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Abstract: Although chronic hepatitis C has been effectively treated with direct-acting antivirals
(DAAs), the use of conventional therapy with peg-interferon (Peg-IFN) or (predominantly) ribavirin
(RBV), remains widespread. R70Q/H and L/C91M amino acid substitutions in the hepatitis C virus
(HCV) core protein may modulate responses to IFN and/or RBV, and are associated with cirrhosis,
hepatocellular carcinoma (HCC), insulin resistance, and liver steatosis. We evaluated the R70Q/H
and L/C91M substitutions, clinical and epidemiological profiles, and risk factors of Brazilian patients
chronically infected with HCV subgenotypes 1a and 1b (HCV-GT1a and HCV-GT1b) unresponsive
to IFN and/or RBV therapy. Sequencing and pyrosequencing analyses and sociodemographic and
clinical predictive variables were used to assess the relationship between R70Q/H and L/C91M
substitutions. Leukocyte counts, ALT levels, and ALT/AST ratios were significantly reduced in
treated individuals, but more of these patients had advanced fibrosis and cirrhosis. L91M was more
prevalent (19.7%), occurring only in HCV-GT1b, followed by R70Q/P (11.5%) and R70P (1.4%).
R70Q/P exhibited higher mean AST, ALT, and GGT values, whereas L91M showed higher mean GGT
values. Pyrosequencing of the L91M position revealed mutant subpopulations in 43.75% of samples.

Keywords: chronic hepatitis C; non-sustained viral response; amino acid substitutions R70Q/H and
L/C91M; clinical and epidemiological profiles; host risk factors; subpopulations; pyrosequencing

1. Introduction

Approximately 58 million persons are infected with the hepatitis C virus (HCV)
worldwide, and 262,815 cases of hepatitis C have been identified in Brazil [1,2]. It is
estimated that 80% of those infected with HCV will develop the chronic form of the
disease, of which approximately 10–15% progress to cirrhosis and 1–4% might develop
hepatocellular carcinoma (HCC). HCC is a major indication for liver transplantation and
the fourth leading cause of cancer death in the world [3,4]. HCV has a wide genetic
variability owing to its high mutation rate, leading to the formation of viral quasispecies. It
is classified into eight genotypes (GT, numbered 1–8), and several subgenotypes, defined
by letters, e.g., HCV-GT1a and HCV-GT1b [5]. The global distribution of HCV genotypes
and their subtypes varies according to the region. Genotype 1 is the most prevalent in the
world and in Brazil (HCV-GT1a and HCV-GT1b, respectively) and is associated with more
severe liver disease and a more aggressive course of infection, in addition to presenting a
worse sustained virological response (SVR) to conventional treatment with peg-interferon
(Peg-IFN) and ribavirin (RBV) or Peg-IFN/RBV (35–45%) [6,7].
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In addition to viral replication, HCV proteins also affect various cellular functions
that may be related to the pathogenesis of chronification and liver damage. The HCV
core protein has a series of biological actions, such as the control of cell growth, apoptosis,
oxidative stress, and immunomodulation during hepatocyte infection [8,9]. Phenotypic
substitutions at position 70 (change of arginine—wild type—to glutamine—mutant type—
R70Q/H) and/or 91 (change of leucine or cysteine—wild type—to methionine—mutant
type—L/C91M) of the core protein are associated with insulin resistance (IR), a more
severe stage of liver disease for cirrhosis, HCC, and a non-sustained virological response to
Peg-IFN-RBV combination therapy [10–17].

Despite the lack of an effective vaccine, for the last few years there has been a great
advance in the treatment of this infection with the development of direct-acting oral
antiviral drugs (DAAs). Treatment involves shorter courses of DAAs, few adverse effects,
improved tolerability, and SVR rates exceeding 95% [18]. However, restricted access
to health services and the high cost of DAAs continue to prevent universal treatment
replacement in low-income countries. In addition, there is still a risk of developing liver
complications, such as HCC, even after successful treatment. The molecular mechanisms
involved in viral and host factors have not yet been fully elucidated [19,20]. In Brazil,
which comprises a heterogeneous and admixed population (multiracial population), there
are no studies showing the frequency in R70Q and L/C91M. Demographic, clinical, and
laboratory aspects (risk factors) of the HCV core protein in a cohort of non-responders to
treatment are still to be reported. This study aimed to assess the demographic, clinical, and
laboratory profiles of patients from a Brazilian (multiracial population) cohort who were
unresponsive to therapy (IFN and/or RBV) associated with the R70Q/H and L/C91M
substitutions, and to detect and quantify the presence of viral quasispecies.

