Synthesis and Antitumor Activity of Selenium-Containing Quinone-based Triazoles Possessing Two Redox Centres, and their Mechanistic Insights

Eduardo H. G. da Cruz ${ }^{\text {a }}$, Molly A. Silvers ${ }^{\text {b }}$, Guilherme A. M. Jardim ${ }^{\text {a }}$, Jarbas M. Resende ${ }^{\text {a }}$, Bruno C. Cavalcantic, Igor S. Bomfim ${ }^{\text {c }}$, Claudia Pessoa ${ }^{\mathrm{c}, \mathrm{d},}$, Carlos A. de Simone ${ }^{\mathrm{e}}$, Giancarlo V. Botteselle ${ }^{\dagger}$, Antonio L. Braga ${ }^{\dagger}$, Divya K. Nairg, Irishi N. N. Namboothirig, David A. Boothman ${ }^{\text {b }}$, and Eufrânio N. da Silva Júnior ${ }^{\text {a, }}$.
annstitute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, CEP 31270-901, Belo Horizonte, MG, Brazil
${ }^{\text {b }}$ Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-8807, USA
${ }^{\text {© }}$ National Laboratory of Experimental Oncology, Department of Physiology and Pharmacology, Federal University of Ceará, CEP 60180-900, Fortaleza, CE, Brazil
dFiocruz-Ceará, CEP 60180-900, Fortaleza, CE, Brazil
${ }^{\text {eI Institute of Physics, University of São Paulo, 13560-160, São Carlos, SP, Brazil }}$
${ }^{f}$ Department of Chemistry, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
${ }^{9}$ Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, India.

Abstract

Selenium-containing quinone-based 1,2,3-triazoles were synthesized using click chemistry, the copper catalyzed azide-alkyne 1,3-dipolar cycloaddition, and evaluated against six types of cancer cell lines: HL-60 (human promyelocytic leukemia cells), HCT-116 (human colon carcinoma cells), PC3 (human prostate cells), SF295 (human glioblastoma cells), MDA-MB-435 (melanoma cells) and OVCAR-8 (human ovarian carcinoma cells). Some compounds showed IC_{50} values $<0.3 \mu \mathrm{M}$. The cytotoxic potential of the quinones evaluated was also assayed using non-tumor cells, exemplified by peripheral blood mononuclear (PBMC), V79 and L929 cells. Mechanistic role for

[^0]NAD(P)H:Quinone Oxidoreductase 1 (NQO1) was also elucidated. These compounds could provide promising new lead derivatives for more potent anticancer drug development and delivery, and represent one of the most active classes of lapachones reported.

Graphical abstract

Selenium-containing quinones were designed and synthesized by click chemistry reaction and evaluated against several human cancer cell lines showing, in some cases, IC_{50} values below 0.3 $\mu \mathrm{M}$.

Keywords

β-Lapachone; Quinone; Click chemistry; Chalcogens; Selenium

1. Introduction

Development of diverse therapeutics is of paramount importance in the fight against different types of cancer [1,2]. Quinones are considered as privileged structures and are among the most important drugs used against cancer [3]. Although single-target drugs successfully inhibit or activate a specific target [4], drugs that are able to act simultaneously on diverse biological targets are more attractive in the design of new effective drugs [5]. In this context, quinoidal structures represent an essential multi-target class of compounds [6].

Naturally occurring naphthoquinones such as lapachol and β-lapachone (β-lap), isolated from the heartwood of Tabebuia, are among the most studied for their potential anti-tumor activity [7]. Docampo et al. [8] found significant activity for β-lap against Sarcoma 180 ascites tumor cells ($\mathrm{S}-180$ cells) in vitro, and in mice bearing S-180 tumors. Although the antitumor activity of β-lap against Yoshida sarcoma and Walker 256 carcinoma cells in culture has been investigated [8,9], the exact mechanism of action was not known until recently [10].
β-Lapachone specifically destroys cancer cells with elevated endogenous levels of $\mathrm{NAD}(\mathrm{P}) \mathrm{H}$:quinone oxidoreductase 1 (NQO1) [11] regardless of p53, caspase, or cell cycle status [12]. While in clinical trials, β-lap (i.e., ARQ 501) has been inaccurately touted as a cell cycle checkpoint activator [13], the major determinant of cell death is through NQO1 expression [11,12a,14]. The drug is not a substrate for known multidrug resistance or drug pumps $[15,16]$ and β-lap cell death is not affected by changes in cell cycle position, oncogenic drivers, or pro- or anti-apoptotic factors [11,12a]. Finally, the drug targets (i.e., is 'bioactivated' by) NQO1, a Phase II, carcinogen-inducible enzyme that is also induced by ionizing radiation (IR) in some cancer, but not normal, cells [17,18].
β-Lap's use as a chemotherapeutic agent is curtailed by its high hydrophobicity which causes methemoglobinemia in patients [19]. When mixed with the carrier hydroxypropyl- β cyclodextrin, the carrier itself can contribute to hemolysis [20]. Recently, Ohayon and coworkers [21] shed light on the hypothesis of β-lap being able to act nonreversibly for inhibition of deubiquitinases. These authors suggested that the therapeutic effect of β-lap could be also related to ubiquitin specific peptidase 2 (USP2) oxidation, which is likely a downstream effect of reactive oxygen species (ROS) generation via NQO1 futile cycle metabolism of β-lap. NQO1 is the unique gene, that when deleted, leads to resistance to β lap and other NQO1 bioactivatable drugs [22,23], strongly suggesting that most downstream effects cited by others are a result of upregulation of NQO1-derived ROS and Ca^{2+} intracellular increases, as well as rapid and dramatic losses in NAD ${ }^{+} /$ATP caused by PARP1 hyperactivation ending in NAD^{+}-Keresis [24].

In the last few years, our group has been intensively dedicated to the synthesis and evaluation of lapachones against cancer cell lines [25,26]. We discovered a series of lapachones with modified C-rings (Scheme 1a) with potent activity against cancer lineages [27]. Lately, interest in preparing quinone-based triazoles has been stimulated by our discovery of bioactive compounds endowed with unique subunits in their chemical structures [28]. Recently, Perumal et al. [29] prepared amino-1,4-naphthoquinone-appended triazoles with antimycobacterial activity designed by the same molecular hybridization strategy [30]. β-Lapachone-based 1,2,3-triazoles possess significant activity with IC_{50} values below $2 \mu \mathrm{M}$ for MDA-MB-435 cancer cells. These compounds promoted cell death by an apparent apoptotic cell death mechanism associated with significant ROS production [31]. The approach of inserting a triazole moiety in 1,4-naphthoquinones was also effective, since this unit is known as a potent pharmacophoric group [32]. Recently, 1,4-naphthoquinone-based 1,2,3-triazoles (Scheme 1a) were reported as having high activity in the range of 1.4 to 1.9 $\mu \mathrm{M}$ in HL-60 human promyelocytic leukemia cells [33].

From another perspective, organoselenium compounds show antitumor, antimicrobial, antineurodegenerative and antiviral properties [34]. A series of selenoproteins are involved in important physiological processes [35]. Jacob and co-workers [36] demonstrated the potential antitumor activity of selenium-containing quinones (Scheme 1b) capable of mimicking the enzymatic activity of the human enzyme, glutathione peroxidase (GPx). GPx targets redox sensitive thiol proteins, while simultaneously generating reactive oxygen species at a critical threshold. Thus, these drugs act as ROS-users and ROS-enhancers to affect downsteam targets [37]. This action would complement the mechanism of action of β lap, since death caused by this agent relies upon the hyperactivation of PARP1, which is stimulated by ROS $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ [24].

In continuation of our program for obtaining novel potent antitumor naphthoquinones and based on recent findings reported by our group, we discovered potent chalcogen-containing β-lapachones (Scheme 1b) [38]. Here, we describe fifteen novel selenium-containing quinones and our strategy was based on inserting this pharmacophoric group, generating 1,2,3-triazole selenium-containing lapachones (Scheme 1c). Selected naphthoquinones with a structural framework with recognized activity against several types of cancer cell lines
were used in the preparation of the new compounds. The structures were designed as multitarget ligands potentially giving rise to NQO1 cell death mechanisms of action.

2. Results and Discussion

2.1 Chemistry

The first class of compounds prepared possessing two redox centres was seleniumcontaining dihydropyran naphthoquinones obtained from lapachol (1) (Scheme 2). aLapachone 2 was prepared by acid catalyzed cyclization from 1, and thentwo seleniumcontaining derivatives, $\mathbf{6}$ and 7, were synthesized from 2. Compound 6, was prepared in moderate yield (75\%) by copper(I) catalyzed click reaction [39] between compound $\mathbf{4}$ and (azidomethyl)(phenyl)selane. The intermediate compound 4 was obtained by the reaction of 3 -ethynylaniline and the bromo derivative $\mathbf{3}$. As previously reported [40], 4-azide-alapachone (5) was easily synthesized from the reaction of $\mathbf{3}$ with sodium azide in dichloromethane. The reaction of $\mathbf{5}$ and phenyl propargyl selenide affords seleniumcontaining a-lapachone 1,2,3-triazole 7. Finally, from the azide derivative 9, prepared as reported by us [41], β-lapachone-based 1,2,3-triazole $\mathbf{1 0}$ containing the chalcogen was obtained as a red solid. Compounds 3-10 are racemic. However, compounds $\mathbf{9}$ and $\mathbf{1 0}$ are single diastereomers, the relative stereochemistry is trans. The trans-stereochemistry was confirmed by comparison with previously reported data [41,47a].

We began the synthesis of selenium-containing dihydrofuran naphthoquinones, the second class of compounds, initially by synthesizing nor-a-lapachone derivatives $\mathbf{1 5}$ and $\mathbf{1 6}$ (Scheme 3). Since the synthesis of arylamino substituted lapachones and azidoquinones are well established in our group [25,40,42], compounds $\mathbf{1 3}$ and $\mathbf{1 4}$ were prepared as shown in Scheme 3. Following click methodology, compounds $\mathbf{1 3}$ and $\mathbf{1 4}$ were reacted with seleniumcontaining azide and alkyne, respectively, to furnish the naphthoquinones $\mathbf{1 5}$ and $\mathbf{1 6}$ in $\mathbf{7 0 \%}$ and 80% yield, respectively.

From nor-lapachol (17), the bromo intermediate 18 was synthesized following the methodology described by Pinto and co-workers (Scheme 4) [26,43]. Synthesis of various antitumor compounds from $\mathbf{1 8}$ was reported, as for instance, arylamino and alkoxy substituted nor- β-lapachone [26], lapachones in the presence of 1,2,3-triazole moiety [44] and hybrids with chalcones [45]. The unpublished arylamino substituted lapachone 19 bearing a terminal alkyne group was prepared based on the previously described compounds possessing activity against cancer cell lines [26]. The formation of the selenium-containing 1,2,3-triazole 21 from $\mathbf{1 9}$ herein described, allowed us to access the product designed with two redox centres. Using the same strategy discussed above, compound $\mathbf{2 2}$ was obtained from the azide derivative 20, previously reported by our group [46] (Scheme 4).

At this juncture, we described the synthesis of lapachones obtained from lapachol (1) and nor-lapachol (17), their inferior homologue. Recently, we reported the synthesis of a new class of naphthoquinone compounds, containing a pendant 1,2,3-triazole motif from C-allyl lawsone (23) [47]. The iodination of $\mathbf{2 3}$ affords compounds 24 and 27 in 68% yield and $1: 1$ ratio (Scheme 5), which were easily separated by column chromatography. With these compounds in hand, the respective azide derivatives, compunds $\mathbf{2 5}$ and $\mathbf{2 8}$, were synthesized
by reaction of sodium azide in dimethylformamide. The respective selenium derivatives, compounds 26 and 29, were prepared by Cu-catalyzed azide-alkyne cycloaddition (Scheme 5).

1,4-naphthoquinone coupled to selenium-containing 1,2,3-triazole was also a subject of our study. From compounds $\mathbf{3 3 - 3 5}$ and $\mathbf{3 9}$, the respective triazolic derivatives, compounds 36-38 and 40, were prepared using methodology discussed previously (Scheme 6). Suitable crystals of compounds $\mathbf{3 5}$ and $\mathbf{3 8}$ were obtained, and the structures were solved by crystallographic methods.

Recently, we reported a straightforward approach for the obtention of enantio-enriched alapachone derivatives [48]. In order to identify new enantio-enriched antitumor compounds, lawsone (41) was used to prepare the nitro-derivatives 42 and $\mathbf{4 3}$ via organocatalysis with a chiral squaramide (Scheme 7). The nitro group of the quinones was reduced to the amino group using $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} / \mathrm{NaBH}_{4}$ to afford aminoquinones 44 and $\mathbf{4 5}$. These compounds were used immediately after synthesis, due to their instability, for the preparation of azidoquinones 46 and 47, after a diazotransfer reaction. In the last step, we prepared the chalcogenium-containing 1,2,3-triazoles 48 and 49 for reaction with phenyl propargyl selenide by using a classical click procedure via catalysis with sodium ascorbate and copper(II) sulfate in a 1:1 mixture of dichloromethane and water.

Structures of the novel compounds 4, 6, 7, 10, 13, 15, 16, 19, 21, 22, 26, 29, 36, 37, 38, 40, 48 and 49 were determined by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and 2D NMR spectra (COSY, HMBC and HSQC). Electrospray ionization mass spectra were also obtained to confirm compound identities.

2.2. Biological Studies

All of the selenium-containing quinone-based 1,2,3-triazoles described (Schemes 2-7) and their synthetic precursors were evaluated in vitro using the MTT assay against six cancer cell lines: HL-60 (human promyelocytic leukemia cells, NQO1-), HCT-116 (human colon carcinoma cells, NQO1), PC3 (human prostate cells, NQO1+), SF295 (human glioblastoma cells, NQO1+), MDA-MB-435 (melanoma cells, NQO1+) and OVCAR-8 (human ovarian carcinoma cells, NQO1+). β-Lapachone and doxorubicin were used as positive controls (Table 1). NQO1- normal cells, human peripheral blood mononucluear (PBMC), and murine fibroblast immortalized cell lines (V79 and L929) were used to evaluate the selectivity of the compounds. Mechanistic aspects of selected compounds were also studied for NQO1-dependency using the fairly specific NQO1 inhibitor, dicoumarol. As previously described [49], the compounds were classified according to their activity as highly active $\left(\mathrm{IC}_{50}<2 \mu \mathrm{M}\right)$, moderately active $\left(2 \mu \mathrm{M}<\mathrm{IC}_{50}<10 \mu \mathrm{M}\right)$, or inactive $\left(\mathrm{IC}_{50}>10 \mu \mathrm{M}\right)$.

