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h Department of Virology, Institute Aggeu Magalhães (CPqAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil 
i Alder Hey Children’s NHS Foundation Trust, Liverpool, UK 
j Department of Paediatrics Neurology, Hospital da Restauração, Recife, Brazil 
k Department of Neurology, Hospital da Restauração, Recife, Brazil 
l Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK 
m Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands   

A R T I C L E  I N F O   

Keywords: 
Guillain-Barré syndrome 
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A B S T R A C T   

Objective: To determine the clinical phenotype of Guillain-Barré syndrome (GBS) after Zika virus (ZIKV) infec-
tion, the anti-glycolipid antibody signature, and the role of other circulating arthropod-borne viruses, we 
describe a cohort of GBS patients identified during ZIKV and chikungunya virus (CHIKV) outbreaks in Northeast 
Brazil. 
Methods: We prospectively recruited GBS patients from a regional neurology center in Northeast Brazil between 
December 2014 and February 2017. Serum and CSF were tested for ZIKV, CHIKV, and dengue virus (DENV), by 
RT-PCR and antibodies, and serum was tested for GBS-associated antibodies to glycolipids. 
Results: Seventy-one patients were identified. Forty-eight (68%) had laboratory evidence of a recent arbovirus 
infection; 25 (52%) ZIKV, 8 (17%) CHIKV, 1 (2%) DENV, and 14 (29%) ZIKV and CHIKV. Most patients with a 
recent arbovirus infection had motor and sensory symptoms (72%), a demyelinating electrophysiological subtype 
(67%) and a facial palsy (58%). Patients with a recent infection with ZIKV and CHIKV had a longer hospital 
admission and more frequent mechanical ventilation compared to the other patients. No specific anti-glycolipid 
antibody signature was identified in association with arbovirus infection, although significant antibody titres to 
GM1, GalC, LM1, and GalNAc-GD1a were found infrequently. 
Conclusion: A large proportion of cases had laboratory evidence of a recent infection with ZIKV or CHIKV, and 
recent infection with both viruses was found in almost one third of patients. Most patients with a recent arbovirus 
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infection had a sensorimotor, demyelinating GBS. We did not find a specific anti-glycolipid antibody signature in 
association with arbovirus-related GBS.   

1. Introduction 

Zika virus (ZIKV), a positive sense single stranded RNA flavivirus 
transmitted by the Aedes aegypti mosquito, has caused major outbreaks 
in the Americas between 2015 and 2017. Brazil was severely affected by 
the epidemic and the incidence was especially high in the Northeast 
region of the country [1]. Over the last decades, Brazil also faced out-
breaks of dengue virus (DENV) and chikungunya virus (CHIKV), that are 
transmitted by the same mosquito and, like ZIKV, can cause febrile 
illness with myalgia, arthralgia, and rash [2–4]. And although most 
infections with ZIKV are asymptomatic, or cause mild disease, in some 
patients severe neurological complications occur, and the most 
frequently reported neurological complication in adults is the Guillain- 
Barré syndrome (GBS) [5–9]. In patients with DENV and CHIKV infec-
tion neurological complications, including GBS, have also been reported 
in smaller studies [10–13]. 

GBS is an immune-mediated polyradiculoneuropathy that is trig-
gered by preceding infections. Some types of infections have been shown 
to be associated with a specific clinical phenotype of GBS and presence 
of specific anti-glycolipid antibodies directed against gangliosides (a 
type of sialylated glycolipid) on the nerve axon [14,15]. 

However, a uniform description of the clinical phenotype or the anti- 
ganglioside antibody signature of ZIKV-related GBS has not emerged in 
previous studies [5,8,16–20]. Furthermore, little is known about the role 
of other circulating arboviruses, such as DENV and CHIKV, as potential 
triggers for GBS [10]. 

To study the relation between GBS and circulating arbovirus in-
fections, we describe a large, well-defined, and unselected cohort of GBS 
patients with evidence of a preceding arbovirus infection from a single 
center in Northeast Brazil that was tested for arboviruses and a broad 
spectrum of anti-ganglioside antibodies. The area of the study hospital is 
endemic for DENV and cases were collected during a ZIKV and a CHIKV 
outbreak. 