2. Materials and Methods
2.1. Ethics

This study was approved by the Ethics Committee of the Oswaldo Cruz Founda-
tion (CAAE 34246914.4.1001.5248, number: 2.927.747/18). The purpose of the study was
explained to participants. Confidentiality regarding patient identity and personal infor-
mation was assured by highlighting that only researchers could access the information,
which would be used solely for research purposes. Participants were then asked to sign an
informed consent form.

2.2. Study Participants and Procedures

This was a cross-sectional study based on analyzed data (medical records) and labora-
tory test results. The samples were collected from 286 patients chronically infected with
HCV (HCV-GT1a and HCV-GT1b). A single serum collection per patient was performed
between November 2015 and November 2017 at the Gaffrée e Guinle University Hospital
in Rio de Janeiro, Brazil.

A simple random probability sampling form was used so that participants were likely to
be representative of the overall population, thus ensuring the internal validity of the study.
The minimum number of subjects (n = 57) was determined to be N = z2 × p × (1 − p)/e2,
where z was the confidence level based on a standard normal distribution (1.96 for 95%), p
was the expected prevalence (0.183 for HCV in the general population, because no data
were available for the study population), and e was the maximum acceptable error in the
estimate (0.05) [2].

Inclusion criteria were an age over 18 years and confirmed hepatitis C monoinfected
or coinfected with human immunodeficiency virus (HIV). The exclusion criteria were
hemolyzed samples and/or a serum volume below 200 µL and the absence of clinical and
laboratory information in the patients’ medical records.
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2.3. RNA Extraction and Amplification

The number of total RNA samples was 243. RNA was extracted using a commercial
High Pure Viral Nucleic Acid Kit (Roche Applied Science, Penzberg, Germany), according
to the manufacturer’s instructions. The primers and thermal cycling conditions for the
partial amplification of the HCV core region (starting at nucleotide minus 12 and ending at
nucleotide +343, considering as position 0 the initiation codon of the open reading frame)
were performed as previously established [17,21].

Briefly, RT-PCR was done with the commercial kit SuperScript® III One-Step RT-PCR
System with Platinum®Taq DNA Polymerase (Invitrogen, Carlsbad, CA, USA); oligonu-
cleotides Sc2 (sense) and Ac2 (antisense) were used at 10 pmol/µL. The product of this
amplification, of approximately 440 bp, was used to improve sensitivity as a template for
the second amplification stage (Nested PCR) using internal and different oligonucleotides
S7 (sense) and A5 (antisense) at 10 pmol/µL and the commercial kit Platinum Taq DNA
polymerase (Invitrogen, Carlsbad, CA, USA). The final product had approximately 354 bp.
The second round PCR products were purified (Wizard SV Gel and PCR Clean-Up System
Promega, Madison, WI, USA), and quantified using a molecular mass marker (Invitro-
gen/Life Technologies, Carlsbad, CA, USA).

To provide complete nucleotide sequences of the region that encodes the HCV core
in genetic databases, two sets of primers were designed and used for PCR. The RT-PCR
reaction was performed with the commercial kit SuperScript® III One-Step RT-PCR System
with Platinum® Taq DNA Polymerase (Invitrogen, Carlsbad, CA, USA), and oligonu-
cleotides HCV-F-288: 5′-ACTGCCTGATAGGGTGCTTGCG 3′-(sense) and HCV-R-1319:
5′-CCARTTCATCATCATRTCCC-3′ (antisense) were used at 10 pmol/µL. Thermocycling
conditions were as follows: cDNA synthesis step, 45 ◦C for 30 min and 94 ◦C for 2 min.
This was followed by five cycles of 94 ◦C for 1 min, 62 ◦C for 1 min, and 68 ◦C for 1 min.
Another 10 cycles of 94 ◦C for 1 min, 60 ◦C for 1 min, and 68 ◦C for 1 min were performed.
This was followed by 10 cycles at 94 ◦C for 1 min, 56 ◦C for 45 s, and 68 ◦C for 1 min.
Another 10 cycles of 94 ◦C for 1 min, 50 ◦C for 45 s, and 68 ◦C for 1 min were performed.
This was followed by a final extension at 68 ◦C for 7 min.

