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Abstract: The activities of individual cells must be tightly coordinated in order to build and maintain complex 3-
dimensional body structures during embryogenesis and regeneration. Thus, one way to view cancer is within 
systems biology as a network disorder affecting the ability of cells to properly interact with a morphodynamic 
field of instructive signals that keeps proliferation and migration orchestrated toward the anatomical needs of the 
host organism. One layer of this set of instructive microenvironmental cues is bioelectrical. Voltage gradients 
among all somatic cells (not just excitable nerve and muscle) control cell behavior, and the ionic coupling of cells 
into networks via electrochemical synapses allows them to implement tissue-level patterning decisions. These 
gradients have been increasingly implicated in the induction and suppression of tumorigenesis and metastasis, in 
the emerging links between developmental bioelectricity to the cancer problem. Consistent with the well-known 
role of neurotransmitter molecules in transducing electrical activity to downstream cascades in the brain, seroton-
ergic signaling has likewise been implicated in cancer. Here, we review these recent data and propose new ap-
proaches for manipulating bioelectric and neurotransmitter pathways in cancer biology based on a bioelectric 
view of cancer. To support this methodology, we present new data on the effects of the SSRI Prozac and its ana-
log (ZINC ID = ZINC06811610) on survival of both cancer (MCF7) and normal (MCF10A) breast cells exposed 
to these compounds. We found an IC50 concentration (25 μM for Prozac and 100 μM for the Prozac analog) at 
which these compounds inhibited tumor cell survival and proliferation. Additionally, at these concentrations, we 
did not observe alterations in a non-tumoral cell line. This constitutes a proof-of-concept demonstration for our 
hypothesis that the use of both existing and novel drugs as electroceuticals could serve as an alternative to highly 
toxic chemotherapy strategies replacing or augmenting them with less toxic alternatives. We believe this new 
approach forms an exciting roadmap for future biomedical advances. 

Keywords: Ion channels, serotonin, neurotransmitter, bioelectricity, biophysics, resting potential, Prozac, SSRI. 

1. INTRODUCTION: CANCER AS A DEVELOPMENTAL 
DISORDER 
 A defining feature of multicellular life is pattern homeostasis: 
the establishment and maintenance of a complex bodyplan during 
embryogenesis, and its upkeep during remodeling, wound healing, 
and aging. Some animals have developed this property to a remark-
able degree, such as salamanders that fully regenerate amputated 
limbs, eyes, jaws, and spinal cords [1-3]. The single thread that 
connects all of these processes is the need to subjugate single cell 
activities to the anatomical needs of the host organism. Cell prolif-
eration, differentiation, migration, apoptosis, and other functions 
are normally harnessed to large-scale morphogenesis by a complex 
system of instructive cues that functionally determines cell behav-
ior. This morphodynamic field [4] is the sum total of signals that 
impinge upon cells in vivo, carrying information from distant re-
gions that is necessary for cells to implement coordinated patterning 
at a large scale (Fig. 1). It has long been recognized that such a 
process necessarily runs a risk of cells becoming unable to interact 
properly with the somatic bodyplan [5-7]. This would result in cells 
reverting to a unicellular mode in which they survive and multiply 
as any life form tries to do, at the expense of the environment 
within which it lives [8, 9]. Thus, one view of cancer is as a devel-
opmental disorder [7, 10-13]: a network disease of the complex 
signaling pathways that normally keep cells away from 
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tumorigenesis and toward correct anatomical structure. Supporting 
this view is an evidence that regenerative and embryonic environ-
ments, which feature very strong instructive patterning influences 
applied to cells, are well-known to be able to normalize tumor cells 
(Fig. 2, [14-16] and [17]). 
 Here, we focus on the role of one signaling modality that under-
lies this multiscale pattern regulation: non-neural bioelectricity [18-
21].  It is perhaps not widely appreciated that the use of electrical 
signaling by the brain is not an original invention: nervous systems 
evolved by exploiting ionic signaling that was ancient, and used by 
many kinds of cells to coordinate physiological signaling, aneural 
behavior patterns, and morphogenesis [22, 23]. Ion channels and 
electrical synapses (gap junctions, which function alongside the 
more familiar chemical synapses, especially outside the CNS) (Fig. 
3) are widely-expressed throughout metazoan bodies, and the re-
sulting electrical dynamics are an important regulatory modality for 
cell number, cell shape, differentiation, and morphogenesis [24]. 
Differences in cells’ resting potentials (Vmem) across anatomical 
distances (Fig. 4) result in instructive physiological prepatterns that 
determine gene expression domains and subsequent morphogenesis, 
for example in craniofacial patterning [25, 26] and axial polarity 
during regeneration [27, 28]. Crucially (Fig. 5), bioelectric signals 
play a role in long-range coordination of growth and form, regulat-
ing the size of brains [29], appendages [30], and even kickstarting 
the appearance of whole organs [31, 32]. Thus, many of the end-
points that go awry in cancer, including overproliferation, dediffer-
entiation, vascular patterns, chromatin changes, gene expression, 
and migratory behavior are all known to be downstream of the ac-
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tivity of bioelectric circuits during normal pattern regulation [18, 
21]. 
 Changes in the biophysical parameter Vmem can be transduced 
into downstream transcriptional responses by the voltage-regulated 
movement of neurotransmitter molecules across cell membranes 
and between cells through gap junctions. These electrical synapses, 
like ion channels, are ancient and widely present outside the nerv-
ous system [33, 34]. Molecules such as serotonin have pre-neural 
roles, such as in gastrulation, determination of left-right patterning, 
craniofacial development, and cardiac morphogenesis [35-42]. To-
gether, ion channels, gap junctions, and neurotransmitter signaling 
machinery form somatic bioelectric circuits that coordinate cell 
behaviors toward prescribed and limited tissue-level outcomes. One 
of the key aspects of this control system is that it is fundamentally 
epigenetic, operating at the level of ion flows and channel gating 
and invisible in fixed samples or from profiling of transcriptional or 
translational states. In some cases, this physiological layer domi-
nates genomic defaults; appropriate bioelectric manipulation can 
rescue normal brain patterning despite defects in important neuro-
genesis genes such as Notch [29], induce regeneration of spinal 
cord in non-regenerative animals [43, 44], convert normally non-
permissive tissue such as gut into complete eyes [32], and alter the 
shape [27] and number [45, 46] of heads in regenerating animals.  
 These data on multi-cellular reprogramming suggest that target-
ing physiology, not only genetics, may be an effective and domi-
nant strategy for diagnostics and control of cancer. The ability to 
trigger coherent change in thecell fields into a whole organ [32] or  
 

