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Abstract

The pathogenesis of malaria is a multifactorial syndrome associated with a deleterious 

inflammatory response that is responsible for many of the clinical manifestations. While dendritic 

cells (DCs) play a critical role in initiating acquired immunity and host resistance to infection, they 

also play a pathogenic role in inflammatory diseases. In our recent studies, we found in different 

rodent malaria models that the monocyte-derived DCs (MO-DCs) become, transiently, a main DC 

population in spleens and inflamed non-lymphoid organs. These studies suggest that acute 

infection with P. berghei promotes the differentiation of splenic monocytes into inflammatory 

monocytes (iMOs) and thereafter into MO-DCs that play a pathogenic role by promoting 

inflammation and tissue damage. The recruitment of MO-DCs to the lungs and brain are 

dependent on expression of CCR4 and CCR5, respectively, and expression of respective 

chemokine ligands in each organ. Once they reach the target organ the MO-DCs produce the 

CXCR3 ligands (CXCL9 and CXCL10), recruit CD8+ T cells, and produce toxic metabolites that 

play an important role in the development of experimental cerebral malaria (ECM) and acute 

respiratory distress syndrome (ARDS).
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Introduction

According to the World Health Organization (WHO 2017), in 2017, 216 million malaria 

cases were reported in 91 countries. Amongst those cases, 445,000 resulted in death, 

primarily in children under five years old. The clinical outcome of the disease is affected by 

factors such as parasite and host genetics, previous exposure to infection, age, nutritional, 

Corresponding address to RTG ricardo.gazzinelli@umassmed.edu. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Curr Opin Microbiol. Author manuscript; available in PMC 2020 December 01.

Published in final edited form as:
Curr Opin Microbiol. 2019 December ; 52: 139–150. doi:10.1016/j.mib.2019.08.002.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



geographic and socioeconomic factors. The most common early signs and symptoms of 

malaria in non-immune individuals, such as fever (paroxysm), nausea, headache and 

lethargy, are associated with rupture of schizonts and consequent inflammatory response. 

Activation of immune cells and systemic inflammation in response to the infection also lead 

to tissue damage and severe clinical manifestations such as anemia, jaundice, metabolic 

acidosis, respiratory distress, cerebral malaria, multiple organ failure and death.

The clinical manifestations of malaria result from three main events: excessive 

inflammation, destruction of red blood cells (RBCs) and cytoadherence of infected RBCs 

(iRBCs). The pro-inflammatory cytokines produced by the host stimulate the expression of 

adhesion molecules in endothelial cells. This promotes cytoadherence of iRBCs to the small 

capillary veins, formation of blood clogs, edema, and leukocytes diapedesis to the inflamed 

areas. These inflammatory mediators also contribute to anemia by augmenting the 

phagocytosis of altered RBCs and inhibition of erythropoiesis [1,2].

In this review, we will discuss the importance of monocytes (MOs) and MO-derived 

dendritic cells (MO-DCs) as the main source of pro-inflammatory cytokines during acute 

infection with Plasmodium and their role on malaria pathogenesis.

Monocyte progenitors and differentiated effector cells

MOs are highly plastic cells that, when activated by microbial components and pro-

inflammatory cytokines, can differentiate to more specialized cell types. MOs, macrophages 

and dendritic cells (DCs) are heterogeneous cell populations that have a critical role in 

sensing the presence of invading microorganisms and initiating protective immune 

responses. While presenting overlapping characteristics, MOs, macrophages and DCs can be 

distinguished based on specific surface markers, transcriptional signatures and certain 

specialized functions [3-6].

MOs originate from the myeloid lineage and are found in a resting stage in the bone marrow 

(BM), blood and peripheral lymphoid organs. Once activated by cytokines, such as IFNγ 
and TNFα, or pathogen associated microbial patterns (PAMPs), MOs differentiate into 

inflammatory MOs (iMOs) that migrate to non-lymphoid and lymphoid tissues, where they 

further differentiate into macrophages or MO-DCs. Additionally, iMOs may also act as 

effector cells by producing pro-inflammatory mediators and toxic metabolites that 

effectively kill microbes. MOs can be activated by IL-4 and differentiate into alternative 

macrophages (aMacs). This pathway is of particular relevance in worm infections, where 

aMacs play distinct roles in the immune response as well as on tissue homeostasis and repair 

[7]. In addition, both the iMOs and aMacs have distinct regulatory activities that protect the 

host from an excessive and a deleterious inflammatory reaction [8,9].

Each tissue has its own reservoir of embryonically developed cells that maintain the pool of 

tissue resident macrophages, without a major input of hematopoietic cells [4,6,10]. These 

resident phagocytes and aMacs have an important role on tissue homeostasis by clearing 

dead and senescent cells, as well as acting on tissue repair. Moreover, in the presence of 

invading microbes, these macrophages produce chemokines and pro-inflammatory cytokines 
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that recruit myeloid and lymphoid cells, thus promoting local inflammation. Under these 

highly inflammatory conditions, the resident macrophages undergo cell death, which makes 

a niche accessible to the circulating MOs. The MOs rapidly replenishes the emptied space 

and differentiate into macrophages that, over time, assume similar phenotype and functional 

properties of the resident macrophages [4,6,10]. Furthermore, there is an intense infiltration 

of iMOs from the bone marrow (BM) and other lymphoid organs to the site of infection, 

enhancing the local inflammatory response.