The product of this amplification (1032 bp) was used as a template for the second am-
plification stage, using the primers HCV-F-321: 5′-AGGTCTCGTAGACCGTGCA-3′ (sense)
and HCV-R-1316: 5′- RTTCATCATCATRTCCCA-3′ (antisense) at 10 pmol/µL. The RT-PCR
was performed using the commercial kit Platinum Taq DNA polymerase (Invitrogen, Carls-
bad, CA, USA). The cycling conditions were 94 ◦C for 2 min, followed by 10 cycles at 94 ◦C
for 1 min, 62 ◦C for 45 s, and 72 ◦C for 1 min. Another 10 cycles were performed at 94 ◦C
for 1 min, 60 ◦C for 45 s, and 72 ◦C for 1 min, followed by 10 cycles at 94 ◦C for 1 min, 57 ◦C
for 45 s, and 72 ◦C for 1 min. A final extension was performed at 72 ◦C for 10 min. The
final product of this PCR was approximately 996 bp. HCV-H77 (NC_004102) was used as a
reference to name and position primers in the region of interest of the genome.

2.4. Sequencing and Molecular Analysis of the HCV Core

Purified and quantified amplicon DNA was submitted for nucleotide sequencing
using the Sanger method and read from both strands using the BigDye Terminator Cycle
Sequencing Ready Reaction Kit (Applied Biosystems, Foster City, CA, USA) on an ABI
Prism 3730 Genetic Analyzer (Applied Biosystems, Foster City, CA, USA). The alignment,
editing, and analysis of nucleotide sequences for genotyping, mutations, and deduced
amino acid sequence similarities of the core gene were performed using BioEdit v7.0.5
and MEGAX programs, respectively [22,23]. The total number of amplicons obtained
(HCV-GT1a and HCV-GT1b) was 208. From those, wild type, without substitution at
positions 70 and 91, corresponded to 102 samples, and mutants, with R70Q and/or L91M
substitution, to 106 samples. Among the 208 patients, 137 received conventional treatment
and 71 were untreated.

The nucleotide sequences for the full-length protein core representing all possible
substitutions analyzed in the present study have been submitted to GenBank with ac-
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cession numbers, for 70H: ON563228 (HCV-GT1a_CORE_Isolate_301) and ON563229
(HCV-GT1b_CORE_Isolate_159); for 91M ON563230 (HCV-GT1b_CORE_Isolate_116); for
70Q and 91M (double mutation) ON563231 (HCV-GT1b_CORE_Isolate_120); for 70Q
and 91L (double wild) ON563232 (HCV-GT1a_CORE_Isolate_49) and ON563233 (HCV-
GT1b_CORE_Isolate_268). For more information and access to these sequences, use the
link: https://www.ncbi.nlm.nih.gov/genbank/ (accessed on 26 November 2022).

2.5. Pyrosequencing

With this methodological tool, substitution at position 91 was evaluated because it
was the most prevalent substitution in the study. We included 73 HCV-GT1b samples that
were treated with Peg-IFN and/or RBV and failed antiviral therapy to assess whether there
would be mutant subpopulations that could influence prognosis and treatment response
among the wild-type samples.

The partial sequences of the HCV core region (HCV-GT1b) obtained from GenBank
were aligned to construct the respective consensus sequences. These were submitted to the
PyroMarkAssay Design Software 2.0 to build specific primers (one of which was conjugated
with biotin) for the amplification reactions and subsequent pyrosequencing.

For pyrosequencing, the cDNA of the RT-PCR reaction (Sc2 and Ac2) was used as a tem-
plate for the second PCR, using specific primers (forward: HCV-Pyro-F-448: 5′-TGYTGCCGCG
CAGGGGC-3′ and reverse: HCV-Pyro-R-636: 5′-ACAGGAGCCAYCCYGCCC-3′, the
reverse-primer being conjugated to biotin). The thermal cycling conditions were an initial
denaturation at 94 ◦C for 2 min, followed by 35 cycles of 94 ◦C for 1 min, 62 ◦C for 45 s,
and 72 ◦C for 1 min, and a final extension at 72 ◦C for 10 min. The generated 188 bp frag-
ment was used as a template for pyrosequencing. The order of nucleotide dispensing was
(A/C/T) T (T/C/A/G) for the L91M variation, and the forward primer HCV-F-PyroSeq-
91aa: 3′-CTCTATGGCAAYGAGGGY-5′ was used for the pyrosequencing reactions. The
following steps were performed using PyroMark Q96 ID equipment (QIAGEN, Hilden,
Germany) [24].

2.6. Statistical Analysis

The data are presented as frequencies and percentages for categorical variables and
as means with standard deviations for continuous variables. The X2 test, Mann–Whitney
U test, Student’s t-test, or Wilcoxon’s test was used to analyze categorical, parametric con-
tinuous, and non-parametric variables, as appropriate. Associations between treated and
untreated individuals, as well as mutant and non-mutant were performed against several
potential predictor variables (sex, body mass index [BMI], fasting blood glucose, triglyc-
eride, total cholesterol, low-density lipoprotein [LDL], high-density lipoprotein [HDL],
aspartate aminotransferase [AST], alanine aminotransferase [ALT], gamma glutamyl trans-
ferase [GGT] levels, fibrosis degree, steatosis, and platelet level).

