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Abstract 

Background  The profile of changes in airway driving pressure (dPaw) induced by positive-end expiratory pressure 
(PEEP) might aid for individualized protective ventilation. Our aim was to describe the dPaw versus PEEP curves behav-
ior in ARDS from COVID-19 patients.

Methods  Patients admitted in three hospitals were ventilated with fraction of inspired oxygen (FiO2) and PEEP ini-
tially adjusted by oxygenation-based table. Thereafter, PEEP was reduced from 20 until 6 cmH2O while dPaw was step-
wise recorded and the lowest PEEP that minimized dPaw (PEEPmin_dPaw) was assessed. Each dPaw vs PEEP curve was 
classified as J-shaped, inverted-J-shaped, or U-shaped according to the difference between the minimum dPaw and 
the dPaw at the lowest and highest PEEP. In one hospital, hyperdistention and collapse at each PEEP were assessed by 
electrical impedance tomography (EIT).

Results  184 patients (41 including EIT) were studied. 126 patients (68%) exhibited a J-shaped dPaw vs PEEP profile 
(PEEPmin_dPaw of 7.5 ± 1.9 cmH2O). 40 patients (22%) presented a U (PEEPmin_dPaw of 12.2 ± 2.6 cmH2O) and 18 
(10%) an inverted-J profile (PEEPmin_dPaw of 14,6 ± 2.3 cmH2O). Patients with inverted-J profiles had significant higher 
body mass index (BMI) and lower baseline partial pressure of arterial oxygen/FiO2 ratio. PEEPmin_dPaw was associated 
with lower fractions of both alveolar collapse and hyperinflation.

Conclusions  A PEEP adjustment procedure based on PEEP-induced changes in dPaw is feasible and may aid in indi-
vidualized PEEP for protective ventilation. The PEEP required to minimize driving pressure was influenced by BMI and 
was low in the majority of patients.
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Introduction
Hypoxemic respiratory failure is the leading cause of 
intensive care unit (ICU) admission in COVID-19, the 
majority of subjects meeting Acute Respiratory Distress 
Syndrome criteria (C-ARDS) [1]. Initially, it was observed 
that many patients presented a disparity between well-
preserved lung mechanics and severe hypoxemia [2] 
and 2 different phenotypes in C-ARDS were proposed, 
which should be managed with different ventilatory strat-
egies [2]. However, this was not confirmed in posterior 
published data, remaining recommendations to treat 
C-ARDS accordingly ARDS ventilation evidence-based 
[3]. Several hypotheses were proposed to the wide range 
of respiratory system compliance (Crs) observed in many 
C-ARDS series, including hypoxemia due to impaired 
perfusion in patients with higher compliance or lungs 
with high recruitability and lower compliance [2].

Optimal positive end-expiratory pressure (PEEP) has been 
pursued [4] and the question of how to recognize patients 
that get benefit from higher PEEP levels has led to new tech-
nologies like Electrical Impedance Tomography (EIT), a bed-
side tool to monitor ventilation distribution, allowing PEEP 
titration to reduce both collapse and hyperdistention [5].

Airway driving pressure (dPaw) is a simple parameter 
to monitor on the ventilator and, when diminished with 
increased PEEP was associated with reduced mortality 
risk in ARDS [6]. In C-ARDS, a lower dPaw was associ-
ated with better survival [7, 8].

In the present study, we aim to describe the profile of 
PEEP-induced changes in dPaw during a PEEP adjustment 
procedure as aid for individualized protective ventilation, 
including a group where it was done together with an EIT 
monitor.

Methods
Patients
In this prospective observational physiologic study, 
adults patients admitted to the ICU of three hospitals 
with C-ARDS confirmed by positive nasopharyngeal 
polymerase chain reaction for SARS-CoV-2 and receiv-
ing invasive mechanical ventilation (MV) ≤ 48  h were 
analyzed. Patients with barotrauma assessed by com-
puted tomography (CT), chronic pulmonary disease, and 
increased intracranial pressure were excluded.

Mechanical ventilation settings
After analgesia and sedation adjustment, all subjects 
were initially ventilated in volume-controlled ventilation, 
tidal volume of 6  mL/kg with constant inspiratory flow, 
plateau pressure ≤ 30 cmH2O, FiO2 and PEEP adjusted 
to keep SaO2 > 90% based on the ARDSNetwork table [9] 
and respiratory rate to maintain normal partial pressure 

of carbon dioxide (PaCO2). Fluids and vasopressors 
were provided to maintain mean arterial pressure above 
60  mmHg and, neuromuscular blocking used to avoid 
ventilatory asynchronies.

