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Differential haplotype
expression in class I MHC genes
during SARS-CoV-2 infection of
human lung cell lines

Ronaldo da Silva Francisco Junior1, Jairo R. Temerozo2,3,
Cristina dos Santos Ferreira1, Yasmmin Martins4,
Thiago Moreno L. Souza5,6, Enrique Medina-Acosta7* and
Ana Tereza Ribeiro de Vasconcelos1*

1Bioinformatics Laboratory (LABINFO), National Laboratory of Scientific Computation (LNCC/
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Introduction: Cell entry of SARS-CoV-2 causes genome-wide disruption of

the transcriptional profiles of genes and biological pathways involved in the

pathogenesis of COVID-19. Expression allelic imbalance is characterized by a

deviation from the Mendelian expected 1:1 expression ratio and is an important

source of allele-specific heterogeneity. Expression allelic imbalance can be

measured by allele-specific expression analysis (ASE) across heterozygous

informative expressed single nucleotide variants (eSNVs). ASE reflects many

regulatory biological phenomena that can be assessed by combining genome

and transcriptome information. ASE contributes to the interindividual variability

associated with the disease. We aim to estimate the transcriptome-wide impact

of SARS-CoV-2 infection by analyzing eSNVs.

Methods: We compared ASE profiles in the human lung cell lines Calu-3, A459,

and H522 before and after infection with SARS-CoV-2 using RNA-Seq experiments.

Results:We identified 34 differential ASE (DASE) sites in 13 genes (HLA-A, HLA-

B, HLA-C, BRD2, EHD2, GFM2, GSPT1, HAVCR1, MAT2A, NQO2, SUPT6H,

TNFRSF11A, UMPS), all of which are enriched in protein binding functions and

play a role in COVID-19. Most DASE sites were assigned to the MHC class I

locus and were predominantly upregulated upon infection. DASE sites in the

MHC class I locus also occur in iPSC-derived airway epithelium basal cells

infected with SARS-CoV-2. Using an RNA-Seq haplotype reconstruction

approach, we found DASE sites and adjacent eSNVs in phase (i.e., predicted

on the same DNA strand), demonstrating differential haplotype expression
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upon infection. We found a bias towards the expression of the HLA alleles with

a higher binding affinity to SARS-CoV-2 epitopes.

Discussion: Independent of gene expression compensation, SARS-CoV-2

infection of human lung cell lines induces transcriptional allelic switching at

the MHC loci. This suggests a response mechanism to SARS-CoV-2 infection

that swaps HLA alleles with poor epitope binding affinity, an expectation

supported by publicly available proteome data.
KEYWORDS

allele-specific expression, allele swapping, COVID-19, haplotype expression, HLA
alleles, RNA-Seq, SARS-CoV-2
Introduction

The coronavirus disease 2019 (COVID-19) pandemic

significantly continues to burden public health response and

management, with over 631 million infected people and over 6.5

million cumulative deaths worldwide (https://covid19.who.int/).

The severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) infection causes from asymptomatic to life-threatening

pulmonary illness with multiorgan dysfunction (1, 2). About 0.1

to 0.9% of infected people develop fatal disease outcomes (3).

Epidemiological studies showed that advanced age, male

biological sex, and comorbidities are major risk factors for life-

threatening COVID-19 (4). Respiratory tract epithelial cells and

pneumocytes are the first target cells of SARS-CoV-2. The virus

enters cells by binding its Spike protein to the host angiotensin-

converting enzyme 2 (ACE2) membrane receptor (5). The

kinetics of the SARS-CoV-2 replicative cycle during the acute

phase of infection can lead to endothelial barrier disruption,

dysfunctional alveolar-capillary oxygen transmission, and

impairment in oxygen diffusion capacity (6). These phenotypes

are characteristic of acute respiratory distress syndrome (ARDS)

and affected individuals usually demand oxygen support.

A hallmark of severe COVID-19 is the overactivation of the

inflammatory response through maladaptive proinflammatory

cytokine production by transendothelial leukocyte migration.

The cytokine storm causes local cell damage in the alveoli and

systemic inflammation. Excessive inflammation, hypoxia,

immobilization, and diffuse intravascular coagulation are not

uncommonly observed in COVID-19 patients. Those conditions

may predispose to venous and arterial thromboembolism,

ischemic stroke, and myocardial infarction, which are life-

threatening complications (7). Also, SARS-CoV-2 interferes

with how antigens are presented, how alveolar macrophages

work, and how type I interferon works (8, 9).

Understanding the perturbations associated with SARS-CoV-2

infection in the respiratory tract cells is challenging because of the
02
difficulty in obtaining relevant biological samples from affected

subjects. To do this, in vitro culture models permissive to SARS-

CoV-2 infection are used to investigate the underlying mechanisms

of infection and disease pathology. Calu-3 and A549 culture models

have been a mainstay of respiratory research in the last four decades

(10, 11). Even though both cell lines are epithelial and come from

adult lung non-small cell adenocarcinoma, Calu-3 is highly

permissive to SARS-CoV-2 infection and replication in an ACE2-

dependent way, whereas A549 is not permissive to SARS-CoV-2

due to its low expression of the ACE2 receptor (12). Notably, the

exogenous expression of ACE2 in A549 renders a chemokine

signature similar to that of Calu-3 cells (12). ACE2 receptor-

independent models, such as the H522 lung adenocarcinoma cell

line, showed that viral infection uses an alternative receptor and

depends on surface heparan sulfates (13). In addition, airway

epithelium basal cells (iBCs) experimentally derived from induced

pluripotent stem cells (iPSCs) also reproduced the transcriptome

profile of the primary human airway epithelial cells and other

airway cell types (14). Comprehensive transcriptome studies with

these cell lines showed genome-wide activation of genes related to

type I and III IFN production, chemokine expression, NLRP3

inflammasome, metabolic hormone process, and the low-density

granulocyte (LDG) gene signature (12, 15–17). Nevertheless, the

impact of SARS-CoV-2 infection on allele-specific expression has

not been fully explored.