DCs are efficient antigen presenting cells (APCs) for T cells that regulate the acquired 

immune response. Depending on their stage of differentiation and tissue location, DCs play 

a central role in initiating immune responses and leading the development of immunologic 

memory or, alternatively, mediating immune tolerance [11]. In healthy individuals, most DC 

progenitors found in peripheral tissues at homeostasis are not derived from MOs. MOs are, 

however, more abundant than DC progenitors both in the bone marrow and in the blood 

stream. Thus, the in vivo mobilization of the MO reservoir to generate competent antigen-

presenting DCs is of central importance during acute microbial insults. The MO-DCs share 

many morphological and functional characteristics with conventional DCs (cDCs), such as 

high efficiency in antigen capture and processing, expression of co-stimulatory molecules, 

and the ability to present microbial peptides to CD4+ T cells or to cross-present to CD8+ T 

cells [12-20].

Understanding the origin, dynamics and emergence of MO-derived cells in lymphoid and 

non-lymphoid organs, as well as their roles, is essential for developing new strategies for 

immunological-based interventions to treat or prevent Plasmodium infection and disease.

DCs bridge the gap between innate and acquired immunity

DCs have the primary role of bridging innate and acquired immunity [3], playing an 

important role in host resistance to Plasmodium infection and in malaria pathogenesis 

[21,22]. After the infectious mosquito bite, CD11c+ as well as CD8α+CD11b− DCs located 

in the draining lymph nodes elicit a protective CD8+ T cell response in vivo against the P. 
yoelli liver stage [23-25]. In the blood stage, splenic DCs efficiently phagocytize iRBCs, 

contributing to the removal of iRBCs from the circulation [26]. Once internalized, the 

schizonts are destroyed and parasite components are released, which activate both CD8α
−CD11b+and CD8α+CD11b− DCs. Those cells then migrate from the marginal zone to the T 

cell area and enhance expression of MHC II, co-stimulatory molecules, IL-12 and present 

antigens to CD4+ T and CD8+ T cells [27-29].

Various parasite [e.g., glycosylphosphatidylinositol anchors (GPI-anchors), DNA, RNA and 

hemozoin (Hz)] and host components (e.g., heme and uric acid) released from bursting 

iRBCs activate DCs during malaria [2]. Much attention has been given to the pro-

inflammatory activity of Hz, the β-hematin crystals that are formed to detoxify the free 

heme generated from hemoglobin digestion by the parasites [30]. Hz is constantly released 

during malaria and is promptly internalized by phagocytic cells including DCs. Internalized 

Hz crystals rupture phagolysosome membranes, which releases its content in the cytosol, 

resulting in NLRP3 inflammasome assembly, caspase-1 activation and IL-1β release 
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[31-33]. In addition, Hz acts as a carrier of nucleic acids from the parasite. This material 

activates multiple innate cognate receptors, such as TLR7 [34,35] and TLR9 [34,36-39], 

AIM2 [33,39], and other DNA/RNA sensing cytosolic receptors [35,40]. Among the 

cytosolic receptors that are activated by Plasmodium DNA is cGAS [41], which stimulates 

DCs to produce type I IFN. The TLR activation leads to IL-12 production by iMOs and 

DCs, which in turn activates NK cells, CD8+ T cells and promotes polarization of CD4+ T 

helper 1 (Th1) lymphocytes, all important sources of IFNγ [42,43].

IFNγ is a pleiotropic cytokine that promotes host resistance to infection in multiple ways, 

including: (i) differentiation of MOs to macrophages and MO-DCs, which have enhanced 

phagocytic activities; (ii) amplification of pro-inflammatory cytokines and toxic molecules 

release by macrophages, MO-DCs, and neutrophils that contribute to parasite killing; (iii) 

differentiation and activation of Th1 lymphocytes and cytotoxic T cells; and (iv) IgG 

switching and production of IgG isotypes that block parasite invasion, enhance the efficiency 

of phagocytosis and mediate cytotoxicity of opsonized iRBCs. The DCs have been shown to 

impact effector functions, maintain the pool of effector memory T cells, and promote long-

term immunity to Plasmodium infection [29,38,44-49]. Importantly, in mice, virulent 

Plasmodium strains subvert the function of DCs, and thereby impair IL-12 production and 

the development of T cell-mediated immunity [50,51].

IFNγ is, however, the classic “double-edged sword”. While IFNγ-priming of innate immune 

cells enhances the capacity of fighting an ongoing infection, it makes innate immune cells 

hyper-responsive to microbial challenge. Thus, IFNγ also mediates the cytokine storm and a 

septic shock-like syndrome observed during malaria [37,52].