The results showed most of compounds were highly active against all cancer cell lines evaluated, with IC_{50} values $<2 \mu \mathrm{M}$. In general terms, ortho-quinoidal compounds were more active than para-quinones. However, a-lapachone derivatives with potent antitumor activities were also identified.

Naphthopyranquinones 5-7, 9 and 10 presented high to moderate activities $\left(\mathrm{IC}_{50}\right.$ in the range of 0.92 to $5.46 \mu \mathrm{M})$ and the non-active compound 4 was the exception of this class. For the selenium-containing quinones $\mathbf{6}$ and $\mathbf{1 0}$, the strategy of insertion of a second redox centre was a success and these derivatives were more active than their naphthoquinoidal precursors. Recently, we reported the synthesis and antitumor activities of several a-lapachone-based 1,2,3-triazoles [33]. It is important to highlight that the selenium-containing-based 1,2,3triazole 7 displayed better activity than the compounds without the chalcogen.

Naphthofuranquinones were the second class of compounds evaluated. Paranaphthoquinones $\mathbf{1 5}$ and $\mathbf{1 6}$ were active against all cancer cell lines studied. In the last few years, we described nor-a-lapachone-based 1,2,3-triazoles obtained from lapachol (1) with IC_{50} values $>2 \mu \mathrm{M}$ [33]. The strategy herein used to prepare compounds $\mathbf{1 5}$ and $\mathbf{1 6}$ with the presence of selenium improved the activities of nor-a-lapachone-based 1,2,3-triazoles, and these derivatives presented IC_{50} values ranging from $0.68-1.71 \mu \mathrm{M}$ for $\mathbf{1 5}$, and 1.59-2.95 $\mu \mathrm{M}$ for 16.

Nor- β-lapachone and derivatives are among the most potent compounds from the lapachol group [25,26]. Recently, we demonstrated [50] the cytotoxicity and genetic toxicity of nor-β-lapachone in human lymphocytes, HL-60 leukaemia, and immortal normal murine V79 fibroblasts ranging from 2.5 and $5 \mu \mathrm{M}$. This compound failed to induce DNA damage in nontumor cells, but at the highest concentrations, it induced DNA single and double strand breaks and increased the frequency of chromosomal aberrations. The biological effects of nor- β-lapachone is related to its ability to deplete reduced glutathione (GSH), which leads to a GSSG-dominant pro-oxidant cellular status that contributes to its antiproliferative properties.

In this context, we described the potent antitumor activities of nor- β-lapachones $[26,28]$. Importantly, C-ring modified, nor- β-lapachone with arylamino groups were the most active lapachones described [26]. These compounds present significant antiproliferative effects in human myeloid leukaemia cell lines and induce oxidative DNA damage by ROS generation. They also somehow impair DNA repair activity, while triggering cell death, which may be apoptosis [51]. Compound 21 was designed based on prior experience with these bioactive lapachones. This compound contains the structural framework of the 3-arylamino-nor- β lapachone derivatives reported before, but with a second redox chalcogen centre inserted by click chemistry reaction. This substance was highly active against all cancer cell lines evaluated, with IC_{50} values ranging from 0.07 to $0.38 \mu \mathrm{M}$. Moreover, compound 21 exhibited a high selectivity index (SI represented by the ratio of cytotoxicities between normal cells and different lines of cancer cells). For instance, PBMC vs $\mathrm{HL}-60=19.8$. By comparison, doxorubicin, a standard clinically used drug against various types of cancers, contained a selectivity index value of 10.6 . In the same way, compound 22 (IC_{50} in the range of 1.06 to $2.56 \mu \mathrm{M}$) was more active than nor- β-lapachone-based 1,2,3-triazole without the chalcogen atom. Herein, two important examples of successful preparation of potent antitumor quinones with two redox centres are reported. Compound 26, another norlapachone derivative obtained from C-allyl lawsone (23), also exhibited potent antitumor activity. This drug was considered highly active with IC_{50} values ranging from 0.07 to 0.29 $\mu \mathrm{M}$, suggesting a highly active structure. Compounds 21 and 26 presented similar antitumor
activities, showing the importance of the ortho-naphthofuranquinone moiety and the triazole selenium-containing group that potentially works together in the same two redox centre structures.

1,4-Naphthoquinones 36-40 were also evaluated and the compounds were considered moderately active with exception of compound 40, which was inactive against all cancer cells examined. The last compounds evaluated were asymmetric a-lapachone 48 and 49 and these substances were inactive. As recently described by us [45], the asymmetric alapachone derivatives are inactive against several cancer cell lines evaluated. Herein, we tried to improve their activities using the approach of insertion of the chalcogen in these quinones, but the strategy failed. Selectivity index for the most active compounds was summarized in Table 2.

Previous studies from our laboratory revealed that compounds $\mathbf{5 0 - 5 3}$ (Figure 1) can be considered as prototypes possessing potent antitumor activities against diverse cancer cells [25,26]. To deepen our knowledge about the mechanism of action of compounds $\mathbf{5 0 - 5 3}$ and compare the previously reported structures with selenium-containing lapachone-based 1,2,3triazoles, we examined their potential NQO1-dependent cytotoxicities using a set two-hour exposure, with or without the NQO1 inhibitor, dicoumarol. Such exposures take advantage of elevated NQO1 levels specifically in most solid cancers compared to associated normal tissue [11]. Within the class of selenium-containing quinones, we selected compounds 21 and $\mathbf{2 2}$ to evaluate their characteristics by an NQO1-dependent mechanism.

NQO1-dependency assessments-Within the drug concentration range tested, the compounds showed activity against human A549 non-small cell lung adenocarcinoma, an alveolar basal epithelial cell line. These cells express high levels of NQO1 (3000 + 300 enzymatic units). Cell death for many of the compounds tested were NQO1-specific, since addition of dicoumarol (DIC, an NQO1 inhibitor) spared their lethality. Based on the survival curves (Figure 2), previously reported arylamine substituted nor- β-lapachones have predicted IC_{50} as follows, compounds: $\mathbf{5 0}=2.6 \mu \mathrm{M}, \mathbf{5 1}=1.8 \mu \mathrm{M}, \mathbf{5 2}=2.4 \mu \mathrm{M}$ and $\mathbf{5 3}=1.3$ $\mu \mathrm{M}$. Compound 53 showed the most dramatic lethality within a narrow therapeutic window, going from 93% viability at $0.8 \mu \mathrm{M}$ to 11% viability at $1.6 \mu \mathrm{M}$. Overall, compounds $\mathbf{5 0 - 5 3}$ were NQO1-specific drugs exhibiting similar or lower IC_{50} values than β-lapachone. Compounds 21 and 22, selenium-containing quinones, with IC_{50} values $=0.64$ and $1.2 \mu \mathrm{M}$, respectively, were the most active of this series and were NQO1-dependent (Table 3). They showed tremendous therapeutic windows using DIC treatment as a surrogate for responses to NQO1- cells, such as that found for nearly all human normal tissue [12a]. These responses are indicative of NQO1-dependent futile redox cycling of these drugs that create massive ROS, specifically $\mathrm{H}_{2} \mathrm{O}_{2}$, that ultimately cause PARP1 hyperactivation and programmed necrosis [23,24,52].

The externalization of phosphatidylserine is considered an important marker in the apoptotic process. After treatments, selected compounds 21 and 22 induced a significant increase on populations of PC3 cells with phosphatidylserine expressed on the cell surface (Figure 3). On the other hand, phosphatidylserine externalization was not observed in cultures pretreated with NAC before 21 and 22 exposure or co-treated with dicoumarol (Figure 3). Our
data show that cytotoxic mechanisms of tested compounds may involve drug bioreduction by quinone reductase NQO1 as well emphasizing the ROS contribution on the cytotoxicity suggesting that tested compounds-induced apoptosis is associated with ROS production. Finally, corroborating these studies, we observed that a short exposure (1 h) to compound $\mathbf{2 1}$ led to the generation of intracellular ROS. In other hand, in cultures pre-exposed with NAC, compound 21 was not able to generate ROS, which may be explained due the antioxidant protection exercised by NAC (See Figure S1 in the Supporting Information).

3. Conclusions

By using the strategy of conjoining two redox centres, a quinoidal moiety and the atom of selenium, we prepared and evaluated the activities of novel and diverse selenium-containing quinone-based 1,2,3-triazole compounds against cancer versus normal cell lines. We assessed these drugs for lethality overall (Table 1) as well as for specific role of NQO1. In general, our approach was efficient and we identified compounds with IC_{50} values below 0.3 $\mu \mathrm{M}$ that were more potent than β-lapachone or doxorubicin, a standard clinically used agent against several types of cancers. We also studied the efficacy of two more active compounds 21 and 22 and found that these are specifically bioactivated by NQO1 with higher potency than nor- β-lapachone, previously published by us. Interestingly, we found that several of these drugs contained glutathione peroxidase (GPx)-like activities with selected seleniumcontaining nor- β-lapachone-based 1,2,3-triazoles being the most potent, and functionally acting on these two targets. Annexin V cytometry assay was also used to visualize the cell population in viable, early and late apoptosis stage for compounds 21 and 22. The cytotoxic mechanisms of $\mathbf{2 1}$ and $\mathbf{2 2}$ are intrinsically related with ROS contribution on the cytotoxicity suggesting that apoptosis is associated with ROS production. In order, we have described different classes of quinones, ortho- and para-quinoidal systems with potent antitumor activity. For example, compound 29 (para-quinone) has IC_{50} in the range of 0.62 to $2.42 \mu \mathrm{M}$ in the cancer cell lines evaluated. Ortho-quinones, exemplified for compounds 10, 21, 22 and 26, presented IC_{50} among 0.07 to $2.52 \mu \mathrm{M}$. Finally, we have described potent antitumor naphthoquinone compounds that emerge as promising molecules for the therapeutic use of cancers overexpressing NQO1.

4. Experimental Section

4.1. Chemistry

4.1.1. General procedures-Lawsone were acquired from Sigma-Aldrich (St. Louis, MO, USA). Lapachol (1) (2-hydroxy-3-(3'-methyl-2'-butenyl)-1,4-naphthoquinone) was extracted from the heartwood of Tabebuia sp. (Tecoma). C-allyl lawsone (23) was prepared from lawsone as previously reported [53]. A saturated aqueous sodium carbonate solution was added to the sawdust of ipe tree. Upon observing rapid formation of lapachol sodium salt, hydrochloric acid was added, allowing the precipitation of lapachol. Then, the solution was filtered and a yellow solid was obtained. This solid was purified by recrystallizations with hexane. All chemicals were obtained from commercial sources and used without further purification. Solvents were distilled and when required were dried by distillation according to standard procedure [54].

For the synthesis of (azidomethyl)(phenyl)selane $\left(\mathrm{PhSeCH}_{2} \mathrm{~N}_{3}\right)$: Initially (chloromethyl) (phenyl)selane was prepared by the reaction of a solution of diphenyl diselenide (3.0 mmol) in THF (6.0 mL) with NaBH_{4} (2 eq.) in $\mathrm{EtOH}(6.0 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. The mixture was kept under reflux in inert atmosphere and stirred for 12 h . After this period and subsequently extraction with $\mathrm{H}_{2} \mathrm{O}$, the organic phase were combined, dried over MgSO_{4}, and concentrated under vacuum. The residue was purified by flash chromatography on silica gel using hexane as the eluent [55]. To a solution of (chloromethyl)(phenyl)selane ($\mathrm{PhSeCH} \mathrm{Cl}_{2} \mathrm{Cl}$) (3.0 mmol) in $\mathrm{CH}_{3} \mathrm{CN}(5.0 \mathrm{~mL})$, sodium azide (4.5 mmol) and 18 -crown-6 $(0.60 \mathrm{mmol})$ were added at room temperature. Then the reaction mixture was stirred for 48 h under nitrogen atmosphere. After this time, 30 mL of $\mathrm{H}_{2} \mathrm{O}$ was added and the organic phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were combined, dried over MgSO_{4}, and concentrated under vacuum. The residue was purified by flash chromatography on silica gel using hexane as the eluent. The product was obtained in 90% yield [56].

For the synthesis of phenyl propargyl selenide: To a solution of diphenyl diselenide (1.0 mmol) in THF (8.0 mL) with NaBH_{4} ($2 \mathrm{eq}$.) in $\mathrm{EtOH}(4 \mathrm{~mL}$). The mixture was kept under agitation at temperatue of $0{ }^{\circ} \mathrm{C}$ under inert atmosphere and, then, propargyl bromide (2.0 $\mathrm{mmol})$ in THF $(4 \mathrm{~mL})$ was added. After 10 minutes, 30 mL of $\mathrm{H}_{2} \mathrm{O}$ was added and the organic phase was extracted with ethyl acetate. The organic phases were combined, dried over MgSO_{4}, and concentrated under vacuum. The residue was purified by flash chromatography on silica gel using hexane as the eluent. The product was obtained in 85% yield [57].

Melting points were obtained on a Thomas Hoover and are uncorrected. Column chromatography was performed on silica gel (SiliaFlash G60 UltraPure 60-200 $\mu \mathrm{m}, 60 \AA$). Infrared spectra were recorded on an FTIR Spectrometer IR Prestige-21-Shimadzu. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were recorded at room temperature using a Bruker AVANCE DRX200 and DRX 400 MHz , in the solvents indicated, with tetramethylsilane (TMS) as internal reference. Chemical shifts (δ) are given in parts per million (ppm) and coupling constants (J) in Hertz (Hz). The mass spectrometer was operated in the positive ion mode. A standard atmospheric pressure photoionization (APPI) source was used to generate the ions. The sample was injected using a constant flow ($3 \mu \mathrm{~L} / \mathrm{min}$). The solvent was an acetonitrile/methanol mixture. The APPI-Q-TOF MS instrument was calibrated in the mass range of $50-3000 \mathrm{~m} / \mathrm{z}$ using an internal calibration standard (low concentration tuning mix solution) supplied by Agilent Technologies. Data were processed employing Bruker Data Analysis software version 4.0. Compounds were named following IUPAC rules as applied by ChemBioDraw Ultra (version 12.0).