starting the growth of a complex appendage with a simple gradient 
change [43, 44] suggests that it may be possible to trigger modular 
patterning: exert organ-level control over a body region without 
having to micromanage each cell. Long-term, this may be part of a 
strategy to mimic the ability of regeneration or development to 
provide patterning cues that dominate individual cell fate and nor-
malize tumors. Thus, we proposed the hypothesis that exploiting the 
bioelectrical system by which cells coordinate their constraints on 
growth could lead to advances in cancer biology. 

2. BIOELECTRICS AND CANCER 
 Interestingly, while the importance of steady-state Vmem is only 
recently becoming understood, true neural-like excitability in can-
cer cells was discovered over 20 years ago [47, 48]. Aside from 
spiking, steady-state resting potentials are an important regulatory 
factor (Fig. 6): tumor cells tend to be more depolarized than their 
normal counterparts (complicated by the fact that Vmem tends to 
fluctuate somewhat during the mitotic phases, reviewed in [49]), 
and experimental modulation of resting potential can functionally 
normalize cells and prevent or reverse tumorigenesis [50-52]. Re-
cent work has extended this observation into testing roles of indi-
vidual ion channels as bona fide oncogenes (Table 1), ion channel 
expression profiles as markers [53, 54], and drug approaches target-
ing specific channels for cancer therapeutics [55]. Role of gap junc-
tions in cancer has been covered extensively [56, 57], and these too 
are currently an exciting target for cancer therapies [58, 59]. 
 Subsequent experiments suggested roles of resting potential per 
se (generated by one of any number of electrogenic proteins) in  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Morphogenetic/morphostatic fields 
Each cell in vivo exists within a complex field of information imposed on it by the host organism. This set of signals, impinging on cells from 3 dimensions 
and varying in time, is mediated by a number of physical properties, including gradients of diffusible chemical messengers, extracellular matrix properties 
(ECM), tensile/pressure forces, and bioelectric states. The sum total of these instructive cues are responsible for establishment of normal somatic pattern dur-
ing embryogenesis, and for harnessing cell activity toward the anatomical needs of the host organism throughout its life. It guides cell behaviors during regen-
eration, remodeling, and on-going pattern homeostasis; the interactions of cells with this guidance system reveals a key common feature among development, 
regeneration, and cancer, all of which are fundamentally problems of spatio-temporal organization and the imposition of global order on local cell activity. It 
may be that cancer can be efficiently understood as a disorder of cells’ communication with this field (either because the signals become absent from a region 
of the environment, or because cells become inattentive to its informational influence); in turn, re-establishing correct morphogenetic cues and forcing cell 
communication with this set of cues may be a path forward for tumor normalization/reprogramming. 
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Fig. (2). Normalization of cancer by actively patterning environments. 
(A) Cancer cells introduced into embryonic environments are able to par-
ticipate in normal development and contribute to healthy organs [104, 130]. 
(B) Similarly, tumors induced on limbs of regenerative species become 
normalized if the process of regeneration is induced [131-134]. These ex-
amples reveal that at least in some cases, cancer is not irrevocable cell-
autonomous damage but a reversible network disorder – an error of commu-
nication and geometry [135]. Images courtesy of Jeremy Guay of Peregrine 
Creative. 
 