MO and DC subsets in malaria patients

Based on their function, human monocytes can be classified in at least 3 subsets that are 

defined by the level of CD14 and CD16 expression [53-55]. Classical MOs (cMOs) are 

CD14+CD16−, whereas intermediate MOs (intMOs) are CD14+CD16+, and patrolling MOs 

(pMOs) express low levels of CD14 and high levels of CD16 (CD14lowCD16+). In other 

studies, based on the pattern of CD14 and CD16 expression, intMOs and pMOs are defined 

as iMOs and non-classical monocytes (ncMOs), respectively [56,57]. In addition to the 

differential expression of CD14 and CD16, these MOs subsets vary on expression of 

molecules associated with cell adhesion, migration, innate immune response and 

phagocytosis [55,58]. In studies with human DCs, the term MO-DCs is used for DCs that 

are differentiated from monocytes in vitro, whereas term myeloid DCs (mDCs) is used for 

the equivalent DCs differentiated in vivo. Although some functional differences have been 

described between human MO-DCs and mDCs, they show high similarity in the pattern of 

cell surface markers expression [59,60]. Table 1 lists the nomenclature and cell surface 

markers of MOs and DCs used in various studies employing the peripheral blood 

mononuclear cells (PBMCs) from malaria patients. For better comparison with studies 

performed in rodent malaria models (Table 2), please notice that human mDCs is, most 

likely, the equivalent human DC subset to mouse MO-DCs.
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Studies performed in our lab and elsewhere show that iMOs are the most efficient subset in 

phagocytizing both P. vivax and P. falciparum-infected RBC. Along with neutrophils, iMOs 

exposed to iRBC produce significantly higher levels of both intracellular ROS and 

mitochondrial ROS than the other MO subpopulations [56,61,62]. Additionally, antibody-

dependent phagocytosis of iRBC, complement, and adhesion molecules are also known to 

contribute to protection against malaria caused by P. falciparum [57,63,64]. MOs are also an 

important source of pro-inflammatory cytokines during acute malaria episodes [2]. In 

children infected with P. falciparum there is an expansion mainly of iMOs (CD14+CD16+) 

from the pool of circulating MOs. This parallels the higher levels of circulating CXCL10, 

TNFα, IFNγ and IL-6 [57]. Either in P. vivax or P. falciparum malaria, the CD14+CD16+ 

monocytes produce high levels of the pro-inflammatory cytokines IL-1β, IL-6 and TNFα, 

upon stimulation with TLR agonists [37,52,61,65].

MOs also give rise to MO-DCs, which are important players in the immune response in 

Plasmodium-infected patients [21,66,67]. CD141 expressing MO-DCs (BDCA3+: Lineage− 

HLA-DR+CD11c+), but not CD1c+ expressing MO-DCs, are expanded in children infected 

with P. falciparum [68,69]. In contrast, adults infected with P. vivax- and P. falciparum show 

a decrease in the ratio of MO-DCs (BDCA2/CD303)+ to plasmocytoid DCs (pDCs) (HLA-

DR+CD11c+) [70,71]. The reduction of both MO-DCs and pDCs in the circulation of P. 
falciparum and P. vivax-infected patients is associated with an impairment of DCs 

maturation and antigen presentation to T cells [72]. In another study, it was shown that 

expression of the co-stimulatory molecules CD86, CD80 and CD40 were not up-regulated 

and the surface expression of HLA-DR and CD123 (IL-3R-alpha) was reduced in pDCs 

during early infection, suggesting that they are not activated [73]. Indeed, it was shown that 

the CD16+ MO-DCs is the main subset activated during subpatent infection with P. 
falciparum. The CD16+ MO-DCs produce TNFα and IL-10 and are potentially involved on 

both inflammatory as well as regulatory immune processes [74]. In addition, it was shown 

that during primary P. vivax infection, the number of cells and HLA-DR expression are 

decreased in CD1c(+) MO-DCs, while increased in CD16+ MO-DCs [75]. Importantly, in 

asymptomatic malaria patients with sub-microscopic parasitemia, the function of the DCs is 

not affected [76]. In vitro, high concentrations of iRBCs or Hz impair monocyte 

differentiation. In contrast, smaller concentrations of iRBCs or under certain conditions Hz 

activate DCs leading to cytokine production, expression of adhesion and co-stimulatory 

molecules favoring antigen presentation [77-79].

MO-DCs in rodent malaria models

During acute Plasmodium infection in mice, the cellularity of spleen, blood, as well as non-

lymphoid organs such as brain, liver, and lungs, changes drastically. An enhanced frequency 

of iMOs, activated macrophages, and MO-DCs is observed [20,80-85]. The aforementioned 

studies addressed the role of iMOs during malaria. Only few studies have suggested that 

aMacs have an anti-pathology effect and that they should be explored as potential 

therapeutic targets during malaria [86,87]. Hence , in this review we focus our discussion on 

the role of iMOs and MO-DCs during malaria.
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In a study performed by Ruedl and colleagues [84], it was shown that at early stage of 

Plasmodium infection, there is a rapid disappearance of resident macrophages 

(F4/80hiCD11blo) in different organs, such as spleen, liver, and lungs and the distribution of 

MO subsets undergoes striking changes. In all these organs there is a transient emergence of 

activated MOs that express F4/80intCD11bhiMHCIIhiLy6Chi. During the healing process, 

these monocytic cells disappear and the splenic red pulp and kupffer cell compartments are 

restored, presumably by circulating MOs (F4/80hiCD11blo) that assume similar 

characteristic of the embryonic resident macrophages [84]. In the P. chabaudi-infeted mice, 

CD11b+Ly6C+ cells are important sources of inflammatory cytokines, reactive oxygen 

species, and nitric oxide that effectively phagocytize and destroy iRBCs, thus mediating 

resistance to infection [80]. In addition, both CD11c+ and Ly6C+ cells have been shown to 

play important roles in the development of experimental cerebral malaria (ECM) in P. 
berghei-infected mice [81-83,88]. Likewise, it has been shown that CCR2+CD11b+Ly6C+ 

cells mediate malaria-induced lung injury in a rodent malaria model [89]. However, the role 

of MO-DCs in rodent malaria models had not been explored.

