designed for acting on specific
molecular targets supposed to be relevant for the tumor under
consideration (Wilsdon et al., 2018). Notwithstanding all the

2https://pubmed.ncbi.nlm.nih.gov/?term=breast+cancer

knowledge we have gathered so far, the relevance of a drug target
is not obvious, and many criteria were pursuit in that quest
(Catharina et al., 2018).

The development of personalized medicine is directly
related to the availability of high-throughput technologies.
High-throughput techniques, such as microarray, RNA
sequencing (RNA-seq), and nanoString3 are important tools
for the characterization of tumors and their adjacent non-
malignant tissues (Finak et al., 2006). Therefore, these techniques
allow a better understanding of tumor biology (Carels et al.,
2020). In particular, RNA-seq analysis through in silico
methodologies demonstrated that each tumor is unique
considering the protein profile of their up-regulated genes
(Carels et al., 2015a).

Following the current state of the art, there are mainly two
types of omics tests: (i) prognostic tests, which predicts a clinical
outcome, and (ii) therapy guiding tests (theranostics), which
enable the identification of patient subgroups with a similar
response to a particular therapy (McShane and Polley, 2013). In
this report, we focus on theranostics.

A variety of multigene assays are in clinical use or under
investigation, which further defines the molecular characteristics
of the cancers’ dominant biologic pathways. Even if there has
been a growing use of biomarkers in clinical trials, the use of
single-marker and panel tests is still limited (Vuckovic et al.,
2016). Gaining insight into the molecular composition of each
tumor is recommended for eliminating the misuse of ineffective
and potentially harmful drugs.

Mapping gene alterations by reference to the genome
is generally performed to characterize indirect relationships
between tumor development and indels, mutations, hyper- or
hypo-methylation. By contrast, the description of transcriptome,
proteome, or metabolome allows the characterization of a
molecular phenotype. Interestingly, most companion diagnostics
(CD) for cancer characterization on the market are based
on mutation profiling. Accordingly, CDs are expected to
guide the application of a specific therapy supposed to be
efficacious for a given patient’s condition (Verma, 2012). As
a result, CDs allow the selection of a treatment that is
more likely to be effective for each individual based on the
genetic signatures of their tumors. Moreover, CDs are also
developed for better predicting the patient response to a
given treatment.

An approach based on molecular phenotyping recently
proposed was the identification of the most relevant protein
targets for specific therapeutic intervention in malignant BC
cell lines (Carels et al., 2015a) based on the diagnosis of up-
regulated interactome hubs. This strategy combined protein-
protein interactions (PPI) and RNA-seq data for inferring (i)
the topology of the signaling network of up-regulated genes in
malignant cell lines and (ii) the most relevant protein targets
therein. Hence, it has the benefit to allow the association of a
drug to the entropy of a target and, additionally, to rank drugs
according to their respective entropy by reference to their targets
(Carels et al., 2015b).

3https://www.nanostring.com
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Three concepts were considered in the approach followed
by Carels et al. (2015a): (i) A vertex with a high expression
level is more influential than a vertex with a low expression
level. (ii) A vertex with a high connectivity level (hub) is more
influential than a vertex with a low connectivity level. (iii) A
protein target must be expressed at a significantly higher level in
tumor cells than in the cells used as a non-malignant reference
to reduce harmful side effects to the patient after its inhibition. It
is worth mentioning that each combination of targets that most
closely satisfied these conditions was found to be specific for its
respective malignant cell lines. These statements were validated
in vitro on a BC model by Tilli et al. (2016). These authors
showed that the inactivation, by small interfering RNA (siRNA),
of the five top-ranked hubs of connection (top-5) identified for
MDA-MB-231, a triple-negative cell line of invasive BC, resulted
in a significant reduction of cell proliferation, colony formation,
cell growth, cell migration, and cell invasion. Inhibition of these
targets in other cell lines, such as MCF-7 (non-invasive malignant
breast cell line) and MCF-10A (non-tumoral cell line used as a
control), showed little or no effect, respectively. In addition, the
effect of joint target inhibition was greater than the one expected
from the sum of individual target inhibitions, which is in line with
the buffer effect of regulatory pathway redundancy in malignant
cells (Tilli et al., 2016).

The signaling network of a biological system is scale-free
(Albert et al., 2000), which means that few proteins have high
connectivity values and many proteins have low connectivity
values. As proven mathematically, the inhibition of proteins with
high connectivity values has a greater potential for signaling
network disruption than randomly selected proteins (Albert et al.,
2000). This evidence was proven in silico by Conforte et al. (2019)
in the particular case of tumor signaling networks.

In terms of systems biology, the inhibitory activity of a drug
may be modeled by the removal of its corresponding protein
target from the signaling network to which it belongs (Carels
et al., 2015b; Conforte et al., 2019). The impact of vertex removal
from a network can be evaluated by the use of the Shannon
entropy, which has been proposed as a network complexity
measure and applied by many authors to determine a relationship
between network entropy and tumor aggressiveness. Breitkreutz
et al. (2012), for instance, inferred a negative correlation between
the entropy of networks made of genes documented in the
Kyoto Encyclopedia of Genes and Genomes (KEGG4) database
considering cancer types and their respective 5-year survival.
The existence of this negative correlation was demonstrated later
on by Conforte et al. (2019) using RNA-seq data from bench
experiments stored in The Cancer Genome Atlas (TCGA now
hosted by the Genomic Data Commons Data Portal – GDC Data
Portal5).

The Shannon entropy (H) is given by formula 1

H = −
n∑

k=1

p
(
k
)

log2
(
p
(
k
))

(1)

4http://www.genome.jp/kegg
5https://portal.gdc.cancer.gov

where p(k) is the probability that a vertex with a connectivity
value k occurs in the analyzed network.

The process of multistep mining of high throughput data
can be cumbersome to handle by humans and needs translation
into machine language and automation (Deelman et al., 2009).
Thus, according to the scientific challenge, we developed codes in
Perl and Python. To deal with assembling a workflow based on
heterogeneous programming, i.e., a workflow including more than
one programming language, we chose Galaxy (Afgan et al., 2018)
that fit this purpose.

Since we believe that a molecular phenotyping strategy is
worthwhile for complementing the genotyping approach, we
described in this report how to perform the translation from
RNA-seq data into therapy targets based on the process described
in more detail in Conforte et al. (2019). The most relevant targets
stored in MongoDB can be accessed through an internet portal
written in JavaScript using the software bundle called MEAN
stack and portable to mobile and small devices through Angular
Flex-Layout library and Lazy loading6 strategies as described by
Fain and Moiseev (2018) and Holmes and Herber (2019).

MATERIALS AND METHODS

Galaxy Pipeline
TCGA Data
The gene expression data were obtained as RNA-seq files from
paired samples (control and tumor samples from the same
patient) and downloaded from TCGA7 in February 2016 and
from the GDC Data Portal8 in March 2020. The data selection
followed two criteria: (i) for each cancer type, approximately 30
patients with paired samples were required to satisfy statistical
significance; and (ii) the tumor samples had to be from a solid
tumor. The data from TCGA and GDC are given in Table 1.

In TCGA, gene expression values were given for 20,532
genes referred to as GeneSymbol, calculated by RNA-seq through

6https://en.wikipedia.org/wiki/Lazy_loading. Accessed on 14/10/2020.
7https://cancergenome.nih.gov/
8https://portal.gdc.cancer.gov/

TABLE 1 | RSEM-UQ from paired tumor-stroma data retrieved from TCGA and
FPKM-UQ from GDC.

Tumor type Abbreviation OS1 TCGA, n2 GDC, n

Stomach adenocarcinoma STAD 38 32 27

Lung adenocarcinoma LUAD 40 57 57

Lung squamous cell carcinoma LUSC 47 50 48

Liver hepatocellular carcinoma LIHC 49 49 50

Kidney renal clear cell carcinoma KIRC 63 71 71

Kidney renal papillary cell carcinoma KIRP 75 32 31

Breast cancer BRCA 82 72 46

Thyroid cancer THCA 93 57 56

Prostate cancer PRAD 98 51 50

1OS: 5-years overall survival taken from Liu et al. (2018) according to Conforte et al.
(2019), %. 2n: Sample size, number.
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expectation maximization (RSEM) (Mortazavi et al., 2008; Li
and Dewey, 2011). Since they were normalized according to
the upper quartile methods (formula 2) as reported in GDC
documentation9, we denoted them as RSEM-UQ. In the case of
GDC, gene expression values were given for 60,483 sequences,
calculated by FPKM and referred to as Ensembl accession
number. As those values were also normalized by upper quartile,
they were denoted, here, as FPKM-UQ. We considered RNA-
seq from BRCA and LUAD as non-significant because of
inconsistencies between raw counts file names, which led to a
final sample of 16 and 17 for LUAD and BRCA, respectively. The
14,126 genes for which the equivalence between GeneSymbols
and UniProtKB could be obtained went through further analysis.

Nnorm =
RCg ∗ 109

RCg75 ∗ L
(2)

where:
RCg : Number of reads mapped to the gene;
RCg 75: The 75th percentile read count value for genes in the

sample;
L: Length of the coding sequence in base pairs.

ArrayEXPRESS Data
Fastq files from RNA-seq of tumor-stroma paired samples from
14 PRAD10, and 18 non-small cell lung cancer (NSCLC)11, were
retrieved from ArrayEXPRESS12. These files were compared to
the proteins of the EBI’s interactome (see below) using BLASTx
and processed through our pipeline to measure the average
entropies of malignant up-regulated genes from both PRAD and
NSCLC. The statistical significance of average entropy differences
between PRAD and NSCLC was assessed through the Student’s
t-test using formula 3:

uobs =
|x̄1 − x̄2|√

SCE1
n1(n1−1) +

SCE2
n2(n2−1)

(3)

where:
x̄i: The average of sample i;
SCEi: the sum of squared differences of sample i;
ni: the size of sample i.
Because sample sizes of PRAD (n = 14) and NSCLC (n = 18)

were less than n = 20, uobs was compared to the theoretical value
t1−α /2 of the Student’s distribution using the k degree of freedom
calculated according to formula 4 (Welch, 1949; Dagnelie, 1970):

k =

[
SCE1

n1(n1−1) +
SCE2

n2(n2−1)

]2

1
n1−1

[
SCE1

n1(n1−1)

]2
+

1
n2−1

[
SCE2

n2(n2−1)

]2 (4)

with n1-1 < k < n1 + n2-2.

9https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_
Pipeline/
10https://www.ebi.ac.uk/ena/data/view/PRJEB2449
11https://www.ebi.ac.uk/ena/data/view/PRJNA320473
12https://www.ebi.ac.uk/arrayexpress/

Identification of Hubs Among Genes
Up-Regulated in Tumor Samples
To identify genes that were significantly differentially expressed
in the tumor samples of patients, we subtracted gene expression
values of control samples from their respective tumor paired
samples. The resulting values were called differential gene
expression. Negative differential gene expression values indicated
higher gene expressions in control samples, while positive
differential gene expression values indicated higher gene
expressions in tumor samples.