3. Results
3.1. Characteristics of the Study Population

In 286 patients, we reported on 127 male and 159 female patients, with a mean age of
60.7 ± 10.2 (range: 32–86) years and a progressive increase in the number of individuals
with increasing age group. In our study, 40.2% (115/286) were white, 24.1% (69/286) were
black, and 21.0% (60/286) were mixed race; 4.7% (42/286) omitted that answer from the
questionnaire during anamnesis. Most individuals had fibrosis stage F4/cirrhotic (59.4% or
170/286), and the presence of HCC was low, at 2.1% (6/286). Most patients were overweight
(31.5%, 90/286) or obese (16.1%, 46/286). In 12.5% (36/286) of the patients, we detected
HCV/HIV coinfections. Regarding HCV genotyping by phylogenetic analysis (data not
shown), 52.8% (151/286) were HCV-GT1a and 47.2% (135/286) were HCV-GT1b.

From the 286 patients included in the study, 171 patients failed conventional therapy
based on Peg-IFN and/or RBV and 115 patients did not undergo antiviral treatment. The
demographic and biochemical data of the treated and untreated study population are

https://www.ncbi.nlm.nih.gov/genbank/
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summarized in Table 1. The dose of Peg-IFN therapy in the treated group was Peg-IFN
alpha 2a containing 180 micrograms, injectable solution, and Peg-IFN alpha 2b at 0.5 to
1.0 micrograms per kilogram of patient weight, injectable solution. These solutions were
administered once a week, subcutaneously, for 48 weeks, in monotherapy or associated
with RBV. The dose of RBV (250 mg) varied according to the patient’s body weight. On
average, 750 to 1250 mg/day were administered orally.

Table 1. Demographic and biochemical characteristics of the study population with and without
treatment (mean ± SD and case number).

Variable Treated (n = 171) Untreated (n = 115) p-Value

Age, years 60.6 ± 9.0 61.0 ± 11.7 0.13
Female sex 90 (52.6%) 69 (60%) 0.11

Body weight, kg 71.9 ± 13.1 69.7 ± 13.7 0.19
BMI, kg/m2 26.4 ± 4.3 26.0 ± 4.9 0.24

Albumin, mg/dL 4.04 ± 0.63 4.04 ± 0.76 0.09
Fasting blood glucose, mg/dL 107.2 ± 31.6 106.6 ± 35.1 0.80

Triglyceride, mg/dL 111.8 ± 60.1 106.8 ± 48.3 0.36
Total cholesterol, mg/dL 159.6 ± 32.9 159.9 ± 33.4 0.98

LDL, mg/dL 87.2 ± 28.7 89.7 ± 56.45 0.51
HDL, mg/dL 51.3 ± 28.7 63.4 ± 65.9 0.34

AST, U/L 60.7 ± 43.4 67.9 ± 56.6 0.03
AST/ALT ratio 1.1 ± 0.5 1.8 ± 0.6 0.02

Platelet count/L 128 × 109 ± 110 × 109 139 × 109 ± 92 × 109 0.38
GGT, U/L 100.2 ± 96.9 103.03 ± 106.2 0.58

Total bilirubin, mg/dL 0.86 ± 0.62 0.88 ± 0.58 0.24
Unconjugated bilirubin, mg/dL 0.51 ± 0.40 0.52 ± 0.31 0.78

Hemoglobin, g/L 13.41 ± 2.60 13.08± 2.09 0.32
Leukocytes, cells/mm3 4.2 × 103 ± 2.8 × 103 5.3 × 103 ± 3.6 × 103 0.01

Hematocrit 40.0% ± 5.0% 39.0% ± 5.0% 0.39
ALT, U/L 62.43 ± 58.46 65.0 ± 47.15 0.74

AFP, ng/mL 16.28 ± 24.12 14.32 ± 23.18 0.63
Elastography, kPa 18.43 ± 12.34 18.15 ± 12.57 0.89

Steatosis 75/130 (57.6%) 55/130 (42.3%) 0.96
HCC 3/6 (50%) 3/6 (50%) 0.79

Fibrosis Degree 0.004
F1 10/15 (66.6%) 5/15 (33.4%)
F2 19/23 (82.6%) 4/23 (19.4%)
F3 42/78 (53.8%) 36/78 (46.2%)
F4 101/170 (59.4%) 69/170 (40.6%)