4.1.2. Procedures to prepare arylamino lapachones 4, 13 and 19

To prepare 4 and 13: Compounds 3 and $12(1.0 \mathrm{mmol})$ were dissolved in 25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and an excess of 3-ethynylaniline ($117 \mathrm{mg}, 1.2 \mathrm{mmol}$) was added. The mixture was left under stirring overnight, followed by the addition of 50 mL of water. The organic phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with $10 \% \mathrm{HCl}(3 \times 50 \mathrm{~mL})$, dried over sodium sulfate, and filtered. The solvent from the crude was evaporated under reduced pressure and it was
purified by column chromatography on silica-gel, using eluents with an increasing polarity gradient mixture of hexane and ethyl acetate ($9 / 1$ to $7 / 3$).

To prepare 19: To a solution of nor-lapachol (17) ($228 \mathrm{mg}, 1.0 \mathrm{mmol}$) in 25 mL of chloroform, 2 mL of bromine was added. The bromo intermediate $\mathbf{1 8}$ precipitated immediately as an orange solid. After removal of bromine, by adding dichloromethane and then removing the organic solvent with dissolved bromine by rotary evaporator, an excess of 3-ethynylaniline ($117 \mathrm{mg}, 1.2 \mathrm{mmol}$) was added in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the mixture was stirred overnight. The crude reaction mixture was poured into 50 mL of water. The organic phase was separated and washed with $10 \% \mathrm{HCl}(3 \times 50 \mathrm{~mL})$, dried over sodium sulfate, filtered, and evaporated under reduced pressure. The product 19 was obtained after purification by column chromatography in silica-gel, eluted with an increasing polarity gradient mixture of hexane and ethyl acetate ($9 / 1$ to $7 / 3$).
4.1.3. General procedures to prepare the azide derivatives-The previously published azido derivatives $\mathbf{5}, \mathbf{9}, \mathbf{1 4}, \mathbf{2 0}, \mathbf{2 5}, \mathbf{3 9}, 46$ were prepared as described in the literature [40-42,46-48]. Compound $\mathbf{2 8}(1.0 \mathrm{mmol})$ was prepared from $\mathbf{2 7}$ in the presence of sodium azide ($120 \mathrm{mg}, 1.85 \mathrm{mmol}$) in 2 mL of dimethylformamide (DMF). The mixture was stirred at room temperature until product formation was complete as determined by thin layer chromatography. After extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the residue was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Compound $\mathbf{2 8}$ was obtained after purification by column chromatography on silica gel eluting with a gradient mixture of hexane:ethyl acetate with increasing polarity. The unpublished azide derivative 47 was prepared following the same procedure previously described [48].
4.1.4. General procedures for the preparation of 1,2,3-triazole derivatives—The azidoquinones (1.0 mmol) or quinone with terminal alkynes $(1.0 \mathrm{mmol})$ were reacted with $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(0.04 \mathrm{mmol})$ and sodium ascorbate $(0.11 \mathrm{mmol})$ and the phenyl propargyl selenide ($195 \mathrm{mg}, 1.0 \mathrm{mmol}$) or (azidomethyl)(phenyl)selane ($212 \mathrm{mg}, 1.0 \mathrm{mmol}$) in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{H}_{2} \mathrm{O}(12 \mathrm{~mL}, 1: 1, \mathrm{v} / \mathrm{v})$. The mixture was stirred at room temperature until product formation was complete as determined by thin layer chromatography. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with a gradient mixture of hexane:ethyl acetate with increasing polarity.

4.1.5. 4-((3-ethynylphenyl)amino)-2,2-dimethyl-3,4-dihydro-2H-

benzo[g]chromene-5,10-dione (4): Yield: 70\%; mp 196-197 ${ }^{\circ} \mathrm{C}$; Brown solid. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.95-6.85 (m, 2H), $6.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{t}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~s}, 1 \mathrm{H}), 2.27(\mathrm{dd}, J$ $=3.5$ and $14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{dd}, J=5.5$ and $14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $50 \mathrm{MHz}) \delta 183.7,180.0,155.5,146.3,134.6,133.3,132.1,131.0,129.4,126.5,126.3$, 123.0, 122.8, 118.4, 117.1, 115.2, 84.1, 79.2, 43.7, 37.4, 28.7, 26.3; HRMS (ES ${ }^{+}$) calculated for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 358.1443$; found: 358.1488 .
4.1.6. 2,2-dimethyl-4-((3-(1-((phenylselanyl)methyl)-1H-1,2,3-triazol-4-yl)phenyl)amino)-3,4-dihydro-2H-benzo[g]chromene-5,10-dione (6): Yield: 75\%; mp $101-102{ }^{\circ} \mathrm{C}$; Red solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11\left(\mathrm{dd}, J=7.1\right.$ and $\left.1.7 \mathrm{~Hz}, \mathrm{H}_{9}\right)$, $8.07\left(\mathrm{dd}, J=7.1\right.$ and $\left.1.6 \mathrm{~Hz}, \mathrm{H}_{6}\right), 7.72\left(\mathrm{td}, J=7.1,7.1\right.$ and $\left.1.6 \mathrm{~Hz}, \mathrm{H}_{8}\right), 7.68(\mathrm{td}, J=7.1,7.1$ and $1.7 \mathrm{~Hz}, \mathrm{H}_{7}$), $7.62\left(\mathrm{~s}, \mathrm{H}_{5}\right.$-triazole), $7.50\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, \mathrm{H}_{2}, / / 6^{\prime}\right)$), 7.33-7.39 (m, H4, $)$, 7.26-7.28 ($\mathrm{m}_{2}, \mathrm{H}_{2}$), 7.28-7.33 ($\mathrm{m}, \mathrm{H}_{3^{\prime},} / 5^{\prime}$,), 7.20-7.26 (m, H5 ${ }^{\prime}$), $7.05\left(\mathrm{~d}, J=7.7 \mathrm{~Hz}, \mathrm{H}_{4}\right.$), 6.69 (dd, $J=8.0$ and $1.8 \mathrm{~Hz}, \mathrm{H}_{6}$), $5.71\left(\mathrm{~s}, \mathrm{H}_{12}\right), 4.78\left(\mathrm{dd}, J=5.6\right.$ and $\left.3.4 \mathrm{~Hz}, \mathrm{H}_{4}\right), 2.32(\mathrm{dd}, J=$ 14.3 and $3.4 \mathrm{~Hz}, \mathrm{H}_{3 \mathrm{a}}$ or $\mathrm{H}_{3 \mathrm{~b}}$), $2.06\left(\mathrm{dd}, J=14.3\right.$ and $5.6 \mathrm{~Hz}, \mathrm{H}_{3 \mathrm{a}}$ or $\mathrm{H}_{3 \mathrm{~b}}$), $1.55\left(\mathrm{~s}, \mathrm{H}_{11}\right.$, or H_{11}, $), 1.54\left(\mathrm{~s}, \mathrm{H}_{11}\right.$, or H_{11}, $)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 183.5\left(\mathrm{C}_{5}\right), 180.0\left(\mathrm{C}_{10}\right)$, 155.3 ($\mathrm{C}_{10 \mathrm{a}}$), 148.5 (C_{4}-triazole), $147.4\left(\mathrm{C}_{1}\right.$) , $134.8\left(\mathrm{C}_{2}{ }^{\prime} /{ }^{\prime}{ }^{\prime}{ }^{\prime}\right)$, $134.3\left(\mathrm{C}_{8}\right), 133.1\left(\mathrm{C}_{7}\right), 132.1$
 $\left(\mathrm{C}_{9}\right), 126.2\left(\mathrm{C}_{6}\right), 119.4\left(\mathrm{C}_{5}\right.$-triazole $), 118.9\left(\mathrm{C}_{4 \mathrm{a}}\right), 115.7\left(\mathrm{C}_{4}\right.$), $113.6\left(\mathrm{C}_{6}\right)$, $110.7\left(\mathrm{C}_{2}\right.$), 79.1 $\left(\mathrm{C}_{2}\right), 44.8\left(\mathrm{C}_{12}\right), 43.2\left(\mathrm{C}_{4}\right), 37.6\left(\mathrm{C}_{3}\right), 29.0\left(\mathrm{C}_{11}\right.$, or C_{11}, $), 26.1\left(\mathrm{C}_{11}\right.$, or C_{11}, $)$; HRMS (ES^{+}) calculated for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Se}[\mathrm{M}+\mathrm{H}]^{+}$: 571.1248; found: 571.1234.
4.1.7. 2,2-dimethyl-4-(4-((phenylselanyl)methyl)-1H-1,2,3-triazol-1-yl)-3,4-dihydro-2H-benzo[g]chromene-5,10-dione (7): Yield: 70\%; mp 168-169 ${ }^{\circ} \mathrm{C}$; Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18-8.09(\mathrm{~m}, 1 \mathrm{H}), 8.04-7.96(\mathrm{~m}, 1 \mathrm{H}), 7.80-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.39$ $(\mathrm{m}, 2 \mathrm{H}), 7.24-7.10(\mathrm{~m}, 4 \mathrm{H}), 5.71(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 2.73(\mathrm{dd}, J=5.5$ and 14.4 $\mathrm{Hz}, 1 \mathrm{H}), 2.29(\mathrm{dd}, J=6.3$ and $14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, 50 MHz) $\delta 182.7,179.5,156.3,145.3,134.7,133.7,131.8,131.1,129.7,129.1,127.5$, $126.8,126.6,122.0,115.0,79.4,49.6,39.0,27.0,26.5,20.8$; $\mathrm{HRMS}^{(E S}{ }^{+}$) calculated for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{SeNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 502.0646; found: 502.0643.
4.1.8. 3-bromo-2,2-dimethyl-4-(4-((phenylselanyl)methyl)-1H-1,2,3-triazol-1-yl)-3,4-dihydro-2H-benzo $[\boldsymbol{h}]$ chromene-5,6-dione (10): Yield: 90%; mp $105-106{ }^{\circ} \mathrm{C}$; Orange solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11$ (dd, $J=7.6$ and $1.4 \mathrm{~Hz}, \mathrm{H}_{7}$), 7.90 (dd, $J=7.6$ and $\left.1.2 \mathrm{~Hz}, \mathrm{H}_{10}\right), 7.73\left(\mathrm{td}, J=7.6,7.6\right.$ and $\left.1.2 \mathrm{~Hz}, \mathrm{H}_{8}\right), 7.63\left(\mathrm{td}, J=7.6,7.6\right.$ and $\left.1.4 \mathrm{~Hz}, \mathrm{H}_{9}\right)$, 7.48-7.52 (m, $\mathrm{H}_{2^{\prime} / 6}{ }^{\prime}$), $7.48\left(\mathrm{~s}, \mathrm{H}_{5}\right.$-triazole), 7.22-7.25 ($\mathrm{m}, \mathrm{H}_{3}{ }^{\prime} / 5^{\prime}$), $7.22-7.25\left(\mathrm{~m}, \mathrm{H}_{4}\right.$) $), 5.55(\mathrm{~d}$, $\left.J=8.9 \mathrm{~Hz}, \mathrm{H}_{4}\right), 4.93\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, \mathrm{H}_{3}\right), 4.17\left(\mathrm{~d}, J=13.3 \mathrm{~Hz}, \mathrm{H}_{12 \mathrm{a}}\right), 4.13(\mathrm{~d}, J=13.3 \mathrm{~Hz}$, $\mathrm{H}_{12 \mathrm{~b}}$), $1.71\left(\mathrm{~s}, \mathrm{H}_{11}\right.$ ' or H_{11}, , $), 1.64\left(\mathrm{~s}, \mathrm{H}_{11}\right.$, or H_{11}, , $)$; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 177.8$ $\left(\mathrm{C}_{6}\right), 176.4\left(\mathrm{C}_{5}\right), 162.7\left(\mathrm{C}_{10 b}\right), 144.5\left(\mathrm{C}_{4}\right.$-triazole $), 135.2\left(\mathrm{C}_{8}\right), 134.1\left(\mathrm{C}_{2} / / 6^{\prime}\right), 132.3\left(\mathrm{C}_{9}\right)$, $130.6\left(\mathrm{C}_{10 \mathrm{a}}\right), 130.5\left(\mathrm{C}_{6 \mathrm{a}}\right), 129.4\left(\mathrm{C}_{1}\right)$, $129.2\left(\mathrm{C}_{7}\right), 129.1\left(\mathrm{C}_{3}{ }^{\prime} / 5^{\prime}\right), 127.6\left(\mathrm{C}_{4}\right)$, $125.3\left(\mathrm{C}_{10}\right)$, $125.0\left(\mathrm{C}_{5}\right.$-triazole), $110.3\left(\mathrm{C}_{4 \mathrm{a}}\right), 83.4\left(\mathrm{C}_{2}\right), 54.4\left(\mathrm{C}_{3}\right), 58.9\left(\mathrm{C}_{4}\right), 20.7\left(\mathrm{C}_{11}\right.$, or C_{11},"), 27.4 $\left(\mathrm{C}_{11}\right.$, or C_{11},"), $20.7\left(\mathrm{C}_{12}\right)$; HRMS (ES+) calculated for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{BrN}_{3} \mathrm{O}_{3} \mathrm{Se}[\mathrm{M}+\mathrm{H}]^{+}$: 557.9931; found: 557.9923.
4.1.9. 3-((3-ethynylphenyl)amino)-2,2-dimethyl-2,3-dihydronaphtho[2,3-b]furan-4,9dione (13): Yield: 65%; mp $165-167{ }^{\circ} \mathrm{C}$; Brown solid. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.14-8.04 (m, 2H), 7.78-7.66 (m, 2H), $7.15(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.74$ $(\mathrm{s}, 1 \mathrm{H}), 6.62(\mathrm{dd}, J=2.1$ and $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 3.03(\mathrm{~s}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 1 \mathrm{H}), 1.65(\mathrm{~s}$, $3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 181.7,178.7,159.9,146.8,134.6,133.2$, 133.1, 131.5, 129.4, 126.5, 126.3, 123.0, 122.4, 122.1, 116.3, 114.0, 94.9, 83.9, 62.2, 29.5, 27.1, 21.5; HRMS $\left(\mathrm{ES}^{+}\right)$calculated for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 366.1106$; found: 366.1257.
4.1.10. 2,2-dimethyl-3-((3-(1-((phenylselanyl)methyl)-1H-1,2,3-triazol-4-yl)phenyl)amino)-2,3-dihydronaphtho [2,3-b]furan-4,9-dione (15): Yield: 70\%; mp $120-122{ }^{\circ} \mathrm{C}$; Red solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10\left(\mathrm{dd}, J=7.4\right.$ and $\left.1.4 \mathrm{~Hz}, \mathrm{H}_{8}\right)$, $8.07\left(\mathrm{dd}, J=7.4\right.$ and $\left.1.6 \mathrm{~Hz}, \mathrm{H}_{5}\right), 7.73\left(\mathrm{td}, J=7.4,7.4\right.$ and $\left.1.6 \mathrm{~Hz}, \mathrm{H}_{7}\right), 7.68(\mathrm{td}, J=7.4,7.4$
 7.27-7.39 (m, H ${ }_{4}$,'), $7.22\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{H}_{5}\right.$) , $7.20\left(\mathrm{~s}, \mathrm{H}_{2}\right.$), $7.04\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, \mathrm{H}_{4}\right.$) $), 6.61$ (dd, $J=7.8$ and $1.8 \mathrm{~Hz}, \mathrm{H}_{6}$), $5.71\left(\mathrm{~s}, \mathrm{H}_{11}\right), 4.96\left(\mathrm{~s}, \mathrm{H}_{3}\right), 4.05(\mathrm{sl}, \mathrm{NH}), 1.67\left(\mathrm{~s}, \mathrm{H}_{10}\right.$, or $\mathrm{H}_{10}{ }^{\prime}$), $1.57\left(\mathrm{~s}, \mathrm{H}_{10}\right.$, or $\left.\mathrm{H}_{10}{ }^{\prime \prime}\right)$) ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 181.8\left(\mathrm{C}_{4}\right), 178.6\left(\mathrm{C}_{9}\right), 159.8$ $\left(\mathrm{C}_{9 \mathrm{a}}\right), 148.3\left(\mathrm{C}_{4}\right.$-triazole $), 147.5\left(\mathrm{C}_{1}\right.$), $134.8\left(\mathrm{C}_{2}{ }^{\prime} /{ }^{\prime}\right.$ ', $), 134.5\left(\mathrm{C}_{7}\right), 133.2\left(\mathrm{C}_{8 \mathrm{a}}\right), 133.1\left(\mathrm{C}_{6}\right)$,
 $126.2\left(\mathrm{C}_{5}\right), 122.3\left(\mathrm{C}_{3 \mathrm{a}}\right)$, $119.4\left(\mathrm{C}_{5}\right.$-triazole $), 115.9\left(\mathrm{C}_{4}\right)$, $113.1\left(\mathrm{C}_{6}\right.$), $110.5\left(\mathrm{C}_{2}\right.$), $95.5\left(\mathrm{C}_{2}\right)$, $62.3\left(\mathrm{C}_{3}\right)$, $44.7\left(\mathrm{C}_{11}\right), 27.2\left(\mathrm{C}_{10}\right.$, or C_{10}, $)$, $21.6\left(\mathrm{C}_{10}\right.$, or C_{10}, $)$; HRMS $\left(\mathrm{ES}^{+}\right)$calculated for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Se}[\mathrm{M}+\mathrm{H}]^{+}$: 557.1092; found: 557.1101.