2. Methods 

2.1. Study setting, population, design and ethics 

All patients with a suspected preceding arbovirus infection and an 
acute neurological disease identified between December 2014 and 
December 2016 at Hospital da Restauração, a public hospital with a 
tertiary neurology service in Northeast Brazil, were consecutively 
recruited. In total, 201 neurological disease cases were identified, as we 
have previously described [21]. The most frequent neurological di-
agnoses were GBS, myelitis, and (meningo)encephalitis. For the current 
study, the 65 patients diagnosed with GBS from this cohort were selected 
and analyzed. Additionally, all GBS patients with a history of arbovirus 
symptoms identified between December 2016 and February 2017 were 
included in this study (n = 6). (Supplementary Fig. 1) A suspected 
arbovirus infection was defined as fever, arthralgia or rash within 12 
months before the onset of neurological symptoms. We chose a 12 
month window because we did not want to make presumptions about 
the latency between infection and neurological disease onset. We did a 
separate analysis of the cases presenting within 3 months after onset of 
infectious symptoms, recognizing that most GBS cases occur within this 
time window. Diagnosis of GBS was classified according to the Brighton 
Collaboration criteria, and GBS variants other than Miller Fisher syn-
drome were defined according to other published criteria [22,23]. To 
enhance diagnostic accuracy, the clinical history of all patients was 
reviewed by MLBF, SEL and SBL, and in case of disagreement arbitrated 
by BCJ. All patients signed informed consent forms. The study protocol 

was reviewed and approved by the Oswaldo Cruz Foundation - FIOC-
RUZ, Instituto Aggeu Magalhães Ethics Committee (CAAE 
#511.06115.80005190). 

2.2. Clinical data procedures 

Clinical information was recorded on standardized case report forms 
and included demographics, history of suspected arbovirus infection and 
neurological examination, ancillary investigations and disease progres-
sion that were collected until 12 months after onset of neurological 
symptoms.(See Supplementary Material) The online registry for mor-
tality of the Brazilian Ministry of Health was consulted to document 
mortality following hospital discharge within the study period. For 
Fig. 1, the number of GBS cases was based on hospital records reviewed 
by MLBF, and the outbreak periods of ZIKV, DENV and CHIKV were 
based on reported epidemiological data from the Instituto Aggeu Mag-
alhães, Fiocruz Pernambuco (2000–2006), and the Brazilian Ministry of 
Health (Ministério de Saúde, Secretaria de Vigilância em Saúde, 
2006–2018) [24,25]. As these numbers were defined around routine 
surveillance they should be interpreted with caution. 

2.3. Diagnostic virology 

Serum and cerebrospinal fluid (CSF) samples were collected and sent 
to the Flavivirus Reference Laboratory, Oswaldo Cruz Foundation, 
Recife, Brazil for arbovirus diagnostic testing. Viral RNA was extracted 
from serum samples using the QIAamp Viral RNA kit (Qiagen, Hilden - 
Germany). ZIKV, CHIKV and DENV real time RT-PCR (rRT-PCR) re-
actions were performed from purified RNA serum samples [26–28]. 
Anti-DENV and anti-CHIKV IgM and IgG antibodies were detected using 
commercially available capture enzyme-linked immunosorbent assay 
(ELISA) kits (dengue- Panbio, Alere - USA; chikungunya - EuroImmun 
AG, Luebeck - Germany). ZIKV specific IgM antibodies were detected by 
IgM-Capture ELISA (MAC-ELISA), which uses ZIKV and DENV antigens 
in parallel [29]. Serotype-specific anti-dengue antibodies and anti-Zika 
antibodies were assessed by 50% plaque reduction neutralization tests 
(PRNT), following a previously described protocol. The cut-off for pos-
itivity was defined based on a 50% reduction in plaque count (PRNT50) 
[30]. 

We considered there to be evidence of recent ZIKV, CHIKV or DENV 
infection if there was viral RNA or specific IgM antibodies in patient 
serum or CSF, as defined previously [4,27–29]. Presence of ZIKV 
neutralizing antibodies on PRNT and negative IgM was considered as 
insufficient evidence of a recent ZIKV infection. In samples IgM-positive 
for both ZIKV and DENV, the PRNT assay was used to quantify 
neutralizing antibody titers to ZIKV and DENV serotypes 1–4 and 
determine viral diagnosis. If patients had neutralizing antibodies against 
both viruses without a PCR positive test confirming infection with one or 
the other, we deemed this an indeterminate flavivirus infection and, 
given the epidemiological linkage, presumed it to be Zika as others have 
previously [7,30]. 