Genome-wide association studies (GWAS) found that

common SNVs at 17 different loci were linked to severe

COVID-19 outcomes (18–20). Loss-of-function rare SNVs in

genes related to inborn errors of type I IFN immunity were

found in at least 3.5% of patients with pneumonia (3, 21).

Variants in the Human Leukocyte Antigen (HLA) locus

appear to play a role in asymptomatic and mild diseases. The

highly variable HLA locus codes for proteins that activate T-cells

and help the immune system fight off different pathogens. Class I

and II HLA molecules present antigens to CD8+ and CD4+ T-

cells, respectively. In couples discordant for COVID-19, HLA-A
frontiersin.org
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variants associated with symptomatic versus asymptomatic

SARS-CoV-2 infection in highly exposed individuals (22).

Moreover, the number of missense variants in the MUC22

gene was higher in resilient super elders (people over 90 years

old who were infected but had mild or no symptoms) (23).

Most markers found by GWAS are single-nucleotide

variations (SNVs) at noncoding sites that often act as cis-

regulatory variants. Expression quantitative trait loci (eQTL)

analysis (24, 25) is often used to identify causal regulatory

variants from GWAS, which also requires many samples

besides being deeply influenced by interindividual differences

(26). SARS-CoV-2 infection is known to promote imbalances in

the expression of genetic variants across the human genome

(27). But it still needs to be determined what their functional

effects are because figuring out the links between genotype and

phenotype in people with different genetic backgrounds requires

analyzing many transcriptomes. For these reasons, allele-specific

expression (ASE) has become the most effective assay for

quantifying gene variant expression (28).

ASE analysis measures the steady-state imbalance between the

transcription of the two parental alleles at heterozygous sites of the

diploid genome (29). Each genetic variation is expected to show a

1:1 allelic expression ratio. The deviation from this assumption

captures a dynamic regulation of biological processes related to the

effects of cis-regulatory variants, genomic imprinting, X

chromosome inactivation (XCI), A-to-I(G) RNA editing,

nonsense-mediated decay, random monoallelic expression, or

allelic exclusion (30). ASE analysis also enables the identification

of gene-by-environment (GxE) interactions, highlighting the

environment’s contributions to modulating the genetic effects of

relevant complex traits (31). Unlike GWAS and eQTL analyses,

ASE analysis quantifies the difference in the abundance of alleles in

the same individual by controlling the impact of genetic

background and environmental changes in replicate samples (26).

Comparisons across allelic expression profiles can highlight genes

potentially involved in mechanisms associated with disease. For

example, Goovaerts et al., found that the parent-of-origin-

dependent monoallelic expression of imprinted genes is

deregulated in breast cancer (32). Pervasive perturbations in ASE

sites were found in monozygotic twins discordant for Down

syndrome, suggesting genome-wide dysregulation in cells with

extranumerary chromosome 21 (30). Here, we describe a new

way to use RNA-Seq experiments on human cell lines infected

with SARS-CoV-2 to find allele-specific changes significant for

COVID-19 disease.
Materials and methods

Biological data and sample information

We chose transcriptome studies from bulk RNA-Seq data of

SARS-CoV-2 infected lung human cell lines publicly available at
Frontiers in Immunology 03
the Sequence Read Archive platform (Table S1). Only

experiments comparing mock-treated and SARS-CoV-2

infected cells with two or more replicates per condition were

selected. We included three different lung cell lines in our

analysis: Calu-3, A549, and H522. These cell lines originated

from the lung adenocarcinoma epithelium of Caucasian adult

male subjects. Both A549 and H522 are ACE2-negative models

supporting SARS-CoV-2 replication via independent entries. In

our analysis, we also used A549 with an exogenous expression of

ACE2. In the study by Blanco Melo et al., 2020 (GEO BioProject

PRJNA615032), we selected four experiments using the A549

cell line and one from Calu-3 (12). In the study by Wyler et al.

(GEO BioProject PRJNA625518), we included a longitudinal

experiment of RNA-Seq in Calu-3 cells at three different time

points (16). We also used RNA-Seq data of Calu-3 cells from the

study by Kim D et al., 2021 (GEO BioProject PRJNA661467) at

eight different time points (17). The H522 experiments were

retrieved from the meta-analysis conducted by Puray-Chavez

et al. (GEO BioProject PRJNA686659), which compares the

transcriptional profile for four ratios of the multiplicity of

infection (MOI) at six-time points (13). We also use whole-

exome sequencing (WES) data for the cell lines listed above

(Table S1) to figure out the zygotic profile of each RNA-Seq

variant. Lastly, we used RNA-Seq data of airway epithelium basal

cells (iBCs) made from induced pluripotent stem cells (iPSCs)

(GEO BioProject PRJNA805095) to confirm what we found in

the three models we used in our analysis. The human airway

epithelial cells were differentiated from the BU3 NGPT and 1566

iPSC cell lines (14).
Data processing and identification of
differential allele-specific expression sites

We extracted the fasta files of each replicate using the fastq-

dump function from the sra-toolkit (https://github.com/ncbi/

sra-tools). Bioinformatic analysis was done separately for each

replicate. Allelic imbalance analysis at expressed SNVs (eSNVs)

sites was performed using PipASE, a pipeline to identify ASE

sites in transcriptome data (30). We first examined the

sequencing quality parameters for each fastq file using fastqc

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/).

Next, bad-formed reads were removed using Trimmomatic (33).

We aligned the filtered reads to the human GRCh38 reference

genome assembly with STAR v3.7 software (34). Mapped

sequences were further post-processed using SAMtools to sort,

index, and select reads based on mapping quality parameters

(MAPQ ≥ 30) in BAM files (35). Then, we masked duplicate

reads and performed variant calling in RNA-seq data using

MarkedDuplicates and HaplotypeCaller from GATK v4.1,

respectively (36, 37). We used ASEReadCounter to determine

the read counts for reference and alternative alleles in each

position (29). The genomic information for each variant was
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annotated with the help of the Ensembl Variant Effect Predictor

(https://www.ensembl.org/Tools/VEP).

