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Abstract

Chronic Chagas cardiomyopathy (CCC) is one of the leading causes of morbidity and mor-

tality due to cardiovascular disorders in endemic areas of Chagas disease (CD), a neglected

tropical illness caused by the protozoan parasite Trypanosoma cruzi. CCC is characterized

by parasite persistence and inflammatory response in the heart tissue, which occur parallel

to microRNA (miRNA) alterations. Here, we investigated the miRNA transcriptome profiling

in the cardiac tissue of chronically T. cruzi-infected mice treated with a suboptimal dose of

benznidazole (Bz), the immunomodulator pentoxifylline alone (PTX), or the combination of

both (Bz+PTX), following the CCC onset. At 150 days post-infection, Bz, PTX, and Bz+PTX

treatment regimens improved electrocardiographic alterations, reducing the percentage of

mice afflicted by sinus arrhythmia and second-degree atrioventricular block (AVB2) when

compared with the vehicle-treated animals. miRNA Transcriptome profiling revealed consid-

erable changes in the differential expression of miRNAs in the Bz and Bz+PTX treatment

groups compared with the control (infected, vehicle-treated) group. The latter showed path-

ways related to organismal abnormalities, cellular development, skeletal muscle develop-

ment, cardiac enlargement, and fibrosis, likely associated with CCC. Bz-Treated mice

exhibited 68 differentially expressed miRNAs related to signaling pathways like cell cycle,

cell death and survival, tissue morphology, and connective tissue function. Finally, the Bz

+PTX-treated group revealed 58 differentially expressed miRNAs associated with key sig-

naling pathways related to cellular growth and proliferation, tissue development, cardiac

fibrosis, damage, and necrosis/cell death. The T. cruzi-induced upregulation of miR-146b-

5p, previously shown in acutely infected mice and in vitro T. cruzi-infected cardiomyocytes,

was reversed upon Bz and Bz+PTX treatment regimens when further experimentally vali-

dated. Our results further our understanding of molecular pathways related to CCC
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progression and evaluation of treatment response. Moreover, the differentially expressed

miRNAs may serve as drug targets, associated molecular therapy, or biomarkers of treat-

ment outcomes.

Author summary

Chronic Chagas cardiomyopathy (CCC) is a neglected tropical illness caused by the Try-
panosoma cruzi, characterized a persistent inflammatory response driven by parasite per-

sistence in the infected tissues. In this study, authors investigated the miRNA expression

pattern in the cardiac tissue of chronically T. cruzi-infected mice treated with benznida-

zole (Bz), the immunomodulator pentoxifylline alone (PTX), or the combination of both

(Bz+PTX). All treatment regimens improved electrocardiographic alterations and clinical

parameters, while miRNA profiling revealed considerable alterations in expression.

Infected group showed pathways related to organismal abnormalities, cellular develop-

ment, skeletal muscle development, cardiac enlargement, and fibrosis, likely associated

with CCC. Bz group is mainly affecting cell cycle, cell death and survival, tissue morphol-

ogy, and connective tissue function pathways. On the other hand, Bz+PTX-treated group

is mainly affecting cellular growth and proliferation, tissue development, cardiac fibrosis,

damage, and necrosis/cell death pathways. Surprisingly, miR-146b-5p upregulation in the

infected group was reversed upon Bz and Bz+PTX treatment regimens, highlighting its

importance as a biomarker of therapeutic response. Our results help understanding the

molecular pathways related to CCC progression and evaluation of treatment response in

Chagas disease.

Introduction

Chagas disease (CD), also known as American trypanosomiasis, is caused by the infection of

the protozoan parasite Trypanosoma cruzi, which can infect a wide range of sylvatic and

domestic mammalians and can be transmitted by more than 150 triatomine vectors [1]. It is

estimated that 6–7 million people are infected, and approximately 75 million are exposed to

the risk of infection [2]. Chagas disease has been considered endemic to rural regions of Latin

America, where vector transmission is the main route of infection [3,4], causing a loss of

approximately 750,000 working days due to premature death and $1.2 billion in productivity

losses yearly [5]. Additionally, since human migration has considerably increased in the last

several years, the infection has been disseminated to countries not originally endemic, such as

the United States, Spain, Japan, and Australia. The lack of screening in blood banks and the

inexperience of health professionals in diagnosing and managing the disease has contributed

to organ transplant and congenital transmissions [1,6], causing an economic burden of $7 bil-

lion/year for the global public health [4,7].

Chagas disease has an acute and a chronic phase. The acute phase comprises a 4-8-week

duration, with patent parasitemia and inflammation due to tissue parasitism, generally asymp-

tomatic or unspecific symptoms [8,9]. Trypanocidal therapy is effective if administered during

the acute phase, with a cure rate ranging from 60–85% [10]. Nevertheless, the main problem

relies on adequately diagnosing and treating the disease in that phase, which, if not done, may

progress to the chronic phase, where the parasitemia is mostly undetectable [9]. Most patients

progress to the indeterminate form of CD. They may never show clinical signs of the disease
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during their lifespan, mostly diagnosed by serological and/or parasitological positivity but

lacking electrocardiographic (ECG) and/or radiological abnormalities [9]. On the other hand,

30–40% of patients progress to the determinate forms of chronic CD (CCD), which may be

cardiac, digestive, or cardiodigestive [11]. The cardiac form (CCC) of CCD is the most fre-

quent and severe form of the disease, characterized by an intense and intermittent inflamma-

tory response due to parasite persistence [12], being one of the leading causes of morbidity

and mortality due to cardiovascular disorders in endemic areas [13]. It is proposed that CCC

originates from a dysregulation of the immune response triggering a robust cardiac remodel-

ing process causing hypertrophy, fibrosis, and edema, consequently affecting the electrophysi-

ological properties of the heart leading to life-threatening arrhythmias that may cause late

manifestations such as thromboembolism, heart failure, and sudden death [1,8,9].

Presently, benznidazole (Bz) and nifurtimox (Nf) are the only two drugs approved for CD

treatment. Both have been used consistently for the last 50 years, although their efficacy and

safety rates could be better due to their high rate of adverse events [3]. Bz belongs to the group

of nitroheterocyclic compounds, being a prodrug that exerts its effect after activation by the

trypanosomal type-I nitroreductase, intrinsic of T. cruzi and other protozoa, thus producing

reactive metabolites that have a trypanocidal effect on the intra- and extracellular forms of the

parasite [10,14], being more commonly used than Nf due to its better tolerability and safety

[3]. However, due to its relatively high rate of adverse events, which caused ~13% permanent

treatment discontinuation in the BENEFIT clinical trial [15], special attention has been given

to establishing an etiological treatment using lower doses of Bz. This has already been demon-

strated in an in vitro and in vivo model to have the same trypanocidal efficacy as the standard

dose [16]. Therefore, recent clinical trials have focused on new therapeutic regimens to opti-

mize the existing pharmacotherapy without changing its effectiveness, using lower doses or

lower dose frequency of Bz for shorter or extended treatment periods. Among them, BEND-

ITA [17,18], MULTIBENZ [19], and TESEO [20] studies have already been concluded or are

in progress [21]. In this regard, the importance of optimizing pharmacotherapy in the CD

treatment and, especially in the treatment of CCC, is evident. In the present study, we also give

this focus and use one-quarter of the standard Bz dose in the treatment of the murine CCD

model.