2.4. Anti-glycolipid serology 

Glycolipid microarray analysis of serum samples was performed at 
the University of Glasgow, United Kingdom, to detect IgM and IgG an-
tibodies against 16 commonly studied glycolipids in GBS: GM1, GM2, 
phosphatidylserine, GM4, GA1, GD1a, GD1b, GT1a, GT1b, GQ1b, GD3, 
SGPG, LM1, GalNAc-GD1a, GalC and sulfatide, plus their possible het-
erodimeric complexes as previously described [31]. Matrixes were 
scanned using Genepix 4300A (Molecular Devices, California, USA) and 
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heat maps were created using MeV software. Due to the heterogeneous 
pattern of anti-glycolipid antibodies found in GBS, the small sample size, 
the known presence of naturally occurring anti-carbohydrate antibodies 
in the normal population and the lack of baseline control sera, statistical 
comparison of the array results was limited. Therefore, for the purpose 
of assay standardization, the anti-glycolipid antibody profile in patients 
with GBS were compared to the profile obtained from the sera of patients 
with other neurological diseases seen during the same study period at 
the same hospital, either with or without evidence of a recent arbovirus 
infection. 

2.5. Statistical analysis 

We used IBM SPSS Statistics 25® for data analysis, comparing clin-
ical features between the different arbovirus diagnostic groups with the 
Mann-Whitney U test or the Kruskal-Wallis test for continuous data, and 
the Chi square or Fisher’s exact test for proportions. 

Proportions were described as number of patients with the variable 
present divided by the number of patients with the variable reported, 
excluding those with missing values. A two-sided P-value <0.05 was 
considered significant. 

3. Results 

A total of 71 patients with GBS were identified for the study between 
December 2014 and February 2017 (Supplementary Fig. 1). During the 
recruitment period, at the time of the ZIKV and CHIKV outbreak, a peak 
in GBS admissions was seen in the study hospital compared with the 
previous years (Fig. 1) [30,32]. 

3.1. Demographic, clinical and diagnostic features 

Demographic and clinical features are shown in Table 1. The median 
age was 46 (interquartile range (IQR) 32–56) years. Thirty-six patients 
(51%) were female. One child, aged 9, was included in the study. 

Rash (92%), arthralgia (57%), and myalgia (56%) were the most 
frequently reported symptoms of a preceding infection. The median time 
between infectious and neurological symptoms was 8 days (IQR) 4–24), 
two patients developed infectious and neurological symptoms on the 
same day, and 35 (49%) developed neurological symptoms within 1 
week. (Supplementary Fig. 2). 

The median time between onset of neurological symptoms and 
hospital admission was 5 days (IQR 2–11). Limb weakness and absent or 

diminished reflexes were found in the vast majority of patients. Sixty- 
one (86%) patients had either sensory symptoms or sensory loss iden-
tified in neurological examination. Cranial neuropathy was found in 39 
(56%) patients, and facial and bulbar palsy were most frequently re-
ported. Twelve patients (17%) had a clinical variant form of GBS: par-
aparetic (n = 7), pure sensory (n = 1), Miller Fisher syndrome (MFS) (n 
= 1), MF-GBS-overlap syndrome (n = 1), and bilateral facial paralysis 
with sensory signs (n = 2). 

CSF was examined for cell count and protein level in all patients. A 
combination of a normal cell count and increased (>45 mg/dL) protein 
level (albumino-cytological dissociation) was found in 89%. Sixty-four 
(90%) patients had a cell count of ≤5 cells/uL and none had a cell 
count of >20. Electrophysiological studies were performed in 21 (30%) 
patients, ten (62%) had features of a demyelinating, and six (28%) of an 
axonal motor or axonal motor and sensory neuropathy (Table 2). The 
date of electrophysiological studies was available in 15 (71%) cases, and 
studies were performed at a median of 24 days (IQR 13–47) after onset 
of neurological symptoms. Cranial or spinal computed tomography or 
magnetic resonance imaging was done to exclude alternative diagnoses 
in 35 (47%) patients. 

Thirteen (18%) patients fulfilled Brighton criteria level 1, 45 (63%) 
level 2, and 13 (18%) level 4 [22]. Of the patients with Brighton Level 4, 
three had a variant form of GBS, eight had normal or increased tendon 
reflexes, in one data on reflexes was missing, and one reached their nadir 
after 28 days. Twelve (92%) of these patients had either albumino- 
cytological dissociation in the CSF or electrophysiological studies 
compatible with GBS. 