4.1.11. 2,2-dimethyl-3-(4-((phenylselanyl)methyl)-1H-1,2,3-triazol-1-yl)-2,3-

dihydronaphtho [2,3-b]furan-4,9-dione (16): Yield: 80%; mp $172-174{ }^{\circ} \mathrm{C}$; Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18\left(\mathrm{dd}, J=7.4\right.$ and $\left.1.6 \mathrm{~Hz}, \mathrm{H}_{8}\right), 8.08(\mathrm{dd}, J=7.4$ and 1.6 Hz , $\left.\mathrm{H}_{5}\right), 7.80\left(\mathrm{td}, J=7.4,7.4\right.$ and $\left.1.6 \mathrm{~Hz}, \mathrm{H}_{7}\right), 7.76\left(\mathrm{td}, J=7.4,7.4\right.$ and $\left.1.6 \mathrm{~Hz}, \mathrm{H}_{6}\right), 7.40(\mathrm{dd}, J$ $=7.9$ and $\left.1.4 \mathrm{~Hz}, \mathrm{H}_{2}{ }^{\prime} / 6^{\prime}\right), 7.08-7.19\left(\mathrm{~m}, \mathrm{H}_{3^{\prime} / 5^{\prime}}\right), 7.08-7.19\left(\mathrm{~m}, \mathrm{H}_{4}\right.$), $6.98\left(\mathrm{~s}, \mathrm{H}_{5}\right.$-triazole $)$, $5.92\left(\mathrm{~s}, \mathrm{H}_{3}\right), 4.14\left(\mathrm{~d}, J=13.5 \mathrm{~Hz}, \mathrm{H}_{11}\right), 4.09\left(\mathrm{~d}, J=13.5 \mathrm{~Hz}, \mathrm{H}_{11}\right), 1.67\left(\mathrm{~s}, \mathrm{H}_{10}\right.$, or H_{10},), $1.02\left(\mathrm{~s}, \mathrm{H}_{10}\right.$, or $\mathrm{H}_{10}{ }^{\prime}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 180.5\left(\mathrm{C}_{4}\right), 177.8\left(\mathrm{C}_{9}\right), 151.1\left(\mathrm{C}_{9 \mathrm{a}}\right)$, $145.8\left(\mathrm{C}_{4}\right.$-triazole $), 134.9\left(\mathrm{C}_{7}\right), 133.9\left(\mathrm{C}_{2^{\prime} / 6}{ }^{\prime}\right), 133.6\left(\mathrm{C}_{6}\right), 132.7\left(\mathrm{C}_{8 \mathrm{a}}\right), 131.6\left(\mathrm{C}_{4 \mathrm{a}}\right), 129.13$ $\left(\mathrm{C}_{1}\right.$), $129.06\left(\mathrm{C}_{3^{\prime} / 5}{ }^{\prime}\right), 127.5\left(\mathrm{C}_{4}{ }^{\prime}\right), 126.8\left(\mathrm{C}_{8}\right), 126.5\left(\mathrm{C}_{5}\right), 121.2\left(\mathrm{C}_{5}\right.$-triazole), $118.3\left(\mathrm{C}_{3 \mathrm{a}}\right)$, $94.5\left(\mathrm{C}_{2}\right), 67.3\left(\mathrm{C}_{3}\right), 27.4\left(\mathrm{C}_{10}\right.$, or C_{10}, $), 20.7\left(\mathrm{C}_{10}\right.$, or C_{10},), $20.5\left(\mathrm{C}_{11}\right)$; HRMS (ES^{+}) calculated for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{SeNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 488.0489; found: 488.0486.
4.1.12. 3-((3-ethynylphenyl)amino)-2,2-dimethyl-2,3-dihydronaphtho[1,2-b]furan-4,5dione (19): Yield: 70%; mp 205-206 ${ }^{\circ} \mathrm{C}$; Red solid. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10$ (dd, $J=2.0$ and $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{dd}, J=2.0$ and $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 3.02(\mathrm{~s}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H})$, $1.57(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 175.4,169.7,147.1,134.7,132.7,131.2,129.6$, 129.4, 128.6, 125.2, 122.9, 122.2, 116.1, 115.0, 114.1, 96.8, 84.1, 61.5, 27.4, 21.8; HRMS $\left(\mathrm{ES}^{+}\right)$calculated for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 366.1106; found: 366.1108.

4.1.13. 2,2-dimethyl-3-((3-(1-((phenylselanyl)methyl)-1H-1,2,3-triazol-4-

yl)phenyl)amino)-2,3-dihydronaphtho[1,2-b]furan-4,5-dione (21): Yield: 50\%; mp $135-137{ }^{\circ} \mathrm{C}$; Red solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, \mathrm{H}_{6}\right), 7.70(\mathrm{td}, J=$ $7.4,7.4$ and $\left.1.1 \mathrm{~Hz}, \mathrm{H}_{7}\right), 7.74\left(\mathrm{dd}, J=7.4\right.$ and $\left.1.1 \mathrm{~Hz}, \mathrm{H}_{9}\right), 7.64(\mathrm{td}, J=7.4,7.4$ and 1.6 Hz ,
 H_{4}, $), 7.14\left(\mathrm{~s}, \mathrm{H}_{2}\right.$), $7.20\left(\mathrm{dd}, J=8.1\right.$ and $7.7 \mathrm{~Hz}, \mathrm{H}_{5}$) $), 7.02\left(\mathrm{~d}, J=7.7 \mathrm{~Hz}, \mathrm{H}_{4}\right.$) , $6.56(\mathrm{dd}, J=$ 8.1 and $2.2 \mathrm{~Hz}, \mathrm{H}_{6}$), $5.51\left(\mathrm{~s}, \mathrm{H}_{11}\right), 4.89\left(\mathrm{~s}, \mathrm{H}_{3}\right), 3.70-4.37(\mathrm{sl}, \mathrm{NH}), 1.60\left(\mathrm{~s}, \mathrm{H}_{10}\right.$, or H_{10} ', $)$, $1.17\left(\mathrm{~s}, \mathrm{H}_{10}\right.$, or $\left.\mathrm{H}_{10},{ }^{\prime}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 181.0\left(\mathrm{C}_{5}\right), 175.4\left(\mathrm{C}_{4}\right), 169.6\left(\mathrm{C}_{9 \mathrm{~b}}\right)$, $148.3\left(\mathrm{C}_{4}\right.$-triazole $), 147.8\left(\mathrm{C}_{1}\right.$), $134.8\left(\mathrm{C}_{2}{ }^{\prime \prime} / 6^{\prime}\right.$) $), 134.6\left(\mathrm{C}_{7}\right), 132.5\left(\mathrm{C}_{8}\right), 131.3\left(\mathrm{C}_{3}{ }^{\prime}\right), 131.2$ ($\mathrm{C}_{9 \mathrm{a}}$), 129.8 (C_{5}), 129.6 ($\mathrm{C}_{3}{ }^{\prime \prime} / 5^{\prime}$ '), $129.5\left(\mathrm{C}_{6}\right), 128.9\left(\mathrm{C}_{4}{ }^{\prime \prime}\right), 127.5\left(\mathrm{C}_{5 \mathrm{a}}\right), 127.4\left(\mathrm{C}_{1}\right.$, , $), 125.1$ $\left(\mathrm{C}_{9}\right), 119.5\left(\mathrm{C}_{5}\right.$-triazole $), 115.5\left(\mathrm{C}_{4}\right.$), $115.1\left(\mathrm{C}_{3 \mathrm{a}}\right), 113.0\left(\mathrm{C}_{6}\right)$, $110.2\left(\mathrm{C}_{2},\right), 96.9\left(\mathrm{C}_{2}\right), 61.6$
$\left(\mathrm{C}_{3}\right), 44.8\left(\mathrm{C}_{11}\right), 27.5\left(\mathrm{C}_{10}\right.$, or C_{10}, $), 21.8\left(\mathrm{C}_{10}\right.$, or C_{10}, , $)$; HRMS (ES^{+}) calculated for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{SeNa}[\mathrm{M}+\mathrm{Na}]^{+}: 579.0911$; found: 579.0890.