To estimate the impact of SARS-CoV-2 infection on the

differential expression of genetic variants across the human

genome, we calculated the reference allele ratio (ref ratio) in

each replicate using the following equation: ref ratio = (# of reads

with the reference allele)/(# of reads with the reference allele + #

of reads with the alternative allele). For differential ASE analysis,

we required coverage of at least ten reads per variant site and the

occurrence of each site in at least two replicates in each assay

condition. We used a binomial model from the stats package R

(38) for differential ASE analysis at each eSNV site. Adjusted P-

values for multiple comparisons were performed using the

p.adjust function in R with the Benjamini and Hochberg

method. To estimate the magnitude of the expression changes,

we calculated the log2 fold change of the ASE (LogASE) for each

site using DESeq2 (39) according to the framework available by

Love (2017) (40). Positive LogASE values represent the increase

of the alternative allele over the reference. In contrast, negative

values represent ASE sites that exhibited a preferential

expression of the reference allele after infection. Only the

SNVs that exhibited FDR < 0.1 and -0.95 < LogASE > 0.95

were considered differentially expressed across the conditions.

We used the R package clusterProfiler to perform functional

enrichment analysis on the set of genes that displayed differential

allele expression (41). Annotations were made for Gene

Ontology (GO) terms in three different areas: molecular

function (MF), biological process (BP), and cellular

component (CC). We performed a GO over-representation

test, keeping only enriched terms that showed p.adjust < 5%.

We also used clusterProfiler to do a KEGG over-representation

analysis to learn more about the main metabolic pathways

enriched for genes with ASE sites. Similar analyses were also

performed using ReactomePA in R (42).
Detection of chromosomal aberrations
and haplotype inference using allelic
imbalance from RNA-seq dataset

Since the tumor cell lines used in this study are hypotriploid

(43), we used eSNP-Karyotyping to look for chromosomal

changes in the RNA-Seq data (44). We sought to compare the

karyotype of mock-treated and SARS-CoV-2-infected cells to

determine whether the allelic imbalance was either generated by

chromosomal differences between both samples or associated

with the infection. Thus, BAM files from different replicates

within the same condition were merged with SAMtools (35) and

edited using AddOrReplaceReadGroups from Picard (https://

broadinstitute.github.io/picard/) to assign a single new read-

group for all the reads in the BAM file. The BAM file generated

by this step was indexed with the SAMtools index, followed by a

second variant call with HaplotypeCaller from GATK v4.1. We
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filtered out eSNVs with low coverage (below 20 reads) and low

minor allele frequency (lower than 0.2). Using a window of 151

eSNVs, we estimate the moving medians of the major-to-minor

allele ratios across the genomic coordinates. eSNP-Karyotyping

also shows FDR-corrected P values for regions significantly

altered within each sample. Combined BAM and VCF files

were also used to phase eSNVs within haplotype blocks. We

used a Bayesian haplotype reconstruction framework from

HapTree-X to assess phased haplotype blocks from the allelic

imbalance observed in RNA-Seq data (45). We passed the

human GTF file from the Ensembl GRCh38.105 version via

the -g parameter to improve the phasing quality.
Sequence-based HLA typing using
RNA-seq data

After the haplotype reconstruction approach, we conducted

HLA allele identification directly from RNA-Seq reads in each

sequence. First, RNA-Seq reads in fastq format were mapped to

human chromosome 6 (GRCh38) using bowtie2 (46). The mapped

sequences were assembled into 200 bp contigs using the TASR tool

(47) and aligned to HLA reference sequences using the NCBI

BLAST+ 2.13.0 package (https://blast.ncbi.nlm.nih.gov/Blast.cgi).

The following alignment parameters were used: -b 5 -v 5. The

HLA reference sequences of classes I and II genotypes were retrieved

in fasta format from the IMGT/HLA database. After alignment, the

selected sequences were used to predict HLA alleles in the

HLAminer tool with the default parameters (48). Next, the

definition of HLA alleles for each sample was based on the

intersection of alleles present across the different replicates of the

experiments. Finally, we queried DASE sites and co-localized eSNVs

affected in samples predicted to be heterozygous to verify the HLA

allele preferentially expressed during SARS-CoV-2 infection.
Results

Allelic expression of eSNVs in the MHC
class I locus is preferentially impacted in
lung epithelial cell lines during SARS-
CoV-2 infection

We compared the allelic expression profiles of eSNVs in bulk

RNA-Seq data from Calu-3, A549, and H522 lung cell lines

before and after SARS-CoV-2 infection. We interrogated 6,884

heterozygous eSNVs detected across the mock-treated and

SARS-CoV-2-infected comparisons, with coverage ≥ 35 reads

at each site. Thirty-four eSNVs displayed differential allele-

specific expression (DASE) after viral infection (Figure 1;

Table S2). These sites were heterozygous in the WES data of

their respective cell lines. The ACE2-dependent Calu-3 model,

harbored 68% (n=23/2,50) of all DASE sites. We also noticed
frontiersin.org
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seven eSNVs significantly altered in A549 with exogenous

expression of ACE2 (n = 7/4,094). The ACE2-independent

models of H522 and A549 showed the smallest DASE sites

with four (n = 4/672) and two eSNVs (n = 2/872), respectively

(Figure 1). The read depth at DASE sites was 2.5-fold greater

than the coverage across all positions.