3.2. Arbovirus diagnostics 

In total, 112 serum samples and 19 CSF samples were available for 
arbovirus testing and in 28 patients serial serum samples were available. 
Forty-eight (68%) had evidence of a recent arbovirus infection of which 
25 (52%) had a recent ZIKV, 8 (17%) CHIKV, one (2%) DENV, and 14 
(29%) had evidence of both a recent ZIKV and CHIKV infection. 
(Table 3, Fig. 2) Serum or CSF was IgM positive for both ZIKV and DENV 
in eight patients, six of these were ZIKV PCR positive, in one the 
neutralizing titer for ZIKV was higher than DENV, and in one no PRNT 
was done and this case was classified as a recent ZIKV infection on 
epidemiological grounds.7, 34(Supplementary Figs. 2 and 3). 

Of the patients with samples collected within the first 2 months after 
onset of neurological symptoms, 77% had evidence of a recent arbovirus 
infection, whereas after 2 months 52% did. In the 29 cases with late 

Fig. 1. Number of GBS cases in study hospital in relation to outbreak periods of Dengue, Zika and Chikungunya virus. 
GBS cases in the study hospital in Recife, Pernambuco, Brazil between 2000 and 2018 in relation to periods of outbreaks of dengue virus (DENV, orange), Zika virus 
(ZIKV, green) and chikungunya virus (CHIKV, purple). The numbers in the line graph indicate the number of new GBS patients identified at the hospital per year. 
Outbreak periods were defined based on epidemiological data of the Pernambuco state from the Brazilian Ministry of Health. The number of notified DENV cases in 
2002(±116,000) and the number of notified CHIKV cases in 2016 (±50,000) were 5–10 times higher compared to previous and following years. The ZIKV outbreak 
in 2014–2016 was based on the high number of suspected DENV cases (±110,000 in 2015) that were in later studies determined as probable ZIKV cases [33]. 
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Table 1 
Demographic, infectious and neurological symptoms.   

All cases (n =
71) 

No lab evidence of recent arbovirus (n =
23) 

ZIKV (n =
25) 

CHIKV (n =
8) 

ZIKV+CHIKV (n =
14) 

p value 

Age 46 (32–56) 45 (34–57) 39 (30–50) 51 (37–58) 50 (32–57) p = 0.59 
Male: Female (ratio) 35:36 (0.97) 9:14 (0.64) 14:11 (1.27) 3:5 (0.6) 8:6 (1.33)  
Infectious symptoms       

Rash 65 (92) 18 (78) 25 (100) 8 (100) 13 (93) p = 0.01 
Arthralgia 40/70 (57) 13/22 (59) 13 (52) 6 (75) 8 (57) p = 0.77 
Myalgia 39/70 (56) 16/22 (73) 9 (36) 6 (75) 7 (50) p = 0.05 
Fever 38/70(54) 11 (48) 10 (40) 5 (63) 12 (86) p = 0.04 
Headache 38/70 (54) 12/22 (55) 11 (44) 4 (50) 10 (71) p = 0.44 
Infectious- neurological symptoms 
(days)* 

8 (4–24) 6 (4–15) 7 (3− 12) 29 (18–111) 9 (6–31) p =
0.007 

Neurological symptoms       
Facial weakness 36 (51) 11 (48) 14 (56) 5 (63) 5 (36) p = 0.58 
Bulbar symptoms 25 (35) 10 (44) 8 (32) 3 (38) 4 (29) p = 0.80 
Limb weakness 69 (97) 22 (96) 24 (96) 8 (100) 14 (100) p = 1.0 
Sensory symptoms 61 (86) 17 (74) 23 (92) 8 (100) 12 (86) p = 0.25 

Neurological examination       
Cranial neuropathy 39/70 (56) 12/23 (52) 16 (67) 5 (63) 5 (36) p = 0.31 
Oculomotor weakness 2 (3) 1 (4) 1 (4) 0 (0) 0 (0) p = 1.00 
Facial palsy 38/70 (54) 10/22 (46) 16 (64) 5 (63) 6 (43) p = 0.48 
Bulbar palsy 17 (24) 7 (30) 5 (20) 3 (38) 2 (14) p = 0.52 
Limb weakness 67 (94) 22 (96) 23 (92) 8 (100) 13 (93) p = 1.00 
Tetraparesis 60 (85) 17 (74) 21 (74) 8 (100) 13 (93) p = 0.34 
Paraparesis 7 (10) 5 (22) 2 (8) 0 (0) 0 (0) p = 0.17 
Reflexes absent or low 61/70 (86) 19 (83) 22 (92) 6 (75) 14 (100) p = 0.18 
Sensory deficits 28 (39) 10 (44) 16 (64) 6 (75) 7 (50) p = 0.67 
Ataxia 8/68 (12) 1/22 (5) 5 (22) 1 (13) 1 (7) p = 0.34 
Unable to walk 36 (52) 14 (61) 9 (39) 4 (50) 9 (64) p = 0.39 
Dysautonomia† 18/68 (27) 7/21 (33) 7 (28) 2 (25) 2 (15) p = 0.66 