activating or suppressing cancer-relevant processes in vivo. Most of 
these data remain to be validated in mammalian models, being first 
derived in the frog Xenopus laevis [17].  Artificial depolarization of 
a selected cell population of cells was sufficient to induce a mela-
noma-like phenotype in normal animals’ pigment cell population 
[60, 61]. This metastatic conversion (Fig. 7) takes place in a wild-
type background, not exposed to any mutagen or carcinogen; it 
features stochastic outcomes within a cohort of animals exposed to 
the same manipulation [62], and may be a model for the variability 
of cancer incidence in clinical settings.  

 Conversely, tumorigenesis induced by expression of human 
oncogenes in frog larvae can be over-ridden by appropriate modula-
tion of resting potential [63]. This also works at considerable dis-
tance via a gap junction-dependent mechanism [64, 65], and tumors 
can be prevented or reverted to normal by pharmacological, genetic, 
or even light-based stimuli (Fig. 8) that induce hyperpolarization 
[65, 66]. This was another example of the over-riding of genetic 
state by physiological parameters, as the mutant oncogene was 
strongly present in the regions in which tumorigenesis was pre-
vented. In normal cases, the appearance of tumor structures can be 
observed very early, by fluorescent signals from a voltage reporting 
dye [60]. 
 A few overall lessons emerged from this most recent body of 
work. First, that it is imperative to focus on the physiological state 
(Vmem and cellular connectivity), not individual channel genes, 
since channels open and close post-translationally, while Vmem is 
the sum of numerous channels’ activity. Thus, the same effect can 
be obtained via the action of any number of channels that contribute 
to overall resting potential, and Vmem can change in the absence of 
detectable changes of channel mRNA or protein levels. Thus, track-
ing individual channels or using profiling of fixed (non-living) tis-
sue can give confusing results due to the lack of one-to-one corre-
spondence between genetic and physiological states. Second, the 
effects are often non-local: metastatic or tumorigenic outcomes can 
be a function of bioelectric states at considerable distances – the 
signaling is definitely not cell-autonomous, although the maximum 
distance (size of the “microenvironment”) that might be involved in 
mammals is unknown.  Finally, that the physiological signaling of 
the environment is a key determinant of outcome which cannot be 
predicted from molecular profiling alone. 
 We suggest that the multitude of ion channel drugs, many of 
which are already approved for human use (as antiepileptics, antiar-
rhythmic agents, etc.) and some of which are kept on pharmaceuti-
cal company shelves, form a powerful toolkit. These compounds 
are potential electroceuticals; while such approaches have so far 
been focused on neural targets [67, 68], the existence of ion chan-
nel-regulated bioelectric signaling in many cell types [69-73] and 
the plethora of ion channel drugs suggest that the next advances in 
this field will include expanding the use of electroceuticals to har-
ness them in modulating cancer processes. Work dissecting the 
mechanisms by which bioelectric signals regulate melanocyte con-
version implicated serotonergic signaling (Fig. 9) [17, 60-62]. De-
polarized cells produce a serotonin signal that causes melanocytes 
to undergo a change toward highly metastatic behavior. The charac-
terization of this pathway suggested that blocking serotonin move-
ment across cell membranes could be a promising strategy for the 
suppression of metastases. Luckily, human-compatible drugs al-
ready exist that do precisely this: the class of widely-used serotonin 
reuptake inhibitors (SSRIs) [74]. 