The histogram of differential expression was normalized
with the Python packages scipy. We used the probability
density and cumulative distribution functions, respectively
abbreviated as PDF and CDF, in the interval of differential
gene expression from −20.000 to +20.000, to calculate the
critical value corresponding to the one-tail cumulated probability
p = 0.975, which corresponded to a p-value α = 0.025. We
considered the genes as up-regulated when their differential
expression was larger than the critical value corresponding to
p = 0.975. The −20.000 to +20.000 range worked fine for the
p-value and normalization conditions presented in this report.
However, some normalization procedures flatten the probability
distribution with Bayesian functions for variance minimization.
Under these conditions, a p–value of 0.001 may represent a very
large critical value of 80,000 or more, which would induce the
scipy package to return “out of range.” To beat this challenge,
we introduced the possibility of tuning the −20.000 to +20.000
range to allow the user to try other normalization conditions
together with more restrictive p-values. However, for coherence,
all the data produced in this report were obtained with critical
values in the−20.000 to+20.000 range.

In a subsequent step, the protein–protein interaction (PPI)
subnetworks were inferred for the proteins identified as products
of up-regulated genes. The subnetworks were obtained by
comparing these gene lists with the human interactome.

The human interactome (151,631 interactions among 15,526
human proteins with UniProtKB accessions) was obtained from
the intact-micluster.txt file (version updated December 2017)
accessed on January 11, 201813.

We used the PPI subnetworks of up-regulated genes from
each patient to identify each vertex (protein) degree through
automated counting of their edges. These values were used
to calculate the Shannon entropy of each PPI subnetwork as
explained in the section “Shannon Entropy” below.

Shannon Entropy
The Shannon entropy was calculated with formula 1, where p(k)
is the probability of occurrence of a vertex with a rank order k
(k edges) in the subnetwork considered. The subnetworks were
generated automatically from gene lists found to be up-regulated
in each patient.

Validation Process
The diagnosis of up-regulated genes with a higher vertex degree,
which we considered as the most relevant target here, depends

13ftp://ftp.ebi.ac.uk/pub/databases/intact/current/psimitab/intact-micluster.txt
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on how fastq and raw count files are processed. First, fastq reads
need to be transformed into raw counts and, second, raw counts
need to be normalized. For validating this process, we used
the data of RSEM-UQ from TCGA as available in 2016 that
we referenced to as TCGA RSEM-UQ below. When referring
to the FPKM-UQ files from GDC accessed in March 2020, we
denoted them as GDC FPKM-UQ. Since we had no access to the
raw counts files of TCGA, we used the data from GDC. GDC
provided the TCGA data in Bam format, raw counts, FPKM,
and FPKM-UQ files. Since we knew the correlation between the
entropy and the 5-years overall survival (OS) for nine cancer
types as established from TCGA RSEM-UQ (Conforte et al.,
2019), the validation challenge was (i) to normalize the GDC
raw counts files (we characterized this step as RPKMupper, see
the description below) from tumors of the nine cancer types; (ii)
to compare the RPKMupper normalization to the TCGA RSEM-
UQ for critical value, number of up-regulated genes, and the
correlation between entropy and 5-years OS as well as targets; (iii)
to compare RPKMupper, TCGA RSEM-UQ and GDC FPKM-UQ
for critical value, number of up-regulated genes, the correlation
between entropy and 5-years OS, and targets, and (iv) to optimize
RPKMupper by log transformation for target selection given the
maximization of the correlation coefficient of the relationship
between entropy and 5-years OS. Having this process validated,
it might be applied to any method of read counting from fastq file
by read mapping. This process is summarized in Figure 1.

As TCGA, GDC uses the RSEM methodology to map reads
to reference genes. Here, instead of using the human genome
sequence GRCh38.d1.vd114, we used the proteins sequences from
UniprotKB as a reference. Since only about 80% of the proteins
from the EBI’s interactome referenced by UniprotKB matched the
consensus coding sequences (CCDS)15 of Ensembl, we decided to
map reads in fastq files directly with the proteins sequences of
the intact-micluster interactome using BLASTx. Thus, in the first
instance, the exercise of validation concerned the processing of
raw counts into RPKM-UQ output.

For raw count normalization, we used a modified version of
the RPKM formula (5):

RPKM =
RCg ∗ 109

RCpc ∗ L
(5)

where:
RCg : Number of reads mapped to the gene;
RCpc: Number of reads mapped to all protein-coding genes;
L: Length of the coding sequence in base pairs.
RPKM is relative to the total number of reads, which is a

linear expectation. Quantile normalization (Bolstad et al., 2003)
forces the distribution of the normalized data to be the same
for each sample by replacing each quantile with the average
quantile across all samples. Instead, one may focus on a specific
quantile. For instance, the upper quartile normalization (Bullard
et al., 2010) divides each read count by the 75th percentile of
the read counts in its sample. However, the gene frequency (y)

14https://gdc.cancer.gov/about-data/data-harmonization-and-generation/gdc-
reference-files
15https://www.ncbi.nlm.nih.gov/projects/CCDS/CcdsBrowse.cgi

according to the gene expression (x) follows a power law (the
relationship of log(y) and log(x) is linear, data not shown) (see
also Balwierz et al., 2009; Awazu et al., 2018). RPKM, as defined
in formula 5, does not take the non-linearity associated to large
expression level into account. By contrast, the upper quartile
normalization enables us to take the non-linearity associated with
extreme expression values into account. Formula 5 can be written
as formula 6:

RPKMupper =
RCg ∗ 109

L ∗ (RCpc − (δ ∗ RCpc)))
(6)

where δ is a tuning factor.
For δ = 0, formula 6 is equivalent to RPKM (formula 5) and

for δ = 0.25, it is equivalent to a upper quartile normalization. In
this work, we used δ = 0.05 because it optimized the coefficient of
correlation between entropy and 5-years OS.

It appeared that in addition to the TCGA RSEM-UQ (accessed
in 2016), GDC (accessed in March 2020) implemented a
correction for false positive minimization (Anders and Huber,
2010; Love et al., 2014; Holmes and Huber, 2019). The result of
this minimization is a flatten power law of gene expression with
an effect similar to that of formula (7):

LogNorm = C ∗ xi ∗ (logb
(
logb(xi + 1)

)
+ 1) (7)

where:
C: is a constant that was set to 20 to optimize the coefficient of

correlation of the relationship between entropy and 5-years OS;
xi: is the RPKMupper value of the ith element;
b: is the base of the logarithm, which was set to 1.1.
As can be seen from formula 7, the FPKM-UQ output follows

a log-log relationship except for the variance that is stabilized by
a Bayesian process.

For assessing the efficiency of TCGA raw counts processing
according to formula 6, we tabulated the sample size of
subnetworks of up-regulated genes as well as the critical values
obtained for PDF = 0.975. This process was performed by
calculating RPKMupper on the raw counts available from GDC,
and compared the critical values to those obtained from GDC
FPKM and TCGA RSEM-UQ. We also compared the correlation
between entropy and 5-years OS obtained with raw counts
normalized with RPKMupper to that obtained by using the TCGA
RSEM-UQ. Finally, we compared the most relevant targets
obtained from both processes.

In the case of the GDC FPKM-UQ, one more step was
necessary since the raw counts sequentially processed through
formula 6 and 7 had to be compared to FPKM-UQ data available
from the GDC portal. Again, we compared the performance of
processing raw counts with formula 6 and 7 to GDC FPKM-UQ
data considering (i) the critical values for PDF = 0.975, (ii) the
subnetwork size of up-regulated genes, (iii) the correlation of
entropy vs. 5-years OS, and (iv) the list of most relevant targets
obtained through both processes.

Finally, we also compared the performance of sequentially
processing raw counts through formula 6 and 8 (formula 8 is
derived from Cloonan et al., 2008) by using the same measures
as just described (i to iv). We applied this formula because we
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FIGURE 1 | Process of Galaxy workflow validation.

noticed that it optimized the coefficient of correlation of the
relationship between entropy and 5-years OS.

Log2 = xi
(
logb(xi + 1)

)
(8)

where:
xi: is the RPKMupper value of the ith element;
b: is the base of the logarithm, which was set to 2.

Galaxy Scripts
Galaxy is a scientific open-source workflow platform that aims at
helping users to perform repetitive and complex operations over
large datasets. With Galaxy, users can visually create processing
pipelines reproducing the data flow over programs and datasets
that are viewed as interconnected box objects. Additionally,
Galaxy is written in Python and JavaScript, but has an XML like
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interface able to transfer the processing flux to other languages.
Galaxy comes with a rather large initial set of tools that can
be added to the desktop according to simulation demands.
Internally, every Galaxy tool is made up of a XML file that
describes its functionalities and interface. Once XML interfaces
are programmed, Galaxy is very simple to operate in an object-
oriented mode by linking input data with scripts together.

By means of a specific script (see below), Galaxy can store
data in MongoDB, which is a non-relational object-oriented
database (NoSQL) (Bradshaw et al., 2019). MongoDB can be
accessed through Angular, which serves as a frontend framework
for users (the physician or/and technician operating the system)
(Fain and Moiseev, 2018).

As outlined in the introduction of this report, our Galaxy
workflows are derived from the agglomeration of Perl scripts
(except for CVC.py) that were written for previous reports
(Carels et al., 2015a; Conforte et al., 2019). These tools are as
follow:

(1) Count Connections (CC) counts the number of connections
that each protein has with their neighbors in a subnetwork
of up-regulated genes. CC is an intermediate step to
compute the entropy.

(2) Critical Value Calculation (CVC) computes a critical value
according to the normal distribution that fits the observed
data and a probability level informed by the user. All genes
with expression values above the critical value, used here as
a threshold, are considered as up-regulated.

(3) Differentially Expressed Genes List (DEGL) computes de
differential gene expression between RNA-seq data from
tumoral and control samples (tumor minus control).

(4) Entropy Calculation (ETP) computes the Shannon entropy
corresponding to a subnetwork. Here, we typically
considered the subnetworks of genes that are up-
regulated in tumors.

(5) Translation of Gene Symbol into UniProt KB accession
numbers (GS2UP). Former TCGA data files identified
genes by gene Symbol, while the interactome from
EBI (the intact-micluster.txt file) uses UniProtKB
accession numbers. GS2UP translates the gene symbols to
UniProtKB accession numbers to build the subnetwork of
up-regulated genes.

(6) Translation from Ensembl into UniProt KB accession
numbers (Ensembl2UP). GDC data files identify genes
by reference to Ensembl, while the interactome from
EBI (the intact-micluster.txt file) uses UniProtKB
accession numbers. Ensembl2UP translates the Ensembl to
UniProtKB accession number to build the subnetwork of
up-regulated genes.

(7) Protein To Total Connections Sorted (PTTCS) sorts the
file of malignant up-regulated genes according to the
level of connectivity found for their respective protein in
descending order.