Data are presented as n/N(%) or median (IQR). Statistical analysis of categorical variables with Chi square/Fisher’s exact, of continuous variables with Mann-Whitney 
U test or the Kruskal-Wallis. The p-value is the comparison between ZIKV, CHIKV, ZIKV-CHIKV and arbovirus-negative groups. *When excluding the 7 patients with 
time onset infectious – neurologic symptoms of >3 months, differences between the ZIKV, CHIKV, ZIKV-CHIKV and no recent infection groups were still significant (p 
= 0.02). †hypo- or hypertension (n = 10), excessive transpiration (n = 6), tachycardia (n = 4). 

Table 2 
Ancillary investigations, treatment and outcome.   

All cases (N = 71) No lab evidence of recent arbovirus (N =
23) 

ZIKV (n = 25) CHIKV (n = 8) ZIKV+CHIKV (n = 14) p value 

Ancillary investigations       
CSF cell count (cells/uL) 1 (0.33–2.7) 1 (0.33–2) 1 (0.33–3.33) 0.33 

(0.33–1.83) 
0.67 (0.33–2.33) p = 0.80 

<50 cells/uL 71 (100) 23 (100)     
CSF protein level (mg/dL) 95 (60–172) 72 (58–140) 102 (90–172) 124 (49–197) 66 (51–172) p = 0.13 
>45 mg/dL 63 (89) 20 (87) 24 (96) 7 (88) 11 (79) p = 0.35 
Nerve conduction studies 21 (30) 6 (26) 6 (24) 4 (50) 5 (36)  
AIDP 13/21 (62) 3/6 (50) 5/6 (83) 2/4 (50) 3/5 (60) p = 0.64 
AMAN 3/21 (14) 2/6 (33) 0/6 (0) 1/4 (25) 0/5 (0)  
AMSAN 3/21 (14) 1/6 (17) 0/6 (0) 1/4 (25) 1/5 (20)  
Equivocal/other 2/21 (10) 0/6 (0) 1/6 (17) 0/4 (0) 1/5 (20)  

Treatment       
Immunomodulating therapy 70 (99) 23 (100) 25 (100) 8 (100) 13 (93) p = 0.31 
IVIg 63 (89) 21 (91) 24 (96) 7 (88) 11 (79) p = 0.30 
Steroids 7 (10) 2 (9) 1 (4) 1 (13) 2 (14) p = 0.57 

Disease progression       
Duration of hospital 
admission 

19 (13–24) 19 (9–25) 16 (11− 20) 17 (15–20) 24 (20–29) p = 0.02 

Respiratory insufficiency 12 (17) 2 (9) 3 (12) 2 (25) 5 (36) p = 0.15 
Intensive Care Unit 14/69 (20) 7/22 (32) 1 (4) 1 (13) 5 (36) p = 0.031 
Duration Intensive Care Unit 16 (8–52) 17 (6–90) 73 9 14 (14–19) p = 0.55 
Intubated 9/66 (14) 3/20 (15) 1 (4) 0 (0) 5 (36) p = 0.049 

Outcome       
Died 0 (0) 0 (0)     
Sequela at discharge 64/68 (94) 21 (91) 22 (92) 7 (88) 13 (93) p = 0.38 
Recovered last follow-up 11/27 (41) 1/10 (10) 3/7 (43) 4/5 (80) 3/4 (75) p = 0.02 

Data are presented as n/N(%) or median [range], (IQR). IVIg = intravenous immunoglobulin, onset = onset of neurological symptoms. Time in days. Statistical analysis 
of categorical variables with Chi square/Fisher’s exact, of continuous variables with Mann-Whitney U test or the Kruskal-Wallis. The p-value represents the comparison 
between ZIKV, CHIKV, ZIKV-CHIKV and arbovirus negative groups. When patient groups had zero patients to compare, no p-value was calculated. 
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samples available, 14 (48%) neutralization assays were done, of which 
12 (86%) were positive. 