Nineteen DASE sites were mapped to coding regions, with

56% being missense and 41% being synonymous variants. Only

one eSNV mapped to the HLA-C 3´ UTR. Furthermore, DASE

sites are in 13 autosomal genes on eight chromosomes (Table

S2), with most eSNVs on chromosome 6. The major

histocompatibility complex (MHC) locus harbored 24 (70%)

of the DASE sites (Figure 1). HLA-B (n = 10) and HLA-A (n =

10) carried the highest number of affected variations, followed by

HLA-C (n = 4). Only one eSNV changed significantly in the

other ten genes (BRD2, EHD2, GFM2, GSPT1, HAVCR1,

MAT2A, NQO2, SUPT6H, TNFRSF11A, and UMPS). HLA-C

harbored DASE sites in all lung cell lines included in this study

(Figure 1). Both Calu-3 and A549 also shared DASE sites in the

HLA-B gene. No significant association was observed between
Frontiers in Immunology 05
the number of DASE sites from the different multiplicity of

infection (MOI) ratios and hours post-infection (hpi),

suggesting that the mechanisms underlying the differential

expression of some alleles may be independent of these variables.

Gene ontology (GO) over-representation analysis revealed

that upregulated genes are mainly involved in antigen processing

and presentation of endogenous peptides via MHC class I

(GO:0019885), cell killing (GO:0001906), and regulation of

leukocyte-mediated cytotoxicity (GO:0001910) (Figure S1). We

observed an association between HLA-A and HLA-B with IFN-g
(GO:0032609) and interleukin-12 production (GO:0032615).

GFM2 and GSPT1 were associated with the biological process

of translational termination (GO:0006415). We also noticed an

enrichment of the guanyl ribonucleotide binding (GO:0032561)

molecular functions linked to EHD2, GFM2, and GSPT1 (Figure

S2). TNFRSF11A showed significant over-representation in the

tumor necrosis factor-activated receptor (GO:0005031) and

death receptor (GO:0005035) activities. HAVCR1 displayed

virus receptor activity (GO:0001618), whereas NQO2 had a

function of chloride ion binding (GO:0031404) (Figure S3).
A B

D E

C

FIGURE 1

Differential allele-specific expression sites across the single-nucleotide variants identified in Calu-3, A549, and H522 lung cell lines. (A) Circular
Manhattan plot of the chromosomal distribution of eSNVs tested using a binomial approach. The densities of eSNVs per chromosome in the
Calu-3, A549, and H522 cell lines are depicted inward. Red points represent DASE sites with FDR < 10%. (B–D) Regional plot of classical MHC
class I genes with the orange diamond showing the DASE sites in Calu-3, green circles for A549, and H522 represented by the pink triangle
point down. (E) The total number of eSNV sites tested in each lung cell line, followed by the number of DASE sites found. The intersection
between the genes harboring DASE sites in the three cell lines is depicted in the Venn diagram. HLA-C was the only gene that showed DASE
sites in all lines. Nevertheless, HLA-B was also shared between Calu-3 (red circle) and A549 (yellow circle).
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The expression profiles of the genes
harboring DASE sites distinguish genetic
regulatory mechanisms triggered by
infection

The allelic imbalance observed at DASE sites could result

from the differential gene expression (DGE) induced by SARS-

CoV-2. So, we compared the LogASE values to the log2-fold

change (LogFC) of the significant DGE (Figure 2A). We found

that 23 DASE sites were linked to increased expression of the

HLA-A, HLA-B, and HLA-C genes at 24 hpi in Calu-3, A459,

and H522 cell lines (Table S2). That finding showed that HLA

expression was increased in a chromosome copy-specific way.

Such differentiation was detected across the seven experiments

included in our study. For 14 eSNVs in HLA-A (n = 7), HLA-B
Frontiers in Immunology 06
(n = 6), andHLA-C (n = 1), upregulation was seen in DASE sites

where the reference allele was more likely to be expressed

(Figure 2B). For ten eSNVs in the upregulated group, the

expression levels of the alternative allele were higher than the

reference allele upon SARS-CoV-2 infection (Figure 2B). In

Calu-3 cells, the rs713031 in the HLA-B gene showed random

allele expression over time, with an allelic imbalance towards the

alternative allele at 24 hpi with MOI = 10 and switching to the

reference allele at 48 hpi with MOI= 0.1. For both experiments,

an increased transcriptional level was detected for the gene.

Since both comparisons where this eSNV was found came from

cells with the same genotype, the transcriptional allele switch

may result from a random allelic imbalance.

Twelve genes comprising 13 DASE sites showed

compensated expression, which means that the virus did
A B

C

FIGURE 2

Comparison of the LogASE and LogFC from differential gene expression (DGE). (A) Plot showing the LogASE values for DASE sites on the x-axis
and LogFC from the DGE comparing the infected with mock-treated cells. Positive LogASE values represent the increase of the alternative allele
over the reference. In contrast, negative values represent ASE sites that exhibited a preferential expression of the reference allele after infection.
Colored circles show the genes where each DASE site is mapped, whereas gray circles show the eSNVs that met the requirement of FDR > 10%
in the DASE analysis. (B) Comparison between the Ref Ratio values of SARS-CoV-2 infected and mock-treated cells. The plot shows the ref ratio
values on the x-axis and DASE sites on the y-axis. Red and blue circles represent the mean of Ref Ratio values among the replicates of SARS-
CoV-2 infected and mock-treated cells, respectively. The interval bars denote the range between the min and max values found across the
replicates. Ref Ratio values > 0.5 represent the preferential expression of the reference allele, whereas values < 0.5 show the bias towards the
alternative allele. The heatmap at the right highlights the cell line where the DASE sites were found. (C) Manhattan plot showing the DASE sites
found in iPSC-derived airway epithelium basal cells (iBCs).
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deregulate their expression level. At six eSNVs, the reference

allele was expressed more than the alternative allele. However, at

seven DASE sites, the alternative allele was expressed more. In

this group of genes, there was no change in the way the same

eSNV was expressed between different tests. For the rs2071876

in BRD2, we identified a consistent expression of the reference

allele in the H522 cell line at 72 and 96 hpi (MOI = 0.06).

Furthermore, HLA-B and HLA-C also displayed

compensated gene expression at 12 hpi despite being

upregulated at 36 hpi in the same Calu-3 cell (MOI = 10).