PEEP adjustment procedure
After initial ventilatory settings, PEEP was reduced, 
2  cmH2O every thirty seconds [10], from 20 until 6 
cmH2O while dPaw was assessed in each step, and the 
lowest PEEP that minimized dPaw (PEEPmin_dPaw) was 
identified. The posterior PEEP adjustment was at the dis-
cretion of the clinical team responsible for patient care.

EIT assessment
In one of the hospitals, patients were investigated by EIT 
(Enlight 1800, Timpel, São Paulo, Brazil) during the PEEP 
adjustment procedure. Regional variations in impedance 
(∆Z) during ventilation, map the Vt distribution in the 
lung and creates a PEEP titration tool which was used 
to assess PEEP-induced pulmonary hyperdistention and 
collapse and its effects on dPaw during the PEEP adjust-
ment procedure. The EIT optimal PEEP (PEEPEIT) was 
defined as the PEEP that represents the best compromise 
between hyperdistention and collapse estimated [5, 11].

Evaluation of dPaw vs PEEP curve profile
After the PEEP adjustment procedure, each dPaw vs PEEP 
curve was recorded and retrospectively classified into one 
of three categories according to the difference between the 
minimum dPaw [12] and the dPaw at the lowest (ΔdPlow) and 
highest (ΔdPhigh) PEEP [4]. If ΔdPlow < 0.2 × ΔdPhigh, the 
curve was classified as J-shaped; if ΔdPhigh < 0.2 × ΔdPlow, 
the curve was classified as inverted-J-shaped; otherwise, 
the curve was U-shaped.

Statistical analysis
Results are reported without imputation as mean 
(standard deviation), or count (percentage), after test-
ing for normality using the Shapiro–Wilk test. One-way 
ANOVA was used for the comparison between the three 
groups. A Bonferroni-Holm post hoc test was applied to 
correct multiple testing. Hyperdistention and collapse 
curves at different PEEP levels were assessed by com-
puting areas under the curves (AUCs) [13] by adding the 
areas under each pair of consecutive observations:

where Y was the estimated hyperdistention or collapse. 
The AUCs were compared only between U-shaped and 
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(PEEPi+1 − PEEPi)× (Yi+1 + Yi),
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J-shaped PEEP vs dPaw groups, because just one patient 
with Inverted-J shape had EIT measurement.

Statistical analysis was performed in R (The R Foun-
dation, Vienna, Austria), and a p < 0.05 was considered 
significant.

Results
Between Jul 27th, 2020, and Feb 24th, 2021, a total of 184 
patients were included, and a PEEP adjustment proce-
dure was performed before 48 h on invasive MV. Table 1 
shows clinical characteristics in each curve profile dPaw 

vs PEEP. Patients with inverted J-Shaped dPaw versus 
PEEP profile presented significantly higher body mass 
index (BMI) (Table 1) and lower partial pressure of arte-
rial oxygen and fraction of  inspired oxygen ratio (PaO2/
FiO2) and Crs at baseline (Table 2).

Respiratory mechanics and PEEP titration
Based on the analysis of the dPaw vs PEEP profile, 
most of the COVID-19 patients (n = 126) exhib-
ited a J-shaped dPaw vs PEEP profile with dPaw start-
ing to increase for PEEPs ≥ 7.5 ± 1.9 cmH2O, only a 

Table 1  Characteristics of patients with C-ARDS enrolled in the PEEP titration

Continuous variables are expressed as mean and standard deviation or median and interquartile range, according to normality distribution. A one-way ANOVA or the 
Kruskal–Wallis test was used for the comparison between three groups with a respective post hoc analysis. The letters a, b and c express values that are statistically 
different. COVID-19, coronavirus disease-19; SOFA, sequential organ failure assessment score; PEEP, positive end-expiratory pressure; dPaw, airway driving pressure; 
PaO2/FiO2, partial pressure of arterial oxygen and fraction of inspired oxygen ratio; FiO2, fraction of inspired oxygen; PaCO2, partial pressure of carbon dioxide

Patients’ characteristics All COVID-19 J-shaped
n = 126

U-shaped
n = 40

Inverted J-shaped
n = 18

p value

Age, years, n = 184 60.04 ± 15.89 60.37 ± 15.94 59.20 ± 17.30 59.67 ± 12.68 0.915

Male, n (%), n = 184 127 (69.02%) 92 (72.44%) 25 (62.50%) 10 (55.55%) 0.160

Body mass index, kg/m2, n = 183 29.02 ± 6.43 27.48 ± 6.65a 30.16 ± 6.95a,b 35.89 ± 8.67b < 0.001