3. NEUROTRANSMITTERS AND CANCER 
 In the nervous system, electrical activity of neurons is coupled 
to important changes in cell behavior via the movement of neuro-
transmitter molecules. Voltage changes alter the import/secretion of 
neurotransmitters across membranes. Neurotransmitters such as 
serotonin are potent mitogens and have many other effects on tran-
scription, cytoskeleton, and cell metabolism. In this way, neuro-
transmitter dynamics cross cell membranes are a crucial link be-
tween bioelectric states and cell behaviors they control. Recent 
work has shown this relationship to be true outside of the CNS as 
well [33, 75, 76].  
 Neurotransmitter signaling in cancer biology has attracted at-
tention to molecules such as glutamate, glycine, acetylcholine, 
GABA, and dopamine [77-81]. Some of the most interesting data 
implicate serotonin [82-88], although the epidemiological picture is 
complicated by the fact that SSRIs are most often used on de-
pressed patients who are undergoing stresses that may alter the 
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Fig. (3). The basics of bioelectricity. 
The familiar components of electrical signaling in neurons include resting potential, generated by the activity of ion channels in the cell membrane, and the 
electrical synapse which allows current to flow into neighboring cells (A). These electrical synapses occur in the CNS alongside the much more familiar chemi-
cal synapses [136-138], but are especially crucial outside of excitable tissues for cell regulation and tumor suppression [139-142]. These same components are 
present in most somatic cells (B), which likewise generate resting potentials and share them with their neighbors using the exact same ion channel and gap 
junction proteins. Even non-excitable tissues are composed of cell networks (C) in which cells coordinate activity and execute group decision-making during 
pattern generation and maintenance. These networks signal via the voltage-dependent movement of small molecules such as serotonin and other neurotransmit-
ters. All of these components have been implicated in various stages of the cancer process. The result of this signaling is growth control, differentiation, pattern 
regulation – processes that go awry in cancer. Molecular tools now exist for manipulating bioelectric state of cells (intrinsic plasticity), connectivity of the 
bioelectric network (synaptic plasticity), or the movement of neurotransmitters within the tissue (network activity). Images courtesy of Jeremy Guay of Pere-
grine Creative and Alexis Pietak. 
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Fig. (4). Bioelectric gradients. 
Each cell in the organism uses ion channels and pumps to maintain a resting potential (Vmem) across its plasma membrane (in addition to a number of subcellu-
lar gradients, such as nuclear envelope potential, and tissue-level gradients, such as trans-epithelial electric fields). Spatial patterns of resting potential can be 
detected in vivo using voltage-sensitive fluorescent dyes. Here, a fluorescent voltage reporter (Rhodamine 6G dye [143, 144], courtesy of Douglas J. Black-
iston) applied to a stage 44 frog embryo (Xenopus laevis) illustrates an anterior-posterior physiological gradient across the middle flank of a frog tadpole. The 
signal has been pseudocolored according to a scale where red is depolarized and purple is hyper-polarized. Such gradients, and their time-dependent changes, 
reflect the activity of the bioelectric circuits that set up prepatterns driving downstream gene expression and morphogenesis.  Schematic of frog embryo was 
used via Xenbase, originally sourced from [145]. Dye map image courtesy of Douglas Blackison. (The color version of the figure is available in the electronic 
copy of the article). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (5). Feedback between bioelectrics and gene regulatory networks regulates patterning. 
Cells are regulated by at least two layers of activity: the molecular genetic and the bioelectric (A). The molecular-genetic layer of pattern control is imple-
mented by gene regulatory networks in which transcription factors control each other’s expression. The bioelectric layer of control is formed by the reciprocal 
interactions between ion channels and gap junctions, and cell resting potential: Vmem is determined by channels and electrical synapses, and at the same time, 
Vmem determines the gating properties of voltage sensitive channels and gap junctions. Thus, every cell has the opportunity to drive positive feedback loops that 
can amplify small differences (useful for spontaneous symmetry breaking) or negative feedback loops that confer stability and robustness to environmental 
stimuli.  The genetic and bioelectric layers are functionally coupled, since Vmem changes can alter transcription of downstream target genes [146, 147], while 
changes in the transcription of ion channel genes alter electric circuit dynamics. Recent data have shown that manipulation of the complex dynamics of the 
bioelectrical layer reveal its endogenous patterning functions, resulting in the production of frogs with ectopic limbs (B), flatworms with 4 heads (C), or tad-
poles in which gut tissue has been reprogrammed into complete eyes (D) [32, 46]. Panel A was drawn by Alexis Pietak. The ectopic-limb frog in panel B was 
obtained from an optogenetic transgenic EnPAC [148] line produced by Gufa Lin. Panels C and D come from references [46] and [32] respectively. 
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Fig. (6). Resting potential and cancer signatures 
Human oncogenes, when introduced into tadpoles, cause the formation of tumor-like structures (A, closeup in A’) which exhibit all of the key characteristics of 
cancer (over-proliferation, tissue disorganization, invasiveness, cancer marker gene expression, etc.).  Because aberrant bioelectric signaling is an early compo-
nent of the carcinogenic process, this transformation is observed via voltage-sensitive fluorescent dye signaling (B, closeup in B) in vivo, revealing the tumor 
sites and margins before they become anatomically apparent. Consistent with a reversion of cancer into a unicellular phenotype, a wide range of data [149, 150] 
reveal that tumor cells, like stem and early embryonic cells, tend to be depolarized while mature, quiescent somatic cells tend to be hyperpolarized (C). Impor-
tantly, it is now known that this relationship is not merely a marker, but is actually functionally determinative of cell behavior [51, 52, 63, 151]. Panels A-B’ 
are taken from [63]. The schematic of panel C was drawn by Jeremy Guay of Peregrine Creative, while the voltage diagram of panel C is modified after [149]. 
 
