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Paenibacillus antarcticus IPAC21, an endospore-forming and bioemulsifier-
producing strain, was isolated from King George Island, Antarctica. As 
psychrotolerant/psychrophilic bacteria can be  considered promising sources 
for novel products such as bioactive compounds and other industrially relevant 
substances/compounds, the IPAC21 genome was sequenced using Illumina 
Hi-seq, and a search for genes related to the production of bioemulsifiers and 
other metabolic pathways was performed. The IPAC21 strain has a genome of 
5,505,124 bp and a G + C content of 40.5%. Genes related to the biosynthesis of 
exopolysaccharides, such as the gene that encodes the extracellular enzyme 
levansucrase responsible for the synthesis of levan, the 2,3-butanediol pathway, 
PTS sugar transporters, cold-shock proteins, and chaperones were found in its 
genome. IPAC21 cell-free supernatants obtained after cell growth in trypticase 
soy broth at different temperatures were evaluated for bioemulsifier production 
by the emulsification index (EI) using hexadecane, kerosene and diesel. EI values 
higher than 50% were obtained using the three oil derivatives when IPAC21 was 
grown at 28°C. The bioemulsifier produced by P. antarcticus IPAC21 was stable 
at different NaCl concentrations, low temperatures and pH values, suggesting 
its potential use in lower and moderate temperature processes in the petroleum 
industry.
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Introduction

The genus Paenibacillus was created by Ash et  al. (1993) to accommodate the former 
‘group 3’ of the genus Bacillus. Currently, the genus comprises more than 280 validated species1 
that harbor endospore-forming, low G + C gram-positive bacterial strains (Lal and Tabacchioni, 
2009; Grady et al., 2016; Jeong et al., 2019). Strains belonging to the genus Paenibacillus have 
already been isolated worldwide from different types of soils and plants, deserts, caves, cold 

1 http://lpsn.dsmz.de
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regions, and aquatic environments, many of which are of great 
importance to humans, animals, plants, the environment and/or as 
biotechnological agents in industrial processes (Lal and Tabacchioni, 
2009; Grady et al., 2016; Patowary and Deka, 2020).

Considering the petroleum industry, Paenibacillus strains are 
efficient in bioremediating different environments contaminated with 
pollutants derived from extracting, refining, and transporting 
petroleum and coal tar (Grady et  al., 2016). Some examples are 
P. ehimensis BS1, which is able to degrade heavy crude oil (Shibulal 
et al., 2017), Paenibacillus sp. strains D2, D9 and D10 are considered 
diesel fuel degraders (Ganesh and Lin, 2009), and P. naphthalenovorans 
PR-N1 (Daane et al., 2002) and Paenibacillus sp. PHE-3 (Zhu et al., 
2016), both of which are able to degrade polycyclic aromatic 
hydrocarbons (naphthalene and phenanthrene, respectively). 
Moreover, biosurfactants (or other bacterial byproducts such as 
bioemulsifiers, acids and solvents) produced by Paenibacillus sp. can 
be used for the bioremediation of oil (and derivatives)-contaminated 
soils and marine environments. The biosurfactant produced by 
Paenibacillus sp. D9 was used for the bioremediation of diesel and 
motor oil (Jimoh and Lin, 2020), and that from P. dendritiformis CN5 
was used for polycyclic aromatic hydrocarbon (PAH) and motor oil 
sludge removal from contaminated soil and sand media (Bezza and 
Chirwa, 2015). Paenibacillus sp. #510 isolated from crude oil was able 
to produce a bioemulsifier with high potential to stabilize emulsions 
with different hydrocarbons (Gudina et al., 2015). In addition, the 
potential of P. ehimensis BS1  in microbial enhanced oil recovery 
(MEOR) technology has been demonstrated by the biotransformation 
of heavy to lighter crude oil under aerobic and reservoir conditions 
(Shibulal et al., 2017).

Paenibacillus antarcticus has been described as a psychrotolerant 
organism isolated from Antarctic sediment (Montes et al., 2004). The 
type strain of the species – 20CMT – produces oxidase, catalase and 
urease, and it hydrolyzes aesculin, starch, and Tween 80. 
Psychrotolerant/psychrophilic bacteria can be considered promising 
sources for novel products such as bioactive compounds and other 
industrially relevant substances/compounds (Dhakar and Pandey, 
2020). Moreover, cold-active enzymes found in psychrotolerant/
psychrophilic bacteria are very interesting for different processes in 
industry (including the petroleum industry), pharmaceuticals, 
medicine, and food (Yadav et al., 2019).