Traditionally, iMOs are defined as F4/80int, CD11bhi, MHC II−, Ly6Chi and CCR2+, 

whereas MO-DCs are supposedly Ly6C− [18,19,90]. In the studies described below, we 

defined F4/80intCD11bhiMHC IIhiLy6C+ cells as MO-DCs, because they express high levels 

of CD11c, DC-Sign, MHC-IIhi and co-stimulatory molecules (CD86 and CD80), display 

large dendrites, are highly phagocytic, and efficiently present antigens to CD8+ T cells [20]. 

Similarly, in a second study by our group, F4/80intCD11bhiMHC IIhiLy6C+ cells also 

showed all the characteristic markers of DCs [85] and a subset of them simultaneously 

expressed TNFα and iNOS, suggesting that they are the TNF/iNOS producing DCs (Tip-

DCs) subset. It is noteworthy that the MO-DCs defined in our studies showed a gradient of 

Ly6C expression, suggestive of a population that includes cells transitioning from iMOs to 

MO-DCs [20,85]. Hence, we believe that the role of MO-DCs in rodent malaria models has 

been underestimated. Most of the studies that addressed the role of DCs in rodent malaria 

have used a limited number of cell surface markers and have defined CD11c as a specific 

marker for cDCs. In addition, multiple studies have defined iMOs regarding the expression 

of CD11b, F4/80, and Ly6C, but did not evaluated CD11c [5]. This is of particular 

importance during the acute stage of infection, when the MO-DCs transiently emerge as a 

main population in the spleen and non-lymphoid organs [20,84,85]. Table 2 lists the 

nomenclature and cell surface markers used for iMOs and DCs employed in various studies 

using mouse malaria models.

MO-DCs in malaria acute respiratory distress syndrome (MA-ARDS)

MA-ARDS is a severe and often fatal complication of P. falciparum and P. vivax infection 

that is related to the sequestration of iRBCs into the pulmonary microvasculature [91-95]. 

The lung inflammatory process and injury, both in humans and mice, are linked with the 

presence of Hz. This crystal induces the expression of various inflammatory mediators, such 

as chemokines (e.g., CXCL10 and CCL2), cytokines (e.g., IL-1β, IL-6, IL-10 and TNFα) 

and metabolic enzymes (e.g., iNOS and heme-oxygenase) [85,96]. In infections caused by P. 
berghei NK65 (PbN), the inflammatory infiltrate in the lungs is characterized by a Th1 
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response and a predominance of CD8+ T lymphocytes expressing Tbet and high levels of 

IFNγ [85,97,98].

Our recent study [85] demonstrated that development of murine MA-ARDS is dependent on 

a functional CCR4. This chemokine receptor is involved in lung pathologies, but is normally 

responsible for mediating the recruitment of Th2 and regulatory T cells. CCR4−/− mice 

infected with PbN are protected from lung damage and present less hemorrhagic lesions and 

edema. A deeper analysis of leukocyte subsets in the lung of MA-ARDS mice showed a 

high frequency of MOs. Most of these cells express MO-DC markers such as CD11c and 

DC-Sign, stimulatory molecules MHCII, CD80, and CD86, and did not express specific 

markers for blood MOs (CD115), macrophages (CD68) or cDCs (CD135). In addition, a 

significant proportion of these MO-DCs are Tip-DCs. Importantly, MOs from control mice 

constitutively express CCR4, and we found that the recruitment of MO-DCs to the lungs, 

and not of T lymphocytes, is profoundly impaired in CCR4−/− mice infected with PbN.

As observed in other models, the differentiation of MO-DCs in PbN infection is highly 

dependent on endogenous IFNγ [85,97-99]. It is also known that during experimental MA-

ARDS, CD8+ T cells are the main source of IFNγ in the lungs. In fact, our studies suggest 

that the differentiation of MO-DCs into Tip-DCs that occurs in the lungs of PbN-infected 

mice is dependent of locally produced IFNγ by CD8+ T cells. Additionally, we found that 

Tip-DCs are the most important nitric oxide synthase 2 (NOS2) expressing cells in the MA-

ARDS model and that NOS2−/− mice have attenuated pathology [85]. Thus, these results 

indicate that Tip-DCs are important effector cells mediating lung tissue damage and MA-

ARDS (Figure 1).

MO-DCs in experimental cerebral malaria (ECM)

Cerebral malaria is a severe and often fatal neurological complication of P. falciparum 
infection [100-102]. It is characterized by cerebral dysfunctions that includes different 

degrees of impaired consciousness, delirium, abnormal neurological signs, as well as focal 

and generalized convulsions. The most studied model to study ECM is the infection of 

C57BL/6 mice with P. berghei ANKA (PbA). ECM develops within 6-12 days of infection 

and is characterized by ruffled fur, hunching, unbalancing, limb paralysis, convulsions, coma 

and death. The development of ECM is highly dependent on the inflammatory response, in 

particular of TNFα, IFNγ, Th1 and CD8+ T lymphocytes [103,104]. Intriguingly, it has 

been shown that Type I IFN promotes development of ECM by regulating the production of 

IFNγ by Th1 lymphocytes [105].