(8) Subnetwork Construction (SRC) computes a subnetwork
of proteins based on a gene list by reference to the
intaractome; here, the gene list is typically the list of up-
regulated genes.

(9) Reads Per Kilobase Million – Upper Normalization
(RPKMupper) computes de normalization of RNA-seq data
according to formula 6.

(10) Double Logarithm Transformation (LogNorm)
computes de normalization of RPKMupper data
according to formula 7.

(11) Base 2 Logarithm Transformation (Log2) computes de
normalization of RPKMupper data according to formula 8.

(12) PTTCS to MongoDB (P2M) computes the data
storage within MongoDB.

These tools can be downloaded from GitHub: https://github.
com/BiologicalSystemModeling/Theranostics under the MIT
License, however, the concept of theranostics based on this
approach is under the regulation of intellectual property number
BR1020150308191 for Brazil.

Pipeline Scaling
To investigate how the pipeline scales, we processed the GDC
raw counts data using an AMD Ryzen 9 3900X (4.6 GHz)
CPU with 20 threads dedicated to Galaxy and 64 GB RAM.
First, we chose LUSC and PRAD tumors as representing high
entropy (low OS) and low entropy (high OS) cancer types,
respectively. In these two cases, we could exactly compare their
scaling until 45 patients by increments of five. For STAD,
LIHC, THCA, and KIRC, we measured the processing time
for only two patient numbers (15 and 25). We also analyzed
the statistical significance of the difference in processing speed
observed for entropy and PTTCS pipeline for 25 patients with
the Student’s t-test. Considering the pipeline for hub diagnosis
from BLASTx output, we only had access to a small number
of patients, which limited the power of the experiment. We
compared 3, 6, 9, 12 patients in PRAD and NSCLC from
ArrayEXPRESS (see above).

Web Application
As outlined in the introduction, we aimed at releasing a tool
based on a phenotyping approach for the rational therapy of
cancer. At the moment, the current approach of cancer therapy is
still largely based on mutation mapping (genotyping approach),
but the potential benefits of integrating RNA-seq data must be
considered and this is the purpose of this report.

When producing a bioinformatic application, it is necessary to
validate it according to some objective criterion. As presented in
the previous section, we chose degree entropy as such a criterion
for the validation of the Galaxy pipeline. Galaxy enabled us to
test the performance of several configurations for optimizing
the correlation between the degree entropy of up-regulated
subnetworks and the patient’s 5-years overall survival.

However, a website is necessary to make this tool available
to the medical community and its development makes part of
another step of validation that is its acceptance by professionals.
Below, we briefly describe the technologies that we used to build
the web site and then described how we implemented them
through forms for data submission.
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MEAN Stack
Both MongoDB and Angular are part of the MEAN stack (MEAN
for M of MongoDB, E of Express.js, A of Angular, and N of
Node.js). The use of MongoDB with Node.js, its native driver,
is facilitated by the Mongoose16 library. Mongoose, amongst
other benefits, allows (i) the use of JavaScript as a programming
language, which save the need for database programming,
(ii) the modeling of data before their saving into MongoDB,
and (iii) the horizontal scaling17, which means that one can
expand storage capacity without the need of multiple structural
changes. This last feature decreases the cost of prototyping and
expansion. It also enables one to work with several database
connections simultaneously.

Node.js is part of the MEAN stack that we used to build the
backend of the web application; it is the server used to connect
the database and the frontend. Essentially, Node.js is a framework
that is used to create servers and has its own HTTP handler
(Holmes and Herber, 2019), which eliminates the need of other
intermediate libraries.

The MEAN also included Express.js, a JavaScript-based library
whose purpose is to facilitate the exploration of the Node.js
functionalities (e.g., creating routes).

In addition to JavaScript, Angular also allows programming in
TypeScript, which includes the concept of variable type and a set
of internal libraries (e.g., RxJS for asynchronous programming).
Furthermore, Angular offers compatibility with many web
development libraries, such as Bootstrap, jQuery, and Forms.

MEAN stack elements have JavaScript as a common
programming language and JavaScript Object Notation (JSON) as
a common file exchange format. Except for Angular which is a
frontend technology, MongoDB, Express.js, and Node.js run on
the server-side, as so they are generally classified as the ‘backend’
of a web application (Holmes and Herber, 2019).

Our web application has been deployed in a cloud
environment using Heroku18,19 by implementing the MEAN
stack (Holmes and Herber, 2019). The version of Angular that
we used here was CLI 8.3.23. In addition to those technologies,
we were also using NPM libraries designed to support the
MEAN stack. We used JavaScript for interfacing with MongoDB,
Express.js, and Node.js as well as several free packages available
in NPM to support these technologies20. For instance, we used
Visual Studio Code (version 1.48) as a programming platform
and Avast Secure Browser as a testing browser. Avast provides a
built-in test system for small devices such as smartphones.

Angular
After compilation, Angular generates Single Page Applications
(SPAs), which means that the code is sent to the browser at once
when the user accesses the page for the first time. The main
benefit of this approach is to create dynamic pages, improving the
navigation experience to the frontend user. Angular speeds up the

16https://mongoosejs.com/docs/
17https://docs.mongodb.com/manual/sharding/
18https://www.heroku.com/
19http://teranostico.herokuapp.com/
20https://www.npmjs.com/package/repository

server–client communication by avoiding multiple client accesses
and enabling complex calculations as well as data validations
within the client browser. Moreover, the main difference of
SPAs compared to a classic web application based on PHP
(i.e., static pages) is that it does not load the page when one
changes from page to page since all the code is already on
the browser. Therefore, the main benefits of Angular are that
(i) heavy calculations can be performed on the frontend side,
which can alleviate the computing charge on the server; (ii)
pre-validated data may be submitted to the server, avoiding
the need for back and forth validation process; (iii) TypeScript
(a superset of JavaScript) has the structures of a conventional
programming language with powerful build-in libraries (e.g.,
RxJS), which enables the performance of scientific calculations on
the frontend side if needed.

We also took advantage from the Angular library called
Angular Material21, which allows predefined functions such
as forms and themes. Angular Material can be used either
within the HTML language as predefined tags or within
TypeScript for dynamic pages (e.g., for Reactive forms). We used
Angular Material within TypeScript since it provides much more
programming freedom, e.g., form validation.

Node.js
One of the key features of Node.js is that it allows the usage
of JavaScript (or TypeScript) on the server-side. Until then,
JavaScript was restricted to browsers and this progress has been
possible due to the V8 Engine that compiles JavaScript code to
native machine code at runtime. We used the NPM repository to
install and manage all the Node.js (version 10.16.3) packages.

Node.js applications are stateless, which means that they do
not keep information about the user stored locally and for
that reason only require low amount of local RAM. Node.js
applications are also single thread, which means that they do not
stop the main thread as they result from users’ interactions.

We chose the JSON Web Token (JWT) approach to save the
user information temporally on the frontend. JWT is an encoded
string used when the frontend communicates with the server. The
benefits of JWT are (i) that it carries a server signature, which
must match whenever the user tries to communicate with the
server, and (ii) that an expiration date may be set, which implies
token refreshing.

Express.js
Express.js is a library whose purpose is to facilitate the
exploration of the Node.js functionalities (e.g., creating
routes and servers). Here, we used Passport.js22 together
with Express.js (version 4.16.1) to build user sections as
described by Holmes and Herber (2019).

MongoDB
MongoDB can be accessed through Angular using Node.js
as server; Angular serves as a frontend framework for
users (Fain and Moiseev, 2018). MongoDB is horizontally

21https://material.angular.io/. Accessed on 14/10/2020.
22http://www.passportjs.org/. Accessed on 14/10/2020.
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expandable23, which enables to expand storage capability
without extensive physical changes. This feature decreases
the cost of prototyping and posterior expansion. Another
interesting property of MongoDB is the MongoDB Atlas24, which
provides cloud storage.

The usage of MongoDB with Node.js is facilitated by the
Mongoose25 library. Mongoose, amongst other benefits, allows
(i) the usage of JavaScript as a programming language, which
saves the need for database programming, (ii) the modeling of
data before their storage into MongoDB, and (iii) the easier
exploration of the MongoDB horizontal scaling capability26.

Angular Flex-Layout
According to Fain and Moiseev (2018), we used a single
code to implement Responsive Web Design (RWD) to optimize
maintenance costs. This strategy allows the user interface layout
to change in response to the device screen size (desktop or
cell phone). RWD allows the interface simplification on small
devices by limiting the display of extra-small devices to key
functions (see Supplementary Figure 1 for screen size and
Angular screen size settings).

We tested the responsiveness of our portal on a desktop
computer using the built-in developer tool of Avast Secure
Browser. We also tested it on the following devices: Moto G4,
Galaxy S5, Pixel 2, Pixel 2 XL, iPhone 5/SE, iPhone 6/7/8,
iPhone 6/7/8 Plus, iPhone X, iPad, iPad Pro. However, the
Avast Secure Browser simulator does not necessarily consider
the operating system, and it may give an unexpected display in
uncommon devices.

Passport.js
For creating the user section, we used Passport.js27. Its main
benefits are the possibility of (i) creating customized login system
or use pre-defined ones, such as those of Facebook, for example;
and (ii) using it with JWT tokens due to their built-in libraries
that facilitate their use. To implement JWT within Passport.js,
we used express-jwt28, which allows the validation of JWT tokens,
including expiration date and abnormal tokens.

Forms
The function of the patient main form is to collect and to store
basic information regarding the patient and its tissue samples for
genetic analysis. This information is necessary for the posterior
retrieval from the system database of patients’ medical records.
Patient data are central to the system since they articulate genetic
analyses with medical records that must be encrypted (e.g.,
patient name, mother’s name, and patient id). The patient data
collected through the main form of the frontend are stored
together with genetic data from the backend within MongoDB.

23https://docs.mongodb.com/manual/sharding/. Accessed on 14/10/2020.
24https://www.mongodb.com/cloud/atlas. Accessed on 14/10/2020.
25https://mongoosejs.com/docs/. Accessed on 14/10/2020
26https://docs.mongodb.com/manual/sharding/. Accessed on 14/10/2020.
27http://www.passportjs.org/. Accessed on 16/10/20.
28https://www.npmjs.com/package/express-jwt. Accessed on 16/10/20.

The request for a genetic exam is of key importance when
it comes to the service provided. When physicians send tumor
samples, they will be asked to request their gene expression
analysis and provide patient information as well as medical
records (see Supplementary Figure 2).

The outcome form has such as (i) details of the treatment
applied, (ii) treatment benefits, (iii) whether the gene expression-
based recommendations were followed, and so forth (see
Supplementary Figure 3). The outcome form is essential for
establishing case statistics.

Angular provides two options when it comes to forms:
Template-Driven Forms and Reactive Forms29; we used
the latter. The main reason for this choice was that this
option provides (i) a set of built-in routines for form
validation, including error messages that can easily be
shown on the frontend, and (ii) the possibility of building
its own customized error handling routines. By error, we
mean any input to the form fields that does not fit what
is expected, e.g., e-mail out of the format or password that
does not match. We were also using form validators that
communicate with the server on the background side to check
data consistency.