Comorbidities, n (%), n = 69 44 (63.8%) 30 (65.2%) 11 (68.8%) 3 (42.9%) 0.500

Hypertension, n (%) 38 (55.1%) 24 (52.2%) 11 (68.8%) 3 (42.9%) 0.422

Diabetes mellitus, n (%) 29 (42%) 18 (39.1%) 8 (50%) 3 (42.9%) 0.807

SOFA, n = 143 5.43 ± 4.03 5.17 ± 3.04 5.69 ± 3.39 6.53 ± 3.06 0.262

PEEP at baseline n = 114 10 (10–14) 10 (10–14)a,c 12 (10–15.5)a 15 (10.5–19.5)c < 0.05

FiO2 at baseline, n (%), n = 184 80 (60–100) 70 (60–100)a 100 (70–100)a 95 (60–100) < 0.05

PaCO2 at baseline, mmhg, n = 75 51.6 ± 11.9 51.4 ± 11.1 54.2 ± 13.2 47.1 ± 14.4 0.410

Respiratory rate at baseline, breaths/min, n = 75 20 (20–25) 20 (20–25) 24 (20–24.5) 20 (20–20) 0.170

Minute ventilation at baseline, L/min, n = 75 8.1 ± 2.0 8.3 ± 2.0 8.1 ± 1.7 6.8 ± 1.7 0.180

Table 2  Respiratory mechanics and EIT data

Continuous variables are expressed as mean and standard deviation or median and interquartile range, according to normality distribution. A one-way ANOVA or the 
Kruskal–Wallis test was used for the comparison between three groups with a respective post hoc analysis. A t-test was used for the comparison between pairs. The 
letters a, b and c express values that are statistically different. IBW, ideal body weight; Crs, respiratory system compliance; dPaw, airway driving pressure; PaO2/FiO2, 
ratio of partial pressure of arterial oxygen and fraction of inspired oxygen; PEEPmin_dPaw, lowest PEEP that minimized dPaw; PEEP, positive end-expiratory pressure; 
EIT, electrical impedance tomography; AUC, area under the curve

Respiratory mechanics J-shaped
n = 126

U-shaped
n = 40

Inverted J-shaped
n = 18

p value

Tidal volume, mL/kg of IBW (mean, sd) 6.03 ± 0.03 5.86 ± 0.92 5.97 ± 0.14 0.098

Baseline Crs, mL/cmH2O (mean, sd) 33.47 ± 7.25a 29.24 ± 8.70a,b 25.64 ± 8.45b < 0.001

Baseline dPaw, cmH2O (mean, sd) 12.65 ± 2.66a 13.21 ± 3.94a,b 15.03 ± 3.72b < 0.05

Baseline PaO2/FiO2, mmHg (mean, sd) 139.32 ± 52.67a 120.72 ± 57.68a,b 92.43 ± 40.43b < 0.05

PEEPmin_dPaw, cmH2O (median, IIQ) 7.52 ± 1.9a,c 12.2 ± 2.64a,b 14.6 ± 2.38b,c < 0.001

EIT assessment N = 28 N = 12 N = 1

Hyperdistention at the optimal PEEP, % (mean, sd) 1.58 ± 2.34 6.34 ± 10.22 1.3 ± 0 0.071

AUC for hyperdistention, %.cmH2O (mean, sd) 216.75 ± 81.44a 116.17 ± 77.53ª 6.3 ± 0 < 0.001

Collapse at the optimal PEEP, % (mean, sd) 13.86 ± 13.38 10.81 ± 10.38 0.0 ± 0 0.473

AUC for collapse, %.cmH2O (mean, sd) 96.95 ± 70.40a 149.42 ± 95.54a 418 ± 0 < 0.001

EIT optimal PEEP, cmH2O, (mean, sd) 9.17 ± 2.53a 12.96 ± 3.29ª 14.22 ± 0 < 0.001
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few COVID-19 patients had mostly inverted-J pro-
files (n = 18), usually requiring higher levels of PEEP 
(PEEPmin_dPaw ranging from 14 to 20 cmH2O) 
(Table  2, Fig.  1). Only 21.7% of COVID-19 patients 
presented the U-shaped profile with the PEEPmin_
dPaw ranging from 10 to 14 cmH2O.

The J-shaped dPaw vs PEEP profile was associated 
with increased hyperdistention, and collapse reduction 
as PEEP increased and, in this group, PEEPmin_dPaw 
was lower than PEEP based on the ARDSNetwork 
table (Table 2). At the range of the PEEPmin_dPaw both 
hyperdistention and collapse were minimized inde-
pendent of the dPaw vs PEEP profile (Table 2, Fig. 1).