Different studies have demonstrated an intense infiltrate of blood iMOs in the CNS of PbA-

infected mice [81-83]. In addition to iMOs, CD11c+DCs are also important for the 

development of ECM [88,106]. In contrast, it was shown that treatment with Flt3, a potent 

differentiation factor for DCs, promoted the expansion of CD8+ DCs resulting in lower 

levels of parasitemia and protection against ECM [107]. However, these studies have used a 

limited number of cell surface markers to define iMOs and DCs, and the precise sub-

populations are not defined. Our recent study indicates that MO-DCs 

(CD45highCD8−CD11b+Ly6C+CD11c+MHCIIhighCCR5+) are pivotal cells in mediating 
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PbA-induced neuroinflammation [20]. At five days post-infection, MO-DCs become a 

dominant DC population during the period of ECM development. Amongst CD11b+F480+ 

cells, the frequency of MO-DCs increases from 18% in uninfected controls to 74% in PbA-

infected mice. These MO-DCs are highly phagocytic, when compared to splenic MOs and 

iMOs. They express high levels of CD80 and CD86 and cross-present soluble antigens, 

suggestive of a role in activating CD8+ T lymphocytes. Among members of chemokine 

family, the enhanced production of CXCL9, CXCL10, and expression of CCR5 by the 

differentiated MO-DCs stands out [20]. It is noteworthy that CXCL9 and CXCL10 play 

important roles on ECM [108,109]. Importantly, IFNγ or IFNγR deficiency leads to an 

impairment in the differentiation of iMOs into CXCL9/CXCL10-expressing MO-DCs. 

Furthermore, treatment with E6446 (a TLR7 and TLR9 antagonist) inhibits the expression of 

IFNγ by both CD4+ T and CD8+ T cells, CXCL9 and CXCL10 by MO-DCs, and prevents 

development of ECM [20,34].

Soon after their differentiation in the spleen, MO-DCs emerge in the CNS of PbA-infected 

mice. While endothelial cells express high levels of CXCL10, MO-DCs are the main 

hematopoietic source of CXCL9 and CXCL10 in the brain of PbA-infected mice undergoing 

ECM [83]. Importantly, the emergence of MO-DCs in the CNS is highly compromised in 

PbA-infected CCR5−/− mice, which are resistant to ECM. Different CCR5 ligands (i.e., 
CCL3, CCL4 and CCL5) are expressed in the brain of PbA-infected mice and CCL5 is 

highly efficient in mediating MO-DC migration in vitro [20].

In summary, our studies suggest that parasite nucleic acids activate cDCs to produce IL-12, 

which in turn stimulates the production of IFNγ by NK cells and T cells. The circulating 

IFNγ induces the expression of CXCL10 by endothelial cells in the CNS and promotes the 

differentiation of MOs into CXCL9/CXCL10-producing MO-DCs in the spleen of PbA-

infected mice. After differentiation, MO-DCs migrate to the CNS in response to CCR5 

ligands and amplify the recruitment of CXCR3+CD8+ T lymphocytes, initiated by 

endothelial cells producing CXCL10 and promote the development of ECM. Finally, CD8+ 

T cells act as effector cells causing tissue damage and lethal encephalitis (Figure 1).

MO-DC precursors in rodent malaria

Myelopoiesis-induced inflammation is critical to replenish myeloid cells in the periphery 

and control infectious pathogens. It has been shown that IL-27 promotes expansion of 

lineage negative (LIN−) LIN−Sca-1+c-Kit+ (LSK) cells, especially the long-term 

repopulating hematopoietic stem cells, and the common myeloid progenitor (CMP) cells that 

preferentially differentiate into mDCs, but not pDCs or cDCs. Importantly, the Plasmodium 
blood stage infection in mice production of IL-27 is enhanced through the induction of 

IFNγ. IL-27 then promotes the expansion of LSK cells in the bone marrow (BM), their 

differentiation and mobilization to the spleen [110]. Our unpublished results indicate that 

during rodent malaria, BM-MOs (CD11b+CCR2+F4/80+MHC-II−DC-Sign−Ly6cloCD11c
−CCR5−CXCL9−CXCL10−) differentiate into BM-iMOs (CD11b+F4/80+MHC-II
+CCR2+DC-Sign+Ly6cloCD11c−CCR5−CXCL9−CXCL10−) that express some, but not all 

markers from MO-DCs (CD11b+F4/80+MHC-II+CCR2+DC-Sign+Ly6c+CD11c
+CCR5+CXCL9+CXCL10+). These findings suggest that the BM-iMOs may migrate to the 
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spleen and then differentiate into MO-DCs [20,85]. In fact, it has also been observed a 

contraction in the population of LIN− cells as well as the CMP and the granulocyte 

monocyte progenitor (GMP) cells in the BM of P. chabaudi-infected mice. This contraction 

of BM progenitor cells during rodent malaria is dependent on IFNγ and CCR2 [111,112]. 

These results are consistent with the findings that the egress of MOs from the BM and their 

emergence in the site of infection is CCR2-dependent [80,113]. Altogether, these results 

support the hypothesis that myeloid precursors cells migrate out of the BM for extra-

medullar myelopoiesis and lead to the generation of iMOs and MO-DCs in the spleen of 

Plasmodium-infected mice.