Though the gene expression changed, for rs41553715 in HLA-B,

the expression of the alternative allele was increased in both

scenarios. Interestingly, the reference allele was preferentially

expressed during upregulation of the gene at 48 hpi in Calu-3

(MOI = 0.1) for the same genetic variant, suggesting biased allele

expression or a parental-dependent effect. Similar results were

found when comparing different cell lines for HLA-C; for the

rs41550715, the alternative allele was preferentially expressed

regardless of gene expression compensation in A549 or

upregulation in Calu-3 (Table S3).
HLA-A allele expression is also altered in
iPSC-derived airway epithelium basal cells

Next, we aimed to verify the expression profiles of genetic

variants across alternative cell lines to determine the extension of

the DASE events. We then performed the ASE analysis on a

dataset of airway epithelium basal cells derived from iPSC lines

(iBCs). The iBCs originated from two independent precursors

(iBCs-1566 and iBCs-BU3 NGPT). Unlike lung-derived cell

lines, we could not retrieve WES data from both cells.

Therefore, the genetic variants identified were considered

theoretically heterozygous. We interrogated 26,420 sites,

including 14,909 from iBCs-1566 and 16,338 from iBCs-BU3

NGPT. The SNV rs2075684-T-A located in theHLA-A gene was

found to be differentially expressed during viral infection in

iBCs-1566 cells after 24 hpi (Figure 2C; Table S3). After

infection, the expression level of the reference T allele was

higher than the alternative A allele. This variation changes

phenylalanine to tyrosine at position 33 (Phe33Tyr) of the

HLA-A protein. However, the al le les carrying the

phenylalanine codon were preferentially expressed. The overall

minor allele frequency of the rs2075684 SNV is 0.14 (GnomAD)

(49). The expression profiles of two other HLA-A variants,

rs45585732 and rs1655894, were changed during infection.

These SNVs are physically close to each other (interpolated

sex-average genetic distance = 6.90515E-05 Kos cM apart; hg19;

http://compgen.rutgers.edu/map_interpolator.shtml) (50).

In iBCs (BU3 NGPT), we detected two DASE sites after 72

hpi: rs2269350-G-A (RPSA) and rs11724369-G-A (UVSSA)

(Table S3). Both genetic variants had a synonymous functional

annotation. The expression of the reference alleles went down,
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and then the expression of allele A went up. The alternative allele

has a relatively elevated frequency across the populations in

GnomAD (MAF = 0.26 and 0.29, respectively). We also

identified expression perturbations across five neighboring

SNVs (rs2276903, rs28614045, rs9996817, rs9685761, and

rs6838561) in the UVSSA gene. All three genes highlighted in

iBCs displayed a compensated gene expression profile in

the experiments.
DASE sites are not related to
chromosomal aberrations differences
between mock-treated and SARS-CoV-2
infected samples

Having identified DASE sites across lung-derived and airway

basal epithelial cell lines, we asked whether these allele biases

were caused by genomic instability or viral infection. We wished

to rule out possible karyotype differences as the primary source

of ASE since Calu-3, A549, and H522 are hypotriploids (43). We

confirmed the chromosomal aberrations in the three cell lines

using eSNP karyotyping and WES karyotyping (Figure 3).

Though the eSNP-Karyotyping revealed a dynamic pattern in

the RNA-Seq data of Calu-3, no significant karyotype alterations

were detected at the DASE sites (Figure 3). For A459, the nine

DASE sites identified are mapped at chromosomes 2, 5, 6, and

19, of which six SNVs target the MHC class I locus (Figure 3). At

the genomic level, we detected significant alterations in

chromosomes 17 and 20. Both aberrations were also present at

the transcriptional level, as reported by eSNP-Karyotyping

analysis in all A549 experiments. The pattern was consistent

when both conditions were compared. Karyotyping withWES or

RNA-Seq data in H522 cells suggested the presence of a

structural aberration across the MHC locus (Figures 3E, F).

Infected cells have a DASE site in the HLA-C gene. This suggests

that the observed allelic shift is related to SARS-CoV-2 infection.

We could not retrieve WES data from the iBCs lines used in our

study. Despite this, the allelic ratios from RNA-Seq data were

consistent in both IBC cell lines, implying that no chromosomal

aberrations were present (Figure 3). Thus, the DASE sites are not

likely to be caused by the alterations in the karyotype of the

mock-treated and infected samples.
Allelic imbalance at DASE sites is partly
linked to the differential expression of
haplotype blocks

To understand the extension of the allelic imbalance across

neighboring eSNVs, we expanded our screening around the

DASE sites of each gene. In seven experiments, the BRD2,

HLA-C, MAT2A, RPSA, SUPT6H, and TNFRSF11A genes each

displayed only one eSNV. Also, even though they had multiple
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eSNVs, the LogASE values of co-localized variants in four genes

(EHD2, GFM2, GSPT1, and UMPS) did not change. We then

sought to evaluate if these variations overlapped single gene

isoforms. By mapping each DASE site and its nearby eSNVs to

the transcripts, we saw that all eSNVs were in areas where more

than one isoform passed through. Thus, the possibility of

isoform-specific allele expression was excluded from this set of

genes. Lastly, we saw that neighboring DASE sites were changed

after SARS-CoV-2 infection for six genes in 14 experiments. For

instance, HLA-B displayed many impacted SNVs close to the
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DASE sites in Calu-3 and A549 cell lines. Similar results were

found for the HAVCR1, NQO2, and UVSSA genes.