4.1.14. 2,2-dimethyl-3-(4-((phenylselanyl)methyl)-1H-1,2,3-triazol-1-yl)-2,3-

 dihydronaphtho [1,2-b]furan-4,5-dione (22): Yield: 80%; mp $186-188{ }^{\circ} \mathrm{C}$; Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.19\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, \mathrm{H}_{6}\right), 7.68-7.82\left(\mathrm{~m}, \mathrm{H}_{7}\right), 7.68-7.82\left(\mathrm{~m}, \mathrm{H}_{8}\right)$, 7.68-7.82 (m, H9), $7.41\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, \mathrm{H}_{2^{\prime} / 6^{\prime}}\right)$, 7.08-7.21 ($\mathrm{m}, \mathrm{H}_{3^{\prime} / 5^{\prime}}$), 7.08-7.21 ($\mathrm{m}, \mathrm{H}_{4}{ }^{\prime}$), 7.00 ($\mathrm{s}, \mathrm{H}_{5}$-triazole), $5.86\left(\mathrm{~s}, \mathrm{H}_{3}\right), 4.05-4.16\left(\mathrm{~m}, \mathrm{H}_{11}\right), 1.70\left(\mathrm{~s}, \mathrm{H}_{10}\right.$, or H_{10}, $), 1.05\left(\mathrm{~s}, \mathrm{H}_{10}\right.$, or $\left.\mathrm{H}_{10},{ }^{\prime}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 180.0\left(\mathrm{C}_{5}\right), 174.5\left(\mathrm{C}_{4}\right), 171.1\left(\mathrm{C}_{9 \mathrm{~b}}\right), 145.5\left(\mathrm{C}_{4}{ }^{-}\right.$ triazole), $134.9\left(\mathrm{C}_{7}\right), 134.0\left(\mathrm{C}_{2^{\prime} / 6}\right)$, $133.4\left(\mathrm{C}_{8}\right), 131.4\left(\mathrm{C}_{9 \mathrm{a}}\right), 129.9\left(\mathrm{C}_{6}\right), 129.2\left(\mathrm{C}_{1}\right), 129.1$ $\left(\mathrm{C}_{3}{ }^{\prime} / 5^{\prime}\right), 127.5\left(\mathrm{C}_{4}{ }^{\prime}\right), 126.6\left(\mathrm{C}_{5 \mathrm{a}}\right), 125.6\left(\mathrm{C}_{9}\right), 121.2\left(\mathrm{C}_{5}\right.$-triazole $), 111.2\left(\mathrm{C}_{3 \mathrm{a}}\right), 95.9\left(\mathrm{C}_{2}\right)$, $66.7\left(\mathrm{C}_{3}\right), 27.6\left(\mathrm{C}_{10}\right.$, or $\mathrm{C}_{10}{ }^{\prime}$), $20.9\left(\mathrm{C}_{10}\right.$, or C_{10}, , $), 20.6\left(\mathrm{C}_{11}\right)$; HRMS (ES^{+}) calculated for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{SeNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 488.0489; found: 488.0482.4.1.15. 2-((4-((phenylselanyl)methyl)-1H-1,2,3-triazol-1-yl)methyl)-2,3-dihydronaphtho[1,2-b]furan-4,5-dione (26): Yield: 85%; mp 163-164 ${ }^{\circ} \mathrm{C}$; Orange solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00\left(\mathrm{dd}, J=7.4\right.$ and $\left.1.5 \mathrm{~Hz}, \mathrm{H}_{6}\right), 7.59(\mathrm{td}, J=7.4,7.4$ and $\left.1.4 \mathrm{~Hz}, \mathrm{H}_{7}\right), 7.53\left(\mathrm{td}, J=7.4,7.4\right.$ and $\left.1.5 \mathrm{~Hz}, \mathrm{H}_{8}\right), 7.44\left(\mathrm{dd}, J=7.4\right.$ and $\left.1.1 \mathrm{~Hz}, \mathrm{H}_{9}\right)$, 7.33-7.41 ($\mathrm{m}, \mathrm{H}_{2}{ }^{\prime} / 6^{\prime}$), 7.31 ($\mathrm{s}, \mathrm{H}_{5}$-triazole), 7.13-7.18 (m, $\mathrm{H}_{3^{\prime} / 5^{\prime}}$), 7.13-7.18 ($\mathrm{m}, \mathrm{H}_{4}$) , $5.33-5.42\left(\mathrm{~m}, \mathrm{H}_{2}\right), 4.55\left(\mathrm{dd}, J=14.6\right.$ and $\left.7.3 \mathrm{~Hz}, \mathrm{H}_{10 \mathrm{a}}\right), 4.64\left(\mathrm{dd}, J=14.6\right.$ and $\left.3.9 \mathrm{~Hz}, \mathrm{H}_{10 \mathrm{~b}}\right)$, $4.11\left(\mathrm{~s}, \mathrm{H}_{11}\right), 3.23\left(\mathrm{dd}, J=15.8\right.$ and $\left.10.2 \mathrm{~Hz}, \mathrm{H}_{3 \mathrm{a}}\right), 2.83\left(\mathrm{dd}, J=15.8\right.$ and $\left.7.0 \mathrm{~Hz}, \mathrm{H}_{3 \mathrm{~b}}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 180.4$ (C5), 175.2 (C4), 186.6 (C9b), 146.4 (C4-triazole), 134.7 (C7), 132.9 (C2’/6’), 132.3 (C8), 130.6 (C9a), 129.8 (C6), 129.8 (C1'), 129.2 (C3’/5’), 127.5 (C4'), 126.9 (C5a), 124.4 (C9), 122.7 (C5-triazole), 114.7 (C3a), 84.3 (C2), 53.3 (C10), 29.6 (C3), 20.2 (C11); HRMS (ES^{+}) calculated for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Se}[\mathrm{M}+\mathrm{H}]^{+}$: 452.0513; found: 452.0896.
4.1.16. 2-(azidomethyl)-2,3-dihydronaphtho[2,3-b]furan-4,9-dione (28): Yield: 90%; mp $116-117{ }^{\circ} \mathrm{C}$; Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.57(\mathrm{~m}$, $2 \mathrm{H}), 5.23-5.09(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=3.7$ and $13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=5.0$ and 13.3 Hz , $1 \mathrm{H}), 3.26(\mathrm{dd}, J=10.8$ and $17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=7.5$ and $17.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 181.8,177.1,159.4,134.1,133.0,132.6,131.2,126.1,125.8,124.0$, 83.6, 53.5, 30.0; HRMS $\left(\mathrm{ES}^{+}\right)$calculated for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 256.0722$; found: 256.0716 .

4.1.17. 2-((4-((phenylselanyl)methyl)-1H-1,2,3-triazol-1-yl)methyl)-2,3-

dihydronaphtho [2,3-b]furan-4,9-dione (29): Yield: 90%; mp $169-171{ }^{\circ} \mathrm{C}$; Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00\left(\mathrm{dd}, J=7.4\right.$ and $\left.1.5 \mathrm{~Hz}, \mathrm{H}_{8}\right), 7.93(\mathrm{dd}, J=7.4$ and 1.6 Hz , $\left.\mathrm{H}_{5}\right), 7.66\left(\mathrm{td}, J=7.4,7.4\right.$ and $\left.1.6 \mathrm{~Hz}, \mathrm{H}_{7}\right), 7.62\left(\mathrm{td}, J=7.4,7.4\right.$ and $\left.1.5 \mathrm{~Hz}, \mathrm{H}_{6}\right), 7.32-7.37$ ($\mathrm{m}, \mathrm{H}_{5}$-triazole), 7.32-7.37 ($\mathrm{m}, \mathrm{H}_{2^{\prime} / 6^{\prime}}$), 7.11-7.17 ($\mathrm{m}, \mathrm{H}_{3}{ }^{\prime} 5^{\prime}$), 7.11-7.17 ($\mathrm{m}, \mathrm{H}_{4}$), 5.23-5.32 $\left(\mathrm{m}, \mathrm{H}_{2}\right), 4.64\left(\mathrm{dd}, J=14.7\right.$ and $\left.3.9 \mathrm{~Hz}, \mathrm{H}_{10 \mathrm{~b}}\right), 4.57\left(\mathrm{dd}, J=14.7\right.$ and $5.6 \mathrm{~Hz}, \mathrm{H}_{10 \mathrm{a}}$), 4.05 (s, H_{11}), 3.26 (dd, $J=17.4$ and $10.6 \mathrm{~Hz}, \mathrm{H}_{3 \mathrm{~b}}$), 2.95 (dd, $J=17.4$ and $8.1 \mathrm{~Hz}, \mathrm{H}_{3 \mathrm{~b}}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 181.6\left(\mathrm{C}_{4}\right), 177.2\left(\mathrm{C}_{9}\right), 159.0\left(\mathrm{C}_{9 \mathrm{a}}\right), 146.4\left(\mathrm{C}_{4}\right.$-triazole), $134.4\left(\mathrm{C}_{7}\right)$, $133.1\left(\mathrm{C}_{2^{\prime} / 6^{\prime}}\right)$, $132.7\left(\mathrm{C}_{8 \mathrm{a}}\right), 133.2\left(\mathrm{C}_{6}\right), 131.3\left(\mathrm{C}_{4 \mathrm{a}}\right), 129.7\left(\mathrm{C}_{1}\right)$, $129.1\left(\mathrm{C}_{3}{ }^{\prime} / 5^{\prime}\right)$, $127.4\left(\mathrm{C}_{4}\right.$) , $126.4\left(\mathrm{C}_{8}\right), 126.2\left(\mathrm{C}_{5}\right), 124.1\left(\mathrm{C}_{3 \mathrm{a}}\right), 123.1\left(\mathrm{C}_{5}\right.$-triazole $), 83.0\left(\mathrm{C}_{2}\right), 52.9\left(\mathrm{C}_{10}\right), 30.1\left(\mathrm{C}_{3}\right)$,
$20.3\left(\mathrm{C}_{11}\right)$; HRMS $\left(\mathrm{ES}^{+}\right)$calculated for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Se}[\mathrm{M}+\mathrm{H}]^{+}: 452.0513$; found: 452.0512.
4.1.18. 2-chloro-3-(((1-((phenylselanyl)methyl)-1H-1,2,3-triazol-4-yl)methyl)amino)-1,4naphthoquinone (36): Yield: 65%; mp $127-128{ }^{\circ} \mathrm{C}$; Orange solid. ${ }^{1} \mathrm{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.14(\mathrm{dd}, J=1.2$ and $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{dd}, J=1.2$ and $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.97-7.57(\mathrm{~m}$, 2H), 7.51-7.40 (m, 3H), 7.33-7.23 (m, 3H), 6.49 (sl, 1H), $5.68(\mathrm{~s}, 2 \mathrm{H}), 5.10(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 180.0,176.7,144.8,143.6,134.8,134.7,132.5,132.3$, 129.7, 129.5, 129.0, 126.9, 126.8, 126.7, 121.8, 111.6, 43.6, 40.0; HRMS (ES ${ }^{+}$) calculated for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{ClN}_{4} \mathrm{O}_{2} \mathrm{Se}[\mathrm{M}+\mathrm{H}]^{+}: 459.0127$; found: 459.0128 .

4.1.19. 2-bromo-3-(((1-((phenylselanyl)methyl)-1H-1,2,3-triazol-4-

yl)methyl)amino)-1,4-naphthoquinone (37): Yield: 60%; mp 124-126 ${ }^{\circ} \mathrm{C}$; Orange solid. ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.13(\mathrm{dd}, J=1.2$ and $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{dd}, J=1.2$ and $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.20(\mathrm{~m}, 3 \mathrm{H}), 6.50(\mathrm{sl}$, $1 \mathrm{H}), 5.68(\mathrm{~s}, 2 \mathrm{H}), 5.11(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 180.1,176.7$, $146.2,145.0,135.0,132.8,132.3,130.0,129.8,129.3,127.2,127.1,122.1,44.6,40.7$; HRMS (ES+) calculated for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{BrN}_{4} \mathrm{O}_{2} \mathrm{Se}[\mathrm{M}+\mathrm{H}]^{+}$: 502.9622; found: 502.9612.
4.1.20. 2-(((1-((phenylselanyl)methyl)-1H-1,2,3-triazol-4-yl)methyl)amino)-1,4naphthoquinone (38): Yield: 60%; mp $162-164{ }^{\circ} \mathrm{C}$; Red solid. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10\left(\mathrm{dd}, J=7.6\right.$ and $\left.1.3 \mathrm{~Hz}, \mathrm{H}_{8}\right), 8.06\left(\mathrm{dd}, J=7.6\right.$ and $\left.1.3 \mathrm{~Hz}, \mathrm{H}_{5}\right), 7.74(\mathrm{td}, J=7.6,7.6$ and $\left.1.3 \mathrm{~Hz}, \mathrm{H}_{6}\right), 7.64\left(\mathrm{td}, J=7.6,7.6\right.$ and $\left.1.3 \mathrm{~Hz}, \mathrm{H}_{7}\right), 7.46\left(\mathrm{dd}, J=7.8\right.$ and $\left.1.5 \mathrm{~Hz}, \mathrm{H}_{2} / / 6^{\prime}\right)$, 7.39 ($\mathrm{s}, \mathrm{H}_{5}$-triazole), 7.27-7.35 (m, $\mathrm{H}_{3^{\prime} / 5^{\prime}}$), 7.27-7.35 (m, H4 ${ }^{\prime}$), 6.22-6.35 (m, NH), 5.77 (s , $\left.\mathrm{H}_{3}\right), 5.68\left(\mathrm{~s}, \mathrm{H}_{10}\right), 4.45\left(\mathrm{~d}, J=5.8 \mathrm{~Hz}, \mathrm{H}_{9}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 183.0\left(\mathrm{C}_{1}\right), 181.6}$ $\left(\mathrm{C}_{4}\right), 147.4\left(\mathrm{C}_{4}\right.$-triazole), $143.2\left(\mathrm{C}_{2}\right), 134.82\left(\mathrm{C}_{2}{ }^{\prime} 6^{\prime}\right), 134.78\left(\mathrm{C}_{6}\right), 133.4\left(\mathrm{C}_{4 \mathrm{a}}\right), 132.2\left(\mathrm{C}_{7}\right)$, $130.4\left(\mathrm{C}_{8 \mathrm{a}}\right), 129.7\left(\mathrm{C}_{3}{ }^{\prime} / 5^{\prime}\right)$, $129.1\left(\mathrm{C}_{4},\right), 127.0\left(\mathrm{C}_{1},\right), 126.3\left(\mathrm{C}_{5}\right), 126.2\left(\mathrm{C}_{8}\right), 121.7\left(\mathrm{C}_{5}{ }^{-}\right.$ triazole), $101.7\left(\mathrm{C}_{3}\right), 44.7\left(\mathrm{C}_{10}\right), 38.1\left(\mathrm{C}_{9}\right)$; HRMS (ES+) calculated for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Se}$ [M $+\mathrm{H}]^{+}$: 425.0517 ; found: 425.0512 .