background of carcinogenic induction and progression. Our strat-
egy, based on the finding that blockade of serotonin transport effi-
ciently rescued voltage-induced melanoma conversion [61, 62], was 
to explore an SSRI drug that did not cross the blood-brain barrier 
(an unusual requirement, since all known SSRIs were designed 
specifically for access to the brain). Such a compound could be 
expected to exert its protective effects throughout the body without 
causing the unwanted cognitive effects of SSRIs [89, 90]. Thus, we 
tested Prozac and an analog in vitro, to begin to characterize the 
function of molecules suggested by the above strategy. An addi-
tional component that must be considered is the cytoskeleton, as it 
is known to regulate the distribution of ion channels in a variety of 
cell types [91, 92]. It is also known that ion channels regulate 
NMDA receptors through microtubules [93]. Moreover, voltage-
dependent anion channels are controlled by the c-termini of tubulin 
[94]. This taken together with previous observations indicates that 
the microtubule cytoskeleton and ion channels are involved in sig-
nificant interactions such that regulation of one of these subsystems 

affects the other. Hence, ion channel regulators may cause down-
stream effects on microtubules and consequently the use of SSRIs 
could lead to hitherto unknown effects on cancer cells with poten-
tial therapeutic applications. 
 The cytoskeleton is a target for numerous chemotherapy drugs, 
many of which bind preferentially to tubulin (so-called tubulin-
binding agents or TBAs), such as paclitaxel, vinca alkaloids, lauli-
malide, peloruside and others [95]. Some of these compounds stabi-
lize microtubules (e.g. taxanes) while others destabilize them (e.g. 
vinca alkaloids). Interestingly, it has been also discovered that other 
classes of compounds, e.g. opioids such as noscapine [96] interact 
with microtubules as well as anesthetics [97]. It is, therefore, not 
unexpected that compounds which alter mood (psychoactives), for 
example the antidepressants such as Prozac and its analogs should 
also interact with microtubules and the cytoskeleton. It is known 
that they take several weeks for these compounds to achieve their 
clinical effects in human subjects, apparently because of the need 
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Table 1. list of ion channel oncogenes. 