Vollú et al. (2014) isolated and characterized different endospore-
forming and cold-adapted bacteria from soil samples of King George 
Island, which is part of the South Shetlands archipelago in Maritime 
Antarctica. The ability to produce extracellular enzymes and 
antimicrobial substances and to emulsify n-hexadecane was 
determined in all isolates in an attempt to contribute to a potential 
source of cold active bioproducts for industrial use. One strain 
identified as P. antarcticus and denoted IPAC21 was able to efficiently 
emulsify n-hexadecane in laboratory conditions. However, no further 
tests have been performed to determine the surfactant effect of 
reducing surface tension. Although biosurfactants and/or 
bioemulsifiers have been extensively used in the remediation of 
oil-contaminated water and soil (Silva et al., 2014; Maia et al., 2019), 
very little is known concerning their biotechnological potential in this 
Paenibacillus species.

Therefore, we  report the genomic characterization of the 
psychrotolerant strain IPAC21, which was isolated from soil collected 
in Ipanema, King George Island, Antarctica, highlighting important 

metabolic pathways such as those for its adaptation to environmental 
stress conditions and for bioemulsifier production. Moreover, the 
physical and chemical conditions for its production and its ability to 
emulsify oils derived from the petroleum industry were evaluated. 
Our results provide important information about the potential use of 
the bioemulsifier produced by P. antarcticus IPAC21 for future 
biotechnological applications.

Materials and methods

Bacterial strain

The bacterial strain IPAC21 was previously isolated from soil 
samples from Ipanema (UTM coordinates – latitude/
longitude = E:426.570/N:3.116.513), King George Island, Antarctica 
(Vollú et al., 2014). The strain IPAC21 was stored in tryptic soy broth 
(TSB) containing 20% glycerol at −80°C. To evaluate the growth of 
IPAC21 at different temperatures, the strain was grown in TSB at 5°C, 
15°C and 28°C for up to 96 h under agitation at 130 rpm.

DNA extraction, genome sequencing and 
assembly

For DNA extraction, strain IPAC21 was initially cultivated in 5 ml 
of TSB at 28°C under agitation at 130 rpm for 48 h. Then, the culture 
was centrifuged at 12,000 g, the supernatant was discarded, and the 
pellet was recovered. DNA from the IPAC21 strain was extracted and 
purified according to Seldin et al. (1998) and Seldin and Dubnau 
(1985), respectively. Subsequently, the DNA was quantified 
spectrophotometrically using a Qubit™ fluorimeter (Thermo Fisher 
Scientific, MA, USA).

The genome of strain IPAC21 was sequenced on the Illumina 
HiSeq  2,500 platform as recommended by the manufacturer. 
Approximately 5 μg/μg DNA was used for the construction of 
paired-end sequencing libraries (2 × 150 bp) with a 450 bp insert size. 
The quality analysis of the final libraries was performed using a 2100 
bioanalyzer (Agilent Technologies, CA, USA). Genomic contigs were 
de novo assembled using SPAdes software, version 3.15.5 (Prjibelski 
et al., 2020).

Genome annotation

The automatic annotations of the IPAC21 genome were performed 
using the online server RAST (Aziz et al., 2008) and NCBI Prokaryotic 
Genome Annotation Pipeline (PGAP, version 2022-04-14.build6021). 
The KEGG2 and Metacyc3 databases were used for manual annotation 
and construction of metabolic pathways. The pathways according to 
the genome annotation of the IPAC21 strain were created with 
BioRender.com.

2 www.genome.jp/kegg

3 https://metacyc.org/
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Phylogenetic analyses

For the phylogenetic analyses, 16S rRNA-encoding gene 
sequences of closely related species to Paenibacillus antarcticus were 
retrieved from the GenBank database. Sequence alignments were 
performed using the ClustalW method in MEGA-X software. The 
sequences were aligned through the ClustalW method to analyze the 
similarity between those sequences. The phylogenetic tree was 
constructed using the maximum likelihood method and the Jukes-
Cantor model (bootstrap = 1,000) (Kumar et al., 2018).

Average nucleotide identity (ANI) and 
digital DNA–DNA hybridization (dDDH)

The IPAC21 genome was compared with those of ten closely 
related Paenibacillus strains (listed in Table 1) using the JSpeciesWS 
database4 with the alignment algorithm blastn (ANIb) (Richter et al., 
2016). The draft genomes were downloaded from NCBI5 and JGI6.

DNA digital hybridization (dDDH) was performed using the 
Genome-to-Genome Distance Calculator—GGDC 2.1 (Meier-
Kolthoff et  al., 2013) provided by Leibniz on the DSMZ Institute 
website7 with the recommended parameters and/or default settings.