The overwhelming occurrence of eSNVs at the MHC locus

raises the question of whether the eSNVs are in phase, i.e., in the

same RNA molecule and transcribed from the same parental

allele. We use HapTree-X to reconstruct longer-range

haplotypes using allelic imbalance at theoretically heterozygous

eSNVs (45). We focused our analysis on six genes with DASE

sites that span at least two heterozygous SNVs. We reconstructed

the phased haplotype for all genes investigated across the
A B

D

E F

G H

C

FIGURE 3

Comparison of chromosomal aberrations between mock-treated and SARS-CoV-2-infected cell lines. Comparison between e-Karyotyping
analysis of samples from whole-exome sequencing and RNA-Seq data from Calu-3 (A, B), A549 (C, D), and H522 (E, F). (G, H) e-Karyotyping
analysis in RNA-Seq data from iPSC-derived airway epithelium basal cells (iBCs) from 1566 and BU3 NGPT cell lines. For each experiment, red
dots and lines represent SARS-CoV-2-infected replicates, whereas blue dots and lines show mock-treated replicates. Diploid samples usually
display an allelic ratio (y-axis) around 1.4 as previously shown (44, 51). The gray background shown at the top and bottom of each plot shows
regions that reach statistical significance for aneuploidy using the piecewise constant fit algorithm. The color gradient displayed next to each
region represents the FDR-corrected P value for both comparisons.
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different experiments. DASE sites affected by SARS-CoV-2

infection co-localized on the same RNA molecules raising the

possibility of viral-induced differential haplotype expression

(DHE) (Figure 4). This pattern was consistently observed in

the HLA-B gene throughout seven different comparisons. DHE

also occurred in the HLA-C and UVSSA genes in at least

two comparisons.

A single haplotype block spanned the entire HLA-B gene,

covering a genomic window of 3,268 bp in Calu-3 cells

(Figure 4). We identified 80 SNVs, of which 44 were
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interrogated during DASE analysis, five of which were

differentially expressed. All the other affected eSNVs that did

not reach statistical significance or pass the LogASE threshold

were in phase with DASE sites. In the other experiments, the

reconstruction of the HLA-B haplotype was fragmented. Still, we

found haplotype blocks with DASE sites and co-localized eSNVs

where all alleles with different expression patterns during viral

infection were phased. Single haplotype blocks were also

detected in HLA-A and HLA-C (Figure 4). Ten DASE sites

were identified in HLA-A in Calu-3 and were co-expressed with
A

B

C

FIGURE 4

Phasing of DASE sites and co-localized eSNVs from classical MHC class I genes using RNA-seq data from Calu-3 cells. (A–C) Regional plot of
eSNVs localized around the HLA-A, -B, and -C genes. In blue, DASE sites revealed by the binomial test. The gray represents the other eSNVs
tested that did not reach statistical significance. The ideogram of the chromosome is also shown, and a red tick shows where each relevant
transcript isoform is located. Next, a plot showing the single haplotype block spanning the genes under analysis. Purple circles represent the
reference allele, while the alternative is represented in pink. The x-axis refers to the genomic position of each eSNV in the GRCh38 genome
assembly, and the y-axis shows the two haplotypes from the chromosomal locus. Blue and gray circles matched the SNVs in the regional plot
on the left. The SNVs found in HLA genes that were not used in the binomial test are shown by the empty circles.
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the 18 eSNVs in Haplotype 2 (Figure 4). For HLA-C, we noticed

DHE toward haplotype #2, similar to that observed for non-HLA

genes such as HAVCR1 and UVSSA.
DASE sites and affected co-localized
SNVs discriminate MHC class I alleles
preferentially expressed during infection

The reconstruction of extended haplotype blocks in the

MHC class I locus allows allelic typing, which provides

insights into the preferential expression of alleles during

SARS-CoV-2 antigen presentation. Thus, to predict the HLA

alleles assigned to each haplotype reconstructed in the previous

analysis, we performed sequence-based HLA typing from RNA-

Seq reads in each sample. We identified six samples

heterozygous for HLA alleles that displayed DHE, in which

the DASE sites and co-localized SNVs could discriminate the

HLA allele preferentially expressed (Table 1). The HLA-A gene

of Calu-3 cells was heterozygous for the A*24:02 and A*68:01

alleles. The 10 DASE sites with increased expression after

infection mapped to the A*68:01 allele. In the HLA-C gene

from Calu-3, the DASE sites did not distinguish the

heterozygous HLA alleles. Using the SNVs in phase with

DASE sites, we could differentiate the imbalance between the

two alleles. We found the preferential expression of the allele

C*15:02 co-expressed with the allele C*07:02 with three

discriminant variations. The DASE sites found in HLA-B of

Calu-3 did not distinguish alleles. However, by extending our

analysis to three neighboring SNVs, we found an imbalance

between the alleles B*51:01 and B*07:02. We observed that two

altered SNVs mapped to B*51:01 whereas B*07:02 was

characterized by a single variant (Table 1). Lastly, we found

that the B*44:03 and B*18:01 alleles of the HLA-B gene were

both heterozygous in the A459 experiments.

We tracked the informative DASE sites over time to

describe the flux differences of HLA haplotype expression

during the infection. Allele flux over time can be measured if

there are more than one DASE site on each HLA locus at

different time points and/or MOIs and if the identified DASE

site(s) distinguish(es) the HLA haplotypes. ForHLA-A in Calu-

3, the ten DASE sites investigated suggested a continuous

expression of the allele with no changes in the preferential

expression of the A*68:01 allele over time. For HLA-B of A549-

ACE2 cells, we observed a constant expression of B*18:01

across different MOIs. The continual differential expression

of rs1051488 and rs1131500 SNVs determined the allelic flux.

We could not determine the allelic flux for HLA-C alleles

because the DASE sites did not differentiate the haplotypes.

In H522 cells, a single DASE site was identified on HLA-C at
Frontiers in Immunology 10
96hpi and MOI 0.25, which did not allow the determination of

the allelic flux.
Discussion

This study identified an imbalanced expression of genetic

variations in classical MHC class I genes and ten other genes

associated with SARS-CoV-2 infection. Gene ontology analysis

showed that the 13 genes with DASE sites in Calu-3, A549, and

H522 are enriched in protein binding functions, some of which

are involved in SARS-CoV-2 infection, COVID-19 disease

progression, and severity. We included ACE2 receptor positive

(Calu-3) and negative but permissive to SARS-CoV-2 infection

(A549 and H522) cell lines. The Calu-3 cell line is airway

epithelial derived from human bronchial submucosal glands

(52, 53). The A549 cell line recapitulates features of the

phenotype of the multifunctional alveolar type II (ATII)

epithelial pneumocytes, capable of surfactant production and

expression of high numbers of multilamellar bodies (54, 55).