Pentoxifylline (PTX) is a methylxanthine derivative traditionally used to treat peripheral

vascular diseases that also has anti-inflammatory and cardioprotective properties [22]. Among

PTX immunomodulatory properties, it is shown to decrease the production of critical proin-

flammatory cytokines such as TNF, IL-1, and IL-6, which consequently affect the activity of

monocytes and macrophages, favoring a Th2-type cytokine induction while decreasing the

Th1-type inflammatory response [23]. Moreover, PTX has immunomodulatory effects inde-

pendent of its TNF modulation action, such as inhibition of the proliferation of peripheral

mononuclear cells, decreased adhesion to the cellular matrix, and decreased IL-12 production

[24]. Previously, PTX has been explored by our group as a complementary immunomodula-

tory therapy in the treatment of CCC in chronically T. cruzi-infected C57BL/6 mice, where

PTX promoted reduction of CD8+ T cells expressing markers of activation and migration in

the spleen and also the activation of cardiac blood vessel endothelial cells, in addition to reduc-

ing myocarditis, cardiac tissue damage progression and ameliorating ECG parameters [25].

Moreover, we also evaluated the combined Bz+PTX treatment in the same experimental

model, showing a reduction in heart tissue parasite load, inflammation, and fibrosis, promot-

ing improvement in ECG alterations caused by T. cruzi infection. Additionally, the combined

Bz+PTX therapy reduced TNF expression and inducible nitric oxide synthase (iNOS/NOS2)

in the cardiac tissue and TNF receptor-1 expression on CD8+ T cells [26].
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MicroRNAs (miRNAs) are a class of small, single-stranded non-coding RNAs that have

19 to 22 nucleotides and act by preventing transcription or inducing degradation of the tar-

get mRNA, being generally involved in inhibiting gene expression at the post-transcrip-

tional level [27,28], as they are the most abundant class of gene regulatory molecules in

animals [29]. miRNAs play a crucial role in regulating gene expression of cardiac signaling

pathways during proliferation, differentiation, metabolism, apoptosis, angiogenesis, and

pathological processes [30]. They are also involved in establishing several pathological pro-

cesses related to viral, bacterial, and parasite infections [31–34]. T. cruzi infection has

already been shown to alter host miRNA expression levels in the cardiac tissue of patients

with CCC [35,36] and in murine models [37–39]. Evaluation of the expression of nine miR-

NAs in the cardiac tissue of patients with CCC revealed that five miRNAs (miR-1, miR-

133a, miR-133b, miR-208a, and miR-208b) were down-regulated in patients with CCC

when compared with healthy individuals and patients with idiopathic dilated cardiomyopa-

thy (DCM) [35]. Additionally, miRNA transcriptome profiling done in cardiac tissue of

acutely T. cruzi-infected mice identified nine miRNAs (miR-21, miR-142-5p, miR-142-3p,

rno-miR-146b, mmu-miR-146b, miR-222, miR-145, miR-322, and miR-149) showed signif-

icant correlation with parasitemia and the prolongation of the corrected QT (QTc) interval

in the ECG. Furthermore, the prediction of miRNA targets revealed key molecules such as

gap junction protein alpha 5 (GJA5) and potassium voltage-gated channel subfamily A

member 1 (KCNA1), both closely related to changes in the electrical conduction of the

heart, especially the QTc interval [38]. A more recent study on miRNAs in CD, investigated

the molecular mechanisms of miRNAs and mRNAs differentially expressed in myocardial

tissue of CCC patients, showing that differentially expressed miRNAs (DEMs) were

involved in processes related to CCC onset, including fibrosis, hypertrophy, myocarditis,

and arrhythmias. Pathway analysis with targets for the DEMs revealed their involvement in

immune response and metabolism, in which IFN-γ, TNF, and NF-κB played a central role

[35,36]. Moreover, analysis of signaling pathways showed activation of inflammation-

related pathways such as Th1 response, IFN-γ-induced genes, fibrosis, hypertrophy, and

mitochondrial/oxidative and antioxidant stress responses [36].

Thus far, no other study has investigated the expression of miRNAs in a murine model of

CCC undergoing new etiological therapy regimens aiming to maintain the Bz efficacy while

decreasing its adverse events, similar to what has been done in recently completed or ongoing

clinical trials. Therefore, here we investigate the miRNA transcriptome profiles in the cardiac

tissue of T. cruzi-infected mice under a suboptimal Bz dose or combined Bz+PTX treatment.

This study aims to unveil the main molecular pathways affected by the parasite infection and

therapeutic regimens, thus establishing possible targets for the DEMs and contributing to the

elucidation of new therapeutic biomarkers or complementary therapy candidates.

Material and methods

Ethical statements

This study was carried out in strict accordance with recommendations in the Guide for the

Care and Use of Laboratory Animals of the Brazilian National Council of Animal Experimen-

tation (https://www.mctic.gov.br/mctic/opencms/institucional/concea) and the Federal Law

11.794 (8 October 2008). The Institutional Committee for Animal Ethics of Fiocruz (CEUA--

Fiocruz L004/09 and LW10/14) approved all experimental procedures used in the present

study. All presented data were obtained from two independent experiments (Experiment Reg-

ister Book #49, #53, and #57, LBI/IOC-Fiocruz).
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Experimental T. cruzi infection and drug treatment

Mice were obtained from the animal facilities of the Oswaldo Cruz Foundation (ICTB/Fiocruz,

Rio de Janeiro, Brazil). Immediately after arrival, mice were housed in polypropylene cages

under specific-pathogen-free conditions, randomly grouped into three mice per cage. Cages

were maintained in microisolators under standard conditions (with temperature and relative

humidity of ~22˚C ± 2˚C and 55% ± 10%, respectively), noise and light (12-h light-dark cycle)

control, and mice received grain-based chaw food and water ad libitum. To minimize stress,

mice were kept in adaptation for 10–14 days in a plastic igloo-enriched cage. After adaptation,

five to 7-week-old female C57BL/6 (H-2b) mice were intraperitoneally (i.p.) infected with 100

blood-derived trypomastigotes (BDTs) of T. cruzi Colombian strain (DTU TcI) in 0.2 ml of

vaccine-grade sterile buffered saline (BioManguinhos/Fiocruz, Brazil). After 120 days post-

infection (dpi), animals in the chronic phase presenting clinical signs of CCC [26,40,41]

received an intraperitoneal (i.p.) injection with apyrogenic saline (noninfected, vehicle-treated

group) or saline containing PTX (Trental, Sanofi-Aventis) at 20 mg/Kg and/or one-quarter of

Bz optimal dose (¼ Bz; 25 mg/Kg/day; LAFEPE) by gavage using apyrogenic water (BioMan-

guinhos/Fiocruz, Brazil), daily, for 30 days. Cardiac alterations were monitored by ECG,

before (120 dpi) and after (150 dpi) therapy. At 150 dpi, mice were euthanized under anesthe-

sia (ketamine 300 mg/Kg + xylazine 30 mg/Kg). Hearts were collected in RNAlater Stabiliza-

tion Solution (Invitrogen) for processing before performing the molecular assays.

ECG registers

Mice were tranquilized with diazepam (10 mg/Kg), and transducers were placed subcutane-

ously (DII). The traces were recorded for 2 min using a digital Power Lab 2/20system con-

nected to a bio-amplifier at 2mV for 1 second (PanLab Instruments, Spain). The filters were

standardized between 0.1 and 100 Hz, and the traces were analyzed using Scope software for

Windows V3.6.10 (PanLab Instruments, Spain). The ECG parameters were analyzed as previ-

ously described [40].