Comparative genomics

A comparative genome map was plotted through a BLASTN-
based ring generated by BLAST ring image generator (BRIG) version 
0.95 (Alikhan et al., 2011) to compare the draft genomes of six closely 
related Paenibacillus species with that of P. antarcticus strain IPAC21 
used as a reference. A manual annotation of proteins was also 

4 http://jspecies.ribohost.com/jspeciesws/

5 www.ncbi.nlm.nih.gov/refseq

6 https://genome.jgi.doe.gov/portal/

7 http://ggdc.dsmz.de/distcalc2.php

performed using BLASTp and RAST, and the KEGG database8 was 
used to understand the possible metabolic pathways in which some 
proteins are embedded.

Bioemulsifier production in vitro

Growth and production of the Paenibacillus 
antarcticus IPAC21 bioemulsifier in different 
culture media

Different culture media were compared for bioemulsifier production 
by strain IPAC21: TSB, LB (Luria Bertani), GB (glucose 10 g; peptone 10 g; 
meat extract 2 g; yeast extract 1 g; NaCl 5 g; H2O q.s. 1000 ml, pH 7.2), MM 
(NaCl 10 g; Na2HPO4 9.44 g; (NH4)2SO4 2 g; glucose 10 g; MgSO4.7H2O 
0.2 g; H2O q.s. 1000 ml), MSS (NaCl 10 g; sucrose 10 g; Na2HPO4 5 g; 
NH4NO3 2 g; KH2PO4 2 g; MgSO4.7H2O 0.2 g; H2O q.s. 1000 ml). Flasks 
containing 50 ml of each medium were inoculated with approximately 5 
× 108 cells (OD600 = 0.6). The flasks were incubated at 28°C in a rotatory 
shaker (130 rpm) for 48 h, and 1 ml was centrifuged (13,000× g, 15 min). 
The cell-free supernatants were used for E24 determination.

Determination of the emulsification index 
(E24)

The emulsification index (E24) was determined according to Iqbal 
et al. (1995) by the addition of 1 ml of n-hexadecane (or 1 ml diesel or 
1 ml kerosene) to the same volume of cell-free supernatant in test tubes. 
The tubes were vortexed at high speed for 3 min. The stability of the 
emulsion was determined after 24 h at room temperature, and the 
emulsification index (E24) was calculated as the percentage of the height 
of the emulsified layer (mm) divided by the total height of the liquid 
column (mm). Tests were performed in triplicate. Statistical analyses 
were performed using PAST v4.02 software (Hammer et al., 2001) using 
one-way analysis of variance (ANOVA) followed by Tukey’s test.

8 www.genome.jp/kegg

TABLE 1 Average nucleotide identity (ANI) and digital DNA–DNA hybridization (DDH) values between IPAC21 and closely related species of the genus 
Paenibacillus.

Query Reference genomes Access numbers ANIb (%) dDDH (%)

IPAC21 Paenibacillus antarcticus 20CMT = CECT 5836 LVJI01000026.1 98.78 [90.76]* 91.2 [89.1–93]*

IPAC21 Paenibacillus antarcticus KACC 11469 NZ_CP043611.1 98.77 [90.75] 91.2 [89–93]

IPAC21 Paenibacillus macquariensis subsp. defensor JCM 14954 LVJG01000074.1 90.59 [69.02] 43.8 [41.3–46.4]

IPAC21 Paenibacillus macquariensis subsp. macquariensis DSM 2 LVJF01000065.1 90.52 [70.56] 43.8 [41.2–46.3]

IPAC21 Paenibacillus macquariensis ATCC 23464 FTNK01000072.1 90.51 [70.23] 43.7 [41.2–46.3]

IPAC21 Paenibacillus glacialis DSM 22343 LVJH01000032.1 86.55 [59.05] 33.10 [30.7–35.6]

IPAC21 Paenibacillus crassostreae LPB0068 LSFN01000012.1 76.22 [42.78] 21.20 [18.9–23.6]

IPAC21 Paenibacillus xylanexedens PAMC 22703 CP018620.1 68.57 [31.31] 24.80 [22.5–27.3]

IPAC21 Paenibacillus tundrae DSM 1314 708,558 68.50 [29.53] 19.9 [17.7–22.3]

IPAC21 Paenibacillus borealis DSM 13188 NZ_CP009285.1 68.19 [31.64] 22.60 [20.3–25]

*The numbers between parentheses after values of ANIb are the percentage of conserved aligned DNA between two genomes, and the numbers between brackets after dDDH values are the 
confidence intervals.
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Drop collapse test

A volume of 10 μl from cell-free culture broth supernatant (strain 
IPAC21 grown at 28°C for 48 h) was dropped onto a crude oil-coated 
glass slide. Whenever the interfacial tension between the liquid and 
the hydrophobic surface was reduced, the drops spread or collapsed 
(Jain et al., 1991). The same volumes of sterile TSB and 10% SDS were 
used as negative and positive controls, respectively.