Ion Translocator Protein Species References Cancer-relevant role 

NaV1.5 sodium channel Human [109, 110] Oncogene 

ERG potassium channels Human [111-113] Oncogene 

KCNK9 potassium channel Mouse [114] Oncogene 

Ductin (proton V-ATPase component) Mouse [115] Oncogene 

SLC5A8 sodium/butyrate transporter Human [116] Oncogene 

KCNE2 potassium channel Mouse [117] Oncogene 

KCNQ1 potassium channel Human, mouse [118-120] Oncogene 

SCN5A voltage-gated sodium channel Human [121] Oncogene 

Metabotropic glutamate receptor Mouse, Human [122-124] Oncogene 

CFTR chloride channel Human [125, 126] Tumor suppressor 

Connexin43 Human [127] Tumor suppressor 

BKCa Human [128] Oncogene 

Muscarinic Acetylcholine receptor Human, mouse [129] Tumor suppressor 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (7). Metastasis induced by depolarization. 
The black cells in these histological sections of a frog tadpole are melanocytes, pigment cells that normally have a round morphology. Here are shown sections 
of frog larvae in which a specific cell subpopulation has been artificially depolarized, but no other carcinogenic or mutagenic treatment was applied. In the 
context of a wild-type genome, the normally small number of round melanocytes seen in sections through the anterior torso (A) and the tail (B) become highly 
arborized and over-proliferative (C, D). These cells become highly migratory, invading the brain and neural tube (E, red arrows) and extend long processes as 
they reach throughout lateral tissues (F, red arrow). They also invade blood vessels, which are normally free of melanocytes (G) but become choked with these 
cells after depolarization by pharmacological agents [61] or injection of dominant negative potassium channel subunits (H). These animals’ normal vasculature 
(I) also begins to overgrow (J). Together, these data reveal that depolarization can trigger the key aspects of metastatic melanoma: rapid over-growth, cell 
shape change, and invasiveness. Panels A-F are taken from [61], panels G,H are taken from [152], and panels I,J are taken from [60]. (The color version of the 
figure is available in the electronic copy of the article). 
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for cytoskeletal reconfiguration. Anesthetics also appear to act in 
microtubules to prevent consciousness, not exclusively on mem-
brane proteins as has been previously assumed [97]. However the 
effects of anesthesia cannot be readily explained via a simple 
mechanistic mode of action yet. Conversely, it is highly probable 
that psychoactive compounds should exert cytotoxic effects on 
cancer cells since microtubules are not only fundamentally impor-
tant to neuronal cells but are the essential part of the mitotic appara-
tus (spindles) in dividing cells. Recently, a study was published that 
reports computational docking of three specific psychotropic com-
pounds Lysergic Acid Diethylamide (LSD-25), heroin (morphine 
diacetate) and cocaine (benzoylmethylecgonine) to tubulin [89]. It 
demonstrated significant binding affinity of these compounds to 
tubulin with unique binding modes and locations compared to the 
standard control, chemotherapy drug paclitaxel, which has no 
known involvement in the cognitive process. It was also predicted 
that the binding affinity of these psychotropic drugs strongly de-
pends on the conformational state of the tubulin dimer. Most impor-
tantly, this points to the possibility of off-target interactions of psy-
choactive drugs, not only binding to their standard receptor sites in 
neurons but also affecting the cytoskeleton and hence affecting 

other cellular functions including cell division of dividing cells 
including cancer cells. 

4. EFFECTS OF PSYCHOACTIVE COMPOUNDS ON CAN-
CER AND NORMAL BREAST CELLS 
 A biophysical perspective suggests serotonergic signaling to be 
an important control point in the cancer problem, both because of 
its role as a transducer of bioelectric state and because of its interac-
tion with the cytoskeleton. To examine some of these predictions in 
a proof-of-concept investigation, we have exposed normal and can-
cer breast cells to Prozac (Fluoxetine) and its close analog. Fluoxet-
ine, also known by trade names Prozac is an antidepressant of the 
selective serotonin reuptake inhibitor (SSRI) class. Its chemical 
formula is C17H18F3NO and its molecular weight is 309.33. It is 
used for the treatment of major depressive disorder, OCD, bulimia 
nervosa, panic disorder, and premenstrual dysphoric disorder. The 
analog chosen was: ZINC ID = ZINC06811610  
(http://zinc.docking.org/) with a chemical formula C15H23NO4 
and a popular name = 2-[3-hydroxy-3-(4-propoxyphenyl)-propyl] 
aminopropanoic. It has a polar surface area = 86 in the units of 
Angstrom squared. Its molecular weight is 281.352. This is one of 

Fig. (8). Non-cell-autonomous signaling via serotonin underlies voltage-mediated conversion to metastasis. 
Remarkably, the conversion of normal melanocytes to melanoma is not cell-autonomous (A): the depolarized ventral cells in this section through the tadpole 
trunk are marked with blue via b-galactosidase staining, which is at a distance from the cells that respond and convert (the dorsal melanocytes, red arrow). 
Mechanistic dissection of this process [60] revealed that the long-range communication is mediated by the voltage-dependent release of serotonin from instruc-
tor cells (a widely-distributed population that, when depolarized, releases serotonin that activates genes such as SLUG and other aspects of epithelial-to-
mesenchymal transition in normal melanocytes). The whole process is shown in panel C, which reveals how a bioelectric signal is transduced and results in 
altered system-wide cell behavior. Panels A-B are taken from [152]. (The color version of the figure is available in the electronic copy of the article). 
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several compounds similar to Prozac that can be found in the ZINC 
database, which may have high DMSO solubility because of smal-
ler radii of gyration and lower lipophilicity and hence are also less 
likely to cross the blood brain barrier. 
 The binding affinities of Fluoxetine for its receptor targets is in 
the range of 1 nM (for SERT) to 72.6 nM (5-HT2C, 200nM for 5-
HT2A and 4 uM for 5-HT2B [98, 99]. A number of other receptors 
are characterized by Fluoxetine’s affinity in the low micromolar 
range (e.g. M1, M2, M3, M4, M5 and H1). To the best of our knowl-
edge, it’s affinity for tubulin has not been reported so far. Based on 
previous studies of binding of psychoactive compounds to tubulin 
mentioned above we expect Fluoxetine to have an off-target inter-
action with tubulin and microtubules and hence cytotoxic properties 
we examined and report here for the first time. 
 The survival of two cell lines: breast cancer cell line and a cor-
responding normal breast cell line (MCF7 and MCF10A) after ex-
posure to the ligands was evaluated by an MTT and a proliferation 
assay. Here, MCF-10A was used as a reference since its immortal 
transformation allows its in vitro culture and it is not malignant. We 
performed an MTT assay to determine the survival of these cell 
lines and a Crystal violet staining assay for proliferation analysis 
for both compounds. In Figs. (10) and (11) we show the data for the 
MTT and proliferation assays for Prozac while in Figs. (12) and 