ATII pneumocytes are essential in regenerating the alveolar

epithelium following lung injury and thus contribute to lung

defense. The H522 cell line is also airway epithelial but

permissive to infection by SARS-CoV-2 (13).

Interestingly, most DASE sites were found in Calu-3. The

difference may be linked to the extent to which the cells are

permissive to virus entry, replication, and the differential

expression of the ACE2 receptor. Transcriptome analyses of

the lower lung are mostly limited to ATII pneumocytes (56).

However, a variable infection gradient has been observed in the

upper and lower respiratory tract, which parallels the gradient of

ACE2 expression (57). We noted that the HLA allele shift is

neither cell line type restricted nor ACE2-dependent because the

virus-induced HLA allele-switching was observed in cell lines

discordant for ACE2 receptor expression. The HLA allele switch

is expected to occur in other cell lines, being used to refine

antigen recognition during injury. Whether the observed HLA

allele switch occurs during a non-infectious cell injury is unclear.

HLA-A, -B, and -C genes act on endogenous peptide antigen

presentation and are associated with disease susceptibility. The

transcriptional regulator bromodomain-containing protein 2

(BRD2) is a potent regulator of ACE2 transcription in Calu-3

cells (58). The EHD2 protein, highly enriched at the neck of

caveolae, controls a cell-autonomous, caveolae-dependent fatty

acid uptake pathway by adipocytes, endothelial cells, and muscle

cells (59). Importantly, EHD2 is underexpressed in obese

patients, a known risk comorbidity for severe COVID-19.

COVID-19 is less likely to happen in people with the cytosolic

glutathione S-transferase GSPT1 rs1695 allele (60). The hepatitis

A virus cellular receptor (HAVCR1, also called KIM1), used by
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Ebola, Marburg, Dengue, and Zika viruses, is an entry factor for

SARS-CoV-2 to kidney cells, where the virus induces organ

abnormalities associated with poor prognosis and mortality in

COVID-19 patients (61). The methionine adenosyltransferase

2A (MAT2A), involved in S-adenosylmethionine methylation

pathways, is differentially upregulated in mono-CD14+CD16+

cells in patients with severe COVID-19 (62). MAT2A

presumably is required to methylate the SARS-CoV-2 RNA

cap structures, allowing genome transcription and preventing

the recognition of RNA Cap structures by cellular innate

immunity receptors (63). The SUPT6H gene codes one of the

many RNA-binding proteins profoundly down-regulated upon

SARS-CoV-2 infection (64). The uridine monophosphate

synthase (UMPS) is involved in pyrimidine biosynthesis, and

pyrimidine inhibitors synergize with nucleoside analogs to block

SARS-CoV-2 replication (65).

The observed allele bias in classical MHC class I genes leads

to the preferential expression of one allele within a heterozygous

locus, showing that the upregulation of these genes is driven in a

haplotype-specific manner. The classical MHC class I molecules

handle mainly self-peptides or viral antigens. The exposure of

the HLA-peptide complex on the cell surface is followed by CD8

+ cytotoxic T lymphocyte binding, which may induce apoptosis

in virally infected cells and generate long-term immunological

memory. With heterozygous variant sites in the HLA-A, -B, and

-C genes, each cell can express up to six MHC class I alleles

simultaneously. Perturbations in MHC allelic expression can

change how antigens are presented. The cellular immunity

conferred by CD8+ memory T cells is crucial to fighting the

earlier SARS-CoV-1 infection and the current SARS-CoV-2

pandemic, even with or without humoral responses (66–69).

Though our findings are limited to the repertoire of antigens for

T CD8+ cell presentation, the isoform expressed may play a role

in the efficiency of the immune response to viral infection.

For example, the A*68:01 allele overexpressed in Calu-3 has

been predicted to have a high binding affinity to SARS-CoV-2

epitopes (70). A*68:01 is a common allele found across different

populations at 5.2-25% frequency. This allele was strongly

associated with mortality from influenza A (H1N1) infection

(71, 72). A large-scale analysis also revealed a proclivity for the

worst COVID-19 outcome in patients with the B*51:01 allele

that is overexpressed in Calu-3-cells (73). In silico analysis

identified a high affinity for potential T-cell epitopes of S-

protein (74). Previous studies reported a protective role of

B*51:01 in the long-term control of AIDS progression in HIV-

infected individuals (75–77). The alternative allele B*07:02, co-

expressed with B*51:01, had a beneficial association with high

antiviral efficacy against SARS-CoV-2 (78). ForHLA-B of Calu-3

cells, we were not able to determine the phase of DASE sites

considering the two alleles B*51:01 and B*07:02.

Cross-referencing with the HLA peptidome in Calu-3

infected by SARS-CoV-2 revealed that the epitopes on the cell

surface matched most of the HLA alleles that were differentially
Frontiers in Immunology 12
expressed in our analysis (79). The majority of peptides

presented by HLA-A on the Calu-3 surface matched the

A*68:01 allele. Nagler and his team did not see B*51:01 and

C*07:02 being expressed in SARS-CoV-2-infected Calu-3. These

results help settle the disagreement about which HLA-B

haplotype is most strongly expressed at the RNA level. Thus,

the absence of epitopes matching the alternative allele for both

HLA-B and HLA-C genes shows that the differential haplotypic

expression may be reflected at the protein level. It is still not clear

if the immunodominant epitope controls the preferential

expression of the HLA alleles or if the different expression of

the HLA alleles makes some peptides more likely to be chosen.