However, we found that the generation of splenic MO-DCs is only partially compromised, 

whereas the migration of MO-DCs to the CNS and the development of ECM are not affected 

in PbA-infected CCR2−/− mice [20]. Furthermore, BM-iMOs do not express CCR5 and 

could not be recruited in a CCR5-dependent manner directly from the BM to the CNS in the 

ECM model. Importantly, our results also demonstrate that there is an accumulation of iMOs 

in the spleen of IFNγ−/− mice infected with PbA, but these cells do not differentiate into 

MO-DCs. As a consequence, there is no emergence of MO-DCs in the brain and 

development of ECM in IFNγ−/− mice [20]. These results indicate that CCR2, and 

potentially the egress of precursor cells from the BM during PbA infection, is not strictly 

necessary for the generation of splenic iMOs and that the final differentiation of MO-DCs in 

the spleen is highly dependent on IFNγ.

By using adoptive cell transfer experiments, MOs (F4/80+CD11b+Ly6C−DC-SIGN
−MHCIIlo) were enriched from spleens of uninfected CD45.2 C57BL/6 mice and transferred 

to either uninfected or PbA-infected CD45.1 congenic mice. Two days later, the frequencies 

of splenic CD45.2+ MOs, iMOs and MO-DCs were evaluated. In infected mice, like host 

cells (CD45.1+), most splenic CD45.2+ MOs differentiated into splenic MO-DCs 

(F4/80+CD11b+Ly6C+DC-SIGN+MHCN+). Thus, we favor the hypothesis that splenic MOs 

(F4/80+CD11b+Ly6C+DC-SIGN−MHCII−) [84] are the main precursors or, at least, 

sufficient to generate the pathogenic MO-DCs that then migrate and promote ECM.

Since MOs constitutively express CCR4, it is possible that they are being recruited directly 

from the BM to the lungs in the MA-ARDS model. However, the emergence of MO-DCs in 

the lungs and development of MA-ARDS is unaffected in the PbN-infected CCR2−/− mice. 

Thus, we speculate that MO-DCs differentiate in the spleen and then are recruited to the 

lungs. Once they emerge in the lungs, the final differentiation to Tip-DCs occurs after 

interaction with IFNγ-producing CD8+ T cells. Both in the ECM and MA-ARDS one can 

propose that MO-DCs differentiate from brain and lung resident macrophages 

(F4/80+CD11b+Ly6C−DC-SIGN−MHCII−) [84]. However, the requirement of CCR5 and 

CCR4 for MO-DCs emergence in these organs must be taken into consideration [20,85].

Conclusions

Our studies highlight an intense differentiation of MO-DCs during the MA-ARDS and ECM 

models. We emphasize the importance of endogenous IFNγ in mediating MO-DCs 

differentiation and their migration to the brain or lungs in a CCR5- or CCR4-dependent 
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manner, respectively. Once they migrate to the target organs, MO-DCs amplify the local 

inflammation causing tissue damage and consequent clinical manifestations. We hypothesize 

that MO-DCs amplify local tissue inflammation by serving as professional APCs and 

producing the chemokines CXCL9 and CXCL10 which recruit CD8+ T cells that mediate 

pathology. Therefore, the molecular steps involved on differentiation and migration of MO-

DCs to the inflamed tissues may be important targets for therapeutic intervention during 

malaria.
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Figure 1. MO-DC and Tip-DCs mediate cerebral malaria and ARDS in P. berghei-infected mice.
The systemic increase of circulating cytokines, elicited during malaria, induce the 

expression of adhesion molecules by endothelial cells, which mediate parasite sequestration. 

The sequestration of infected RBCs disrupts blood flow, promotes blood clots, injures 

endothelial cells and ruptures vascular walls, leading to the extravasation of vascular content 

and local tissue inflammation. These mechanisms contribute ECM and the acute respiratory 

distress in experimental malaria. (A) Infection with P. berghei ANKA leads to an IFNγ-

dependent differentiation of inflammatory monocytes into splenic MO-DCs 

(CD45highCD8−CD11b+Ly6C+CD11c+MHCIIhigh CCR5+CXCL9+CXCL10+). After 

differentiation, these MO-DCs migrate to the CNS in response to CCR5 ligands and amplify 

recruitment of CD8+ T lymphocytes, initiated by endothelial cells producing CXCL10 and 

promote development of ECM. (B) Infection with P. berghei NK65 leads to differentiation of 

inflammatory monocytes into MO-DCs that migrate to the lung. In the lung these cells are 

further activated by IFNγ locally produced by CD8+ T cells and differentiate into Tip-DCs 

(CD45highCD8−CD11b+Ly6C+CD11c+MHCIIhighCCR4+TNF+iNOS+). The nitric oxide 

produce by the Tip-DCs is the main cause of lung damage. This figure is adapted from 
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Figure 10 of Hirako et al. [17], which now includes the path of MO-DCs to the lungs and 

their differentiation to Tip-DCs during MA-ARDS.
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Table 1 –

Cell surface markers and classification of monocytes and dendritic cells in malaria patients
1

Author, year, [ref] Strain
2

Tissue Population
3

Cell Surface Markers

Pinzon-Charry, 2013 [72] Pf, Pv Blood mDCs Lin− (CD3, CD14, CD19, CD20, CD56, CD34) HLA-DR+CD11c+

Pinzon-Charry, 2013 [72] Pf, Pv Blood mDCs subset
Lin− (CD3, CD14, CD19, CD20, CD56, CD34) HLA-DR+CD11c
+CD141+

Pinzon-Charry, 2013 [72] Pf, Pv Blood mDCs subset
Lin− (CD3, CD14, CD19, CD20, CD56, CD34) HLA-DR+CD11c+CD1c
+