DNA extraction and T. cruzi parasite load quantification by quantitative

real-time PCR

Mice were randomly selected for each group. Genomic DNA was extracted from 10–20 mg of

mouse hearts using High Pure PCR Template Preparation Kit (Roche Diagnostics, Indianapo-

lis, IN), following the manufacturer”s instructions. Before extraction, tissues were withdrawn

from RNA later and disrupted in 500 μL of tissue lysis buffer from the High Pure PCR Tem-

plate Preparation Kit (Roche), using a TissueRuptor II (QIAGEN, USA) at its maximum speed

for 30 sec. The ensuing homogenate was submitted to DNA extraction using the kit above, fol-

lowing the manufacturer”s recommendations. At the last step of the protocol, DNA was eluted

from the silica column in 100 μL of elution buffer and stored at– 20˚C until further analysis.

Amplification of T. cruzi satellite DNA was done by using the specific primers Cruzi1 (50–AST

CGGCTGATCGTTTTCGA–30) and Cruzi2 (50–AATTCCTCCAAGCAGCGGATA–30), both

at 750 nM and the TaqMan probe Cruzi3 (6FAM–CACACACTGGACACCAA–NFQ–MGB)

at 50 nM with 10 μL FastStart Universal Probe Master Mix 2X (Roche Diagnostics GmbHCorp.

Mannheim, Germany) in a final volume of 20 μL. As an endogenous internal control, the prede-

signed TaqMan assay targeting mouse GAPDH gene (Cat n˚. Mm99999915-g1, Applied Biosys-

tems) was used [42]. Standard curves were done by spiking 1 x 106 BDTs (Colombian strain),

obtained from infected VERO cells, into 30 mg heart tissue of a noninfected mouse. Following

DNA extraction, a 1:10 serial dilution of the eluted DNA in ultrapure water (from 106 to 0.1
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parasite equivalents) was done. Real-time PCR reactions were performed on an Applied Biosys-

tems ViiA 7 Real-Time PCR (Thermo Fisher Scientific, USA) thermocycler, using the following

cycling conditions: 50˚C for 2 min, 94˚C for 10 min, followed by 40 cycles at 95˚C and 58˚C for

1 min, where sample fluorescence was acquired after each cycle. All samples were run in dupli-

cate, and a threshold was set at 0.02 for both targets.

Total RNA extraction

10–20 mg of mouse heart tissues were withdrawn from RNA later and disrupted in 500 μL

lysis buffer using TissueRuptor II (QIAGEN, USA) at maximal speed for 30 sec. Total RNA

was extracted using mirVana miRNA Isolation Kit (Life Technologies), according to the man-

ufacturer”s recommendations. Total RNA quantification and purity were assessed in a Nano-

Drop ND2000 (Thermo Fisher), and integrity was analyzed in a Bioanalyzer 2100 (Agilent,

USA) using RNA Nano 6000 kit. Only samples with RIN� 7.5 were used in this study.

MicroRNA expression profiling by quantitative real-time PCR

A pool of three total RNA samples, extracted from cardiac tissue of noninfected mice and

infected-treated (vehicle, Bz, or Bz+PTX) mice were used for the gene expression analysis of

752 miRNAs and four reference miRNAs candidates, according to the Applied Biosystems

protocols. Reverse transcription was performed from 1,000 ng total RNA using Megaplex RT

Primers (A+B), Rodent Pool (Applied Biosystems, Thermo Fisher Scientific, Cat no. 4444746)

with TaqMan MicroRNA Reverse Transcription Kit (Applied Biosystems, Thermo Fisher Sci-

entific, Cat no. 4366596). The multiplexed RT reaction was performed according to manufac-

turer”s instructions. Quantitative real time RT-qPCR was done utilizing pre-printed TLDA

384 wells microfluidic cards (TaqMan Array Rodent MicroRNA A+B Cards Set v3.0, Applied

Biosystems, Thermo Fisher Scientific, Cat no. 4444909) that contained FAM/NFQ-MGB

labelled probes specific to mature miRNAs and 4 endogenous small nucleolar RNAs candi-

dates for data normalization and relative quantification. The reaction mix was performed with

450 μL TaqMan Universal PCR Master Mix 2X, 6 μL Megaplex RT product (sample), and

444 μL nuclease-free water. Furthermore, 100 μL sample+master mix was loaded onto each

microfluidic channel, centrifuged twice at 1,200 rpm for 1 min and mechanically sealed with

the Applied Biosystems sealer device, following manufacturer”s instructions. Real-time PCR

reactions were carried out on Applied Biosystems ViiA 7 Real-Time PCR (Thermo Fisher)

thermocycler, using the cycling conditions: 10 min at 95˚C, followed by 40 cycles of 15 sec at

95˚C and 60 sec at 60˚C. Fluorescence was collected after each cycle, at the annealing/exten-

sion step. Raw data files were pre-processed using QuantStudio Real-Time PCR Software

(Applied Biosystems) with threshold and baseline corrections for each sample and gene

expression results were analyzed and Expression Suite v1.0.3 (Applied Biosystems). Threshold

was set at 0.08 for all miRNAs. After the stability score analysis of the reference small RNA

candidates, using the Expression Suite Software, U87 and snoRNA135 were selected as the

most-stable reference gene pair (score = 0.274). Gene expression was estimated by the ΔΔCt

method [43,44] with global normalization, using the noninfected group as calibrator.

Pathway analysis

QIAGEN”s Ingenuity Pathway Analysis (IPA) software [45] (IPA, Qiagen, Redwood City, CA)

was used to examine the direct and indirect relationships between the miRNAs and their

potential targets within the CCC-related pathways. IPA is a web-based application for data

analysis in pathway context. Lists of DEMs and their respective fold change values were

uploaded and used as input for the QIAGEN IPA. MiRNAs were mapped to the IPA
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knowledgebase using the miRNA IDs. The miRNA target filter analysis was used to find the

targets for the respective mRNAs. The targets that have been experimentally observed previ-

ously and those predicted at high-confidence levels were selected. Core analysis was performed

with the putative targets to identify canonical pathways and top diseases and functions. The

default maximum and minimum values set by IPA were used. The “Grow” tool was used to

visualize the direct/indirect relationships among the molecules within the pathways and the

miRNA dataset. The “Grow” tool only shows the connections between miRNAs and mRNAs

(miRNA-mRNA); therefore, the “Connect” tool was also used to visualize more direct/indirect

connections, those between miRNA-miRNA and mRNA-mRNA with a previously chosen

confidence level. The figures were finalized using the “Path Designer” tool, which provides

more clarity in differentiating the connections among the different types of molecules, and

were downloaded directly from the IPA network visualization tool.

Analysis of individual gene expression by RT-qPCR

Reverse transcription reactions of the mature microRNAs: U87 (assay ID 001712), miR-145-5p

(assay ID 002278), and miR-146b-5p (assay ID 001097) were performed with 10 ng of total

RNA using TaqMan MicroRNA Reverse Transcription Kit (Applied Biosystems, Thermo Fisher

Scientific, USA/Cat no. 4366596) and their respective stem-loop primers, following manufac-

turer”s instructions. RT reactions (15 μL) were run in an Eppendorf Mastercycler thermocycler

at 16˚C for 30 min, 42˚C for 30 min, and 85˚C for 5 min. Quantitative real-time RT-qPCR was

done in a 10 μL reaction containing 5 μL of 2x TaqMan Universal PCR Master Mix, 0.5 μL of

TaqMan probe belonging to either U87, miR-145-5p or miR-146b-5p, 2 μL of cDNA and 2.5 μL

of RNase-free water. Real-time PCRs were carried out on Applied Biosystems ViiA 7 Real-Time

PCR (Thermo Fisher, USA) thermocycler, using the cycling conditions: 10 minutes at 95˚C, fol-

lowed by 40 cycles of 15 seconds at 95˚C and 60 seconds at 60˚C. Fluorescence was collected

after each cycle at the annealing/extension step. Raw data files were pre-processed using Quant-

Studio Real-Time PCR Software (Applied Biosystems, USA) with baseline corrections when

necessary. Gene expression results were estimated with Expression Suite v1.0.3 (Applied Biosys-

tems, USA) with a threshold set at 0.02 for all targets. U87 was used as the reference miRNA

once it had down constitutive expression across samples. Target miRNA levels were estimated

by the ΔΔCt method [43,44], using noninfected samples as calibrators.