(13) similar data are shown for the Prozac analog. We found an 
IC50 value for the concentration of these compounds (25 μM for 
Prozac and 100 μM for the Prozac analog) at which these com-
pounds inhibited tumor cell survival and proliferation. Additionally, 
at these concentrations we did not observe alterations in a non-
tumoral cell (see the panels in Figs. (10-13) corresponding to MCF-
10A). While these IC50 concentrations are higher than the concen-
tration values for the kinetically determined affinities for the pri-
mary receptor targets of Prozac mentioned above, they are not neg-
ligible especially in view of pharmacokinetic considerations that 
may be brought to bear on the delivery of these compounds to the 
tumor site. Importantly, the bioavailability of fluoxetine is very 
high (72%), and peak plasma concentrations are reached in 6–
8 hours. It is highly bound to plasma proteins, mostly albumin and 
α1-glycoprotein [z]. The extremely slow elimination of fluoxetine 
and its active metabolite norfluoxetine from the body distinguishes 
it from other antidepressants. Fluoxetine elimination half-life 
changes from 1 to 3 days, after a single dose, to 4 to 6 days, after 
long-term use [100]. Its therapeutic dose for depression depends 
ranges between 10 and 80 mg a day and a maximum dose is 90 mg. 
The latter translates into an approximate concentration in the blood 
at 300 mM, which is much higher than the IC50 value determined 
in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (9). Optogenetic approaches to cancer: light gating of electrical cues. 
Optogenetics [153-155] is the use of light-gated ion channels to gain spatio-temporal control of bioelectrical state of cells in vivo (A). Recent data have shown 
that when light-gated channels such as channelrhodopsin are co-injected with oncogenes (B), the incidence of resulting tumors can be reduced by light expo-
sure which forces hyperpolarization and thus antagonizes the steps by which oncoproteins transform cells. This occurs by prevention of tumor formation and 
tumor normalization. Such therapies, especially when combined with novel chemical strategies to render ion cannels light-gated without the use of gene ther-
apy [156, 157], are a promising novel path forward for cancer treatments that focus on tumor reprogramming instead of targeted toxicity. Panel A was drawn 
by Jeremy Guay of Peregrine Creative, while panels B, C are taken from [66]. 
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Fig. (10). MMT survival assay results for Prozac-exposed MCF7 breast cancer cells (top panel) and MCF10A non-malignant breast cells (bottom panel) at 24h, 
48h and 72 h, respectively, from left to right. 
 

 
Fig. (11). Crystal violet staining proliferation assay results for Prozac-exposed MCF7 breast cancer cells (top panel) and MCF10A non-malignant breast cells 
(bottom panel) at 24h, 48h and 72 h, respectively, from left to right. 
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Fig. (12). MMT survival assay results for the Prozac analog-exposed MCF7 breast cancer cells (top panel) and MCF10A non-malignant breast cells (bottom 
panel) at 24h, 48h and 72 h, respectively, from left to right. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (13). Crystal violet staining proliferation assay results for the Prozac analog-exposed MCF7 breast cancer cells (top panel) and MCF10A non-malignant 
breast cells (bottom panel) at 24h, 48h and 72 h, respectively, from left to right. 
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5. MATERIALS AND METHODS 

5.1. Reagents, Cell Lines and Culture Conditions 
 Unless stated otherwise, all chemical and tissue culture reagents 
were purchased from Sigma-Aldrich (Oakville, Canada) and tissue 
culture reagents from Invitrogen (Burlington, Canada), respectively. 
MCF-7 (Luminal A) and the non-tumoral breast epithelial cell line 
MCF-10A were maintained in MEM media supplemented with 
10% FBS and 1% PSK. 