Demographic or clinical features did not differ significantly between 
arbovirus diagnostic groups, with some exceptions. The median time 
between infectious and neurological symptoms was significantly longer 
in patients with CHIKV, and paraparesis was found more frequently in 
laboratory negative- compared to the other patients. No differences 
were found in frequency of electrophysiological subtypes between 
groups. 

In the post-hoc analysis, the median time between onset of infection 
to onset of neurologic symptoms was 7 days (IQR 4–15). The findings in 
this analysis did not differ from the overall analysis, with the exception 
that the percentage of cases with rash and fever was not significantly 
different across groups. 

3.3. Glycolipid antibody testing 

Anti-glycolipid IgG and IgM antibody testing was performed on a 
subset of 52 GBS cases and a group of 40 controls with other neuro-
logical diseases. Of the 52 GBS sera examined, 41 (79%) tested positive 
for a recent arbovirus infection and of the 40 control sera, 27 (68%) had 
evidence of a recent arbovirus infection. We did not detect a glycolipid 
antigen-specific marker for arbovirus-associated GBS. The typical anti-
body signature (anti-GM1, anti-GM1b, anti-GD1a, anti-GalNAc-GD1a) 
most frequently associated with the axonal form of GBS was not seen 
in this cohort. In serum samples where anti-glycolipid antibodies were 
detected, most antibody reactivities were of very low intensity and not 
significantly different between GBS cases and other neurological con-
trols, either with or without evidence of a recent arbovirus infection 
(Supplementary Fig. 4). Regardless of the group analysis, rare samples 
contained significant antibody titres to individual or groups of nerve- 
enriched glycolipids including GM1 (patient #169), GalC (patient 
#92), LM1 (patients #92 and 97) and GalNAc-GD1a (patient #39). 
Whilst these never reached significance in a group analysis, they were 
absent from the control group at these titres, but their relevance in in-
dividual cases is unclear and notably pathophysiologically unproven. 
The case with MFS did not have significant antibody titres to GQ1b, 
which is detected in ~90% MFS patients [35]. Of the patients with 
significant glycolipid antibody titers, only patient #169 had nerve 
conduction studies done, which showed an acute motor-sensory axonal 
neuropathy. 

Fig. 2. Venn diagram of arbovirus diagnostic groups. 
Overview of positive PCR and IgM samples for Zika virus (ZIKV), chikungunya virus (CHIKV) and dengue virus (DENV) in serum and cerebrospinal fluid (CSF). 

Table 3 
Arbovirus test results  

Virus Sample Test ZIKV CHIKV ZIKV- 
CHIKV 

DENV All 
cases 

n =
25 

n = 8 n = 14 n = 1 n =
72 

ZIKV Serum PCR only 5/25 – 5/12 – 10/ 
66 

IgM only 13/ 
23 

– 4/14 – 17/ 
68 

PCR & 
IgM 

1/23 – 0/12 – 1/66 

CSF PCR only 0/11 – 2/6 – 2/19 
IgM only 1/8 – 0/6 – 1/16 
PCR & 
IgM 

0/8 – 1/6 – 1/15 

CSF & 
serum 

PCR CSF, 
PCR 
serum 

0/11 – 1/6 – 1/19 

IgM CSF, 
IgM 
serum 

3/7 – 1/6 – 3/15 

IgM CSF, 
PCR & 
IgM 
serum 

1/7 – 0/6 – 1/15 

PCR & 
IgM CSF, 
PCR 
serum 

1/8 – 0/6 – 1/15 

CHIKV Serum PCR only – 0/8 2/13 – 2/64 
IgM only – 8/8 7/14 – 15/ 

71 
PCR & 
IgM 

– 0/8 1/13 – 1/64 

CSF PCR only – – 1/6 – 1/12 
CSF & 
serum 

PCR CSF, 
IgM 
serum 

– – 3/6 – 3/12 

DENV serum IgM only 2/25 0/7 4/14 1/1 7/71 
CSF IgM only 0/8 – 1/6 – 1/57 

Arbovirus test results stratified according to infection with Zika virus (ZIKV) 
chikungunya (CHIKV), dengue virus (DENV), and Zika and chikungunya virus 
(ZIKV-CHIKV). Number of positive tested patients is displayed in relation to total 
number of patients tested for each test or combination of tests (n/N) for each 
diagnostic category (ZIKV, CHIKV, ZIKV-CHIKV, DENV). PCR = polymerase- 
chain-reaction, IgM = immunoglobulin M, CSF = cerebrospinal fluid. 
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3.4. Treatment and disease progression 