Additionally, we used FormBuilder30 that is an Angular service
used for the programming of Reactive form. With FormBuilder,
one can construct JSON objects (our data format), validate
the inputs of the forms individually or as a group, and other
functionalities.

Encryption, Decryption, Hashing, and
JWT Coding
Since we are dealing with potentially sensitive information,
we followed standard practices to protect the information
submitted to the system and stored on our database. In
the current stage of development, we are using standard
libraries, which can be replaced by more secure ones as soon
as the platform scale up. In the current version, we are
using three different approaches to protect information from
potential unauthorized accesses: (i) encryption/decryption, (ii)
hashing, and (iii) JWT (e.g., communication with API31). For
encryption/decryption, we are using the library CryptoJS.32 The
‘secret’ is kept on the server using a library known as dotenv33,
which is largely used to store sensitive information in Node.js
applications. For hashing, we are using the library bcrypt34 in
the following configurations: bcrypt.genSalt(10, callback), the
first argument is the size of the salt and the second is the
function for hashing.

29Components in the Angular realm is a set of three files: CSS (appearance-related),
TS (typescript, coding), and HTML (classical static page design file). A page is built
from at least one component, which can independently interact with each one of
the others (see Fain and Moiseev, 2018 for a more detailed discussion).
30https://angular.io/guide/reactive-forms
31Application Programming Interface. These routines are designed to access the
database following some pre-defined rules such as token authentication.
32https://www.npmjs.com/package/crypto-js
33https://www.npmjs.com/package/dotenv
34https://www.npmjs.com/package/bcrypt
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The code for the web site can be downloaded from GitHub:
https://github.com/Teranostico under the MIT License.

RESULTS

Galaxy Pipeline
We validated and automated the process published by Conforte
et al. (2019). Thus, one sought to reproduce the results obtained
by Conforte et al. (2019) when the pipeline was fed with the same
data (TCGA RSEM-UQ). We indeed succeeded to reproduce the
correlation r = –0.68 between entropy and patient’s 5-years OS for
a probability of p = 0.975 in the determination of up-regulated
genes, which allowed us to test whether the maximization of r
really occurred for p = 0.975. To meet this challenge, we measured
the correlation coefficient for p = 0.97 and p = 0.98, and found
r = –0.53 and r = –0.60, respectively. The automated workflow is
given in Figure 2A.

As shown in Figure 2A, the input data collection represents
a collection of paired samples (tumors identified as 01A and
control identified as 11A) with the same list of genes (identified
by gene symbol) for each patient of the TCGA database.
Following the processing flux, the gene symbols are transformed
into UniprotKB accession numbers (GS2UP) to perform the
subtraction of the control RNA-seq expression data from that
of the tumor (DEGL). The calculation of the critical value that
identifies up-regulated genes is performed by the Python script
CVC. The critical value is calculated according to a probability
level chosen by the user and is used by the script SRC for
extracting the list of up-regulated genes. This list is used by the
CC script for counting the connections at each vertex of the
subnetwork of up-regulated genes. The connection count at each
vertex is necessary for computing the Shannon entropy of the
tumor subnetwork of up-regulated genes by the ETP script.

We validated the pipeline with the GDC raw counts comparing
their RPKMupper to the TCGA RSEM-UQ (Figure 2B without
the log transformation step). First, we computed the raw counts
according to RPKMupper excluding BRCA and LUAD because
of inconsistencies between file names available for FPKM-UQ
and raw counts. In both BRCA and LUAD, cleaning samples
for perfectly matched files led to sample size below n = 20,
which may bias comparison (sample size is considered to be
statistically trustworthy from at least n = 30 and needs correction
below this threshold). When we compared the critical values for
p = 0.975 considering the raw counts normalized with RPKMupper
(Table 2, column GDC RPKMupper), we found values similar to
those obtained by processing TCGA RSEM-UQ data (Table 2,
column TCGA RSEM-UQ).

We found that critical values for p = 0.975 of GDC FPKM-UQ
were ∼5 times larger (Table 2, column GDC FPKM-UQ),
on the average (Figure 2B without normalization and log
transformation steps), than those of TCGA RSEM-UQ (Table 2,
column TCGA RSEM-UQ and GDC RPKMupper). This difference
is due to the processing update performed during the data
transfer from TCGA to GDC portal involving the flattening of
the differential gene expression distribution.

When we successively computed GDC raw counts with
formula 6 (RPKMupper) and 7 (LogNorm), we found
critical values for p = 0.975 (Table 2, column GDC
RPKMupper + LogNorm) close to that of GDC FPKM-UQ
(Table 2, column GDC FPKM-UQ), suggesting a similar
behavior of differential gene expression flattening as the one
applied by the GDC data processing (Figure 2B).

The comparison of the size of subnetworks of up-regulated
genes in tumors is given in Table 3. The difference of subnetwork
size between GDC FPKM-UQ and GDC RPKMupper + LogNorm
samples, on one hand, and TCGA RSEM-UQ and GDC
RPKMupper samples, on the other hand, raised the question of
whether the large subnetwork size of GDC FPKM-UQ and GDC
RPKMupper + LogNorm might be trusted.

The subnetwork sizes obtained by successively processing
GDC raw counts with formula 6 and 8 (Table 4, column Node
number) were smaller and more realistic, representing between
∼2% and∼5% of the human proteome.

As explained above, we did not consider BRCA and LUAD for
comparison between RPKMupper and FPKM-UQ. However, the
FPKM-UQ correlation plot was similar to that of other authors
(data not shown).

The features of the linear regression between the subnetwork
entropies and the 5-years OS are given in Table 5 for the different
pipeline configurations tested here.

Interestingly all the combinations involving RPKMupper of
Table 5 resulted in a larger slope of the regression line; in other
word, they resulted in an increased statistical significance of the
regression line.

Compared to GDC RPKMupper (Figure 3A), the introduction
of the LogNorm in the workflow of Figure 2B resulted in a
systematic shift of entropies by as much as ∼1.5 bit toward
larger values (in the range of 3.6–4.0 compared to 2.0–2.5 in
Conforte et al., 2019), which denote a larger subnetwork of up-
regulated genes with larger number of hubs as a consequence
of the distribution flattening of differential gene expression. The
correlation obtained by successively processing raw counts with
RPKMupper and LogNorm (Figure 3B) was similar (r = –0.86
without BRCA and LUAD) to that obtained with GDC FPKM-
UQ (r = –0.76 without BRCA and LUAD) (Figure 3D). Finally,
it is the correlation obtained by successively processing raw
counts with formula 6 and 8 (Figure 3C) that showed the
best correlation coefficient and slope of the regression line
(r = –0.91).

The effect of LogNorm on distribution flattening of
differential gene expression when comparing RPKMupper to
RPKMupper + LogNorm was similar to that observed when
comparing TCGA RSEM-UQ (Figure 4A) to GDC FPKM-UQ
(Figure 4D), respectively.

When we compared the correlation coefficient according to
p for GDC FPKM-UQ data, we obtained r = –0.758, r = 0.763,
and r = 0.477 for p = 0.95, p = 0.98, and p = 0.99, respectively.
This result shows that the maximum of r was associated with
p = 0.98, but the difference with p = 0.975 was only 0.002 units of
the correlation coefficient, which confirmed that the peak around
the maximum of r was less sharp for GDC FPKM-UQ than for
TCGA RSEM-UQ since it spreads over p = 0.95 and p = 0.98.
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FIGURE 2 | Workflow for the validation of the correlation between the entropy of the subnetworks of up-regulated genes from different tumors and their respective
5-years OS. (A) TCGA. (B) GDC.

The flattening of the correlation peak according to the
probability density appeared as a consequence of the probability
density distribution shape. The distribution of FPKM-UQ values

was flatter in GDC FPKM-UQ (Figures 4D–F) compared to
TCGA RSEM-UQ (Figures 4A–C), which is reflected by larger
critical values associated with GDC (Table 2). The validation of
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TABLE 2 | Critical values of probability density for p = 0.975.

Cancer GDC RPKMupper TCGA RSEM-UQ GDC RPKMupper + LogNorm GDC FPKM-UQ

Type Av. StDev Av. StDev Av. StDev Av. StDev

PRAD 2661.73 498.89 2566.88 507.38 15558.79 1053.56 15809.77 779.91

LUAD 2897.95 437.50 3138.07 313.74 15720.85 1221.94 16340.59 860.48

LUSC 3532.06 426.30 3527.89 429.98 15775.55 857.31 16161.27 730.71

BRCA 3211.72 434.50 3024.87 465.83 15346.96 664.95 15923.64 682.80

KIRC 3133.16 236.39 3162.20 363.44 15820.34 742.76 16310.36 604.57

KIRP 3084.69 365.17 3089.64 390.28 15482.35 905.77 16165.59 597.30

THCA 2610.75 313.49 2590.59 406.12 14876.38 1089.35 15559.35 713.54

STAD 3330.13 444.58 3273.89 470.64 16511.00 865.11 16473.27 718.44

LIHC 3085.76 474.40 3409.36 468.48 16235.74 1087.23 15639.15 801.43

Average 3060.88 403.47 3139.90 420.79 15703.11 943.11 16042.55 721.02

St. Dev. 298.36 83.63 299.07 56.29 479.01 181.82 324.01 86.51

TABLE 3 | Size of subnetwork (vertex number) of genes up-regulated in tumors for a probability density of p = 0.975.

Cancer GDC RPKMupper TCGA RSEM-UQ GDC RPKMupper + LogNorm GDC FPKM-UQ

Type Av. StDv. Av. StDv Av. StDv. Av. StDv.

PRAD 269.19 62.01 254.20 40.66 5046.23 1209.45 4029.75 499.89

LUAD 290.35 58.66 276.35 49.07 4973.16 1203.25 4779.27 401.19

LUSC 345.21 48.50 317.12 48.33 5824.63 904.38 4981.60 460.49

BRCA 311.55 46.50 286.50 42.16 5305.85 1219.24 4816.61 361.22

KIRC 332.28 42.37 328.10 52.85 5117.83 881.77 4556.75 294.80

KIRP 313.48 49.64 303.22 41.14 4983.68 1136.93 4678.77 305.26

THCA 256.52 47.31 276.95 57.44 4016.13 948.02 4142.73 387.09

STAD 341.67 52.90 276.59 51.66 6773.41 928.62 4764.48 351.76

LIHC 352.74 68.99 256.24 85.31 7007.28 143.05 4522.08 400.83

Average 312.55 52.99 286.14 52.07 5449.80 1096.08 4585.78 384.72

St. Dev. 34.34 8.57 25.49 13.72 942.86 189.53 315.90 66.69

the mapping process of reads on the EBI interactome proteins
needed similarity comparison of fastq files using BLASTx.
We performed this validation by recycling the components of
Figure 2 for processing RNA-seq data as shown in Figure 5.