Pinzon-Charry, 2013 [72] Pf, Pv Blood mDCs subset
Lin− (CD3, CD14, CD19, CD20, CD56, CD34) HLA-DR+CD11c
+CD16+

Pinzon-Charry, 2013 [72] Pf, Pv Blood pDCs
Lin− (CD3, CD14, CD19, CD20, CD56, CD34) HLA-DR+CD11c
+CD123+

Franklin, 2009 [37] Pf Blood MOs CD14c+

Franklin, 2009 [37] Pf Blood DCs CD11c+

Urban, 2006 [68] Pf Blood mDCs Lin− (CD3, CD14, CD19) HLA-DR+CD11c+CD1c+

Urban, 2006 [68] Pf Blood mDCs Lin− (CD3, CD14, CD19) HLA-DR+CD11c+BDCA3+

Urban, 2006 [68] Pf Blood pDCs Lin− (CD3, CD14, CD19) HLA-DR+CD123+BDCA2+

Urban, 2006 [68] Pf Blood MOs CD14+HLA-DR+

Leoratti, 2012 [65] Pv Blood MOs CD14+CD16−CD66b−

Osier, 2014 [64] Pf Blood MOs CD14+

Zhou, 2015 [56] Pf Blood cMOs CD14hiCD16−

Zhou, 2015 [56] Pf Blood intMOs CD14hiCD16+

Zhou, 2015 [56] Pf Blood ncMOs CD14loCD16+

Dobbs, 2017 [57] Pf Blood cMOs CD14++CD16−

Dobbs, 2017 [57] Pf Blood intMOs CD14++CD16+

Dobbs, 2017 [57] Pf Blood ncMOs CD14+CD16++

Jangpatarapongsa, 2008 [71] Pv Blood pDCs HLA-DR+CD123+Lin− (CD3, CD14, CD19, CD20, CD56, CD66b)

Jangpatarapongsa, 2008 [71] Pv Blood mDCs HLA-DR+CD11c+Lin− (CD3, CD14, CD19, CD20, CD56, CD66b)

Antonelli, 2014 [61] Pv Blood cMOs CD14+CD16−

Antonelli, 2014 [61] Pv Blood iMOs CD14+CD16+

Antonelli, 2014 [61] Pv Blood pMOs CD14loCD16+

Ataide, 2014 [52] Pf, Pv Blood MOs CD14+CD16−

Ataide, 2014 [52] Pf, Pv Blood iMOs CD14dimCD16+

Ataide, 2014 [52] Pf, Pv Blood mDCs CD1c+CD19−

Gonçalves, 2010 [70] Pf, Pv Blood mDCs HLA-DR+CD11c+Lin− (CD3, CD14, CD16, CD20, CD56,)

Gonçalves, 2010 [70] Pf, Pv Blood pDCs HLA-DR+CD123+Lin− (CD3, CD14, CD16, CD20, CD56,))

Kho, 2016 [76] Pf, Pv Blood pDCs CD303+(BDCA-2)+

Kho, 2016 [76] Pf, Pv Blood mDCs CD1c+(BDCA-1)+

Kho, 2016 [76] Pf, Pv Blood mDCs CD141+(BDCA-3)+
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Author, year, [ref] Strain
2

Tissue Population
3

Cell Surface Markers

Woodberry, 2017 [75] Pv Blood pDCs Lin−(CD3, CD14, CD19, CD20, CD56, CD34) HLA-DR+CD123+

Woodberry, 2017 [75] Pv Blood mDCs Lin−(CD3, CD14, CD19, CD20, CD56, CD34) HLA-DR+CD11c+

Woodberry, 2017 [75] Pv Blood mDCs subset
Lin−(CD3, CD14, CD19, CD20, CD56, CD34) HLA-DR+CD11c
+CD141+

Woodberry, 2017 [75] Pv Blood mDCs subset
Lin−(CD3, CD14, CD19, CD20, CD56, CD34) HLA-DR+CD11c
+CD16+

Woodberry, 2017 [75] Pv Blood mDCs subset
Lin−(CD3, CD14, CD19, CD20, CD56, CD34) HLA-DR+CD11c+CD1c
+

Loughland, 2017 [73] Pf Blood pDCs
Lin−(CD3, CD14, CD19, CD20, CD56,CD34) CD11c−HLA-DR
+CD123+

Loughland, 2019 [74] Pf Blood mDCs
Lin−(CD3, CD14, CD19, CD20, CD34,CD56) CD11c+HLA-DR
+CD123+ CD16+

1 –
We used the cell population classification provided by the authors in the original manuscript.

2 –
Pf, P. falciparum; Pv, P. vivax.

3 –
MOs, monocytes are equivalent to classical monocytes (cMOs); iMOs, inflammatory monocytes are equivalent to intermediate monocytes 

(intMOs); pMOs, patrolling monocytes are equivalent to non-classical monocytes (ncMOs); DCs, dendritic cells; pDCs, plasmocytoid dendritic 
cells; mDCs, myeloid dendritic cells are equivalent to monocyte-derived dendritic cells (MO-DCs) [76,77].
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Table 2 –

Cell surface markers and classification of monocytes and dendritic cells in rodent malaria models
1