Oil displacement test

A 90 × 15-mm Petri dish was filled with 40 ml of distilled water, 
and 20 μl of crude oil was added to form an apolar thin layer of 
hydrocarbons on the surface. Then, 10 μl of the cell-free culture 
supernatant (strain IPAC21 grown in TSB at 28°C for 48 h) was placed 
on the oil layer, and a positive result was considered when a clear halo 
was observed (Morikawa et al., 2000). The same volumes of sterile TSB 
and 10% SDS were used as negative and positive controls, respectively.

Surface-activity determination

The cell-free culture supernatant of IPAC21 grown in TSB at 28°C 
for 48 h (1 ml) was analyzed on a Kruss DSA100 goniometer (Model: 
DE 3210) to determine the surface tension (ST) by the drop shape 
method, as described by Song and Springer (1996). To increase the 
accuracy of the surface tension measurements, an average of triplicates 
was conducted. All measurements were performed at 
room temperature.

Determination of optimal physiological 
parameters for bioemulsifier production

Emulsification was analyzed during P. antarcticus IPAC21 growth 
in TSB (200 ml) at 28°C under agitation (130 rpm) for 96 h. Aliquots 
(5 ml) were collected after 24, 48, 72, and 96 h of cultivation to 
construct growth, absorbance (OD600), and emulsification curves. To 
determine the number of vegetative cells, 1 ml aliquots were serially 
diluted (up to 10−5), and each dilution was plated (100 μl) in TSB with 
the addition of 1.5% agar (TSA). The plates were incubated at 28°C for 
48 h, and the colony forming units (CFU/ml) were calculated. The 
absorbance curve at OD600 was determined using 1 ml aliquots in a 
UV/VIS spectrophotometer (Mettler Toledo). The E24 assessments 
were determined following the same conditions previously described. 
All experiments were performed in triplicate, and the arithmetic 
means and standard errors were determined. Negative controls were 
performed using only TSB.

Stability of the bioemulsifier produced by 
IPAC21 under different salinity, pH and 
temperature conditions

The effects of different chemical and physical parameters on the 
bioemulsifier produced by the IPAC21 strain were evaluated. Before 
E24 determination, the cell-free supernatants containing the 

bioemulsifier were submitted to different salinity, pH and temperature 
conditions. The salinity levels ranged from 3 to 12%, whereas the pH 
values varied from 2 to 12 (pH adjusted with either 6 N HCl or 2 N 
NaOH). The supernatant was maintained at −20°C, 5°C, 15°C for 
15 min, 2 h and 24 h, 100°C for 20 min, and it was also autoclaved at 
121°C for 15 min. The IPAC21 growth conditions as well as the E24 
experiments followed the same conditions described above. Statistical 
analyses were performed using PAST v4.02 software as 
described previously.

Results and discussion

Phylogenetic analysis of the 16S rRNA 
encoding gene

The results of BLAST sequence analyses of the 16S rRNA-
encoding gene (1,510 bp) indicated that the strain, previously isolated 
from Antarctic soil and named IPAC21 (Vollú et al., 2014), is related 
to members of the genus Paenibacillus (Figure 1). Its closest relatives 
were P. antarcticus 20CMT and P. antarcticus KACC 11469, with 99.93 
and 99.85% gene sequence similarities, respectively.

Genome annotation

The draft genome sequence of strain IPAC21 was determined in 
this study, and the whole genome shotgun project has been deposited 
at DDBJ/ENA/GenBank under the accession number BioProject 
PRJNA913778, BioSample ID SAMN32307255.

The genome of strain IPAC21 revealed 5,505,124 bp with a G + C 
content of 40.5%, and a total of 5,240 coding DNA sequences (CDSs) 
were predicted. The identified CDSs were classified into subsystems, 
such as amino acids and derivates (260 CDSs), carbohydrates (230 
CDSs), protein metabolism (167 CDSs), cofactors/vitamins/pigments 

FIGURE 1

Alignment of the 16S rRNA-encoding gene of Paenibacillus 
antarcticus IPAC21 and related species. The phylogenetic tree was 
constructed using the maximum likelihood method and the Jukes–
Cantor model. The GenBank accession number of each sequence is 
shown in parentheses. Bootstrap values are expressed as 
percentages of 1,000 replications and are shown at branch points. 
Bacillus subtilis RNA40 was used as an outgroup.

https://doi.org/10.3389/fmicb.2023.1142582
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(137 CDSs), stress response (40 CDSs), secondary metabolism (4 
CDSs) and metabolism of aromatic compounds (3 CDSs) (Figure 2).