Subgenotype 0.92
1a 95/151 (62.9%) 56/151 (37.1%)
1b 76/135 (56.2%) 59/135 (43.8%)

Only amino acid 70 mutant 16/24 (66.7%) 8/24 (33.3%) 0.12
Only amino acid 91 mutant 26/41 (63.4%) 15/41 (36.6%) 0.13

Amino acid 70 and 91 mutant 29/41 (70.7%) 12/41 (29.3%) 1.0

Bold values are significant at p < 0.05 or have marginal significance (p < 0.10). Reference values: Previous treatment
performed with interferon and/or ribavirin; F1: mild fibrosis; F2: moderate fibrosis; F3: advanced fibrosis;
F4: cirrhosis; BMI (body mass index, kg/m2); Normal: 18.5–25, overweight: 25–30, obese > 30; AST (U/L) 5–40:
normal, >40: high; ALT (U/L) 7–56: normal, >56: high; GGT (U/L) male 8–61: normal, >61: elevated, female 5–36:
normal, >36 elevated; BT (mg/dL) up to 1.2 L: normal; albumin (g/dL) 3.5–4.7: normal, <3.5: low, >4.7 high;
total cholesterol (mg/dL), up to 190 normal; >190, high [25,26]. SD, standard deviation; LDL, low-density
lipoprotein; HDL, high-density lipoprotein; AST, aspartate aminotransferase; ALT, alanine aminotransferase; GGT,
gamma-glutamyltransferase; AFP, alpha fetoprotein; HCC, hepatocellular carcinoma.

3.2. Frequency of Substitutions R70Q and L91M

In total, 208 samples were sequenced, of which 137 were treated and 71 were untreated.
Table 2 shows the frequency of substitutions and the demographic, biochemical, and
histological characteristics of patients with chronic hepatitis C. There were no variables
that were significantly different between the groups.
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Table 2. Demographic, biochemical, and histological characteristics of chronic hepatitis C patients
with different substitutions in the core region (mean ± SD and case number).

Variable aa70
(n = 24)

aa91
(n = 41)

aa70 and 91
(n = 41)

Wild
(n = 102)

Age, Years 64.09 ± 8.5 62.05 ± 8.5 64.9 ± 6.9 58.8 ± 10.3
Male sex, n (%) 9/24 (37.5) 21/41 (51.2) 11/41 (26.8) 56/102 (54.9)

BMI, kg/m2 27.02 ± 4.8 26.0 ± 4.7 25.6 ± 3.6 26.1 ± 4.8
Albumin, mg/dL 3.98 ± 0.8 4.26 ± 0.9 3.96 ± 0.7 4.87 ± 5.7

Fasting blood glucose,
mg/dL 123.9 ± 44.3 95.14 ± 19.1 111.16 ± 33.6 104.14 ± 25.43

Triglyceride, mg/dL 111.0 ± 48.0 102.46 ± 43.9 108.75 ± 88.1 108.69 ± 47.7
Total cholesterol,

mg/dL 163.27 ± 27.1 168.5 ± 34.8 158.85 ± 33.1 159.15 ± 33.8

LDL, mg/dL 93.17 ± 29.8 94.11 ± 28.9 79.26 ± 33.3 87.33 ± 30.1
HDL, mg/dL 46.55 ± 11.9 55.09 ± 16.7 51.71 ± 12.6 54.10 ± 32.3

AST, U/L 83.9 ± 95.2 55.95 ± 45.3 54.9 ± 34.5 60.83 ± 40.4
Platelet count, /L 139 × 109 ± 80×109 187 × 109 ± 129 × 109 149 × 109 ± 69 × 109 155 × 109 ± 780 × 109

GGT, U/L 133.74 ± 167.6 164.3 ± 521.7 99.1 ± 104.6 109.82 ± 132.5
Total bilirubin, mg/dL 0.92 ± 0.47 0.74 ± 0.49 0.74 ± 0.44 0.92 ± 0.64
Conjugated bilirubin,

mg/dL 0.37 ± 0.23 0.31 ± 0.25 0.38 ± 0.28 0.39 ± 0.32

Unconjugated bilirubin,
mg/dL 0.48 ± 0.25 0.53 ± 0.39 0.51 ± 0.45 0.50 ± 0.37

Hemoglobin, g/L 12.9 ± 1.8 13.3 ± 2.0 12.6 ± 2.2 13.7 ± 2.6
Leukocytes, cells/mm3 5.0 × 103 ± 1.9 × 103 5.7 × 103 ± 2.0 × 103 5.2 × 103 ± 1.6 × 103 5.8 × 103 ± 2.9 × 103