Author, year, [ref] Strain
2

Tissue
3

Population
4

Cell Surface Markers

Schumak, 2015 [82] PbA Sp MOs Ly6ChiF4/80+

Schumak, 2015 [82] PbA Sp MOs Ly6CintF4/80+

Pai, 2014 [81] PbA Br MOs CD11b+Ly6G−Ly6Chi

Pai, 2014 [81] PbA Br MOs Ly6Clo

Franklin, 2007 [38] Pc Sp MOs CD11b+

Haque, 2014 [105] PbA Bl MOs CD11b+Ly6Chi

Hirako, 2016 [20] PbA Sp MOs F480+CD11b+Ly6C−MHCII−

Ataide, 2014 [52] Pc Sp MOs CD11b+F4/80+

Lai, 2018 [84] Py17 Sp, Lv, Lg MOs F4/80intCD11bhi

Galvão-Filho, 2018 [85] PbN Lg MOs CD11b+F4/80+Ly6C−CD11c−DC-SIGN−CD80intCD86int

Lagasse, 2015 [89] PbA Lg iMOs F4/80+CCR2+CD11b+Ly6Chi

Schumak, 2015 [82] PbA Br iMOs Ly6ChiLy6G−

Sorensen, 2018 [83] PbA Br iMOs CD45+CD11b+CD11c−Ly6Chi

Tamura, 2011 [107] PbA Sp iMOs CD11c−Ly6C+

Hirako, 2016 [20] PbA Sp iMOs F480+CD11b+Ly6C+MHCII−

Sponaas, 2009 [80] Pc Sp MO-DCs CD11b+Ly6C+F4/80+CD68+CD11c+MHCII+CD40+CD86+

Lai, 2018 [84] Py17 Sp, Lv, Lg MO-MACs F4/80intCD11bhiLy6ChiMHCII−

Lai, 2018 [84] Py17 Sp, Lv, Lg MO-MACs F4/80intCD11bhiLy6Chi/intMHCII+

Lai, 2018 [84] Py17 Sp, Lv, Lg MO-MACs F4/80intCD11bhiLy6C−MHCII+

Lai, 2018 [84] Py17 Sp, Lv, Lg rMACs F4/80hiCD11blo

Lai, 2018 [84] Py17 Sp, Lv, Lg Act-rMACs F4/80hiCD11b+CD11c+

Chakravarty, 2007 [24] Py ALN, CLN, Sp DCs CD11c+

Seixas, 2001 [27] Pc Sp DCs CD11c+MHCII+

Leisewitz, 2004 [28] Pc Sp DCs CD11c+

Ing, 2006 [29] Pc Sp DCs CD11c+

Franklin, 2007, [38] Pc Sp DCs CD11c+CD40+CD86+

da Silva, 2013 [44] Pc Sp DCs CD11c+MHCII+

Perry, 2005 [51] Py Sp DCs CD11c+CD11b−MHCII+

Perry, 2005 [51] Py Sp DCs CD11c+CD11b+MHCII+

Ataide, 2014 [52] Pc Sp DCs CD11c+MHCII+

Guermonprez, 2013 [69] Pc Sp DCs CD8α+CD103+

Piva, 2012 [106] PbA Sp DCs CD11chighCD8+

Piva, 2012 [106] PbA Sp DCs CD11chighCD8−

Tamura, 2011 [107] PbA Sp DCs CD11chighCD8+CD3e−CD19−DX5−
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Author, year, [ref] Strain
2

Tissue
3

Population
4

Cell Surface Markers

Gowda, 2012 [45] Py17 Sp DCs CD11c+

Haque, 2014 [105] PbA Sp DCs CD8+CD11chiMHCIIhiCD86+TCRb−B220−

Haque, 2014 [105] PbA Sp DCs CD8−CD11chiMHCIIhiCD86+TCRb−B220−

deWalick, 2007 [88] PbA Sp DCs CD11c+

Radtke, 2015 [25] Py spr LT pDCs B220+

Piva, 2012 [106] PbA Sp pDCs CD11cintSiglec-H+

deWalick, 2007 [88] PbA Sp pDCs B220+mPDCA-1+

Sorensen, 2018 [83] PbA Br MO-DCs CD45+CD11b+CD11c+Ly6+F4/80+DC-SIGN+

Hirako, 2016 [20] PbA Sp MO-DCs F480+CD11b+DC-SIGN+MHCII+CD11c+CD80+CD86+

Hirako, 2016 [20] PbA Br MO-DCs CD45+CD8−CD3−Ly6C+CD11b+CD11c+DC-SIGN+

Galvão-Filho, 2018 [85] PbN Lg MO-DCs CD11b+CD11c+F4/80+Ly6C+DC-SIGN+CD80+CD86+

Galvão-Filho, 2018 [85] PbN Lg Tip-DC CD11b+CD11c+F4/80+DC-SIGN+TNF+iNOS+

1 –
We used the cell population classification provided by the authors in the original manuscript.

2 –
PbA, P. berghei ANKA; Pc, P. chabaudi; PbN, P. berghei NK65; Py17, P. yoelli 17XNL; Py, P. yoelli; spr, sporozoite.

3 –
Bl, blood; Br, brain; Lv, liver; Lg, lung; Sp, spleen; LT, lymphoid tissue.

4 –
MOs, monocytes; iMOs, inflammatory monocytes; MO-MACs, monocyte-derived macrophages; rMACs, resident macrophages; Act-rMACs, 

activated-resident macrophages; DCs, dendritic cells; pDCs, plasmocytoid dendritic cells; MO-DCs, monocyte derived-dendritic cells; Tip-DCs, 
TNF/iNOS producing dendritic cells; ALN, auricular lymph node; CLN, celiac lymph node.
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