Statistical analysis

All experiments were performed in at least three technical replicates. To assess the normality

of the data, the Shapiro-Wilk test was used. To determine whether there were any significant

statistical differences between the groups, unpaired one-way ANOVA with Tukey‘s multiple

comparisons with a 95% confidence level was used. Correlation analysis was done using Pear-

son”s correlation coefficient. All statistical tests were performed using GraphPad Prism 9.0

(GraphPad Software, San Diego, CA). The data were expressed as mean plus standard devia-

tion (SD), and differences were considered statistically significant when p < 0.05.

Results

A suboptimal dose of Bz and combined Bz+PTX treatments reversed

relevant ECG abnormalities in the chronic Chagas cardiomyopathy

experimental model

To evaluate treatment efficacy on T. cruzi infection, C57BL/6 mice were infected (i.p.) with

100 BDTs (Colombian strain). At 120 dpi, when electrical abnormalities and heart injury were
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already installed, as previously established in the same experimental model [40], animals were

treated with vehicle (i.p.-injected sterile saline and water by gavage), Bz (25 mg/Kg/day), PTX

(20 mg/Kg/day), or combined Bz+PTX, for 30 consecutive days (Fig 1A). At 150 dpi, when

compared with age-matched noninfected controls, vehicle-injected chronically infected

C57BL/6 mice presented substantial ECG alterations including P wave, PR, and QTc interval

prolongation, compared with the noninfected group (Fig 1B). Conversely, Bz-, PTX- or Bz

+PTX-treated mice exhibited improvement in ECG alterations, when compared with vehicle-

treated mice (Fig 1B). All T. cruzi-infected mice showed ECG abnormalities, decreasing pro-

gressively under therapy with Bz (69%), PTX (55%), or Bz+PTX (50%) (Fig 1C). Additionally,

vehicle-treated mice showed bradycardia (385.8 ± 36.73 bpm; p = 0.001) when compared with

the noninfected group (558.8 ± 22.72 bpm), indicating a tendency to reversion under Bz

(455.4 ± 32.77 bpm), PTX (474.9 ± 91.23 bpm), or Bz+PTX (468.6 ± 53.14 bpm) therapy with

no statistical significance when compared with the vehicle group (Fig 1D). Among the most

common ECG abnormalities, an increased P wave duration was observed in the vehicle-

treated group (15.06 ±1.164 ms; p<0.001) when compared with the noninfected group

(10.38 ± 0.9559 ms). However, Bz (12.54 ± 0.7646 ms; p = 0.010), PTX (11.76 ± 1.040 ms;

p<0.001), or Bz+PTX (12.20 ± 1.046 ms; p = 0.003) therapy was able to reverse this alteration

when compared with the vehicle-treated group (Fig 1E). Moreover, an augmented PR interval

was observed in the vehicle-treated group (46.94 ± 1.562 ms; p>0.001) when compared with

the noninfected group (36.97 ± 3.737 ms). This alteration was not reversed under Bz

(44.00 ± 3.270 ms), PTX (42.31 ± 3.491 ms), or Bz+PTX (42.29 ± 0.6409 ms) therapy (Fig 1F).

The QTc interval, considered a relevant predictor of outcome in immune dysregulated myo-

cardial impairment and mortality risk factor for CD [46,47] was significantly increased in the

vehicle-treated group (104.1 ± 2.418 ms; p<0.001) when compared with the noninfected

group (78.84 ± 2.908 ms). This alteration was reversed by Bz (93.11 ± 5.531 ms; p = 0.008),

PTX (86.02 ± 3.381 ms; p<0.001), or Bz+PTX (89.55 ± 5.367 ms; p<0.001) therapy (Fig 1G).

Second-degree atrioventricular block (AVB2) was present in most (85%) mice from the vehi-

cle-treated group. All three therapies were able to considerably reduce (Bz [2.7 fold], PTX [2.2

fold], and Bz+PTX [3.7 fold]) the percentage of affected mice compared with the vehicle con-

trol group (Fig 1H). Additionally, the number of AVB2 events in two-minute records was sig-

nificantly increased in the vehicle-treated group (244.5 ± 111.8; p = 0.005) when compared

with the noninfected group (0.000 ± 0.000), and this ECG abnormality was abrogated in Bz

(13.23 ± 20.99; p = 0.001), PTX (15.08 ± 20.02; p = 0.003), or Bz+PTX (10.36 ± 20.76 p<0.001)

treated-mice (Fig 1I). Regarding parasite load in the heart, vehicle-treated mice (21.45 ± 36.05

parasite equivalent (par. eq.)/mg heart tissue; p = 0.041) exhibited a significant increase com-

pared with the noninfected group. Bz therapy showed a tendency to reduce parasite burden

(2.564 ± 5.315 eq. par/mg tissue; 88% reduction). While PTX treatment did not affect parasite

load (27.87 ± 27.53 eq. par/mg tissue; 30% increase), it did not interfere with Bz efficacy, since

the combined Bz+PTX therapy also reduced the parasite load (1.255 ± 2.335 eq. par/mg tissue;

94% reduction) (Fig 1J). These results demonstrate that a suboptimal dose of Bz and the com-

bined Bz+PTX therapy could reverse relevant ECG abnormalities in mice infected with T.

cruzi and efficiently control heart parasitism.

The expression pattern of microRNAs related to key signaling pathways is

regulated during chronic Chagas cardiomyopathy

Next, we analyzed the miRNA expression patterns in the noninfected untreated control

group and parasite-infected treated (vehicle, Bz, and Bz+PTX) groups using a TaqMan

microRNA array workflow to assess 752 miRNAs in total RNA of mouse cardiac tissue by
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Fig 1. Chronic Chagas cardiomyopathy model and treatment with a suboptimal dose of Bz, PTX, or Bz+PTX. (A)

Experimental design of infection and treatment. Mice were infected and treated daily from 120 to 150 dpi with vehicle

alone, suboptimal dose of Bz (¼ dose, 25 mg/kg), PTX (20 mg/kg), or a combined therapy of Bz+PTX, and analyzed at

150 dpi. Created with Biorender. (B) Representative ECG register segments of sex- and age-matched noninfected

controls and infected mice (150 dpi) injected with vehicle, Bz, PTX or Bz+PTX. (C) Frequency of afflicted mice by any
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RT-qPCR (Fig 2A). Out of 752 miRNAs, 370 exhibited amplifications in all experimental

groups. Hierarchical clustering revealed that miRNA expression profiles for each target

clustered independently between groups, especially the noninfected and vehicle-treated

groups that showed almost opposite miRNA expression patterns (Fig 2B). The miRNAs

altered by at least 1.5-fold change were selected, revealing a differential miRNA expression

for the vehicle-treated group revealed 221 DEMs (98 up and 123 downregulated). In com-

parison, therapy with Bz showed 236 DEMs (81 up and 155 downregulated), and com-

bined Bz+PTX therapy revealed 226 DEMs (98 up and 128 downregulated) (S1 Table and

Fig 2C). Overall, a high overlap differential expression for 222 miRNAs was observed in

the three groups analyzed, with 121 DEMs (54.5%) being shared between the groups.