Hematocrit, % 40.0 ± 6.0 41.0 ± 5.0 40.0 ± 4.0 40.0 ± 5.0
ALT, U/L 88.7 ± 95.7 58.7 ± 54.2 47.1 ± 32.3 60.6 ± 42.1

AFP, ng/mL 21.7 ± 23.6 6.5 ± 7.6 20.7 ± 39.5 17.4 ± 27.7
Elastography, kPa 17.4 ± 7.9 16.3 ± 9.8 20.6 ± 16.3 18.4 ± 11.5

Steatosis, n (%) 13/24 (54.2) 17/41 (41.5) 19/41 (46.3) 46/102 (45.1)
HCC 0/24 (0.0) 0/41 (0.0) 1/41 (2.4) 5/102 (4.9)

Fibrosis Degree, n (%)
F1 0/24 (0.0) 4/41 (9.8) 1/41 (2.4) 8/102 (7.8)
F2 2/24 (8.3) 6/41 (14.6) 5/41 (12.2) 7/102 (6.9)
F3 8/24 (33.3) 10/41 (24.4) 9/41 (21.9) 27/102 (26.5)
F4 14/24 (58.3) 21/41 (51.2) 26/41 (63.4) 60/102 (58.8)

Subgenotype, n (%)
1a 14/24 (58.3) 0/41 (0.0) 0/41 (0.0) 92/102 (90.2)
1b 10/24 (41.7) 41/41 (100.0) 41/41 (100.0) 10/102 (9.8)

Treatment, n (%)
Yes 16/24 (66.7) 26/41 (63.4) 29/41 (70.7) 66/102 (64.7)
No 8/24 (33.3) 15/41 (36.6) 12/41 (29.3) 36/102 (35.3)

Reference values: Previous treatment performed with interferon and/or ribavirin; F1: mild fibrosis; F2: moderate
fibrosis; F3: advanced fibrosis; F4: cirrhosis; BMI (body mass index); Normal: 18.5–25, overweight: 25–30,
obesity >30; AST (U/L)—5–40: normal, >40: high; ALT (U/L) 7–56: normal, >56: high; GGT (U/L) male 8–61:
normal, >61: elevated, female 5–36: normal, >36 elevated; BT (mg/dL) up to 1.2 L: normal; albumin (g/dL) 3.5–4.7:
normal, <3.5: low, >4.7: high; total cholesterol (mg/dL), up to 190 normal; >190, high [25,26].

The most frequent substitution was at position 91 (L91M), found in 19.7% (41/208)
of samples and occurring only in HCV-GT1b. The R70Q/P variation was found in 11.5%
(24/208) of the study population, and the frequency of both substitutions (R70Q/P and
L91M) occurring concomitantly was 19.7% (41/208). We found that R70P (the substitution
of an arginine for a proline at amino acid position 70) had a frequency of 1.4% (3/208).

From all the sequenced samples, 106 HCV-GT1a and 102 HCV-GT1b samples were
included in these analyses. Patients infected with HCV-GT1a had a lower frequency of
substitutions, with only R70Q/P found in 13.2% (14/106). HCV-GT1b showed higher
frequencies of all the substitutions investigated, with L91M being the most frequent, found
in 40.2% (41/102), followed by R70Q/P in 9.8% (10/102). The prevalence of a double
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variation (L91M and R70Q occurring simultaneously) was 19.7% (41/208) and was found
only in HCV-GT1b (Table 2).

3.3. Pyrosequencing Assays

Pyrosequencing of the substitution L91M position in 73 samples of HCV-GT1b treated
with IFN and/or RBV was performed to identify subpopulations. In this analysis, we
included two groups: the first with 16 samples classified as wild type by Sanger sequencing
and the second with 57 samples classified as mutants by Sanger sequencing.

Figure 1 shows a comparison of the results obtained by Sanger sequencing (Figure 1A)
and pyrosequencing (Figure 1B). The overlap of nucleotides was evident, where the tra-
ditional sequencing identified the most prevalent nucleotide at that position, a thymine
(T), which encodes for leucine (wild-type). However, a subpopulation with an adenine (A),
which encodes methionine (mutant) was observed. In contrast, pyrosequencing enabled
identification and quantification of the nucleotide populations, facilitating better analysis
and monitoring of mutations. This difference in the results provided by the sequencing
methods (Figure 1) was responsible for standardization of the pyrosequencing technique
for the detection of L91M in the HCV core.
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Figure 1. Results obtained by Sanger sequencing and pyrosequencing of sample 94. Chromatograms
and pyrogram ((A,B) respectively), with obvious nucleotide fluctuations (A), a thymine (T), which
translates to leucine and an adenine (A) which encodes methionine overlap. Pyrosequencing confirms
and quantifies this variation, which shows a slight difference between the presence of the two
subpopulations (T nucleotide, wild type; and A, mutant type).