The three HLA alleles upregulated in Calu-3 may play a

protective role against COVID-19 (Figure 5). A*68:01 showed

a protective effect against severe manifestations of the disease

in Tapachula-Chiapas, Mexico (83). In contrast, the peptides

presented by A*68:01 derived from the envelope protein

are homologous to the neuronal cell adhesion molecule

(NCAM) (84). A*68 has been associated with developing

Guillain-Barré syndrome (GBS). B*07:02 and C*15:02 have

antiviral activity and resistance against SARS-CoV-2,

respectively (78, 85).

In the HLA-B gene in A549 cells, we observed the

preferential expression of the B*18:01 allele over the B*44:03

allele in all experiments. B*18:01 was associated with the

manifestation of subacute thyroiditis triggered during the

SARS-CoV-2 infection (86). This allele has also been linked to

T cell cross-reactivity between EBV epitopes and a self-peptide,

causing an aberrant immune response (87). The HIV viral

replicative capacity was significantly higher in subjects

expressing the B*18:01 allele (88). In contrast to the patterns

seen with HLA-A and -B, there is no clear link between the allele

C*15:02 and COVID-19. This allele was upregulated in Calu-3

experiments when co-expressed with C*07:02. The C*15:02

allele confers resistance against SARS-CoV infection (85).

Francis and colleagues (89) recently described the HLA-

B*07:02 allele presenting homologous epitopes from SARS-

CoV-2 and other human coronavirus, providing high pre-

existing immunity. Preferential expression of HLA alleles may

be closely connected to TCR repertoire diversity (89). Moreover,

HLA genotypes and CD8+ T cell responses have been described

as having implications for herd immunity and strategies to

consider during vaccine design to warrant long-term

immunity against SARS-CoV-2 (89, 90).

Zhang et al. reported allelic imbalances across HLA-B alleles

in lung cell lines infected by SARS-CoV-2 using an alternative

methodological approach. The authors offered three non-

exclusive biologically plausible mechanisms to explain the

differential haplotype expression: (i) the activation/silencing of

one allele is attributed to pathological effects, (ii) independent

regulation of the transcription of both alleles, and (iii) the

presence of cis-acting regulatory elements (27). In our study,

the occurrence of DASE sites in the BRD2 gene mapping to the
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HLA chromosomal region corroborates the cis-acting regulatory

elements’ hypothesis. During T cell activation, allele-specific

expression changes were described in HLA and other

autoimmune loci for CD4+ T cells (91).
Limitations and strengths

We warn against drawing any actionable, functional

conclusions from these results because the sample size was

small, and the study was done with secondary WES and RNA-

Seq public data. An important caveat of the study is the limited

number of informative DASE sites in HLA genes that are

required to analyze HLA-allele differences over time. The

number of informative DASE sites depends on the

heterozygous status of contiguous SNVs, therefore, on the

genetic background of the sample donor. The determination

of allele flux over time depends on (i) the HLA alleles being

typed in the cell line, (ii) more than one DASE site occurring

on the HLA genes in the different MOIs experiments, (iii) the

identified DASE sites discriminating HLA haplotypes. All that
Frontiers in Immunology 13
granted, the flux of HLA alleles could be estimated for the

HLA-A gene in Calu-3 and HLA-B in A549-ACE2

transfectant cells.

ASE perturbations are not mechanistically unique to SARS-

CoV-2 infection, despite the reported shift in allele expression in

HLA and ten other genes. Multiple ASE alterations have been

identified in CD4-T cells infected by the oncogenic Marek’s

Disease herpesvirus (MDV) (92). MDV caused ASE changes in

six genetic resistance loci (MCL1, SLC43A2, PDE3B, ADAM33,

BLB1, and DMB2) that are related to T-cell activation, T-cell and

B-cell receptors, ERK/MAPK, and PI3K/AKT-mTOR signaling

pathways, all of which play important roles in MDV infection.

Because ASE-affected genes represent the complex trait of genetic

resistance to Marek’s disease, the trait is then determined by

transcriptional regulation (93). Our results show that when SARS-

CoV-2 infects cells, there is a transcriptional allelic flip in the

affected genes, which occurs regardless of compensation of gene

expression. We hypothesize that when the virus enters the cell, a

DASE flip regulatory mechanism swaps HLA alleles that display

epitopes with poor binding affinity. Functional studies are

required to assess the biological significance of the
FIGURE 5

Schematic representation of the proposed regulatory genetic mechanism associated with the haplotype-specific expression of class I HLA
alleles during SARS-CoV-2 infection. Viral cell entry triggers preferential transcription of the RNA molecules in the classical class I HLA locus.
Even though Calu-3 is heterozygous for HLA-A, -B, and -C alleles (79), we found that the A*68:01 allele was more expressed than the A*24:02
allele, the B*07:02 allele was more expressed than the B*51:01 allele, and the C*15:02 allele was more expressed than the C*07:02 allele. Such
differences in the expression may be attributed to structural differences in promoter motifs (80), transcriptional factors, genetic variations, and
environment (81, 82). Cross-referencing analysis using HLA peptidome data from Calu-3 infected by SARS-CoV-2 generated by Nagler and
colleagues (2021) revealed that the same RNA molecule found to be preferentially expressed in RNA-Seq data corresponds to the HLA protein
expressed on the cell surface for classical class I alleles. Nagler and colleagues (2021) reported that most peptides presented on the cell surface
matched the A*68:01 allele when compared to the A*24:02. For HLA-C, no peptide matching C*07:02 was found after infection. Similarly, the
B*07:02 allele was found to be preferentially expressed at the HLA-B locus. By using DASE, swapping alleles with low binding affinity could be a
part of the defense that helps COVID-19 outcomes be less severe. Created with BioRender.com.
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transcriptional allelic flip. Whether the transcriptional allelic flip

induced by SARS-CoV-2 infection is a transient or long-lasting

phenotype will demand transcriptome and proteome comparative

analysis in cultured cells cured of SARS-CoV-2. The biological

significance of the transcriptional allelic flip is for the virus-

induced selection of HLA alleles with higher affinity. Testing

that hypothesis will require measuring differential peptide

recognition in infected cells.
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