Additionally, 29 DEMs were found to be vehicle-specific, 41 DEMs were Bz-specific, and

19 DEMs were Bz+PTX-specific (Fig 2D).

DEMs within the vehicle-treated group were identified by comparing those with the nonin-

fected controls. DEMs with 1.5-fold change (up- or downregulated) from T. cruzi-infected

group (Fig 3A), were subjected to functional analysis using Ingenuity Pathway Analysis Soft-

ware (QIAGEN). Target filter analysis revealed putative targets for each RNA, while core anal-

ysis displayed the relevant regulatory pathways related to diseases and disorders. “Organismal

injury and abnormalities” appeared with the highest number of miRNAs involved with best p-

values, followed by “reproductive system disease”, “cancer”, “neurological disease”, and “psy-

chological disorders” (Fig 3B). Molecular and cellular functions revealed “cellular develop-

ment”, followed by “cellular growth and proliferation”, “cellular movement”, “cell cycle”, and

“cell death and survival”, all these pathways are closely related to the cardiac remodeling pro-

cess involved in CCC injury establishment (Fig 3C). Physiological system development and

function revealed relevant pathways related to CCC such as “organ development”, “organismal

development”, and “skeletal and muscular system development and function”, although with a

smaller p-values, involved a higher number of miRNAs involved in CCC onset (Fig 3D). A

more narrowed pathway analysis related to cardiotoxicity was also evaluated, revealing rele-

vant pathways such as “cardiac dilatation”, “cardiac enlargement”, “cardiac fibrosis”, “cardiac

inflammation”, and in a smaller scale, “cardiac infarction”, revealing that most DEMs are

related to common cardiac impairments previously related to CCC (Fig 3E). Correlation anal-

ysis was done with previous studies to corroborate that the DEMs found in this study were

modulated in other models of CD. A previous study analyzed the miRNA transcriptome pro-

filing in the hearts of C57BL/6 mice with acute CD [38]. We observed a significant correlation

of the DEMs in that study to our present findings (r2 = 0.2837, p< 0.001; Fig 4A), with an 83%

agreement of the matching miRNAs in both studies altered in the same direction, suggesting

that there are similar mechanisms involved in these two models. Another correlation analysis

was done between our study and a miRNA transcriptome profiling in the cardiac tissue of

patients with end-stage CCC [36]. We found a significant correlation between the two studies

(r2 = 0.2500, p = 0.004; Fig 4B) with an 87% agreement of altered miRNAs in both studies,

demonstrating that they regulated similarly and share, to some extent, underlying back-

grounds to gene expression related to CCC progression and establishment in both mice and

humans.

ECG alteration. (D) Frequency of mice afflicted by sinus arrhythmias. (E) Frequency of mice afflicted with a second-

degree atrioventricular block (AVB2). (F) Number of AVB2 events in two-minute records. (G) Parasite load based on

qPCR detection of T. cruzi satellite DNA on mice heart tissue. For all graphs, significance was determined using

unpaired one-way ANOVA with Tukey’s multiple comparisons with a 95% confidence level.

https://doi.org/10.1371/journal.pntd.0011223.g001
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Fig 2. Overview and characterization of immunoarray analysis. (A) Schematic design of array workflow. Murine cardiac tissues were harvested 30 days after

therapy and half of the heart was subjected to total RNA extraction, reverse transcription, and RT-qPCR of 752 miRNAs. Created with Biorender. (B) Heatmap

and hierarchical clustering. The color scale illustrates the gene fold change after global normalization (row Z-score). Clustering was performed using the

average linkage distance measurement method: Spearman Rank correlation. (C) Number of altered genes in each group. (D) Venn diagram showing the

number of altered expressed genes in each group.

https://doi.org/10.1371/journal.pntd.0011223.g002
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Fig 3. Characterization of the immune response expression profile for the chronically infected group. (A) Overall expression of the altered miRNAs.

Results were expressed as log2 fold change, and genes with values greater than 0.5 or lower than -0.5 (1.5-fold change) (dotted vertical lines; green-striped area)
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Bz and Bz+PTX therapies are linked to the alteration of several miRNAs

involved in CCC establishment pathways

Following the miRNA transcriptome profiling characterization of the vehicle-treated group,

we analyzed the miRNAs restored after Bz therapy (in between 1.5-fold change), aiming to dis-

sect relevant signaling pathways affected by the treatment. As shown in S2 Table, 68 miRNAs

were restored, among them the 10 most up- and 10 most downregulated miRNAs altered in T.

cruzi infection (Fig 5A). The main affected diseases and disorders pathways were “cancer”,

“organismal injury and abnormalities”, and “hematopoiesis” (Fig 5B). Related to molecular

and cellular functions, the main affected pathways were “cellular development”, “cellular

growth and proliferation” followed by “cellular movement”, “cell cycle”, and “cell death and

survival” (Fig 5C). As to physiological system development and function, the modulated miR-

NAs affected mainly pathways related to “embryonic development”, “skeletal and muscular

were considered altered and used for further analysis on IPA software. (B) Diseases and disorders pathway analysis. (C) Molecular and cellular function

pathway analysis. (D) Physiological system development and function pathway analysis. (E) Cardiotoxicity pathway analysis. Significance intervals of

enrichment are shown on the right of the bars.

https://doi.org/10.1371/journal.pntd.0011223.g003

Fig 4. Concordance of miRNA transcriptome with previous studies. (A) Scatter plot of altered miRNAs (1.5-fold change) in mice cardiac tissue in the

chronic phase (this study) and in mice cardiac tissue in the acute phase with a pie chart of direction agreements. (B) Scatter plot of altered miRNAs (1.5-fold

change) in mice cardiac tissue in the chronic phase (this study) and in cardiac tissue of patients with end-stage CCC with a pie chart of direction agreements.

https://doi.org/10.1371/journal.pntd.0011223.g004
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Fig 5. Characterization of immune response expression profile for the Bz group. (A) Expression of miRNAs altered in the infected group and with a

restored expression upon Bz therapy. Relative expression was expressed as fold change (2-ΔΔCt). miRNAs with a fold change greater than 1.5 in the
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system development and function”, followed by “tissue morphology”, “connective tissue devel-

opment and function”, and “hematological system development and function” (Fig 5D).

Finally, the targeted analysis regarding cardiotoxicity revealed miRNA-affected pathways

related to “cardiac fibrosis”, “cardiac infarction”, “cardiac enlargement”, “cardiac dilation”,

and “cardiac arteriopathy” (Fig 5E). In the Bz+PTX group, 58 miRNAs were restored after

therapy (S3 Table), among them the 10 most up- and 10 most downregulated ones altered

upon T. cruzi infection (Fig 6A). The combined therapy showed distinct regulated pathways

from the Bz therapy alone, as regarding diseases and disorders the main affected pathways

were “organismal injury and abnormalities”, “reproductive system disease”, followed by “can-

cer”, “hematological disease”, and “hereditary disorder” (Fig 5B). The modulated miRNAs

affected molecular and cellular functions mainly related to “cellular development”, “cellular

growth and proliferation”, followed by “cellular movement”, “cell cycle”, and “cellular

response to therapeutics” (Fig 5C). As to the main affected physiological system development

and function pathways, we found “hematological system development and function”, “hema-

topoiesis”, “lymphoid tissue structure and development”, “tissue development”, and “connec-

tive tissue development and function” as the most regulated pathways upon Bz+PTX therapy

(Fig 5D). Finally, related to cardiotoxicity, Bz+PTX therapy affected pathways were mainly

related to “congenital heart anomaly”, “cardiac damage”, “cardiac fibrosis”, “cardiac necrosis/

cell death”, and “cardiac enlargement” (Fig 5E).