To explain the taxonomic relationship between the closely related 
Paenibacillus species and IPAC21 strain, the average nucleotide 
identity (ANI) and digital DNA–DNA hybridization (dDDH) values 
were determined between strain IPAC21 and the other ten type 
genomes of the members of the genus Paenibacillus (Table 1). The ANI 
values varied between 68.19 and 98.78%, where the accepted limit for 
species delimitation can be considered 95–96% (Richter and Rosselló-
Móra, 2009). In addition, the results of DDH in silico were mostly 
below 70%, which is the cutoff value for species delimitation (Goris 
et al., 2007), with the exception of the value observed between the 
IPAC21 strain and either P. antarcticus 20CMT or P. antarcticus KACC 
11469, which was 91.2% (Table 1). Therefore, both the ANI and the 
DDH results suggest that the IPAC21 strain can be considered to 
belong to the species P. antarcticus, as previously suggested by Vollú 
et al. (2014).

Genome features

2,3-Butanediol fermentation pathway
The analysis of the P. antarcticus IPAC21 genome revealed the 

presence of the butanediol fermentation pathway. 2,3-Butanediol (2,3-
BDO) is important as a liquid fuel additive, a softening and moistening 
agent, a solvent, a synthetic rubber precursor, an antifreeze agent in 
different industries, including the petroleum industry (Celinska and 
Grajek, 2009; Dias et al., 2018). The asl gene encoding R-acetolactate 
synthase (EC 2.2.1.6), the budA gene encoding R-acetolactate 
decarboxylase (EC 4.1.1.5), and the budB gene encoding 
2,3-butanediol dehydrogenase, R-alcohol forming, (R)- and 
(S)-acetoin-specific (EC 1.1.1.4) were identified in the IPAC21 
genome. The presence of genes involved in butanediol fermentation 

suggests that IPAC21 is a facultative anaerobic strain similar to the 
strain P. antarcticus 20CMT described by Montes et al. (2004). The asl 
and butAB genes have previously been demonstrated in the genome 
of P. brasilensis PB24 (Dias et al., 2018). However, while genes related 
to three butanediol isomers were detected in P. brasilensis PB24, only 
one isomer was observed in the IPAC21 and P. polymyxa PM 3605 
genomes (Tinôco et al., 2021; this study).

Adaptations to environmental stress 
conditions

Microorganisms in cold habitats need to face several adaptive 
challenges, such as ice formation that damages cell structures, low 
nutrient availability, high salinity, high UV irradiation, and oxidative 
stress (Margesin and Collins, 2019). To better understand the survival 
strategies of P. antarcticus IPAC21, genes associated with adaptation 
to environmental stress conditions, such as cold response, membrane 
fluidity mechanisms, DNA repair, oxidative and osmotic stress, 
chaperones and transport of compatible solutes, were highlighted in 
its genome.

Three cold shock-domain family proteins (Csps) were detected in 
the IPAC21 genome. Csps are a family of highly conserved small 
proteins that bind to single-stranded nucleic acids (Horn et al., 2007). 
These proteins are involved in metabolic processes of the stress 
response within the cell, such DNA replication, transcription, and 
translation (Casanueva et al., 2010; Chaudhary et al., 2022). The CspA 
family constitutes the main response to cold and is exclusive to 
psychrophilic bacteria (Leeson et al., 2000). CspA together with CspB 
acts as an RNA chaperone, destabilizing mRNA and improving 
translation efficiency at low temperatures (Aliyu et al., 2016; Garcia-
Lopez et al., 2021). Other heat stress responses found in the IPAC21 
genome are the DNAj and DNAk chaperones.

FIGURE 2

Paenibacillus antarcticus strain IPAC21 subsystem features based on the RAST annotation server.
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The repair system found in the IPAC21 genome involves genes 
that encode the SOS regulon proteins, consisting of three genes that 
encode the LexA repressor. These genes are a diverse family of 
bacterial transcription factors that repress genes in the cellular SOS 
response to DNA damage (Sánchez-Osuna et al., 2021). Furthermore, 
three genes involved in excision repair for UvrD were found. UvrD is 
a DNA helicase that participates in nucleotide excision repair and 
processes associated with replication (Newton et al., 2012).