5.2. Cell Proliferation and Survival Assays 
 For cell growth, replicate cultures were established 48 h after 
transfection in 24-well plates (Sarstedt, Canada) at 5 x 104 
cells/well. At 24, 48, 72 and 96 h after plating, cultures were 
trypsinized, stained with trypan blue and counted using hemocy-
tometer. The total number of cells/well for each cell line was calcu-
lated and plotted for each time point. For further verification, we 
also assessed cell proliferation by crystal violet staining. Cells were 
plated in 96-well microtiter plates at 5 x 103 cells/well. At specific 
time points, cells were washed with PBS, fixed with glutaraldehyde 
for 10 min, and stained with 0.1% (W/V) crystal violet in 0.2% 
(V/V) Triton X-100. Microtiter plates were read on a spectropho-
tometer at 570 nm.  
 For cell survival, cells were plated in 96-well plate at 5 x 103 
cells/well. At 24, 48, 72 and 96 h, 20 µl of 3-(4,5-dimethylthiazol-
2-yl)-2,5- diphenyltetrazolium bromide (MTT) was added to each 
well, and the plates were incubated at 37°C for another 4 h at which 
time the resulting formazan crystals were solubilized by the addi-
tion of 200 µl of MTT solubilization solution. The absorbance at 
570 nm was recorded using a microplate reader (Bio Tek Instru-
ments, Winooski, VT, USA). Each experiment for each cell lines 
was repeated 3-5 times.  

CONCLUSION 
 Cancer is the uncontrolled cell growth in which the cells show 
invasive intrusion or destruction of adjacent tissues and metastasize 
to other locations in the body via lymph and /or blood. Cancer cells 
escape the normal control of cell division and programmed cell 
death. The conventional methods to treat metastatic cancer are 
chemotherapy and radiation therapy. But these have a major draw-
back of producing severe side effects as they cannot differentiate 
between the cancerous cells and the normal cells. The "normal" 
cells most commonly affected by chemotherapy are the blood cells, 
the cells in the mouth, stomach and bowel, and the hair follicles; 
resulting in low blood counts, mouth sores, nausea, diarrhea, and/or 
hair loss. Therefore, recently the focus has shifted to comparatively 
newer methods of cancer treatment, i.e. targeted cancer therapy, 
which uses drugs or other substances to identify and attack cancer 
cells thereby avoiding any damage to normal cells. In this paper, we 
have advanced a new hypothesis that reprogramming of tumor cells 
can be achieved by avoiding toxic chemotherapy and instead by 
using a completely different set of pharmacological agents, in par-
ticular psychoactive compounds. Their repurposing can be achieved 
by rational drug design [101] involving derivatization that should 
take into account the molecular structure of the target and such 
aspects as blood-brain-barrier permeation. 
 A view of cancer as a disease of pattern coordination is com-
plementary and distinct from the prevailing paradigm that sees can-
cer as arising from genetically damaged cells, which are irrevocably 
broken [102, 103]. It has long been known that appropriate pattern-
ing environments, such as embryos and regenerating limbs [15, 
104], can normalize aggressive transformed cells. Likewise, cancer 
can be induced by factors such as denervation, barriers made from 
non-carcinogenic substances, and even apposition of healthy but 
ectopic tissues [17]. It is clear that at least in some cases, the proc-
ess is fundamentally physiological, not genetic, and thus could po-
tentially be reversed [105, 106]. Strategies which seek to manipu-

late the environment to normalize or reprogram tumors [107, 108], 
and thus avoid toxic chemotherapy and the compensatory growth 
and tumor evolution that plagues conventional approaches, could be 
an important frontier in this field. 
 Future work in this emerging field will focus on the role of 
neurotransmitters in mediating long-range growth control signals, 
resulting in a better understanding of the limits of the “microenvi-
ronment” and strategies for manipulating endogenous morphoge-
netic cues for cancer prevention and normalization. The numerous 
drugs emerging from psychopharmacology form an exciting toolkit 
with which to address the subcellular and network-level mecha-
nisms that go awry in cancer. In parallel with the modeling and in 
vivo studies of neurotransmitter pathways in computational psychia-
try, a combined understanding of cytoskeletal, bioelectric, and neu-
rotransmitter signaling in cellular networks is likely to have pro-
found implications for novel approaches to the cancer problem. 
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