Target prediction analysis revealed a relevant participation of miR-146b-5p

in CCC inflammation establishment, which was restored by Bz or Bz+PTX

therapy

Aiming to dissect the miRNA-mRNA interactions contributing to some key pathways affected

by therapy, we selected some cardiotoxicity pathways to look into more closely. From the Bz

group, we elected two affected networks related to “enlargement of heart” (Fig 7A) and “fibro-

sis of heart” (Fig 7B), which are one of the main pathological processes involved in the onset of

CCC found in the cardiotoxicity analysis. From all the Bz-restored miRNAs used as input for

this analysis, miR-146b-5p emerges in both processes as a key miRNA, promoting direct regu-

lation of relevant genes such as DTNA (dystrobrevin-alpha), IL-10 (interleukin-10), IL-17A
(interleukin-17A), NOS2/iNOS (nitric oxide synthase 2/inducible nitric oxide synthase), TLR4
(toll-like receptor 4) and TRAF6 (TNF-receptor associated factor 6). Additionally, this miRNA

also affects indirectly some relevant genes such as EGFR (epidermal growth factor receptor),

ERK (serine/threonine protein kinase), IL-6 (interleukin-6), Jnk (c-JUN N-terminal kinase),

MMP9 (matrix metallopeptidase 9), NFKBIA (nuclear factor kappa-B inhibitor alpha) and

TNF (tumor necrosis factor), contributing to the microenvironment establishment of the car-

diac tissue remodeling leading to cardiomegaly traditionally seen in CCC.

Conversely, the combined Bz+PTX therapy revealed other key restored miRNAs like miR-

196c-5p, miR-210-3p, and miR-497a-5p that were involved in the regulation of genes related

to “damage of heart” (Fig 8A), “cell death of heart cells” (Fig 8B) and “fibrosis of heart”

(Fig 8C) pathways. In the “damage of heart” pathway, miR-146b-5p was found to be directly

targeting IL-10 and indirectly affecting TNF, MMP9, ERK and Jnk. miR-196c-5p directly tar-

geted ANXA1 (annexin A1) and indirectly targeted BAK1 (BCL2 antagonist/killer 1). MiR-

vehicle group and at the 0.5–1.5 range (red striped area) in the Bz therapy group were considered to have a restored expression. They were selected for

further analysis on IPA software. (B-E) Activated pathways in the infected group with a restored expression upon Bz therapy. (B) Diseases and

disorders pathway analysis. (C) Molecular and cellular function pathway analysis. (D) Physiological system development and function pathway analysis.

(E) Cardiotoxicity pathway analysis. Significance intervals of enrichment are shown on the right of the bars.

https://doi.org/10.1371/journal.pntd.0011223.g005
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Fig 6. Characterization of immune response expression profile for the Bz+PTX group. (A) Expression of miRNAs altered in the infected

group and with restored expression upon Bz+PTX therapy. Relative expression was expressed as fold change (2-ΔΔCt). miRNAs with a fold

change greater than 1.5 in the vehicle group and at the 0.5–1.5 range (red striped area) in the Bz therapy group were considered to have a

restored expression. They were selected for further analysis on IPA software. (B-E) Activated pathways in the infected group with a restored

expression upon Bz therapy. (B) Diseases and disorders pathway analysis. (C) Molecular and cellular function pathway analysis. (D)
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210-3p appeared in the network as controlled by other genes such as PIK3CA (phosphatidyli-

nositol-4,5-biphosphate-3-kinase catalytic subunit alpha) and IGF1 (insulin-like growth factor

Physiological system development and function pathway analysis. (E) Cardiotoxicity pathway analysis. Significance intervals of enrichment

are shown on the right of the bars.

https://doi.org/10.1371/journal.pntd.0011223.g006

Fig 7. Target prediction analysis for Bz-treated group. (A) Enlargement of heart pathway. (B) Fibrosis of heart pathway. The red color indicates miRNA

upregulation. Full lines indicate a direct relationship, while dashed lines indicate an indirect relationship.

https://doi.org/10.1371/journal.pntd.0011223.g007
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1) and, finally, miR-497a-5p, which was downregulated under T. cruzi infection, appeared to

directly target other genes that may be involved in CCC establishment, such as ALOX12 (ara-

chidonate 12-lipoxygenase), APLN (apelin) and PDCD4 (programmed cell death 4).

Fig 8. Target prediction analysis for Bz+PTX treated group. (A) Damage of heart pathway. (B) Cell death of heart

cells pathway. (B) Fibrosis of heart pathway. The red color indicates miRNA upregulation, while the green color

indicates miRNA downregulation. Full lines indicate a direct relationship, while dashed lines indicate an indirect

relationship.

https://doi.org/10.1371/journal.pntd.0011223.g008
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Additionally, in the “cell death of heart cells” network, miR-146b-5p revealed direct targeting

of cell death-related molecules such as FADD (Fas associated via death domain) and indirect

targeting of PTK2B (protein tyrosine kinase 2-beta) and CAT (catalase). miR-196c-5p revealed

direct targeting of CDKN1B (cyclin dependent kinase inhibitor 1B), IKBKB (inhibitor of

nuclear factor kappa B kinase subunit alpha) and indirect targeting of relevant cell death mole-

cules as CASP1 (caspase 1) and CASP3 (caspase 3). miR-210-3p also appeared in this network

and was found to be directly targeting E2F3 (E2F transcription factor 3). Finally, in the “fibro-

sis of heart” network, miR-146b-5p appeared once again, directly targeting DTNA, IL-10,

TLR4 and IL-17A, and miR-196c-5p revealed PRKG1 (protein kinase CGMP-dependent 1)

and PLAT (plasminogen activator, tissue type). These miRNA-mRNAs networks demonstrate

how complex and multifactorial the pathogenesis of CCC is, revealing miR-146b-5p in the

core of all cardiotoxicity networks analyzed in this study. Therefore, miR-146b-5p was selected

for further validation of our microarray results, based on previous studies done in the same

C57BL/6 model in the acute phase [38] that were also seen in this study as upregulated and

affected by Bz and Bz+PTX therapies. miR-146b-5p showed upregulation in expression levels

in the vehicle treated group (3.92 ± 0.97; p< 0.001) compared with the noninfected controls

(1.48 ± 0.69), and interestingly Bz (0.56 ± 0.19; p< 0.001), PTX (1.67 ± 0.90; p = 0.002) and Bz

+PTX (1.01 ± 0.24; p< 0.001) therapies were able to reverse the upregulation of this miRNA

compared with the vehicle treated group (Fig 9).