The workflow shown in Figure 5 needed to be fed with
BLASTx outputs. After mapping reads to their respective protein
sequences in the interactome, both tumor and control raw
count files were normalized (UTCENGupper) according to their
coding sequence size (RPKMupper step) and expression level using
formula 2. The rest of the pipeline is as in Figure 2 except for the
last step of sorting by decreasing level of connection (PTTCS) and
data storage in MongoDB (P2M).

The list of top-n connected up-regulated hubs is released
as output data from the workflow, and stored in MongoDB
(Figure 5) together with the patient’s clinical data. These data can
be formatted as a medical report by the JavaScript code within the
web page according to the user request.

Considering the entropies of subnetworks of NSCLC
up-regulated genes (x1 = PRJNA320473) and PRAD
(x2 = PRJEB2449), the uobs calculated with formula 3 with
x̄1 = 2.99475 and x̄2 = 1.66472, respectively, as well as
SCE1 = 10.31347 and SCE2 = 6.70566, respectively, was
5.00748. Since k was found to be 29.06411 (∼29) for the sample

sizes considered, the theoretical values of t for p = 0.975 and
p = 0.999 were 2.045 and 3.396, respectively. Because uobs > tth,
we rejected the null hypothesis of average equality for NSCLC
and PRAD and concluded that the entropy of NSCLC was

TABLE 4 | Critical values of RPKMupper + Log2 for a probability density of
p = 0.975 and vertex number of subnetworks of genes up-regulated in tumors.

Cancer Critical value Vertex number

Type Average StDev Average StDev

PRAD 7359.58 1019.74 884.69 248.58

LUAD 7985.00 1105.05 946.58 219.40

LUSC 9325.45 1187.62 1244,35 232,65

BRCA 8398.81 1232.49 1087.20 240.74

KIRC 8335.51 561.98 1035.82 143.58

KIRP 8299.87 777.86 1014.35 206.89

THCA 7210.95 706.19 775.96 140.05

STAD 9173.28 1154.74 1264.93 249.58

LIHC 8398.81 1232.49 1235.50 294.36

Average 8276.36 997.58 1054.38 219.53

St. Dev. 707.07 251.53 171.09 50.27
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TABLE 5 | The features of the linear regression between the entropy and the 5-years OS for p = 0.975.

Normalization method Coef. Correl. (with BRCA + LUAD) Coef. Correl. (without BRCA + LUAD) Regression (without BRCA + LUAD)

GDC RPKM –0.36 –0.55 –

GDC RPKMupper –0.68 –0.86 (Figure 3A) y = –0.0084x + 2.717

GDC RPKMupper + LogNorm –0.67 –0.85 (Figure 3B) y = –0.0090x + 4.473

GDC RPKMupper + Log2 –0.69 –0.91 (Figure 3C) y = –0.0096x + 3.460

GDC FPKM –0.11 –0.13 –

TCGA FPKM-UQ* –0.68 –0.64 y = –0.004x + 2.507

GDC FPKM-UQ –0.71 –0.76 (Figure 3D) y = –0.0039x + 4.025

*See Conforte et al., 2019.

FIGURE 3 | Correlation of subnetwork entropies vs. 5-years OS for p = 0.975. (A) GDC RPKMupper. (B) GDC RPKMupper + LogNorm. (C) GDC RPKMupper + Log2.
(D) GDC FPKM-UQ.

significantly larger than that of PRAD. This result is in agreement
with the negative correlations of Figure 3 and validates the
pipeline here presented.

As the methodology was validated, it could be used for the
diagnosis of the top-n most connected proteins within the list
of up-regulated genes in the tumor compared to the stroma. It
is important to underline that the entropy was used only for the
purpose of methodology validation.

A pipeline to identify the connection hubs is given in
Figures 6A,B, where the purpose of PTTCS is to compare
up-regulated genes to the list of vertex connections in the
interactome to rank them in decreasing order of connection
number in the output file. A priori, top-20 most connected
proteins among the up-regulated genes of tumors should be
enough to design a personalized treatment. However, this
number depends on drug availability.

The comparison of the most relevant targets associated with
the different normalization methods applied in this report is

shown in Table 6. Table 6 reports the number of tissues (#
column) where the gene of a given protein (Acc column) was
up-regulated among nine different tumors. For illustration, we
only kept genes up-regulated in at least 70% of tumor samples
of each cancer type (pink). The colors in the first column report
for the targets that are common between different sections (A to
E) of Table 6 (turquoise is for the genes common to Tables 6A–
E; blue is for the genes common to Tables 6A,B,D,E; yellow is
for the genes common to Tables 6A–C,E; mallow is for the genes
common to Tables 6A,B,E; and green is for the genes common to
Table 6D,E).

Tables 6A–E show that the most relevant targets are largely
shared among methods. In Tables 6C,D, target personalization
according to the tumor was lower than in Tables 6A,B,E.
Because of the larger average network size that it produced,
the normalization with RPKMupper + Log2 (Table 6E) showed
a larger targets number than TCGA RSEM-UQ and GDC
RPKMupper (Tables 6A,B), similar to those of Tables 6C,D
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FIGURE 4 | Critical value calculation (red dot line) by CVC script in TCGA (A–C) and GDC (D–F) in LUSC (TCGA-22-4593 sample). (A,D) Histogram of observed
differential gene expression distribution (tumor-control) of genes. (B,E) Function of density of probability. (C,F) Function of cumulated probability. The critical values
were 3,633.8 and 17,042.9 for TCGA and GDC, respectively.

but with a larger level of tumor personalization. Because of
the reasonable size of subnetworks and the best correlation
relationship between entropy and the 5-years OS it produced,
the successive processing through RPKMupper and Log2
normalization was considered here as the best compromise.

Scaling Analysis
The analysis of LUSC and PRAD over 45 patients showed
that the scaling of pipeline processing is linear and perfectly
predictable (Supplementary Table 1 and Figure 7A). In addition,
Supplementary Table 1 shows that the entropy pipeline takes
a systematically larger time to be completed for high entropy
cancer types than for low entropy cancer types. This is also true
for the hub diagnosis pipeline (PTTCS). A more careful analysis
for 25 patients for LUSC, STAD, LIHC, on one hand, and PRAD,
THCA, KIRC, on the other hand, showed that this assumption

is statistically significant (Figure 7B). Considering the pipeline
for hub diagnosis from BLASTx output, we found the time series
50, 94, 137, 187 and 53, 100, 145, 190, for PRAD and NSCLC,
respectively. These differences were not significant, but suggest
that this pipeline scales similarly to the PTTCS one.

Web Application
The web application implements the graphical interface that
allows the user to interact with the forms and their respective
accounts (i.e., private areas). As outline above, it is the server
that runs Galaxy and hosts MongoDB that stores the up-
regulated hubs and patient data introduced by the user, which are
necessary to produce the medical record. The frontend includes
a succession of forms for data introduction and a private area,
which allow access to patient data whenever necessary with
user’s privileges.
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FIGURE 5 | Workflow for collections of BLASTx output processing.

User Private Area
The private area is the section accessed by the user after logging
in (see the dashboard in Figure 8). The key advantages of a
private area are that (i) the user may access their information
any time, (ii) sections can be customized, with different levels
of privileges, (iii) they can be customized according to business
models (Blank and Dorf, 2012).

Dashboard
The dashboard (Figure 8) is the first page one sees when accessing
the platform after login in from the welcome page. On the
welcome page, users can register an account. The main goal of the
dashboard is gathering all the essential information contained in

the portal for the logged in user (e.g., forms to be submitted by
users). Thus, users can either introduce the data of their patients
or retrieve analysis reports, if they are physicians or administrate
the platform, if they are system administrators.

We implemented a simplified version for small devices to fit
their screen size and limit the system to the essential (Figure 8A).
The user is informed when using the system on small devices,
which is a benefit compared to Bootstrap. As a result of screen
simplification, most of the information from the desktop version
(Figure 8B) is omitted on small devices, which means that users
must access the platform either from desktops or middle size
devices (e.g., iPads) for a full-version.

Components
Components in Angular are a set of three types of files: CSS
(appearance-related), TS (typescript, coding), and HTML (classic
static page). A page is built from at least one component, which
can independently interact with each other (Fain and Moiseev,
2018). From a software engineering viewpoint, this technology
makes the pages more dynamic and faster, and its parts can
be easily reused on other pages. The main components of the
dashboard are the menu and central cards. The menu, located
upward, displays basic and customized information eventually
organized in options. The central cards, movable downward,
display information and make them available as active links (e.g.,
a list of forms submitted by the user).

Protecting Confidential and Sensitive
Information
Patients’ data are confidential and require protection as stated
by policies all over the world (e.g., Health Insurance Portability
and Accountability Act, HIPAA for the United States). Thus, new
users must first register and enter some basic information to gain
access to the server.

Login
The login card (Supplementary Figure 5) is a standard login
page. In the current frontend version, we are following a
simple login system strategy. Essentially, the user must enter
its e-mail and password as previously registered to log in and
access the dashboard.

Since we are storing JWT locally, it is up to the user to
decide when to log out. Normally, JWT expires after 15 min on a
standard basis; we set the expiration time to 1 day. This approach
avoids repeated login whenever the JWT expires.

Forms
In the current frontend version, we have two sets of forms: the
patient main form (Supplementary Figure 7) and the outcome
form (Supplementary Figure 8). The patient main form is
expected to be sent alongside the patient samples, which is
independent, while the outcome form is expected to be sent in
case of death (for documentation).

All the information related to a patient is stored in different
documents and is merged for display using a method called
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FIGURE 6 | Workflow for top-n most relevant hub target diagnosis in up-regulated genes of solid tumors. (A) TCGA. (B) GDC.

populate from Mongoose, which enable the information retrieval
from other related documents.

Because of this design, we created a header form (Figure 9),
whose function is to (i) collect encrypted patient id, (ii) provide
a password for encryption (optional), and (iii) provide privacy-
related options.

The form remains in contact with the server for validating
information on the background, while the user is filling out the

fields; most of the validations are done without communication
with the server.

Sensitive information are entered on the first page and
encrypted in a similar way to the data introduced through the
header. Any form can be recovered from a list of links that are
made available on the movable card on the dashboard.

Finally, a submission receipt is automatically generated upon
form submission (see Supplementary Figure 9), which provides
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TABLE 6A | Comparative pattern of distribution for the most relevant targets among solid tumors of nine cancer types according to TCGA RSEM-UQ normalization.