4.1.21. 2-(4-((phenylselanyl)methyl)-1H-1,2,3-triazol-1-yl)-1,4-naphthoquinone

(40): Yield: 60%; mp $117-120{ }^{\circ} \mathrm{C}$; Brown solid. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.36(\mathrm{~s}, 1 \mathrm{H})$, 8.24-8.12 (m, 2H), 7.88-7.79 (m, 2H), 7.72 ($\mathrm{s}, 1 \mathrm{H}), 7.59-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 2 \mathrm{H})$, $4.25(\mathrm{~s}, 2 \mathrm{H}), 1.6(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 183.6,179.1,146.8,139.1,134.9$, 134.2, 133.4, 131.3, 130.9, 129.3, 129.1, 127.6, 127.1, 126.4, 126.2, 123.8, 20.2; HRMS $\left(\mathrm{ES}^{+}\right)$calculated for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Se}[\mathrm{M}+\mathrm{H}]^{+}$: 396.0251; found: 396.0242.
4.1.22. (3R,4S)-3-azido-4-(naphthalen-1-yl)-3,4-dihydro-2H-benzo $[g]$ chromene-5,10dione (47): Yield: 78%; mp $115-117{ }^{\circ} \mathrm{C}$; Light yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.27(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.23-8.20(\mathrm{~m}, 1 \mathrm{H}), 8.03-8.00(\mathrm{~m}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.68(\mathrm{~m}, 3 \mathrm{H}), 7.59(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.11(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{dd}, J=2.3$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{dt}, J=12.5$ and 2.3 Hz , $1 \mathrm{H}), 4.19(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 183.2, 179.1, 155.7, 136.0, 134.6, 133.6, 132.3, 131.3, 130.6, 129.7, 129.0, 127.6, 126.8, 126.7, 126.5, 126.2, 125.4, 122.2, 119.7, 64.6, 56.9, 36.4; HRMS (ES ${ }^{+}$) calculated for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 404.1006; found: 404.1007.
4.1.23. (3R,4S)-4-phenyl-3-(4-((phenylselanyl)methyl)-1H-1,2,3-triazol-1-yl)-3,4-dihydro-2H-benzo[g]chromene-5,10-dione (48): Yield: 70%; mp $187-188{ }^{\circ} \mathrm{C}$; Yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22-8.16(\mathrm{~m}, 1 \mathrm{H}), 8.02-7.98(\mathrm{~m}, 1 \mathrm{H}), 7.78-7.73(\mathrm{~m}$, $2 \mathrm{H}), 7.40-7.26(\mathrm{~m}, 7 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.13-7.02(\mathrm{~m}, 3 \mathrm{H}), 4.98-4.96(\mathrm{~m}, 1 \mathrm{H}), 4.70-4.65(\mathrm{~m}$, $2 \mathrm{H}), 4.50-4.44(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 182.3,178.4,154.6$, $145.8,140.0,134.5,133.5,133.4,131.7,130.7,129.2,128.9,128.0,127.7,127.4,126.5$, 120.3, 119.7, 64.6, 58.3, 40.7, 20.2; HRMS (ES+) calculated for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{SeH}[\mathrm{M}+\mathrm{H}]^{+}$: 528.0826; found: 528.0821.
4.1.24. (3R,4S)-4-(naphthalen-1-yl)-3-(4-((phenylselanyl)methyl)-1H-1,2,3-triazol-1-yl)-3,4-dihydro-2H-benzo[g]chromene-5,10-dione (49): Yield: 65%; mp $185-188{ }^{\circ} \mathrm{C}$; Yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.41\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, \mathrm{H}_{9}\right.$, , $), 8.12(\mathrm{dd}, J=6.9$ and $\left.1.9 \mathrm{~Hz}, \mathrm{H}_{9}\right), 7.89\left(\mathrm{dd}, J=6.8\right.$ and $\left.2.0 \mathrm{~Hz}, \mathrm{H}_{6}\right), 7.84\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, \mathrm{H}_{6}\right.$, $), 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, H_{4}, \cdot), 7.64-7.70 (m, H7), 7.64-7.70 (m, H8), $7.62\left(\mathrm{dd}, J=8.6\right.$ and $\left.7.5 \mathrm{~Hz}, \mathrm{H}_{8}, \cdot\right), 7.50(\mathrm{dd}, J=$ 8.1 and $7.5 \mathrm{~Hz}, \mathrm{H}_{7}$,) , $7.31\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, \mathrm{H}_{2^{\prime} / 6^{\prime}}\right), 7.25\left(\mathrm{dd}, J=8.2\right.$ and $7.1 \mathrm{~Hz}, \mathrm{H}_{3}$,), $7.20(\mathrm{~s}$, H_{5}-triazole), 7.06 (d, $J=7.1 \mathrm{~Hz}, \mathrm{H}_{2^{\prime}}$,), $7.00\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{H}_{3} / 5^{\prime}\right), 6.92\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{H}_{4}\right.$), $5.42\left(\mathrm{~s}, \mathrm{H}_{4}\right), 5.00\left(\mathrm{~s}, \mathrm{H}_{3}\right), 4.54\left(\mathrm{~d}, J=12.8 \mathrm{~Hz}, \mathrm{H}_{2 \mathrm{a}}\right), 4.36\left(\mathrm{dl}, J=12.8 \mathrm{~Hz}, \mathrm{H}_{2 \mathrm{~b}}\right), 4.04(\mathrm{~s}$, $\left.\mathrm{H}_{11}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 182.2\left(\mathrm{C}_{5}\right), 178.4\left(\mathrm{C}_{10}\right), 155.0\left(\mathrm{C}_{10 \mathrm{a}}\right), 145.9\left(\mathrm{C}_{4}{ }^{-}\right.$ triazole), $135.9\left(\mathrm{C}_{1}\right.$), $134.5\left(\mathrm{C}_{8}\right), 134.3\left(\mathrm{C}_{5}\right.$, , $), 133.5\left(\mathrm{C}_{2}{ }^{\prime} / 6^{\prime}\right)$, $133.6\left(\mathrm{C}_{7}\right), 131.9\left(\mathrm{C}_{9 \mathrm{a}}\right), 130.9$ $\left(\mathrm{C}_{5 \mathrm{a}}\right), 130.4\left(\mathrm{C}_{10}{ }^{\prime \prime}\right), 129.3\left(\mathrm{C}_{1}\right.$) , $129.2\left(\mathrm{C}_{6},{ }^{\prime}\right), 129.1\left(\mathrm{C}_{4}\right.$, , $), 128.9\left(\mathrm{C}_{3^{\prime} / 5}\right.$), $127.8\left(\mathrm{C}_{8}\right.$, , $), 127.5$ $\left(\mathrm{C}_{4}\right.$), $126.7\left(\mathrm{C}_{6}\right), 126.6\left(\mathrm{C}_{9}\right), 126.5\left(\mathrm{C}_{7}\right.$, , $), 125.7\left(\mathrm{C}_{2}\right.$,) $), 124.9\left(\mathrm{C}_{3}\right.$ "), $122.7\left(\mathrm{C}_{9},{ }^{\prime}\right), 120.3$ (C_{5}-triazole), $120.0\left(\mathrm{C}_{4 \mathrm{a}}\right)$, $64.4\left(\mathrm{C}_{2}\right), 56.4\left(\mathrm{C}_{3}\right), 37.2\left(\mathrm{C}_{4}\right), 20.3\left(\mathrm{C}_{11}\right)$; HRMS (ES ${ }^{+}$) calculated for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Se}[\mathrm{M}+\mathrm{H}]^{+}$: 578.0983; found: 578.0982 .

4.2. Crystallographic data

The structures of the compounds $\mathbf{3 5}$ and $\mathbf{3 8}$ were determined from X-ray diffraction on an Enraf-Nonius Kappa-CCD diffractometer (95 mm CCD camera on κ-goniostat) using graphite monochromated MoKa radiation $(0.71073 \AA$), at room temperature. Data collections were carried out using the COLLECT software [58] up to 50° in 2θ. Final unit cell parameters were based on 6482 reflections for compound $\mathbf{3 5}$ and 10161 reflections for compound 38. Integration and scaling of the reflections, correction for Lorentz and polarization effects were performed with the HKL DENZO-SCALEPACK system of programs [59]. The structures were solved by direct methods with SHELXS-97 [60]. The models were refined by full-matrix least squares on F^{2} using SHELXL-97 [61]. The program ORTEP-3 [62]. was used for graphic representation and the program WINGX [63] to prepare materials for publication. All H atoms were located by geometric considerations placed ($\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$; N-H $=0.86 \AA$) and refined as riding with $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.5 \mathrm{U}_{\text {eq }}(\mathrm{C}-$ methyl) or $1.2 \mathrm{U}_{\mathrm{eq}}$ (other). An Ortep-3 diagram of compounds $\mathbf{3 5}$ and $\mathbf{3 8}$ are shown in Scheme 6 and the main crystallographic data are listed as following:

For compound 35-Empirical formula: $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{BrNO}_{2}$; Formula weight: 289.11; Temperature: 293(2) K; Wavelength: $0.71073 \AA$ A ; Crystal system: triclinic; Space group: P-1; Unit cell dimensions: $a=7.2940(3) \AA ; b=7.9110(3) \AA ; c=9.7940(4) \AA ; a=77.133(2)^{\circ} ; \beta=$ $89.477(2)^{\circ} ; \gamma=84.157(2)^{\circ}$; Volume: 548.03(4) $\AA^{3} ;$ Z: 2; Density (calculated): $1.75 \mathrm{Mg} / \mathrm{m}^{3}$; Absorption coefficient: $2.140 \mathrm{~mm}^{-1} ; \mathrm{F}(000)$: 286 ; Crystal size: $0.32 \times 0.22 \times 0.10 \mathrm{~mm}^{3}$;

Theta range for data collection: 3.5 to 27.5°; Index ranges: $-9 \leq \mathrm{h} s 9,-9 \leftrightarrows \leq 10,-12 \leq \leq 12$;
Reflections collected: 8533; Independent reflections: 2498 [R(int) $=0.092]$; Refinement method: Full-matrix least-squares on F^{2}; Data / restraints / parameters: 2190 / 0 / 154; Goodness-of-fit on F^{2} : 1.06; Final R indices [I>2sigma(I)]: R1 $=0.042$, wR2 $=0.109$; R indices (all data): $\mathrm{R} 1=0.048, \mathrm{wR} 2=0.114$.

For compound 38-Empirical formula: $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Se}$; Formula weight: 419.3;
Temperature: 293(2) K; Wavelength: $0.71073 \AA$; Crystal system: monoclinic; Space group: C2/c Unit cell dimensions: $a=34.0429(8) \AA ; b=4.7831(2) \AA ; c=23.3921(7) \AA$ A $; a=90^{\circ} ; \beta$ $=111.3^{\circ} ; \gamma=90^{\circ}$; Volume: $3548.6(2) \AA^{3} ; \mathrm{Z}: 8$; Density (calculated): $1.57 \mathrm{Mg} / \mathrm{m}^{3}$;
Absorption coefficient: $2.140 \mathrm{~mm}^{-1} ; \mathrm{F}(000): 1680$; Crystal size: $0.28 \times 0.11 \times 0.10 \mathrm{~mm}^{3}$; Theta range for data collection: 2.6 to 27.54°; Index ranges: $-43 \leq h \leq 44,-5 \leftrightarrows \leq 6,-30 \unlhd \leq 30$; Reflections collected: 16701; Independent reflections: 4026 [R(int) $=0.063$]; Refinement method: Full-matrix least-squares on F2; Data / restraints / parameters: 2822 / 0 / 244; Goodness-of-fit on F^{2} : 1.12; Final R índices [$\left.\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})\right]: \mathrm{R} 1=0.047$, wR2 $=0.128$; R indices (all data): $\mathrm{R} 1=0.073, \mathrm{wR} 2=0.144$.

Crystallographic data for the structures were deposited in the Cambridge Crystallographic Data Centre, with numbers CCDC 1063533 and 1063534.

4.3. Antitumor activity

Compounds were tested for antitumor activity in cell culture in vitro using several human cancer cell lines obtained from the National Cancer Institute, NCI (Bethesda, MD). The L929 cells (mouse fibroblast L cells NCTC clone 929) were obtained from the American Type Culture Collection (Manassas, VA), MDCK cells were purchased from the Rio de Janeiro Cell Bank (Rio de Janeiro, Brazil), and the Chinese hamster lung fibroblasts (V79 cells) were kindly provided by Dr. JAP Henriques (UFRGS, Brazil). Peripheral blood mononuclear cells (PBMC) were isolated from heparinized blood from healthy, non-smoker donors who had not taken any medication at least 15 days prior to sampling by a standard method of density-gradient centrifugation on Histopaque-1077 (Sigma Aldrich Co. - St. Louis, MO, USA). All cancer cell lines and PBMC were maintained in RPMI 1640 medium. The L929, MDCK and V79 cells were cultivated under standard conditions in DMEM with Earle's salts. All culture media were supplemented with 20% (PBMC) or 10% (cancer, L929, MDCK and V79 cells) fetal bovine serum, 2 mM L-glutamine, $100 \mathrm{IU} / \mathrm{mL}$ penicillin, 100 $\mu \mathrm{g} / \mathrm{mL}$ streptomycin at $37^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$. PBMC cultures were also supplemented with 2% phytohaemagglutinin. In cytotoxicity experiments, cells were plated in 96 -well plates $\left(0.1 \times 10^{6}\right.$ cells/well for leukaemia cells, 0.7×10^{5} cells/well for solid tumor as well V79, L929 and MDCK cells, and 1×10^{6} cells/well for PBMC). All tested compounds were dissolved with DMSO. The final concentration of DMSO in the culture medium was kept constant $(0.1 \%, \mathrm{v} / \mathrm{v})$. Doxorubicin $(0.001-1.10 \mu \mathrm{M})$ was used as the positive control, and negative control groups received the same amount of vehicle (DMSO). The cell viability was determined by reduction of the yellow dye 3-(4,5-dimethyl-2-thiazol)-2,5-diphenyl-2 H tetrazolium bromide (MTT) to a blue formazan product as described by Mosmann [64]. At the end of the incubation time (72 h), the plates were centrifuged and the medium was replaced by fresh medium $(200 \mu \mathrm{~L})$ containing $0.5 \mathrm{mg} / \mathrm{mL}$ MTT. Three hours later, the MTT
formazan product was dissolved in DMSO $(150 \mu \mathrm{~L})$ and the absorbance was measured using a multiplate reader (Spectra Count, Packard, Ontario, Canada). Drug effect was quantified as the percentage of control absorbance of the reduced dye at 550 nm . All cell treatments were performed with three replicates. All cells were mycoplasma-free.

4.4. DNA Survival Assays

A549 cells were plated into a 48-well plate with 10,000 cells/well in $500 \mu \mathrm{~L}$ of DMEM containing 10% FBS. The cells were allowed to attach and grow overnight. A stock of 5 mM of compounds or $10 \mathrm{mM} \beta$-lapachone, and 5 mM dicoumarol were made for the experiment. The 8 drug concentrations $(0-3.2 \mu \mathrm{M})$ were prepared separately in 15 mL conical tubes with 7 mL of media each. The untreated control is DMSO. The media was removed from each well and $500 \mu \mathrm{~L}$ of each drug concentration was added to 6 wells (to produce sextuplet replicates for each concentration). After aliquoting the drug-containing media, $40 \mu \mathrm{~L}$ of dicoumarol was added to each remaining 15 mL conical tube (there remains 4 mL left of each drug concentration) to give a final concentration of $50 \mu \mathrm{M}$ dicoumarol. The media was removed from a $2^{\text {nd }} 48$-well plate and $500 \mu \mathrm{~L}$ of the remaining drug + DIC media was aliquoted/well. The plates were gently shaken to mix and placed in the incubator for 2 h . After 2 h , all media was aspirated from the wells and 1 mL of fresh media was aliquoted into each well. The plates were then left in the incubator for 7 days, or until there was 100% confluency for the untreated control. Once the control was confluent, the media was discarded and $500 \mu \mathrm{~L} /$ well of 1X PBS was added to wash the wells. The PBS was discarded and $250 \mu \mathrm{~L}$ of $\mathrm{dH}_{2} \mathrm{O} /$ well was added. The plates were then put in the $-80^{\circ} \mathrm{C}$ freezer overnight. The next day, the plates were thawed completely and $500 \mu \mathrm{~L}$ of Hoechst staining buffer ($50 \mu \mathrm{~L}$ of Hoechst 33258 in 50 mL of 1X TNE buffer) was added to each well. The plates were incubated in the dark at RT for 2 h . After two hours, the plates were read on a PerkinElmer Victor X3 plate reader and the readings were plotted as the treated/control (T/C) \pm SEM.