Discussion

Efforts have been made to understand miRNA molecular pattern and affected pathways

behind CCC establishment and progression [35,36,38,48]; however, the molecular mecha-

nisms underpinning CCC remain unsolved and to date there is no study focusing on the regu-

lation of miRNA expression upon etiological treatment with Bz and, especially, with an

associated immunomodulatory treatment. Here, we show the miRNA profiling in the hearts of

C57BL/6 mice chronically infected with T. cruzi and, for the first time, we reveal how the etio-

logical treatment using a suboptimal dose of Bz, alone or in association with the immunomod-

ulatory agent PTX, regulate the miRNA network in the heart affected by T. cruzi infection.

The experimental infection with T. cruzi Colombian strain in C57BL/6 mice used here is a

well-established model used in several previous studies [25,26,40–42,49,50], reproducing key

ECG alterations found in human CCC, such as bradycardia, arrhythmias, prolonged P wave,

PR and QTc intervals, AVB2, and other major traits of CCC (e.g., fibrosis) [9,51], Therefore,

with an adequate model to reproduce main features of CCC, we focused on the effects of Bz,

PTX, and the combined Bz+PTX therapy in this model. Our data showed that Bz, PTX, and Bz

+PTX therapies reduced the percentage of mice afflicted with ECG abnormalities, arrhythmias,

AVB2, and AVB2 events in two-minute records as seen in previous studies [25,26]. Moreover,

suboptimal dose of Bz was able to reduce parasite load in the heart tissue as previous seen in

study done in vitro and in vivo where lower doses of Bz were able to control parasite burden as

efficiently as the usual full dose (100 mg/Kg/day) [16]. Therapy with PTX alone showed no

effect on parasite load in the hearts of T. cruzi-infected mice, which was expected as PTX has

no direct trypanocidal activity described in the literature, although it indirectly disfavored

TNF-induced astrocyte infection by T. cruzi, reducing TNFR1 expression [52] and was able to

reverse critical ECG abnormalities, corroborating previous studies [25,26]. Finally, therapy

with combined Bz+PTX was also able to reverse relevant ECG changes and most importantly,

did not hamper Bz trypanocidal activity [26]. Additionally, a previous study using the same

experimental model and treatment, followed the animals for 30–50 days after treatment dis-

continuation and showed that most ECG abnormalities were completely or partially re-
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established in the groups treated with Bz or PTX alone, whereas Bz+PTX treatment completely

sustained the reversion of these cardiac abnormalities [26]. Taken together, our findings

reported a suitable CCC murine model reflecting the same cardiac alterations in humans, and

Fig 9. Validation of miR-146b-5p expression in individual samples. miR-146b-5p was assessed by real-time RT-

qPCR in each experiment group, with groups of 3–5 animals per group. The expression is shown as mean ± SD for

each group by 2-ΔΔCt relative quantification method. Groups were compared using unpaired one-way ANOVA with

Tukey’s multiple comparisons with a 95% confidence level.

https://doi.org/10.1371/journal.pntd.0011223.g009
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most importantly the Bz, PTX and Bz+PTX therapies tested here were able to restore relevant

heart electrophysiological parameters.

MicroRNA transcriptome profiling was previously done in the heart of mice with acute T.

cruzi infection [38,48], in murine thymic epithelial cells [37], and in the heart of patients with

end-stage CCC subjected to heart transplant [36]. Our miRNA transcriptome profiling in

murine hearts with CCC revealed a vast change in the molecular profile, showing several miR-

NAs involved in immune dysregulation and CCC progression, as previously observed in other

studies [36,38,48,53]. When compared with a previous study done in the acute phase (15–45

dpi) [38], our current study showed an increase in the amount of differentially expressed miR-

NAs as the disease progresses to its chronic stage. The acute phase study was done in the same

experimental model (C57BL/6 mice infected with T. cruzi Colombiana strain) showed 19

altered miRNAs at 15 dpi, 66 at 30 dpi, and 96 at 45 dpi [38]. In contrast, we found 221 altered

miRNAs at 150 dpi, suggesting that CD progression is causing wide molecular alterations in

the cardiac tissue, directly promoting dysregulation of miRNAs. On the one hand, our data

showed miR-133a (0.4-fold change) and miR-133b (0.7-fold change) downregulation in the

chronic mouse model, corroborating previous studies analyzing a set of miRNAs in cardiac tis-

sue from patients with end-stage CCC subjected to heart transplant [35]. On the other hand,

we observed miR-203 (5.4-fold change), miR-146a (5.0-fold change), miR-146b (4.1-fold

change), miR-155 (3.1-fold change), miR-20b (4.3-fold change), miR-21 (1.6-fold change),

miR-142-5p (2.9-fold change), miR-142-3p (5.4-fold change), and miR-182 (15.8-fold change)

upregulation. Conversely, miR-322 (0.2-fold change), miR-149 (0.4-fold change), miR-503

(0.2-fold change), miR-139-5p (0.6-fold change), and miR-145 (0.6-fold change) showed

downregulation. These findings agree with previous study using the same mouse model in the

acute phase (at 15, 30, and 45 dpi), which selected differentially expressed miRNAs for further

analysis based on their correlation with parasitemia levels and QTc interval prolongation [38].

Additionally, we found an 83% agreement between the altered miRNAs in the acute and

chronic phase (at 150 dpi), meaning they vary in the same direction, implying that the miRNA

expression differences are precociously established in T. cruzi acute infection, and suggesting a

slight change in miRNA expression pattern as the disease progresses.

Another correlation analysis was done with our data on miRNA in the CCC model and the

miRNA transcriptome profiling in the heart of patients with end-stage CCC [36]. In this case,

although only a small percentage of differentially expressed miRNAs were the same, they

showed even higher concordance, suggesting that CCC onset in murine model and humans

share common molecular backgrounds. Recently, the evaluation of 88 miRNAs in the heart of

chronically T. cruzi-infected mice and serum samples of CCC patients found three overlapping

upregulated miRNAs, miR-21-5p, miR-29b-3p, and miR-29b-3p [54]. Out of the three, two

miRNAs, miR-21-5p (1.6-fold change) and miR-29b-3p (2.6-fold change) also showed upregu-

lation in our study, supporting that our model of CCC reproduces relevant aspects of Chagas

heart disease and agrees with previous miRNA profiling studies done in a wide range of bio-

logical samples and using different experimental models [36,38,48,53].

Next, the effect of Bz and Bz+PTX therapy on the regulation of altered miRNAs was evalu-

ated. Bz therapy showed regulation of promising up- and downregulated miRNAs that play a

pivotal role in CCC onset/progression. For instance, miR-467b has been implicated in the reg-

ulation of atherosclerosis and secretion of the proinflammatory cytokines IL-6, IL-1β, and

TNF [55,56], which are also knowingly dysregulated in CCC [57]. Conversely, miR-142-5p

overexpression seem to contribute to the establishment of chronic inflammatory diseases, sus-

taining profibrogenic properties of macrophages induced by IL-4 and IL-13 and showing

upregulation in macrophages from tissue samples of patients with idiopathic pulmonary fibro-

sis [58]. Among downregulated miRNAs affected by Bz therapy, we found miR-141-3p, which
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is involved in the regulation of mitochondrial dysfunction [59] and oxidative stress, since inhi-

bition of this miRNA in hypoxia-induced cardiomyoblasts increased cell viability and reduced

apoptosis mainly by affecting the PI3K/AKT pathway [60]. Target prediction analysis for the

Bz therapy group revealed miR-146b-5p in the core of two main processes related to heart

enlargement and fibrosis. We demonstrated that Bz therapy was able to reverse the upregula-

tion of this miRNA, possibly reverting the downregulation of its predicted targets. Among the

genes targeted by miR-146b-5p, we can highlight the participation of several genes related to

cell growth and proliferation such as EGFR, ERK, and Jnk, and MAPK signaling pathway, pre-

viously shown to be related to T. cruzi evasion from the immune system [61], tissue remodel-

ing such as DTDNA, related to muscular dystrophies, and MMP9, involved in the breakdown

of extracellular matrix, degrading type IV and V collagen, with relevant participation in CCC

onset [62,63]. Additionally, relevant immune system genes were also revealed in the target pre-

diction analysis such as IL-10, NFKB1A, NOS2/iNOS, TLR4, TNF, and TRAF6, previously

shown to be related to T. cruzi-triggered inflammatory process, production of cytokines and

CCC onset [64]. Nevertheless, in a recent study, we demonstrated upregulation of IL-10 upon

Bz therapy [64], which now based on our current miRNA data we suggest might be through

miR-146b-5p upregulation, although further confirmation is needed.