In general, HCV subpopulations were detected in 37.0% (27/73) of the analyzed
samples by pyrosequencing. Among the 57 samples classified as mutants by Sanger
sequencing, wild-type subpopulations were found in 35.1% (20/57) by pyrosequencing.
In the group comprising 16 samples classified as wild type by Sanger sequencing, mutant
subpopulations were found in 43.75% (7/16) of the samples by pyrosequencing (Table 3).
All pyrosequencing results are available in the Supplementary Material (Table S1).



Viruses 2023, 15, 187 8 of 12

Table 3. Pyrosequencing result in mutants and wild-types.

Subpopulations by Pyrosequencing
Rating by Sanger Sequencing

Wild Type Group (91L)
n = 16

Mutant Group (91M)
n = 57

Wild population (91L) 11/16 (68.75%) 20/57 (35.1%)

Mutant population (91M) 7/16 (43.75%) 37/57 (64.9%)

4. Discussion

Hepatitis C is a serious public health challenge associated with the development
of cirrhosis and HCC [1]. Several studies revealed an association between amino acid
substitutions at the R70Q/H and L91M positions with disease progression to cirrhosis and
HCC and a poor response to treatment with Peg-IFN and/or RBV [10–17].

However, DAAs have revolutionized the modern treatment of chronic hepatitis C.
The current therapeutic protocol for HCV with DAAs is not widely accessible due to the
high cost of DAAs, particularly in underdeveloped countries; therefore, many countries
use IFN-based therapies, with or without RBV, and in specific clinical conditions, RBV is an
optional component [18].

In our study, the L91M substitution was more frequent (19.7%, 41/208), and it was
found only in HCV-GT1b. The presence of the cysteine residue at position 91 in the core
protein of HCV-GT1a suggests a molecular signature unique to this subgenotype, as only
one study reported the presence of the C91M variation in HCV-GT1a [27]. The substitution
of the amino acid cysteine to methionine requires a nucleotide substitution in the three
nitrogenous base positions (triplets) that form the genetic codon for this amino acid, which
seems to us harder to happen from the point of mutation rate. In our analysis, the mean
level of the liver enzyme GGT was higher in individuals with the L91M mutation than
in wild-type individuals, but statistical differences were probably due to the low number
of individuals.

The R70Q/P variation was found in 11.5% (24/208) of patients; these substitutions
are associated with a worse clinical stage and a greater progression of the disease to
cirrhosis and HCC [10–17]. In our analysis, R70Q/P showed higher levels of mean AST,
ALT, and GGT enzymes, which are important biochemical markers for the progression
of HCV and SVR [28]; however, no statistical differences were found, possibly due to the
sample size not being larger. The frequency of both substitutions (R70Q/P and L91M) was
19.7% (41/208), and the mean glucose level in the mutant group was higher compared
to wild-type individuals, although no statistical differences were found. HCV modulates
hepatic glucose metabolism by impairing insulin signaling and glucose uptake [29]. This
substitution is related to the presence of insulin resistance (IR) and glucose intolerance,
mainly in Asian individuals, although a lack of association with IR has been reported in
Brazilian patients [12,30–32].

In this study, we identified three individuals with R70P, two HCV-GT1a and one
HCV-GT1b; one R70P individual presented with cirrhosis (F4); and all three had steatosis.
This substitution has only been previously reported in Argentinian and Swedish patients,
but no association has been reported [28,33]. A meta-analysis showed that the frequency
of 70P was 3% in genotype 3 and 13% in genotype 6 [28]. Therefore, the frequency of this
variation was extremely low, especially for genotype 1. This study reports R70P in Brazilian
patients for the first time.

HCV-GT1b showed higher frequencies for the two substitutions studied, with L91M
being found in 40.2% (41/102) and R70Q/P in 9.8% (10/102) of individuals. These data
suggest that HCV-GT1b has a higher frequency of these mutations than that in HCV-
GT1a [15]. In addition to having a higher frequency of both substitutions, it is known that
HCV-GT1b is associated with the rapid progression of cirrhosis and HCC [34–36]. As the
number of individuals with HCC was small in our study, we did not find a statistically
significant relationship between the studied mutations and the presence of liver cancer
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(HCC). In Brazil, a study published by our team demonstrated that a substitution at
position R70Q was significantly more frequent in patients with cirrhosis and HCC than in
non-cirrhotic and non-HCC individuals [17].