DEAD-box RNA helicase and recAFON recombinases were also 
found in the IPAC21 genome. The recA gene product is a 
multifunctional enzyme that plays a role in homologous 
recombination, DNA repair and induction of the SOS response 
(Selbitschka et al., 1991). Microorganisms that are exposed to cold 
form unfavorable secondary mRNA structures, resulting in inhibition 
of translation. DEAD box RNA helicase is capable of reversing the 
secondary structure of the mRNA so that Csps can bind and prevent 
refolding before translation can take place (Phadtare and 
Severinov, 2010).

Low temperatures reduce membrane fluidity and permeability, 
and microorganisms respond by producing less saturated fatty acids 
to improve membrane fluidity (Chattopadhyay, 2006). In the genome 
of IPAC21, the enzyme fatty acid desaturase (EC 1.14.19.-) can 
be related to membrane fluidity that reduces fatty acid saturation and 
is upregulated at low temperatures (Rodrigues and Tiedje, 2008).

Genes related to oxidative stress were also identified in the IPAC21 
strain, including four genes encoding catalases, seven coding for 
peroxidases, three for hydroperoxides, two for superoxide dismutase, 
three for thioredoxins, and ten for thioredoxin reductase. In cold 
environments, the solubility of oxygen increases, generating reactive 
oxygen species (ROS), resulting in DNA damage (Russo et al., 2010). 
Some mechanisms of adaptation to oxidative stress have already been 
described, such as enzymatic mechanisms that involve the use of 
enzymes superoxide dismutase (SOD), catalase (CAT) and/or 
glutathione peroxidase (GPx) (Barria et al., 2013). For example, the 
enzyme superoxide dismutase converts oxygen into hydrogen 
peroxide, which is less reactive and is an important antioxidant 
defense in cells exposed to oxygen. Similar to IPAC21, other bacterial 
strains found in Antarctica - Serratia sp. I1P (Monsalves et al., 2020), 
Nesterenkonia sp. AN (Aliyu et  al., 2016) and Bacillus 
weihenstephanensis (den Besten et al., 2013) show this mechanism 
against ROS.

Two genes encoding proteins involved in adaptation to osmotic 
stress are also present in the IPAC21 genome, opuAA and opuAB, 
which are related to the ABC transport system of glycine/betaine and 
proline. Compatible solutes are compounds that protect and stabilize 
cellular components exposed to stress conditions without significantly 
interfering with their functions (Angelidis and Smith, 2003). Osmolyte 
transport proteins act as osmoprotectants and are involved in 
protection in environments with high osmolarity.

All the genetic features observed in the P. antarcticus IPAC21 
genome suggest that this strain has developed survival strategies for 
its adaptation to environmental stress conditions found in 
Antarctic soils.

Bioemulsifier production in silico

The analysis of the IPAC21 genome revealed the presence of the 
gene that encodes the extracellular enzyme levansucrase (EC 2.4.1.10) 

responsible for the synthesis of levan (Figure 3). Levan is a naturally 
occurring fructan, the homopolymer of fructose, found in many 
plants and microbial products, and it has many applications in 
different industrial fields, such as foods and pharmaceuticals 
(Mummaleti et al., 2022). Its main chain is composed of repeating 
five-member fructofuranosyl rings connected by β-(2 → 6) links. The 
main chain is branched through the β-(2 → 1) linkage of the 
fructofuranosyl rings (Mendonça et  al., 2021). The production of 
levan starts in the extracellular medium through the conversion of 
sucrose to fructose/glucose by the enzyme SacB, which synthesizes 
fructose polymers through a transfructosylation reaction using 
sucrose as a donor fructose/glucose (Xu et al., 2021). The production 
of levan has already been described in other Paenibacillus species, 
such as P. polymyxa DSM 365 (Okonkwo et al., 2020), Paenibacillus 
sp. #210 (Mendonça et al., 2021) and P. bovis BD3526 (Xu et al., 2016).

The sacB gene encoding levansucrase was found in the IPAC21 
genome with 97% similarity with that of P. antarcticus 20CMT. The 
genes coding for phosphoglucomutase (EC 5.4.2.2), responsible for 
the first reaction of the pathway, uridyltransferase (EC 2.7.7.23), 
UDP-glucose 6-dehydrogenase (EC 1.1.1.22), glucose-1-phosphate 
thymidyltransferase (EC 2.7.7.24), dTDP-glucose 4,6-dehydratase (EC 
4.2.1.46), and three genes for exopolysaccharide biosynthesis proteins 
(EC 2.4.1.-) were also observed (Figure 3).