Acc PRAD LUAD LUSC BRCA KIRC KIRP THCA STAD LIHC # Av StDv

HSP90AB1 30.00 80.49 77.78 66.67 56.06 58.06 40.35 83.33 85.71 9 64.27 19.77

YWHAZ 72.00 85.37 93.33 88.89 33.33 29.03 28.07 56.67 36.73 9 58.16 27.26

FN1 26.00 56.10 44.44 77.78 87.88 51.61 85.96 53.33 32.65 9 57.31 22.30

ACTB 26.00 53.66 33.33 44.44 63.64 77.42 38.60 33.33 42.86 9 45.92 16.37

MYH9 14.00 43.90 37.78 33.33 48.48 25.81 43.86 80.00 53.06 9 42.25 18.55

VIM 32.00 12.20 11.11 11.11 93.94 96.77 47.37 23.33 28.57 9 39.60 33.73

RPL10 10.00 46.34 28.89 22.22 80.30 45.16 47.37 10.00 30.61 9 35.66 22.09

EEF1A1 12.00 21.95 24.44 22.22 68.18 22.58 78.95 16.67 22.45 9 32.16 23.93

PKM NA 92.68 100.00 77.78 77.27 74.19 68.42 70.00 14.29 8 71.83 25.71

HSPA5 60.00 87.80 71.11 77.78 42.42 25.81 NA 43.33 48.98 8 57.15 20.79

HSPB1 NA 41.46 80.00 22.22 42.42 93.55 38.60 40.00 73.47 8 53.97 24.94

HSP90AA1 26.00 65.85 73.33 66.67 NA 48.39 17.54 70.00 57.14 8 53.12 20.97

CLTC 14.00 73.17 24.44 33.33 NA 45.16 12.28 26.67 28.57 8 32.20 19.57

SFN NA 26.83 71.11 11.11 NA 16.13 NA 10.00 NA 5 27.04 25.52

LRRK2 NA NA NA NA 36.36 54.84 71.93 NA NA 3 54.38 17.79

VCAM1 NA NA NA 11.11 80.30 54.84 NA NA NA 3 48.75 35.00

EGLN3 NA NA 26.67 NA 95.45 NA NA NA NA 2 61.06 48.64

SYNPO NA NA NA NA 75.76 NA 10.53 NA NA 2 43.14 46.13

The numbers in the table represent the proportion (%) of tumors of a given cancer type that showed the gene among the top-20 most connected proteins of the
subnetwork of up-regulated genes. The pink color concerns up-regulated genes in at least 70% of tumor samples of each cancer type.

TABLE 6B | Comparative pattern of distribution for the most relevant targets among solid tumors of nine cancer types according to GDC RPKMupper normalization.

Acc PRAD LUAD LUSC BRCA KIRC KIRP THCA STAD LIHC # Av StDv

PKM 16.67 91.23 100.00 87.5 78.873 77.42 80.36 92.59 60.00 9 76.07 25.05

FN1 33.33 70.18 50.00 100 90.141 51.61 87.50 59.26 62.00 9 67.11 21.79

YWHAZ 29.17 63.16 100.00 77.5 50.704 48.39 32.14 70.37 74.00 9 60.60 22.82

UBE2I 10.42 71.93 54.17 47.5 52.113 77.42 83.93 66.67 42.00 9 56.24 22.28

HSP90AB1 54.17 47.37 75.00 57.5 40.845 38.71 19.64 81.48 80.00 9 54.97 20.94

NPM1 60.42 47.37 43.75 50 73.239 35.48 26.79 25.93 58.00 9 46.77 15.79

CTNNB1 27.08 71.93 20.83 27.5 16.901 9.68 69.64 66.67 56.00 9 40.69 25.01

CDKN1A 12.50 52.63 16.67 10 50.704 51.61 71.43 11.11 26.00 9 33.63 23.08

ACTB NA 36.84 37.50 75 61.972 77.42 33.93 44.44 80.00 8 55.89 19.86

HSP90AA1 27.08 29.82 72.92 70 NA 45.16 10.71 85.19 68.00 8 51.11 26.66

HSPB1 NA 21.05 77.08 40 32.394 77.42 16.07 29.63 64.00 8 44.71 24.70

RPL10 52.08 33.33 18.75 NA 78.873 32.26 28.57 14.81 44.00 8 37.84 20.55

VIM NA 24.56 NA 12.5 92.958 96.77 35.71 11.11 16.00 7 41.37 37.50

SKP1 12.50 22.81 NA 45 16.901 NA 12.50 11.11 80.00 7 28.69 25.51

TSC22D1 16.67 36.84 NA NA 12.676 9.68 69.64 NA 12.00 6 26.25 23.45

EGFR NA 10.53 39.58 NA 74.648 19.35 NA NA NA 4 36.03 28.47

The numbers in the table represent the proportion (%) of tumors of a given cancer type that showed the gene among the top-20 most connected proteins of the
subnetwork of up-regulated genes. The pink color concerns up-regulated genes in at least 70% of tumor samples of each cancer type.

the user with the information necessary for future access to the
forms submitted (see Supplementary Figure 10).

DISCUSSION

Galaxy Pipeline
In this report, we presented a workflow for processing RNA-seq
data that allows the rational diagnosis of top connected hubs
among genes that are up-regulated in tumors according to the

non-tumoral peripheral area (stroma). The use of the stroma
as a control to measure the malignant differential expression
via RNA-seq has been recognized to be equivalent to the use
of healthy tissues for this purpose (Finak et al., 2006). Of
course, many factors may promote cancer such as chemicals,
radiation as well as genetic defects in reparation and replication
molecular machinery. To gain inside into such a complex
problem as a molecular approach of cancer together with a still-
evolving protocol of RNA-seq treatment regarding normalization
procedure or error rate (Li et al., 2020), a robust measure was
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TABLE 6C | Comparative pattern of distribution for the most relevant targets among solid tumors of nine cancer types according to GDF FPKM-UQ normalization.

Acc PRAD LUAD LUSC BRCA KIRC KIRP THCA STAD LIHC # Av. StDv

HSP90AB1 81.25 90.91 87.23 86.11 77.46 74.19 64.29 92.59 94.00 9 83.12 9.78

TP53 81.25 75.76 68.09 66.67 78.87 87.10 85.71 66.67 54.00 9 73.79 10.78

TRAF2 45.83 66.67 70.21 83.33 84.51 87.10 35.71 100.00 86.00 9 73.26 20.95

YWHAZ 39.58 81.82 100.00 83.33 66.20 80.65 60.71 66.67 74.00 9 72.55 17.05

PPP1CA 58.33 72.73 78.72 97.22 46.48 61.29 83.93 55.56 74.00 9 69.81 15.84

TRIM27 79.17 90.91 42.55 75.00 52.11 64.52 60.71 66.67 70.00 9 66.85 14.39

FN1 39.58 60.61 42.55 97.22 91.55 54.84 87.50 55.56 32.00 9 62.38 24.08

GRB2 35.42 39.39 36.17 72.22 66.20 93.55 64.29 66.67 66.00 9 59.99 19.39

MAPK6 85.42 69.70 93.62 66.67 45.07 45.16 42.86 37.04 48.00 9 59.28 20.37

GOLGA2 85.42 57.58 59.57 63.89 56.34 67.74 44.64 48.15 46.00 9 58.81 12.75

SNW1 45.83 72.73 68.09 52.78 50.70 58.06 75.00 44.44 58.00 9 58.40 11.28

VCAM1 25.00 72.73 44.68 47.22 88.73 67.74 26.79 66.67 32.00 9 52.40 22.59

CDC37 39.58 27.27 29.79 41.67 70.42 54.84 51.79 74.07 74.00 9 51.49 18.31

MYC 70.83 33.33 63.83 19.44 85.92 77.42 32.14 48.15 30.00 9 51.23 23.95

IKBKE NA 81.82 76.60 66.67 45.07 80.65 64.29 62.96 58.00 8 67.01 12.44

OTUB1 35.42 69.70 91.49 80.56 21.13 NA 71.43 40.74 60.00 8 58.81 24.24

MDFI 45.83 84.85 87.23 25.00 16.90 NA 80.36 77.78 34.00 8 56.49 29.16

EGFR 27.08 39.39 78.72 NA 95.77 77.42 62.50 44.44 24.00 8 56.17 26.37

HSPB1 NA 45.45 42.55 50.00 40.85 64.52 23.21 37.04 72.00 8 46.95 15.43

YWHAB 22.92 39.39 40.43 77.78 NA NA 39.29 62.96 72.00 7 50.68 20.30

MAP1LC3B NA 27.27 NA 27.78 50.704 80.65 60.71 29.63 30.00 7 43.82 20.87

KDM1A 72.92 42.42 36.17 41.67 NA NA 28.57 40.74 40.00 7 43.21 13.94

WDYHV1 41.67 60.61 65.96 77.78 NA NA NA 33.33 66.00 6 57.56 16.73

KSR1 NA 30.30 19.15 84.507 NA NA 18.52 20.00 5 34.50 28.37

The numbers in the table represent the proportion (%) of tumors of a given cancer type that showed the gene among the top-20 most connected proteins of the
subnetwork of up-regulated genes. The pink color concerns up-regulated genes in at least 70% of tumor samples of each cancer type.

needed. We found this measure in the degree entropy. Entropy
offers the benefit to be independent of sample size. In this report,
we calibrated our approach by reference to OS, but after an
optimization round for the treatment of RNA-seq data, other
factors could be taken into account to understand how they
interact with the signaling network complexity.

Normalization of raw read counts account for (i) within-
sample effects induced by factors such as coding sequence
size (Oshlack and Wakefield, 2009), GC-content (Risso et al.,
2011), (ii) between-sample effects such as sequencing depth
(total number of molecules sequenced) (Robinson and Oshlack,
2010), and (iii) batch effect (Tom et al., 2017). As underlined
by Evans et al. (2018), “normalization methods perform poorly
when their assumptions are violated.” Thus, the exercise is to
“select a normalization method with assumptions that are met
and that produces a meaningful measure of expression for the
given experiment.”

Following these recommendations, we must first consider
that the purpose of our approach is to list the top-n most
relevant target among subnetworks of genes that are up-regulated
in tumor samples compared to their controls. Consequently,
the complexity of the up-regulated gene subnetwork must
be coherent with the 5-years OS. Indeed, our supporting
hypothesis is that the complexity of the malignant subnetwork
or the number of times that the malignant subnetwork
can reorganize itself after perturbation is in line with its

information content, i.e., its Shannon entropy. This is the
reason why it makes sense to optimize the normalization
process for maximizing the coefficient of correlation between
entropy and 5-years OS. We aimed to diagnose the subnetwork
complexity because it is correlated to the 5-years OS and this is
important for therapy’s success (whatever being performed with
drugs or biopharmaceuticals) in the context of a personalized
approach of oncology.

The PDF and CDF functions of the Python’s scipy package
allowed the calculation of the critical values given the density
of probability of non-differentially expressed genes. These
distribution are rather similar regardless of the RNA-seq
considered for a given normalization process. These genes are
thousands while the up-regulated ones are hundreds, which
makes critical value determined in this way rather precise
and reproducible. Concerning the statistical significance of the
method we applied, one has to say that we face a classification
problem. In such circumstances, one usually looks for the
optimization between false positive and false negative rates.
However, when dealing with medical purpose, one has to look to
bias the classification process toward the minimization of false-
positive rate to reduce toxic drug collateral effects to patients that
would derive from hubs still expressed at a significant level in the
stroma (this consideration does not concern drug toxicity due to
off-target effects). There is a compromise between minimizing
the false positive rate and the availability of hub targets for
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TABLE 6D | Pattern of distribution for the most relevant targets among solid tumors of nine cancer types according to successive processing through RPKMupper and
LogNorm normalization.