The median duration of hospital admission was 19 days (IQR 13–24). 
The majority of patients were treated with intravenous immunoglobulin 
(IVIg), and seven (10%) received steroids (as monotherapy) in another 
hospital, prior to admission to the study hospital. Fourteen of 69 re-
ported patients (20%) were admitted to the Intensive Care Unit (ICU) 
and 9 of 66 (14%) were intubated. Patients with laboratory evidence of 
both a recent ZIKV and CHIKV infection had a longer duration of hos-
pitalization, were admitted to the ICU, and intubated significantly more 
frequently than the other patients (Table 2). PCR-positive patients more 
often were intubated (5/17 vs 1/29, p = 0.02), had respiratory insuffi-
ciency (8/19 vs 2/29, p = 0.008) and had a longer duration of hospi-
talization (p = 0.027) compared to those with only serological evidence 
of a recent arbovirus infection. In patients with evidence of both ZIKV 
and CHIKV infection, a larger proportion of those who were PCR- 
positive compared to those who were negative had respiratory insuffi-
ciency (0/4 vs 5/10), were admitted to the ICU (0/4 vs 5/10), or intu-
bated (0/4 vs 5/10), although findings were not significant in this small 
subgroup. 

None of the patients died during hospitalization. At discharge, 94% 
of patients had functional disability. Of the 27 patients followed up for 6 
months or longer, 11 (41%) had recovered completely at last follow-up, 
six (22%) still had weakness in arms or legs, and seven (26%) had 
persisting facial weakness, which was still present more than 3 years 
after onset in five patients. Although numbers between groups were 
small, patients with laboratory evidence of a recent arbovirus infection 
were more likely than those without laboratory evidence to have 
recovered at last follow-up and presence of facial weakness was less 
common in this group (Table 2). 

4. Discussion 

A large proportion of GBS patients in this Brazilian cohort had lab-
oratory evidence of a recent infection with ZIKV or CHIKV, and recent 
infection with both of these viruses was found in almost one third of 
patients. This indicates that both of these viruses may be associated with 
GBS, building upon evidence from previous studies [4,10,12]. A recent 
DENV infection was found in just one patient in this cohort. This may be 
because there was no outbreak of DENV during the study period, also, 
there have been conflicting reports in literature about the presumed 
association between DENV and GBS [34,36]. A larger proportion of 
cases with a recent infection with both ZIKV and CHIKV was admitted to 
the ICU and mechanically ventilated compared to the other patients, and 
the duration of hospital admission was longer in this group. This is 
important information for clinicians, as the geographic distributions of 
these arboviruses largely overlap and populations are therefore poten-
tially at risk of contracting both infections. Furthermore, although the 
A. aegypti mosquito is the most prolific vector for both viruses, CHIKV is 
also effectively transmitted by A. albopictus, which populates more 
temperate regions, including southern Europe [37]. Therefore, clini-
cians working in these areas should be aware of this virus as a possible 
trigger for GBS. 

The finding that a recent infection with both ZIKV and CHIKV could 
lead to more severe GBS may be due to a larger underlying pathological 
immune response or a higher viral load. A more severe disease pro-
gression in PCR-positive versus -negative patients further suggests that 
viral load may be a factor in disease severity, as has been shown pre-
viously [38]. Most patients with a recent infection with both ZIKV and 
CHIKV developed neurological symptoms more than 1 week after in-
fectious disease onset, and as the acute phase of ZIKV and CHIKV in-
fections usually lasts a week, it seems unlikely that acute infectious 
symptoms alone caused the severe disease progression in these patients. 
However, in patients with CHIKV infection polyarthralgia lasting weeks 
to months has been described [3]. 

Our cohort was younger and more often female than expected based 

on other studies on GBS [39]. A similar demographic profile has previ-
ously been described in GBS following other viral infections, including 
cytomegalovirus [40,41]. This indicates that females and a younger age 
group may be more prone to develop GBS after a viral infection. How-
ever, young women have also been shown to be at highest risk for ZIKV 
infection, and the Latin American population is younger compared to 
Europe and North America, where most previous GBS studies have been 
conducted [42–44]. The general clinical profile of GBS following a 
recent arbovirus infection with ZIKV and/or CHIKV in our study was a 
sensorimotor GBS with facial palsy. Electrophysiological studies showed 
demyelination in most, although not all, cases. This is again similar to 
what has been described in GBS after other virus infections and is in 
contrast to the clinical profile of GBS after a C. jejuni infection, that has 
been associated with higher frequencies of a pure motor GBS variant and 
an axonal electrophysiological subtype [40,41]. 