In addition, transmembrane transporters responsible for the 
acquisition of sugar compounds were detected in the genome of the 
IPAC21 strain. The presence of 483 transporters, of which 366 showed 
similarities with transporters ABC (ATP-binding system cassette) and 
11 PTS (phosphoenolpyruvate-dependent sugar phosphotransferase 
system), was observed. Both transport systems act in the transport of 
several types of sugars, such as D-glucose (EC 2.7.1.-), D-fructose (EC 
2.7.1.-), D-galactose (EC 7.5.2.11), maltose (EC 7.5.2.1), lactose (EC 
7.5.2.2) and arabinose (EC 7.5.2.7). Furthermore, twenty-three 
MFS-type transporters, seven drug/metabolite transporters, and four 
HrtAB transporters were also identified in the IPAC21 genome.

Comparative genomics

The similarity between the DNA regions involved in bioemulsifier 
production between IPAC21 and related species is highlighted in the 
comparative genome map (Figure 4). The similarity between the sacB 
gene that produces a levansucrase enzyme in the genome of IPAC21, 
of P. antarcticus 20CMT, and P. antarcticus KACC 11469 presents a 
value of 87.7 and 87.5% identity, respectively. Paenibacillus species 
such as P. glacialis DSM 22343, P. macquariensis ATCC 23464, 
P. macquariensis DSM 2, and P. macquariensis JCM 14954 showed an 
identity of less than 55% when compared to IPAC21.

Bioemulsifier production in vitro

Growth and production of the Paenibacillus 
antarcticus IPAC21 bioemulsifier in different 
culture media

Strain IPAC21 was able to grow in four media tested (TSB, LB, GB 
and MM). The highest number of cells and E24 were obtained in 
TSB. The emulsification activity with n-hexadecane was directly 
proportional to the growth of P. antarcticus IPAC21 and reached the 
highest value (63.7% ±1.7) at the end of the log phase (48 h), 
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FIGURE 3

Representation of the metabolic pathway of EPS production found in the IPAC21 genome. The diagram demonstrates the enzymes found using KEGG 
and Metacyclic annotation programs. Levansucrase (EC 2.4.1.10); sugar PTS (EC 2.7.1.-); phosphoglucomutase (EC 5.4.2.2); UTP-glucose-1-phosphate 
uridylyltransferase (EC 2.7.7.9); glucose-1-phosphate thymidylyltransferase (EC 2.7.7.24); galactose-1-phosphate uridylyltransferase (EC 2.7.7.12); UDP-
glucose-6-dehydrogenase (EC 1.1.1.22); dTDP-glucose-4,6-dehydratase (EC 4.2.1.46); dTDP-4-dehydrorhamnose-3,5-epimerase (EC 5.1.3.13); dTDP-
4-dehydrorhamnose reductase (EC 5.1.3.- 1.1.1.-); exopolysaccharide biosynthesis protein; flippase (EC 7.6.2.1).

FIGURE 4

Circular diagram illustrating the nucleotide similarity between P. antarcticus IPAC21 (in purple, inside the circle) and other Paenibacillus genomes 
represented by concentric rings.
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FIGURE 5

Emulsifying indexes (E24) of P. antarcticus IPAC21 with different oils (kerosene, n-hexadecane, diesel) after IPAC growth in TSB at 5°C, 15°C, and 28°C. 
Different letters indicate statistically significant differences (Tukey, p < 0.05).

corresponding to approximately 1.5 × 109 CFU/ml and an 
absorbance of 1.7.

The cell-free supernatant obtained after IPAC21 growth in TSB 
was submitted to drop collapse, oil displacement tests and superficial 
tension tests. Negative results were obtained in all tests. No capacity 
to reduce surface tension (68.69 mN/m) was observed. These results 
are expected for bioemulsifiers, which are molecules that emulsify two 
immiscible liquids, such as hydrocarbons or other types of 
hydrophobic substrates, even at low concentrations and are less 
effective in reducing surface tension (Uzoigwe et  al., 2015). 
Bioemulsifiers have already been described in other mesophilic 
Paenibacillus species, such as P. polymyxa (Gudina et  al., 2015), 
P. dendritiformis CN5 (Bezza and Chirwa, 2017), and Paenibacillus 
sp.  210 (Mendonça et  al., 2021). In cold environments, such as 
Antarctica, other bacterial species are also producers of bioemulsifiers 
and/or biosurfactants and are considered reservoirs of new 
biotechnological molecules (Perfumo et  al., 2018; Schultz and 
Rosado, 2020).