Discussion
Our study interpreted the dPaw vs PEEP curve profile 
among C-ARDS patients. The main findings were: (1) 
90% of C-ARDS-19 patients presented a J- or U-shaped 

dPaw vs PEEP curve profile usually requiring PEEPs < 12 
cmH2O to minimize dPaw; (2) PEEPs > 15 cmH2O would 
be necessary in only 10% of C-ARDS, and those patients 
presented an inverted-J dPaw vs PEEP curve profile and 
higher BMI; and (3) PEEPmin_dPaw was associated with 
a reduction of both alveoli collapse and hyperdistention. 
All these patients averaged PaO2/FiO2 below 150 which 
there is evidence of benefit from using higher levels of 
PEEP in ARDS [14].

ARDS and C-ARDS are heterogeneous conditions with 
uncertainty about to set PEEP [2, 3] commonly based by 
oxygenation targets [9]. However in C-ARDS this strat-
egy frequently resulted in worse lung mechanics [15], and 
cardiac output impairment [16].

Our EIT data and an experimental CT study [4] show 
that, at constant VT, dPaw and compliance respond 
to both hyperdistention and collapse. 126/184 of our 

Fig. 1  Respiratory system mechanics associated with the percentage of collapse and hyperdistention at different levels of PEEP. In panels A, D, and 
G, data were obtained by electrical impedance tomography, where ● is the respiratory system compliance; Δ is the percentage of collapse and □ 
is the percentage of overdistension. Panels B, C, E, F, H, and I show the percentage change in driving pressure obtained by a mechanical ventilator 
for a representative patient (B, E, H) and all patients (C, F, I). Panels A–C correspond to the category of patients with J-shaped curves; panels D–F 
correspond to the category of patients with U-shaped curves, and panels G–I correspond to the category of patients with inverted J-shaped curves



Page 5 of 6da Cruz et al. Critical Care          (2023) 27:118 	

patients presented a J-shaped curves, with the largest 
hyperdistention AUC, where increasing PEEP to improve 
oxygenation may not work. In U-shaped curves the bal-
anced risk of collapse and hyperdistention was obtained 
with about 12 cmH2O PEEP. In these two groups, higher 
PEEPs would carry a greater risk of iatrogenesis. Finally, 
patients with an inverted-J-shaped required higher 
PEEPs to minimize dPaw and presented higher BMI and 
lower initial PaO2/FiO2 ratio. In the only patient with this 
profile on EIT, PEEP decreased collapsed areas without 
increasing hyperdistention up to 20 cmH2O. The inter-
pretation of the PEEP with respiratory system mechanics 
or with the amount of recruitment and overdistension on 
EIT seems to give the same information.

At least one-third of patients were obese in C-ARDS 
different cohorts [3, 7, 8], even though the effect of 
obesity on respiratory mechanics is well known, a rela-
tionship between BMI and compliance has not been 
described as an explanation, at least in part, for the 
COVID-19 different phenotypes. Obesity reduce Crs 
with the major contribution coming from the lung and 
not the chest wall [17] in spite of no significant associa-
tion between compliance and BMI has been detected in 
a large cohort study of C-ARDS [18]. Mezidi et al. com-
paring a group of obese vs non-obese in C-ARDS patients 
monitoring esophageal pressure in a decremental PEEP 
trial demonstrated a significant difference in PEEP level 
for the same transpulmonary driving pressure (∆PL) and 
dPaw [19]. ∆PL also did not enhance significant informa-
tion concerning the prediction of outcome in ARDS 
patients compared to dPaw itself [20].

Limitations
The observational nature of this study is its major limita-
tion, and although data were acquired prospectively, they 
were interrogated retrospectively. The heavy workload 
upon COVID-19 pandemic made impossible to perform 
a clinical trial comparing clinical outcomes considering 
the observed profiles. The small proportion of patients 
investigated with EIT did not allow an appropriate com-
parison between the two methods, but data suggest a 
similar result to obtain the best PEEP for protective ven-
tilation with a much simpler bedside procedure.

Conclusion
The dPaw vs PEEP curve is a feasible method and provides 
individualized information. A range of compliance and 
PEEPmin_dPaw was observed in all 3 groups and its inter-
pretation suggested that just in a minority of C-ARDS 
patients, higher PEEP improves compliance, and even in 
these cases, it appears that obesity, together with disease 
severity, determines this behavior. The overall influence 

of personalizing PEEP on clinical outcomes remains to be 
determined.
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