The collection of samples from patients who did not respond to conventional treatment,
RBV or Peg-INF/RBV, and from patients naïve to treatment were performed upon invitation
to participate in the treatment with DAAs. As such, in this cross-sectional study it is not
possible to state that the adopted treatment acted as a selective pressure event allowing
the rapid emergence of new viral variants presenting adaptive advantages inherent to
their evolutionary biology. Previous studies indicate that treatment with IFN and/or RBV
can induce selective pressure allowing treatment-resistant HCV variants to become major
subpopulations. However, to check for such evolution, this study would have needed to
follow these individuals before, during and after treatment with IFN and/or RBV.

Most patients included in the study were obese or overweight, and these conditions
tend to be an aggravating factor for a worse prognosis of chronic HCV infection. Although
we did not observe significant values for IR and steatosis in our study population, it is
known that R70Q is associated with these conditions. The R70Q substitution is related to
the increased expression of IL-6, which may cause IR, steatosis, and HCC and inhibit IFN
signaling, which is associated with therapeutic failure [37].

In the analysis of nucleotide substitutions, we observed the presence of mutant sub-
populations in 43.75% of the samples classified as "wild type samples" according to the
Sanger sequencing results. Pyrosequencing to monitor mutations associated with clinical
inflammatory evolution and factors related to SVR confirmed and quantified quasispecies
fluctuations. These minority (mutant) subpopulations could become the majority and are
implicated in therapy and natural history, leading to further progression to cirrhosis and
HCC [38].

The statistically significant decrease of some markers of the clinical evolution of HCV
infection, such as AST, AST/ALT ratio, and defense cells in patients treated with the
conventional protocol, may suggest a slight or transient improvement, even if SVR is
not achieved. This study showed a significant reduction in the number of leukocytes in
individuals who received conventional treatment when compared to naive patients. The
reduction in the number of leukocytes was likely due to conventional treatment, as the
number of coinfected patients (HCV/HIV) receiving antiretroviral therapy was relatively
small and was present in both groups.

Patients with advanced stages of liver damage caused by the infectious inflammatory
HCV processes may continue to present an important risk for progression of the fibrotic
condition and development of HCC, even after clearance of the viral infection. SVR can
reduce the risk of developing HCC in most patients with HCV-related liver cirrhosis;
however, some studies have reported an increased and recurrent rate of HCC in patients
with HCV cirrhosis who had been treated with DAAs [39–41]. The mechanisms underlying
these events are not fully understood [42].

Our results might be influenced by the fact that the included patients are older and
mainly men, belonging to the so-called baby boomer generation, given that the Brazilian
epidemiological data associates these characteristics with the absence of HCV detection
tests. From 1992 onwards, a screening process was implemented in Brazil that allowed the
detection of HCV in blood samples.

5. Conclusions

This is the first demographic and clinical laboratory profile study associated with
R70Q/P and L/C91M substitutions in a group of Brazilian patients chronically infected
with HCV-GT1a and HCV-GT1b who failed conventional therapy. This highlights the
importance of these substitutions (R70Q/P and L91M) in understanding the natural history
of HCV infection. Although we did not find statistical differences due to the sample size
that was a limiting factor in the group with mutations, we observed higher averages of
important biochemical markers of hepatic progression. In 2015, Brazil implemented the
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Clinical Protocol and Therapeutic Guidelines for Hepatitis C and Coinfections, starting with
the use of DAAs [43] After the sample collection period, the patients included in the study
received DAAs, and 99.3% achieved SVR. This shows that broad access to DAAs therapy
is an important way to eradicate HCV and must be collectively and globally addressed
as a public health policy and strategy to be implemented to combat and effectively treat
hepatitis C infection, as well as its subsequent clinical complications.

This study highlights not only the clinical-laboratory and virological profile of patients
who do not respond to IFN and/or RBV therapy, who were submitted to a new pharma-
cological treatment, but also reports the efficiency of the new DAAs as a policy of public
health targeting HCV eradication. This study is relevant in Brazil and may be useful in the
future for a follow-up study of patients eligible for the new treatment.

The development and use of methodologies capable of revealing the natural emergence
of therapy-resistant mutants, early detection of viral genetic polymorphisms, and constant
monitoring of patients after treatment constitute critical prognostic tools to reduce the
likelihood of hepatic inflammatory progression and could improve the clinical conditions
of the patient.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/v15010187/s1, Table S1. Pyrosequencing result of the substitution L91M.
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