Acc PRAD LUAD LUSC BRCA KIRC KIRP THCA STAD LIHC # Av StDv

HSP90AB1 83.33 73.68 87.50 65.00 76.06 74.19 42.86 96.30 98.00 9 77.44 16.92

TP53 79.17 84.21 66.67 65.00 74.65 83.87 73.21 77.78 66.00 9 74.51 7.42

YWHAZ 47.92 70.18 100.00 87.50 63.38 67.74 46.43 77.78 86.00 9 71.88 17.97

TRAF2 47.92 47.37 72.92 85.00 84.51 87.10 26.79 96.30 86.00 9 70.43 23.85

FN1 43.75 70.18 52.08 100.00 90.14 54.84 87.50 59.26 62.00 9 68.86 19.43

PPP1CA 56.25 68.42 79.17 95.00 46.48 51.61 67.86 70.37 76.00 9 67.91 14.97

GRB2 43.75 43.86 39.58 87.50 71.83 87.10 46.43 81.48 94.00 9 66.17 22.45

MAPK6 85.42 66.67 95.83 65.00 49.30 58.06 42.86 55.56 72.00 9 65.63 16.92

GOLGA2 87.50 61.40 70.83 65.00 54.93 51.61 37.50 62.96 80.00 9 63.53 15.00

TRIM27 79.17 68.42 56.25 62.50 54.93 45.16 53.57 77.78 68.00 9 62.86 11.47

SNW1 39.58 54.39 72.92 47.50 43.66 45.16 44.64 74.07 82.00 9 55.99 15.94

HSCB 56.25 56.14 68.75 47.50 74.65 29.03 51.79 59.26 58.00 9 55.71 12.95

VCAM1 31.25 47.37 47.92 45.00 87.32 67.74 30.36 81.48 46.00 9 53.83 20.48

CDC5L 43.75 43.86 68.75 52.50 53.52 48.39 16.07 77.78 78.00 9 53.62 19.49

MYC 72.92 40.35 66.67 10.00 85.92 77.42 30.36 55.56 36.00 9 52.80 25.20

OTUB1 37.50 54.39 83.33 77.50 15.49 22.58 62.50 40.74 54.00 9 49.78 23.03

IKBKE 10.42 75.44 60.42 72.50 32.39 64.52 76.79 22.22 22.00 9 48.52 26.46

REL 35.42 29.82 45.83 52.50 26.76 32.26 25.00 70.37 16.00 9 37.11 16.58

EGFR 35.42 57.89 79.17 NA 95.77 67.74 53.57 51.85 44.00 8 60.68 19.55

MDFI 47.92 80.70 87.50 30.00 15.49 NA 82.14 81.48 26.00 8 56.40 29.80

GABARAPL2 37.50 22.81 NA 20.00 11.27 25.81 30.36 59.26 80.00 8 35.87 22.86

YWHAB 20.83 31.58 22.92 75.00 NA 16.13 32.14 22.22 28.00 8 31.10 18.57

LRRK2 NA 49.12 NA 15.00 83.10 87.10 89.29 22.22 14.00 7 51.40 34.87

LNX1 50.00 61.40 66.67 42.50 NA NA 48.21 29.63 44.00 7 48.92 12.32

MAP1LC3B NA 35.09 NA 17.50 42.25 80.65 46.43 62.96 52.00 7 48.13 20.16

The numbers in the table represent the proportion (%) of tumors of a given cancer type that showed the gene among the top-20 most connected proteins of the
subnetwork of up-regulated genes. The pink color concerns up-regulated genes in at least 70% of tumor samples of each cancer type.

therapy. A larger p-value (p > 0.025) would release a larger
list of up-regulated genes with more hub targets; a larger list
of potential drugs for the case under consideration, but also
a larger probability of toxic effects on the stroma. In contrast,
lower p-value (p < 0.025) will minimize toxic effect of therapy to
patient, but would also decrease the number of potential hubs for
therapy. Of course, this consideration neglects the tissue specific
expression of genes and a gene that is up-regulated in a tumor
compared to its stroma could also be up-regulated in another
tissue, on a normal basis. Here, we neglected this issue, but it
is possible to preferentially target tumors through nanoparticle
therapy or by local application.

As pointed out by Abbas-Aghababazadeh et al. (2018), it
is possible that some of the estimated latent factors are not
technical artifacts but rather represent true biological features
reflected in the data. The correction of these latent factors may
introduce unwanted biases. Here, we did not want to stabilize the
subnetwork size variance (Smyth, 2004; Cloonan et al., 2008; Love
et al., 2014; Holmes and Huber, 2019) because we believe that
it is part of the challenge. One cannot exclude the possibility of
network size varying among samples according to the specificities
of genome deregulation proper to a given tumor. Despite
commonalities that were recognized between tumors of the same
cancer type, many features such as gene demethylation, copy

numbers, somatic crossing over, and chromosome karyotype
contribute to the specificity of the molecular phenotype of a
tumor and it is the correct diagnosis of these specificities that can
make the difference in terms of patient benefits (Duesberg et al.,
2005; Ozery-Flato et al., 2011; Ogino et al., 2012; Grade et al.,
2015; Bloomfield and Duesberg, 2016; Ye et al., 2018; Xia et al.,
2019).

According to the considerations just outlined, the size of
the malignant subnetwork is also important because it directly
affects the number of targets available for therapy. The size of
the malignant subnetworks also depends on the normalization
process. There is a tradeoff between the size of the malignant
subnetwork and the level of tumor personalization that is
effectively reported by the top-n targets as a result of the
normalization process. From our perspective, the normalization
corresponding to GDC FPKM-UQ and RPKMupper + LogNorm
generate subnetworks that are too large since they represent
as much as 20% of the human proteome (>4,000 genes). By
contrast, subnetworks produced by GDC RPKMupper + Log2
normalization account for between 2 and 5% of the human
proteome, which seems to be more realistic (Danielsson et al.,
2013; Malvia et al., 2019).

The target lists that we found with the various normalization
methods presented here were consistent among one another and
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TABLE 6E | Pattern of distribution for the most relevant targets among solid tumors of nine cancer types according to successive processing through RPKMupper and
Log2 normalization.

Acc PRAD LUAD LUSC BRCA KIRC KIRP THCA STAD LIHC # Av StDv

HSP90AB1 77.08 66.67 85.42 94.00 64.79 64.52 35.71 96.30 94.00 9 75.39 19.73

YWHAZ 41.67 70.18 100.00 82.00 60.56 67.74 46.43 74.07 82.00 9 69.41 18.21

TP53 72.92 70.18 64.58 60.00 66.20 74.19 58.93 70.37 60.00 9 66.37 5.86

FN1 41.67 70.18 52.08 62.00 90.14 54.84 87.50 59.26 62.00 9 64.41 15.92

NPM1 72.92 68.42 72.92 60.00 85.92 41.94 51.79 59.26 60.00 9 63.68 12.98

YWHAG 52.08 40.35 87.50 68.00 52.11 80.65 10.71 59.26 68.00 9 57.63 22.91

CDC37 12.50 28.07 25.00 86.00 67.61 38.71 44.64 81.48 86.00 9 52.22 28.54

MAPK6 79.17 43.86 87.50 54.00 22.54 29.03 23.21 44.44 54.00 9 48.64 23.06

MYH9 39.58 40.35 37.50 62.00 43.66 12.90 23.21 81.48 62.00 9 44.74 20.98

PKM 14.58 73.68 41.67 22.00 47.89 32.26 78.57 51.85 22.00 9 42.72 22.68

HSPB1 NA 49.12 89.58 92.00 59.15 93.55 50.00 37.04 92.00 8 70.31 23.74

RPL10 66.67 56.14 45.83 74.00 88.73 54.84 44.64 NA 74.00 8 63.11 15.41

OTUB1 27.08 42.11 83.33 78.00 NA 16.13 48.21 66.67 78.00 8 54.94 25.35

YWHAB 14.58 35.09 39.58 84.00 NA 35.48 26.79 77.78 84.00 8 49.66 27.82

YBX1 31.25 21.05 66.67 56.00 49.30 41.94 NA 70.37 56.00 8 49.07 16.96

MYC 66.67 15.79 56.25 28.00 73.24 67.74 NA 40.74 28.00 8 47.05 21.80

EGFR 16.67 40.35 68.75 28.00 95.77 58.06 30.36 NA 28.00 8 45.75 26.53

CSNK2A1 20.83 21.05 85.42 30.00 11.27 41.94 NA 51.85 30.00 8 36.54 23.49

GRB2 NA 15.79 16.67 64.00 32.39 87.10 NA 48.15 64.00 7 46.87 26.75

TUBA1A NA 47.37 10.42 18.00 59.15 54.84 71.43 NA 18.00 7 39.89 24.06

LRRK2 NA 38.60 NA NA 57.75 67.74 76.79 NA NA 4 60.22 16.38

VCAM1 NA 10.53 10.42 NA 84.51 61.29 NA NA NA 4 41.69 37.27

LZTS2 NA 36.84 NA NA NA 29.03 71.43 NA NA 3 45.77 22.56

EGLN3 NA NA 22.92 NA 83.10 NA NA NA NA 2 53.01 42.56

The numbers in the table represent the proportion (%) of tumors of a given cancer type that showed the gene among the top-20 most connected proteins of the
subnetwork of up-regulated genes. The pink color concerns up-regulated genes in at least 70% of tumor samples of each cancer type.

with that of Conforte et al. (2019). The normalization method
corresponding to the best compromise according to subnetwork
size, correlation, and the target list was RPKMupper + Log2, and it
is that method that was, therefore, kept for new sample analyses.

To be coherent with former studies, we included LUAD
and BRCA, however, these two cancer types discredited the
analyses for two obvious reasons: (i) In the case of LUAD,
the samples of raw counts did not match those of FPKM-
UQ, which prohibit direct comparison between both datasets
and raised the question why FPKM-UQ normalization was
not performed on a large proportion of raw counts files
and why, on the other hand, other samples were taken into
account in the FPKM-UQ processing. This discrepancy may
explain why LUAD does not match the regression line in GDC
RPKMupper + Log2, while it does in GDC FPKM-UQ; (ii)
In the case of BRCA, after filtrating samples for matching
between raw counts and FPKM-UQ, the total sample size was
less than 20, which is not sufficient for statistical significance
given subtype heterogeneity. BRCA is composed of four subtypes
whose 5-years OS varies between 70 and 82%. Figure 3 shows
that depending on sampling, BRCA could very well match the
linear regression.

The relevance of inhibiting hub of connections has been
proven mathematically by Albert et al. (2000) and its benefit
for patients has been confirmed by Conforte et al. (2019)

through Shannon entropy analysis. The negative correlation
found between the subnetwork entropy and the 5-years OS is in
agreement with the results obtained later on from the modeling of
basins of attraction in BC with Hopfield network (Conforte et al.,
2020). This study revealed that five tumor samples converged
toward the basin of attraction associated with control samples
instead of the tumor ones. Those samples were associated with
a good prognosis, initial stages of tumor development, and four
of them presented the smallest subnetwork entropy among the
dataset of 70 tumor samples under study.