Although Bz has been used as a trypanocidal agent for over 50 years [14,65], its immuno-

modulatory properties have not been unveiled until recently [16,66–69]. First, it has been

shown that Bz treatment significantly reduced production of nitrite, IL-6, IL-10 and, partially,

TNF and IL-1β in LPS-stimulated murine macrophages [69], which was further confirmed in

T. cruzi-infected mice [68]. Second, the potential role of Bz in reducing peripheral blood leu-

kocytes and gene expression of TNF and NOS2/iNOS via NF-κB and MAPK inhibition has

been described in a model of cecal sepsis [66]. Furthermore, attenuation of the inflammatory

response due to nuclear factor erythroid 2–related factor 2 (NRF2) activation in the liver and

an increase in antioxidant defenses, with TLR4-signaling inhibition, were detected in the same

model [67]. We recently showed a vast alteration of mRNA expression caused by T. cruzi infec-

tion that is restored upon treatment with a suboptimal dose of Bz in the CCC model used in

our current study, supporting a regulation of the immune response after etiological treatment

[64]. All these data led us to propose that the attenuation of inflammation caused by Bz, due to

its intrinsic immunomodulatory properties or simply by killing the parasite, may mitigate the

subsequent cardiac damage caused by the long-term inflammation process, which may repre-

sent the main factor involved in the modulation of certain miRNAs and pathways in experi-

mental CCC.

Bz+PTX combined therapy showed a few distinctly altered miRNAs, including miR-669n,

which is related to increased production of TNF, IL-6, and IFN-γ by targeting SENP6 protein

in mouse macrophages [70]. Among the downregulated miRNAs, Bz+PTX reduced miR-509-

3p, a miRNA previously seen to be involved in cell proliferation and migration processes in

renal carcinoma cells [71]. Other relevant regulated miRNA is miR-149-5p, whose downregu-

lation stimulates proliferation, invasion, and migration of vascular smooth muscle cells, acting

as prognostic factor for survival of human sarcoma [72]. Additionally, miR-497a-5p was found

downregulated in LPS-induced inflammatory reactions, targeting the IRAK2/NF-κB pathway

[73]. Our predictive study supports a role for miR-146b-5p targeting genes related to immune

response, cell proliferation/apoptosis, through the MAPK kinase pathway as ERK, Jnk, PTK2B,

and FADD, involved in cell apoptotic mechanisms, and CAT, related to antioxidant response

relevant for T. cruzi infection establishment [74]. Conversely, other miRNAs, as miR-196c-5p,

has known anti-inflammatory properties, targeting relevant cell cycle and death processes

through downregulation of BAK1, CDNKB1, CASP3, CASP1, IκBκB, and ANXA1. These

results show that the combined Bz+PTX therapy acts on a multitude of miRNAs involved in
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crucial pathophysiological features related to CCC. Beyond its hemorheological phosphodies-

terase inhibitor activity, PTX also exerts immunomodulatory properties [22,75]. It has been

shown in a CCC model that PTX reduced the number of perforin-positive cells invading the

cardiac tissue and delayed the progression of heart injury, reversing ECG abnormalities and

restoring left ventricle ejection fraction [25]. The effects of Bz+PTX therapy on CCC were also

previously explored by our group, supporting reduction in myocarditis and fibrosis, improve-

ment of ECG abnormalities, reduction of TNF, and TNFR1 expression on CD8+ T cells and,

more importantly, these effects were sustained after 30 days of treatment suspension [26].

Additionally, we recently assessed miR-146b-5p expression in T. cruzi-infected H9C2 cardiac

cells, showing upregulation of this miRNA in early hours of infection with expression restora-

tion upon Bz+PTX therapy, corroborating the participation of this miRNA in the parasite-host

interaction process [76].

Lastly, we validated miR-146b-5p in individual samples, based on differential expression

found in the acute phase of T. cruzi infection [38], crucially shown in in vitro model of T.cruzi-
cardiomyocyte interaction [76]. miR-146b-5p was found upregulated in acutely infected mice

[38] and here in the vehicle-treated infected group, supporting the consistent effect of infection

on miR-146b-5p expression in both acute and chronic phases of CD. In this case, Bz and the

combined Bz+PTX therapy restored the miRNA expression to levels found in noninfected

age-matched controls, suggesting that the therapies used here somehow influence the expres-

sion of this miRNA. The miR-146b-5p expression highly depends on inflammatory stimulus,

especially proinflammatory cytokines such as IL-1β, TNF, and IFN-γ [77]. Furthermore, NF-
κB, C/EBPβ, c-Fos, and STAT3/6 were identified as targets of miR-146b-5p [78]. Thus, these

data suggest that the production of proinflammatory cytokines, intrinsic to CD pathogenesis

[57,79], might influence the upregulation of miR-146b-5p, as seen in our recent study [64].

Moreover, the downmodulation of miR-146b-5p upon Bz and Bz+PTX therapies might be due

to the parasite clearance and/or the immunomodulatory effects previously reported individu-

ally for both Bz [66,68,69,80] and PTX [75,81,82]. Thus, this result opens a new venue for the

further analysis of miR-146b-5p as a potential biomarker of cure in CD since the restored level

of this miRNA occurred in parallel with parasite clearance after treatment and downregulation

of inflammatory mediators, such as TNF/TNFR1 and NO/iNOS pathways, involved in CCC

pathogenesis, as previously shown [25,26].

This study assessed the miRNA profiling in CCD under an etiological and immunomodula-

tory therapy, opening opportunities for molecular approaches and therapeutic interventions

in CD. We recognize that our study was not able to contemplate all the experiments needed

for a full understanding of the altered miRNAs value in the context of CCC progression and

establishment. For instance, serum miRNAs were not assessed to correlate with the alterations

in the cardiac tissue, which could be useful for identifying urgently needed biomarkers for

early assessment of therapeutic outcomes in CD [83,84]. However, the altered miRNAs

restored after a suboptimal dose of Bz and the combined Bz+PTX therapies suggest a pro-

nounced relationship between etiological and immunomodulatory treatment in various

molecular pathways. Finally, the altered miRNAs identified in this study could possibly serve

as drug targets or auxiliary therapy, although more research is necessary to evaluate the effects

of specific miRNAs in CD progression.
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Data curation: Priscila Silva Grijó Farani, Sourav Roy, Joseli Lannes-Vieira, Otacilio Cruz

Moreira.

Formal analysis: Khodeza Begum, Igor C. Almeida, Sourav Roy, Joseli Lannes-Vieira, Otacilio

Cruz Moreira.

Funding acquisition: Otacilio Cruz Moreira.
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