4.5. Annexin V/PI detection

The Annexin V cytometry assay was used to detect cell population in viable, early and late apoptosis stage as described by Cavalcanti and coworkers [65]. After short exposure time (6 h) with compounds 21 and 22 at $5 \mu \mathrm{M}, \mathrm{PC} 3$ cells were stained with fluorescein isothiocyanate (FITC) conjugated Annexin V (Guava Nexin kit, Guava Technologies, Inc., Hayward, CA, USA) and PI (necrotic-cell indicator), and then they were subjected to flow cytometry (Guava EasyCyte Mini). Cells undergoing early and late apoptosis were detected by the emission of the fluorescence from only FITC and, both FITC and PI, respectively. To determine whether ROS are involved with tested compounds-induced cytotoxicity, cultures were pre-exposed (24 h) to $5 \mathrm{mM} N$-acetylcysteine (NAC), a widely used thiol-containing antioxidant that is a precursor of GSH which protects against oxidative stress-induced cell death. Also, cultures were co-treated with dicoumarol $(50 \mu \mathrm{M})$ in order to evaluate the role of NQO1 on compounds bioactivation. A total of 10,000 events was evaluated per experiment $(\mathrm{n}=3)$ and cellular debris was omitted from analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

This research was funded by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), numbers: 480719/2012-8, PVE 401193/2014-4, 449348/2014-8, 474797/2013-9 and 454171/2014-5. We would also like to thank FAPEMIG (APQ-02478-14), FUNCAP, FAPESP, FAPESC, CAPES, INCT-catálise and also the Physics Institute of USP (São Carlos) for kindly allowing the use of the KappaCCD diffractometer. Finally, these studies were also supported by NIH/NCI grant\# CA102792 to DAB.

References

1. Ljungman M. Chem. Rev. 2009; 109:2929. [PubMed: 19545147]
2. Cragg GM, Grothaus PG, Newman DJ. Chem. Rev. 2009; 109:3012. [PubMed: 19422222]
3. a Hillard EA, de Abreu FC, Ferreira DCM, Jaouen G, Goulart MOF, Amatore C. Chem. Commun. 2008; 23:2612.b Wellington KW. RSC Adv. 2015; 5:20309.c Bannwitz S, Krane D, Vortherms S, Kalin T, Lindenschmidt C, Golpayegani NZ, Tentrop J, Prinz H, Müller K. J. Med. Chem. 2014; 57:6226. [PubMed: 24964246]
4. Lu JJ, Pan W, Hu YJ, Wang YT. PLoS One. 2012; 29:40262.
5. Dias KST, Viegas Júnior C. Curr. Neuropharmacol. 2014; 12:239. [PubMed: 24851088]
6. a Prati F, Bergamini C, Molina MT, Falchi F, Cavalli A, Kaiser M, Brun R, Fato R, Bolognesi ML. J. Med. Chem. 2015; 58:6422. [PubMed: 26237241] b Prati F, Bartolini M, Simoni E, de Simone A, Pinto AV, Andrisano V, Bolognesi ML. Bioorg. Med. Chem. Lett. 2013; 23:6254. [PubMed: 24140444] c Prati F, Uliassi E, Bolognesi ML. Med. Chem. Commun. 2014; 5:853.
7. a Arnaudon M. Comptes Rendus Hebdomadares Des Sianes 'L'Acord. Des Science. 1858; 46:1152.b Thomson, RH. Naturally Occurring Quinones. Academic Press; London, New York: 1971. c Fiorito S, Epifano F, Bruyère C, Mathieu V, Kiss R, Genovese S. Bioorg. Med. Chem. Lett. 2014; 24:454. [PubMed: 24374273] Park EJ, Min KJ, Lee TJ, Yoo YH, Kim YS, Kwon TK. Cell Death Dis. 2014; 5:e1230. [PubMed: 24832602]
8. Docampo R, Cruz FS, Boveris A, Muniz RP, Esquivel DM. Biochem. Pharmacol. 1979; 28:723. [PubMed: 222291]
9. Schaffner-Sabba K, Schmidt-Ruppin KH, Wehrli W, Schuerch AR, Wasley JW. J. Med. Chem. 1984; 27:990. [PubMed: 6205152]
10. a Pink JJ, Planchon SM, Magliarino C, Varnes ME, Siegel D, Boothman D. J. Biol. Chem. 2000; 275:5416. [PubMed: 10681517] b Pink JJ, Wuerzberger-Davis S, Tagliarino C, Planchon SM, Yang X, Froelich CJ, Boothman DA. Exp. Cell Res. 2000; 255:144. [PubMed: 10694431] c Planchon SM, Pink JJ, Tagliarino C, Bornmann WG, Varnes ME, Boothman DA. Exp. Cell Res. 2001; 267:95. [PubMed: 11412042]
11. Bey EA, Bentle MS, Reinicke KE, Dong Y, Yang CR, Girard L, Minna J, Bornmann WG, Gao J, Boothman DA. Proc. Natl. Acad. Sci. USA. 2007; 104:11832. [PubMed: 17609380]
12. a Bey EA, Wuerzberger-Davis SM, Pink JJ, Yang CR, Araki S, Reinicke KE, Bentle MS, Dong Y, Cataldo E, Criswell TL, Wagner MW, Li L, Gao J, Boothman DA. J. Cell Physiol. 2006; 209:604. [PubMed: 17001694] b Tagliarino C, Pink JJ, Dubyak GR, Nieminen AL, Boothman DA. J. Biol. Chem. 2001; 276:19150. [PubMed: 11279125] c Tagliarino C, Pink JJ, Reinicke KE, Simmers SM, Wuerzberger-Davis SM, Boothman DA. Cancer Biol. Ther. 2003; 2:141. [PubMed: 12750552]
13. Li CJ. J. Cell Physiol. 2006; 209:695. [PubMed: 17001685]
14. Bentle MS, Reinicke KE, Dong Y, Bey EA, Boothman DA. Cancer Res. 2007; 67:6936. [PubMed: 17638905]
15. Rekha GK, Sladek NE. Cancer Chemother. Pharmacol. 1997; 40:215. [PubMed: 9219504]
16. Cunha-Filho MS, Landin M, Martinez-Pacheco R, Dacunha-Marinho B. Acta Crystallogr. C. 2006; 62:473.
17. Boothman DA, Meyers M, Fukunaga N, Lee SW. Proc. Natl. Acad. Sci. USA. 1993; 90:7200. [PubMed: 8346236]
18. Choi EK, Terai K, Ji IM, Kook YH, Park KH, Oh ET, Griffin RJ, Lim BU, Kim JS, Lee DS, Boothman DA, Loren M, Song CW, Park HJ. Neoplasia. 2007; 9:634. [PubMed: 17786182]
19. Hartner LP, Rosen L, Hensley M, Mendelson D, Staddon AP, Chow W, Kovalyov O, Ruka W, Skladowski K, Jagiello-Gruszfeld A, Byakhov M. J. Clin. Oncol. 2007; 25:20521.
20. Blanco E, Bey EA, Khemtong C, Yang S, Setti-Guthi J, Chen H, Kessinger CW, Carnevale KA, Bornmann WG, Boothman DA, Gao J. Cancer Res. 2010; 70:3896. [PubMed: 20460521]
21. Ohayon S, Refua M, Hendler A, Aharoni A, Brik A. Angew. Chem. Int. Ed. 2015; 54:599.
22. Cao L, Li LS, Spruell C, Xiao L, Chakrabarti G, Bey EA, Reinicke KE, Srougi MC, Moore Z, Dong Y, Vo P, Kabbani W, Yang C, Wang X, Fattah F, Morales JC, Motea EA, Bornmann WG, Yordy JS, Boothman DA. Antioxid Redox Sign. 2014; 21:237.
23. Huang X, Dong Y, Bey EA, Kilgore JA, Bair JS, Li LS, Patel M, Parkinson EI, Wang Y, Williams NS, Gao J, Hergenrother PJ, Boothman DA. Cancer Res. 2012; 72:3038. [PubMed: 22532167]
24. Moore Z, Chakrabarti G, Luo X, Ali A, Hu Z, Fattah FJ, Vemireddy R, DeBerardinis RJ, Brekken RA, Boothman DA. Cell Death Dis. 2015; 6:1599.
25. a da Silva Júnior EN, de Souza MCBV, Pinto AV, Pinto MCFR, Goulart MOF, Barros FWA, Pessoa C, Costa-Lotufo LV, Montenegro RC, de Moraes MO, Ferreira VF. Bioorg. Med. Chem. 2007; 15:7035. [PubMed: 17827021] b da Silva Júnior EN, de Moura MABF, Pinto AV, Pinto MCFR, de Souza MCBV, Araújo AJ, Pessoa C, Costa-Lotufo LV, Montenegro RC, de Moraes MO, Ferreira VF, Goulart MOF. J. Braz. Chem. Soc. 2009; 20:635.
26. da Silva Júnior EN, de Deus CF, Cavalcanti BC, Pessoa C, Costa-Lotufo LV, Montenegro RC, de Moraes MO, Pinto MCFR, de Simone CA, Ferreira VF, Goulart MOF, Andrade CKZ, Pinto AV. J. Med. Chem. 2010; 53:504. [PubMed: 19947600]
27. de Castro SL, Emery FS, da Silva Júnior EN. Eur. J. Med. Chem. 2013; 69:678. [PubMed: 24095760]
28. da Cruz EHG, Carvalho PHPR, Corrêa JR, Silva DAC, Diogo EBT, de Souza Filho JD, Cavalcanti BC, Pessoa C, de Oliveira HCB, Guido BC, da Silva Filho DA, Neto BAD, da Silva Júnior EN. New J. Chem. 2014; 38:2569.
29. Bala BD, Muthusaravanan S, Choon TS, Ali MA, Perumal S. Eur. J. Med. Chem. 2014; 85:737. [PubMed: 25129868]
30. Viegas Júnior C, Danuello AC, Bolzani VS, Barreiro EJ, Fraga CAM. Curr. Med. Chem. 2007; 14:1829. [PubMed: 17627520]
31. da Silva Júnior EN, Cavalcanti BC, Guimarães TT, Pinto MCFR, Cabral IO, Pessoa C, CostaLotufo LV, de Moraes MO, de Andrade CKZ, dos Santos MR, de Simone CA, Goulart MOF, Pinto AV. Eur. J. Med. Chem. 2011; 46:399. [PubMed: 21115213]
32. a Agalave SG, Maujan SR, Pore VS. Chem. Asian J. 2011; 6:2696. [PubMed: 21954075] b Massarotti A, Aprile S, Mercalli V, Grosso ED, Grosa G, Sorba G, Tron G. ChemMedChem. 2014; 9:2497. [PubMed: 25079879]
33. da Cruz EHG, Hussene CMB, Dias GG, Diogo EBT, de Melo IMM, Rodrigues BL, da Silva MG, Valença WO, Camara CA, de Oliveira RN, de Paiva YG, Goulart MOF, Cavalcanti BC, Pessoa C, da Silva Júnior EN. Bioorg. Med. Chem. 2014; 22:1608. [PubMed: 24530030]
34. Nogueira CW, Zeni G, Rocha JBT. Chem. Rev. 2004; 104:6255. [PubMed: 15584701] Braga AL, Rafique J. Rappoport Z. The chemistry of organic selenium and tellurium compounds. 2014Wiley \& Sons, LtdChichesterShaaban S, Negm A, Sobh MA, Wessjohann LA. Eur. J. Med. Chem. 2015; 97:190. [PubMed: 25969171] Shaaban S, Gaffer HE, Alshahd M, Elmorsy SS. Int. J. Res. Dev. Pharm. L. Sci. 2015; 4:1654.Shaaban S, Sasse F, Burkholz T, Jacob C. Bioorg. Med. Chem. 2014; 22:3610. [PubMed: 24890655] Important chapters related to the use of Se-Modified antioxidants: Synthesis of biologically relevant small molecules containing selenium. Part A. Antioxidant compounds pg 989-1054; Synthesis of biologically relevant small molecules containing selenium. Part B. Anti-infective and anticancer compounds pg 1053-1118; Synthesis of biologically relevant small molecules containing selenium. Part C. Miscellaneous biological activities 1119-1174.
35. a Alberto EE, Nascimento V, Braga AL. J. Braz. Chem. Soc. 2010; 21:2032.b Santi CT, Scalera C, Piroddi M, Galli F. Curr. Chem. Bio. 2013; 7:25.c Iwaoka M, Arai K. Curr. Chem. Bio. 2013; 7:2.d