As the research concept has been validated through different
approaches, the workflow presented here was built with the
aim of automating the analysis, which will allow its translation
to the medical context. With that concern, the larger time
needed for entropy and PTTCS pipelines to be completed
when analyzing high entropy cancer types compared to the
processing time spent with low entropy cancer types suggests a
positive relationship between subnetwork complexity and their
processing time. If confirmed, this observation means that the
computation model, presented here, reproduces a main biological
feature of cancer that is the larger complexity associated with
subnetwork of up-regulated genes in aggressive tumors. In any
case, the difference in the processing time of the PTTCS pipeline
for high and low entropy cancers was not large (∼50 s for
25 patients).
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FIGURE 7 | Scaling of pipeline from Figure 2B (entropy) and Figure 6B (PTTCS) using GDC read counts (see data in Supplementary Table 1). (A) Linear scaling
for 5–45 patients in LUSC and PRAD as well as 15 and 25 patients for STAD, LIHC, THCA, and KIRC. (B) Statistical analysis of scaling for high entropy (H) cancer
(LUSC, LIHC, STAD) and low entropy (L) cancer (KIRC, PRAD, THCA) for entropy (gray) and PTTCS (white) pipelines. ∗∗Significant at α ≤ 0.01 for k = 4 degrees of
freedom. The horizontal bars are for the standard error of the mean (SEM).

We believe that our strategy will contribute constructively
to cancer treatment because the molecular phenotype of a cell
is directly connected to its genetic alterations, which is not
necessarily the case for genomic alterations. Genomic alterations
allow a diagnosis based on probabilistic data obtained with large
patient cohorts. By contrast, the molecular phenotype portraits
the cell or the genomic disease and points to proteins that should
be targeted in the first instance to disrupt malignant phenotypes
while affecting the healthy one the least possible.

The phenotype approach also reflects which genes that malign
cells most need to maintain themselves in the tissue given
its selective constraints. In any pathogenic relationship, one
distinguishes between primary and secondary determinants of the
disease (Yoder, 1980). The primary determinants are those that
make the relationship compatible (qualitative) and the secondary
determinants are those that deal with its quantitative expression
(virulence). Thus, the question to deal with, in the case of
cancer, is to target primary determinants. When considering
gene expression, one may reason that the heterogeneity is
something related to secondary determinants (it is not because
a cell is mutating that the new mutations are worse than the
previous ones). Actually, it has been well described that a tumor
developed by the accumulation of mutations in a small number
of key oncogenes or suppressor genes in stem cells and that the
probability of this event to occur is very low (Hornsby et al., 2007;

Belikov, 2017). Thus, there is a difference between these primary
mutations that allow the tumor to establish itself and the
secondary ones that may affect its aggressiveness. On the same
line, when one sequences the mRNA of a tumor area, one
takes the gene expression profile of many cells into account.
By consequence, secondary mutations promoting or inhibiting
a given gene in different cell lineages inside the same tumor
compensate themselves. By contrast, those genes that are key to
maintain a malignant cell line will be positively selected to remain
up-regulated in most cells and, therefore, if one detects a gene
that is up-regulated in a tumor by comparing its expression level
with the surrounding stroma, it means that it is essential for
malign cell survival.

Considering the number of hubs to target, the results obtained
by Conforte et al. (2019) suggest 3–10, on average. Other authors
already suggested such complex mixes (Calzolari et al., 2007,
2008; Preissner et al., 2012; Hu et al., 2016; Antolin et al., 2016;
Lu et al., 2017). Three to ten specific drugs may appear a small
number to control such a complex disease as cancer, but the
cell death induction may be explained by a cascading effect,
which is larger when targeting hubs as suggested before (Carels
et al., 2015a; Barabási, 2016; Tilli et al., 2016; Conforte et al.,
2019). According to Conforte et al. (2019), this cascading effect
would be inversely proportional to the tumor aggressiveness.
The pitfall is that the number of specific drugs for hub targets
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FIGURE 8 | Dashboard on (A) a desktop and (B) an extra small devices (Galaxy S5).

that are approved by FDA is still very small (Antolin et al.,
2016). While new drugs and biopharmaceuticals or products of
other strategies continuously appear, key targets remain the same.
Some are highly personalized and often secondary while others
are constant across tumor types or within a tumor type; these last
targets play, in most likelihood, a primary role in the disease and
it is essential to diagnose them (even if only for their prognostic
value). In addition, nothing prohibits the combination of specific
drugs with cytotoxic or hormonal treatments (Nikanjam et al.,
2016). The idea is to improve as much as possible the rational
drug use to maximize the patient benefit. Many patients are dying
from the toxic collateral effect of the chemotherapy; it would be
a great success if the use of specific drugs in a standard therapy
protocol could enable to decrease the dose of cytotoxic drugs
and improve the therapy acceptance by patients in some specific
cases in the context of theranostics. For this kind of exercise,
an automated pipeline is needed and a clinical trial testing the
validity of hubs as potential molecular targets is urgent.

The replication number that can be done for RNA-seq is
another limitation given the still high cost of this technology.
Thus, analyses as the one described in our manuscript are
expected to be done only once per time in a time series for
each patient. According to Barabasi’s theory (Barabási, 2016),
hubs with the same connection rate are expected to have the
same disarticulation effect on the signaling network. On a clinical

basis, p-values (here critical value) may be adapted to the
specific case of each patient. On the same line of reasoning,
our methodology can be easily adapted taking into account
more powerful bioinformatics tools and statistical analysis, but
this issue is beyond the scope of this report. For such a
methodology improvement, we believe that entropy is a good
measure because it is universal, robust, and not dependent
on sample size. Different combinations of normalization and
statistical analyses as those reported by Li et al. (2020) can be
compared in the same framework we presented here and in
Conforte et al. (2019), by looking at how they may maximize
the correlation coefficient of the negative relationship between
entropy and OS. Of course, this depends on accepting the
hypothesis that more aggressive tumors have more complex
signaling networks, but again, this statement has been repeatedly
claimed by several authors worldwide and along several years
(Teschendorff and Severini, 2010; van Wieringen and van der
Vaart, 2011; Breitkreutz et al., 2012; West et al., 2012; Banerji
et al., 2015). If this hypothesis is true, the negative correlation
between entropy and OS may serve as a calibration to study
the optimization of RNA-seq methodologies and the influence of
other factors in cancer development and dynamics.

Cancer is a genomic disease that affects DNA replication
checkpoints through mutations of key oncogenes and suppressor
genes (Lee and Muller, 2010). There are ten main hallmarks
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FIGURE 9 | Form header. A user is warned when leaving without saving the form. The patient password is encrypted and kept on the server using a specialized type
of file; nonetheless, users can choose their own passwords.

for cancer from which uncontrolled division is the key one
(Hanahan and Weinberg, 2011). When the disease is taken at
a late stage, it may have spread in the body through metastasis
and secondary tumors may have different molecular profiles.
In such late tumor stages, an approach of cancer therapy only
based on personalized oncology would in most likelihood be
unsuccessful (Ashdown et al., 2015). However, specific drugs
could increase the patient benefit by supplementing traditional
therapies based on cytotoxic drugs. As a consequence, the
maximum benefit of a personalized oncology approach of solid
tumor therapy based on a molecular phenotype diagnosis is in the
early stages of malign cell multiplication. Despite its limitations,
the phenotype approach of molecular diagnosis proposed here
is needed for rational drug (or biopharmaceutical) therapy to
maximize patient benefit.

At the moment, the methodology and the web site that
we described here can be assimilated to laboratory developed
tests (LDT). It is notorious that LDT for being a type of
in vitro diagnostic test designed, manufactured, and used within
a single laboratory is poorly supported by oncologists (8%) and
pathologists (12%) because of the legitimate fair of innovation.
Biomarkers and CDs strongly depend on the regulation by
official organizations for their acceptance by health decision-
makers (Novartis, 2020). However, barriers by regulation are no
reason to stop the innovation necessary for progress. Otherwise,
regulation fails with its purpose of protecting lives (see Carels
et al., 2020 for a review).

Web Application
System biology has gained considerable attention in medical
sciences in the last decade thanks to the ever-increasing computer
power. However, system biology models can be tricky to use or
to interpret by non-experts in modeling. A recurrent question is
how to integrate models into the physician daily lives such that
they could best participate in their decision-making process. One
potential solution, which seems to be the predominant one on
the current state of the art, is by packing algorithms into software
bundles and to make them available by user-friendly interfaces,
such that little, or even no, expertise is required to use them. This
is the paradigm we followed in this report.

The power and diversity of Angular programmed with
TypeScript enable to expand the functionalities of the prototype
proposed here in future versions, including the implementation
of heavy calculations on the frontend side.

We chose MongoDB for storing genetic and medical records
even if Galaxy has its own database system (postgreSQL). Our
choice of MongoDB was motivated by the care of keeping
coherence with MEAN stack, and also because of the power of
MongoDB for Big Data storage. In addition, MongoDB is a non-
relational database (NoSQL), which allows the storage of data in
different formats within the same database.

Our implementation of online forms offers the possibility
of creating new functions such as data validation. Data can
be validated by comparing frontend to backend information
through the database and making sure, for instance, that an
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entered e-mail does not already belong to someone else already
registered in the system.

Finally, one common concern on web-programming is to
minimize client communication with the server to maximize
performance. For such purpose, we implemented a process
of form validation on the frontend side. Since we are using
FormBuilder (see for more details Fain and Moiseev, 2018), there
are a set of built-in validation routines, and the possibility to
easily create customized validation, thus any specific demand
concerning data validation can be handled on future versions
using the current source code.

CONCLUSION

In a successive set of publications, we developed a rational
methodology for the diagnosis of connection hubs among
up-regulated genes of malignant subnetworks. This strategy
is an application of graph theory, whose relevance has been
mathematically proven by Albert et al. (2000). The inference of
this theory into biological systems performed by Carels et al.
(2015a) has been successfully validated on malignant cells by Tilli
et al. (2016) and extended to tumor tissues by Conforte et al.
(2019).

Here, in a translational oncology effort, we outlined a
workflow that automated that research and allows its application
to a large set of RNA-seq data to interact with public entities of the
oncological sector, such as pharmaceutical companies, hospitals,
diagnostic laboratories, public health care systems, and insurance
groups around the world.

We belief that innovation in new translational solutions, like
the one outlined here, is an imperative attribute of research
centers; however, other agents such as (i) pharmaceutical
companies may certainly help these initiatives with their
experience concerning regulation, market barriers, financial
support and (ii) startups whose processing speed and innovation
potential were already well-documented (Blank and Dorf, 2012).

Herein, we aimed at transcending basic cancer inferences to
bring a solution for clinical applications on a global scale.
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