Emulsification of hydrocarbons by 
Paenibacillus antarcticus IPAC21

The bioemulsifier produced by P. antarcticus IPAC21 was 
evaluated for its potential application in the oil industry. E24 
experiments were conducted with kerosene, hexadecane and diesel at 
three different temperatures (5°C, 15°C, and 28°C). IPAC21 showed 
emulsification in the three types of oils and at the three temperatures 
tested, with the highest values at 28°C and the lowest at 5°C (Figure 5). 
The highest emulsification value was for n-hexadecane at 28°C 
(E24 = 56.2% ±1.5), followed by the temperature of 15°C (E24 = 55.2% 
±1.6), and at 5°C (E24 = 47.5% ±5.6). The emulsions maintained their 
stability for at least 30 days. No significant differences (p > 0.05) were 
observed in the E24 values using kerosene at the three temperatures 

tested. However, using hexadecane and diesel, significant differences 
(p < 0.05) were observed at a temperature of 5°C when compared to 
15°C and 28°C (Figure 5).

Stability of the bioemulsifier produced by 
IPAC21 under different salinity, pH and 
temperature conditions

The effect of salinity, pH, and temperature was evaluated from 
cell-free supernatant containing the bioemulsifier produced by 
IPAC21 in TSB at 28°C for 48 h, as shown in Figure 6. The E24 values 
for the addition of NaCl ranged from 45.6 ± 2.2 to 53.8 ± 1.2%, with the 
highest value for the salt concentration in the supernatant being 6%, 
whereas the lowest value for the salt concentration was 12%. Regarding 
the pH variation, the E24 values were very close, with the highest 
value of E24 = 59.1 ± 0.9% observed at pH 4 and the lowest value of 
E24 = 57.9 ± 0.5% at pH 10. At low temperatures, the lowest E24 value 
(55.6 ± 2.2%) was observed at 5°C for 15 min, and the highest value 
(60.9 ± 1.3%) was observed at 15°C for 2 h. No statistically significant 
differences in the abovementioned stability tests were observed 
(Tukey’s test, p > 0.05) (Figure 6). Regarding the heat treatment, the 
values of the emulsification index were negligible: E24 = 6.8 ± 3.4% for 
the heat treatment at 100°C for 20 min and E24 = 8 ± 3.5% for the heat 
treatment by autoclaving.

Other Paenibacillus strains showed similar responses as those 
observed in IPAC21 to salt and pH variations. The E24 values of the 
bioemulsifier produced by Paenibacillus sp.#510 were almost 
constant (56.2–59.7%) over the entire pH range tested (Gudina 
et al., 2015). Likewise, only small variations were observed in the 
E24% with the addition of NaCl and over a wide range of pH values 
in P. alvei ARN63 (Amirabadi et al., 2013). However, the sensitivity 
to high temperature observed in the IPAC21 bioemulsifier was not 
shared by Paenibacillus sp. # 510 and P. alvei ARN63. Heat treatment 
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did not reduce the emulsion formation capacity of the bioemulsifiers 
produced by these strains (Amirabadi et al., 2013; Gudina et al., 
2015). This variation in thermal stability can be explained mainly 
by the differences in the structure, density and molecular weight of 
the bioemulsifiers and in fermentation parameters, including the 
medium and the microorganism used for their production 
(Mummaleti et al., 2022).

Conclusion

In this study, the genome of P. antarcticus IPAC21 was presented, 
showing the presence of genes associated with adaptation to 
environmental stress conditions such as cold response, membrane 
fluidity mechanisms, DNA repair, oxidative and osmotic stress, 
chaperones and transport of compatible solutes. Genes for the 
biosynthesis of the bioemulsifier levan are described and compared to 
those of closely related Paenibacillus species. To better characterize the 
bioemulsifier produced by IPAC21, emulsification experiments were 
performed, and emulsification values using kerosene and hexadecane 
at three different temperatures (5°C, 15°C, and 28°C) were close to 
50% or higher. The bioemulsifier was stable at different NaCl 
concentrations, low temperatures and pH values but not at high 
temperatures. All the data obtained contribute to a better knowledge 
of this psychrotolerant strain isolated from Antarctic soil, showing 
potential biotechnological applications in the petroleum industry. 
Given the great stability of the bioemulsifier produced by P. antarcticus 

IPAC21, even in a wide range of temperature, pH, and NaCl, we see 
as extremely relevant the future study concerning its effectiveness in 
bioremediating different environments (including cold marine 
environments) contaminated with pollutants derived from extracting 
and/or transporting petroleum.
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