It has been suggested that ZIKV-related GBS is caused by direct 
infection or para-infectious nerve damage, due to the short time between 
onset of infectious and neurological symptoms [7]. However, although 
some patients developed neurological symptoms on the same day as the 
onset of infectious symptoms, the median time between infectious and 
neurologic symptoms in our cohort was 8 days, which is similar to GBS 
followed by other infections and is in accordance with a post-infectious 
pathogenesis of GBS [45]. The incubation time of ZIKV is estimated at 
7–14 and of CHIKV and DENV at 2–10 days, which may in part explain 
the differences we found in time between infectious- and neurological 
symptoms [46,47]. 

We did not find a specific anti-ganglioside antibody signature asso-
ciated with arbovirus-related GBS. There was clear variation in basal 
levels of antibodies to the different glycolipid targets assessed across the 
tested population, irrespective of arbovirus or neurological status, as can 
be demonstrated upon visual inspection of the heat map (Supplementary 
Fig. 4). Due to the absence of healthy control samples, we were unable to 
validate whether there was an increased frequency compared with 
baseline levels in the local population of anti-GA1 antibodies, which we 
previously observed in the smaller French Polynesian ZIKV-GBS cohort 
[5]. The low intensity antibodies that were observed may represent low 
affinity naturally occurring anti-carbohydrate antibodies in this popu-
lation, or an epiphenomenon of neurological disease pathology. Our 
results contradict a Brazilian cohort study of patients with acute ZIKV 
infection without neurological disease that had elevated levels of anti- 
GD3 antibodies [48]. It was hypothesized that during a subsequent 
infection these antibodies would breach a critical threshold, resulting in 
neurological pathology. However, a subsequent study by the same group 
did not identify GD3 as a sole antibody target in patients with ZIKV-GBS, 
instead, they reported a universal increase in anti-glycolipid antibodies 
[49]. This is likely due to differences in assay methodology including the 
setting of background assay noise and the restricted use of control 
samples, thereby under-estimating the extensive variation of non- 
specific binding amongst individuals observed in our assay platform. 

The peak in GBS cases that was observed in Recife before epidemi-
ological surveillance for ZIKV was set up in the area, indicates the po-
tential of GBS to act as a sentinel for the occurrence of outbreaks of 
arbovirus infection in areas where monitoring of such outbreaks is 
difficult. However, careful exclusion of other potential causes is crucial, 
as was seen in a recent outbreak of GBS in Peru, that was thought to be 
linked to ZIKV but later associated with C. jejuni and the typical anti- 
ganglioside antibody profile associated with this bacterium [50]. 

Our study has several limitations. Clinical data and biological ma-
terial could not always be collected in the acute phase of the disease, and 
we were unable to collect healthy controls for a case-control analysis. 
This study was therefore not designed to determine causality and evi-
dence of a recent infection does not necessarily mean that this was 
indeed the infection triggering the onset of GBS, especially as we were 
unable to test for other infections associated with GBS. The late collec-
tion of samples may have led to falsely classifying patients as negative 
that may no longer have had virus RNA or IgM antibodies detectable, 
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suggested by the lower frequency of positive results by PCR and IgM in 
patients with samples collected >2 months after start of neurological 
symptoms, but the high percentage (86%) of positive neutralization tests 
in these later samples. Furthermore, EMG examination was performed 
infrequently owing to a paucity of equipment and expertise in this study 
setting and was not classified on a uniform basis. The Brighton criteria 
were helpful in showing the diagnostic certainty based on the infor-
mation available for all reported patients. These limitations are natu-
rally inherent to studies conducted in an outbreak setting, in a low 
income region of Brazil. 

In conclusion, our study indicates that besides ZIKV, CHIKV, may be 
associated with GBS. No specific anti-glycolipid antibody signature was 
identified in our cohort in connection to arbovirus-related GBS. The 
severity of disease in patients with GBS and evidence of both a recent 
ZIKV and CHIKV infection emphasizes the impact of arbovirus infections 
on patients and healthcare services. As threats of emerging infectious 
diseases persist it is important to advance our response to future out-
breaks of GBS [51]. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.jns.2020.117272. 
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