Alberto EE, Tondo DW, Dambrowski D, Detty MR, Nome F, Braga AL. J. Am. Chem. Soc. 2012; 134:138. [PubMed: 22136421]
36. a Shabaan S, Ba LA, Abbas M, Burkholz T, Denkert A, Gohr A, Wessjohann LA, Sasse F, Weber W, Jacob C. Chem. Commun. 2009; 31:4702.b Doering M, Ba LA, Lilienthal N, Nicco C, Scherer C, Abbas M, Zada AAP, Coriat R, Burkholz T, Wessjohann L, Diederich M, Batteux F, Herling M, Jacob C. J. Med. Chem. 2010; 53:6954. [PubMed: 20836556] c Mecklenburg S, Shaaban S, Ba LA, Burkholz T, Schneider T, Diesel B, Kiemer AK, Röseler A, Becker K, Reichrath J, Stark A, Tilgen W, Abbas M, Wessjohann LA, Sasse F, Jacob C. Org. Biomol. Chem. 2009; 7:4753. [PubMed: 19865713]
37. Shaaban S, Diestel R, Hinkelmann B, Muthukumar Y, Verma RP, Sasse F, Jacob C. Eur. J. Med. Chem. 2012; 58:192. [PubMed: 23124216]
38. Vieira AA, Brandão IR, Valença WO, de Simone CA, Cavalcanti BC, Pessoa C, Carneiro TR, Braga AL, da Silva Júnior EN. Eur. J. Med. Chem. 2015; 101:254. [PubMed: 26142490]
39. a Rostovtsev VV, Green GL, Fokin VV, Sharpless KB. Angew. Chem., Int. Ed. 2002; 41:2596.b Kolb HC, Finn MG, Sharpless KB. Angew. Chem., Int. Ed. 2001; 40:2004.
40. Guimarães TT, Pinto MCFR, Lanza JS, Melo MN, Monte-Neto RL, de Melo IMM, Diogo EBT, Ferreira VF, Camara CA, Valença WO, de Oliveira RN, Frézard F, da Silva Júnior EN. Eur. J. Med. Chem. 2013; 63:523. [PubMed: 23535320]
41. da Silva Júnior EN, Guimarães TT, Menna-Barreto RFS, Pinto MCFR, de Simone CA, Pessoa C, Cavalcanti BC, Sabino JR, Andrade CKZ, Goulart MOF, de Castro SL, Pinto AV. Bioorg. Med. Chem. 2010; 18:3224. [PubMed: 20378360]
42. da Silva Júnior EN, de Souza MCBV, Fernandes MC, Menna-Barreto RFS, Pinto MCFR, Lopes FA, de Simone CA, Andrade CKZ, Pinto AV, Ferreira VF, de Castro SL. Bioorg. Med. Chem. 2008; 16:5030. [PubMed: 18378461]
43. Pinto AV, Pinto MCFR, de Oliveira CGT. An. Acad. Bras. Cienc. 1982; 54:107.
44. da Silva Júnior EN, Cavalcanti BC, Guimarães TT, Pinto MCFR, Cabral IO, Pessoa C, CostaLotufo LV, de Moraes MO, de Andrade CKZ, dos Santos MR, de Simone CA, Goulart MOF, Pinto AV. Eur. J. Med. Chem. 2011; 46:399. [PubMed: 21115213]
45. Jardim GAM, Guimarães TT, Pinto MCFR, Cavalcanti BC, de Farias KM, Pessoa C, Gatto CC, Nair DK, Namboothiri INN, da Silva Júnior EN. Med. Chem. Commun. 2015; 6:120.
46. da Silva Júnior EN, Menna-Barreto RFS, Pinto MCFR, Silva RSF, Teixeira DV, de Souza MCBV, de Simone CA, de Castro SL, Ferreira VF, Pinto AV. Eur. J. Med. Chem. 2008; 43:1774. [PubMed: 18045742]
47. a Jardim GAM, Cruz EHG, Valença WO, Resende JM, Rodrigues BL, Ramos DF, Oliveira RN, Silva PEA, da Silva Júnior EN. J. Braz. Chem. Soc. 2015; 26:1013.b Jardim GAM, Reis WJ, Ribeiro MF, Ottoni FM, Alves RJ, Silva TL, Goulart MOF, Braga AL, Menna-Barreto RFS, Salomão K, de Castro SL, da Silva Júnior EN. RSC Adv. 2015; 5:78047.c Bahia SBBB, Reis WJ, Jardim GAM, Souto FT, de Simone CA, Gatto CC, Menna-Barreto RFS, de Castro SL, Cavalcanti BC, Pessoa C, Araujo MH, da Silva Júnior EN. Med. Chem. Commun. 2016 DOI: 10.1039/ C6MD00216A.
48. Nair DK, Menna-Barreto RFS, da Silva Júnior EN, Mobin SM, Namboothiri INN. Chem. Commun. 2014; 50:6973.
49. Pérez-Sacau E, Díaz-Peñate RG, Estévez-Braun A, Ravelo AG, Garcia-Castellano JM, Pardo L, Campillo M. J. Med. Chem. 2007; 50:696. [PubMed: 17249647]
50. Cavalcanti BC, Barros FWA, Cabral IO, Ferreira JRO, Magalhães HIF, Júnior HVN, da Silva Júnior EN, de Abreu FC, Costa CO, Goulart MOF, Moraes MO, Pessoa C. Chem. Res. Toxicol. 2011; 24:1560. [PubMed: 21830773]
51. Cavalcanti BC, Cabral IO, Rodrigues FAR, Barros FWA, Rocha DD, Magalhães HIF, Moura DJ, Saffi J, Henriques JAP, Carvalho TSC, Moraes MO, Pessoa C, de Melo IMM, da Silva Júnior EN. J. Braz. Chem. Soc. 2013; 24:145.
52. Bey EA, Reinicke KE, Srougi MC, Varnes M, Anderson VE, Pink JJ, Li LS, Patel M, Cao L, Moore Z, Rommel A, Boatman M, Lewis C, Euhus DM, Bornmann WG, Buchsbaum DJ, Spitz DR, Gao J, Boothman DA. Mol. Cancer Ther. 2013; 12:2110. [PubMed: 23883585]
53. Kongkathip N, Kongkathip B, Siripong P, Sangma C, Luangkamin S, Niyomdecha M, Pattanapa S, Piyaviriyagul S, Kongsaereec P. Bioorg. Med. Chem. 2003; 11:3179. [PubMed: 12818681]
54. Perrin, DD.; Armarego, WLF.; Perrin, DR. Purification of Laboratory Chemicals. 2nd ed.. Pergamon; Oxford: 1980.
55. Huang X, Duan DH. Synlett. 1998:1191.
56. Seus N, Saraiva MT, Alberto EE, Savegnago L, Alves D. Tetrahedron. 2012; 68:10419.
57. As example of classical procedure to prepare phenyl propargyl selenide see: Rei HJ, Shah SK, Gold PM, Olson RE. J. Am. Chem. Soc. 1981; 103:3112.
58. Enraf-Nonius, Collect, B.V. Nonius, Delft. The Netherlands: 1997-2000.
59. Otwinowski, Z.; Minor, W. Methods in Enzymology. Carter, CW.; Sweet, RM., editors. Vol. 276. Academic Press; New York: 1997. p. 307-326.
60. Sheldrick, GM. SHELXS-97. Program for Crystal Structure Resolution. University of Göttingen, Göttingen; Germany: 1997.
61. Sheldrick, GM. SHELXS-97. Program for Crystal Structure Refinement. University of Göttingen, Göttingen; Germany: 1997.
62. Farrugia LJ. J. Appl. Crystallogr. 1997; 30:565.
63. Farrugia LJ. J. Appl. Crystallogr. 1999; 32:837.
64. Mosmann T. J. Immunol. Methods. 1983; 65:55. [PubMed: 6606682]
65. Cavalcanti BC, da Costa PM, Carvalho AA, Rodrigues FAR, Amorim RCN, Silva ECC, Pohlit AM, Costa-Lotufo LV, Moraes MO, Pessoa C. Pharm. Biol. 2012; 50:980. [PubMed: 22775415]

Research highlights

1. Selenium-containing quinones were obtained with potent antitumor activity.
2. Click chemistry was used for the synthesis of selenium -containing quinones.
3. Mechanistic insights involving NQO1-target were studied.

a) Compounds previously reported with antitumor activity

c) Strategy to design novel compounds containing two redox centres

Scheme 1.
Overview.

(3, 80\%)

Scheme 2.
Synthesis of selenium-containing β-lapachone and a-lapachone-based 1,2,3-triazoles.

(11)

Scheme 3.

Synthesis of selenium-containing nor-a-lapachone-based 1,2,3-triazoles.

Scheme 4.

Synthesis of selenium-containing nor- β-lapachone-based 1,2,3-triazoles.

Scheme 5.
Synthesis of 26 and 29 from C-allyl-lawsone (23).

(32)

$$
\text { (42) }-\mathrm{R}=\mathrm{Ph}=83 \% \text {, dr 91:9, ee } 98 \%
$$

(43) - R $=$ Naphthyl $=86 \%, d r>99: 1$, ee $>99 \%$

(46) $-\mathrm{R}=\mathrm{Ph}=81 \%$, dr $88: 12$, ee $97 \% \quad \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$

Scheme 7.

Synthesis of enantio-enriched selenium-containing a-lapachone derivatives-based 1,2,3triazoles.

Figure 1.
Selected compounds for NQO1- and GPx-specific studies.

Figure 2.
Compounds 21, 22, 50-53 and β-lapachone evaluated for NQO1-dependence.

Figure 3.
Effect on phosphatidylserine externalization after 6 h-treated PC3 with $5 \mu \mathrm{M}$ of tested compounds. The phosphatidylserine externalization was determined by flow cytometry using AnnV-FITC (YLW-HLog) and PI (RED-HLog). Viable cells are plotted at lower left quadrant, cells in early and late apoptosis with phosphatidylserine externalized are plotted at lower right and upper right quadrants, respectively, and necrotic cells are plotted at upper left quadrant. *p<0.05 compared to control by ANOVA followed by Newman-Keuls test. Data are presented as mean values \pm S.E.M. from three independent experiments in triplicate.

Table 1
Cytotoxic activity expressed by $\mathrm{IC}_{50} \mu \mathrm{M}(95 \% \mathrm{CI})$ of compounds 4-7, 9-10, 13-16, 19-22, 25, 26, 28, 29,
$36-38,39,40,48$ and 49 in cancer and normal cell lines after 72 h exposure, obtained by nonlinear regression for all cell lines from three independent experiments.

Compd	HL-60	HCT-116	PC3	SF295	MDA-MB-435	OVCAR-8	PBMC	V79	L929
4	>13.99	>13.99	>13.99	>13.99	>13.99	>13.99	>13.99	>13.99	>13.99
5	$\begin{gathered} 1.66 \\ (1.09-2.22) \end{gathered}$	$\begin{gathered} 2.96 \\ (2.19-3.81) \end{gathered}$	$\begin{gathered} 2.15 \\ (1.94-2.36) \end{gathered}$	$\begin{gathered} 2.05 \\ (1.52-2.54) \end{gathered}$	$\begin{gathered} 2.72 \\ (2.33-3.28) \end{gathered}$	$\begin{gathered} 1.48 \\ (1.38-1.62) \end{gathered}$	$\begin{gathered} 6.11 \\ (5.65-6.88) \end{gathered}$	$\begin{gathered} 3.67 \\ (2.89-4.45) \end{gathered}$	$\begin{gathered} 4.13 \\ (3.28-4.87) \end{gathered}$
6	$\begin{gathered} 2.00 \\ (1.74-2.25) \end{gathered}$	$\begin{gathered} 4.90 \\ (4.62-5.76) \end{gathered}$	$\begin{gathered} 2.60 \\ (2.18-2.86) \end{gathered}$	$\begin{gathered} 1.88 \\ (1.47-2.26) \end{gathered}$	$\begin{gathered} 1.49 \\ (1.30-1.70) \end{gathered}$	$\begin{gathered} 3.09 \\ (1.98-4.85) \end{gathered}$	$\begin{gathered} 4.16 \\ (3.93-4.44) \end{gathered}$	$\begin{gathered} 3.65 \\ (3.21-3.81) \end{gathered}$	$\begin{gathered} 3.30 \\ (2.81-3.58) \end{gathered}$
7	$\begin{gathered} 5.46 \\ 4.87-6.10) \end{gathered}$	$\begin{gathered} 2.24 \\ (1.71-2.53) \end{gathered}$	$\begin{gathered} 3.89 \\ (3.18-4.47) \end{gathered}$	$\begin{gathered} 4.20 \\ (3.93-4.89) \end{gathered}$	$\begin{gathered} 3.85 \\ (3.49-4.33) \end{gathered}$	$\begin{gathered} 2.55 \\ (2.05-2.95) \end{gathered}$	$\begin{gathered} 4.45 \\ (3.91-5.14) \end{gathered}$	$\begin{gathered} 5.20 \\ (4.62-5.43) \end{gathered}$	$\begin{gathered} 5.46 \\ (4.97-6.00) \end{gathered}$
9	$\begin{gathered} 1.43 \\ (1.32-1.54)^{a} \end{gathered}$	$\begin{gathered} 2.48 \\ (2.32-2.68) \end{gathered}$	$\begin{gathered} 1.68 \\ (1.52-2.02) \end{gathered}$	$\begin{gathered} 1.93 \\ (1.76-2.12)^{a} \end{gathered}$	$\begin{gathered} 1.54 \\ (1.46-1.62)^{a} \end{gathered}$	$\begin{gathered} 2.24 \\ (1.99-2.70) \end{gathered}$	$\begin{gathered} 3.58 \\ (3.34-3.86)^{a} \end{gathered}$	$\begin{gathered} 2.40 \\ (2.29-2.51) \end{gathered}$	$\begin{gathered} 2.04 \\ (1.74-2.43) \end{gathered}$
10	$\begin{gathered} 1.22 \\ (1.13-1.35) \end{gathered}$	$\begin{gathered} 1.11 \\ (0.84-1.26) \end{gathered}$	$\begin{gathered} 1.90 \\ (1.60-2.01) \end{gathered}$	$\begin{gathered} 1.52 \\ (1.44-1.67) \end{gathered}$	$\begin{gathered} 1.31 \\ (1.22-1.52) \end{gathered}$	$\begin{gathered} 0.92 \\ (0.88-1.22) \end{gathered}$	$\begin{gathered} 1.87 \\ (1.45-2.26) \end{gathered}$	$\begin{gathered} 2.17 \\ (2.03-2.31) \end{gathered}$	$\begin{gathered} 1.74 \\ (1.67-1.94) \end{gathered}$
13	$\begin{gathered} 2.59 \\ (2.30-2.94) \end{gathered}$	$\begin{gathered} 4.60 \\ (3.78-5.59) \end{gathered}$	$\begin{gathered} 5.15 \\ (4.63-5.80) \end{gathered}$	>14.56	$\begin{gathered} 3.93 \\ (3.44-4.40) \end{gathered}$	$\begin{gathered} 7.13 \\ (6.12-8.30) \end{gathered}$	$\begin{gathered} 6.46 \\ (5.50-7.10) \end{gathered}$	$\begin{gathered} 6.06 \\ (5.36-6.55) \end{gathered}$	$\begin{gathered} 5.33 \\ (5.15-5.53) \end{gathered}$
14	$\begin{gathered} 2.23 \\ (1.78-2.67) \end{gathered}$	$\begin{gathered} 3.30 \\ (2.90-3.68) \end{gathered}$	$\begin{gathered} 4.09 \\ (3.49-4.57) \end{gathered}$	$\begin{gathered} 3.04 \\ (2.64-3.82) \end{gathered}$	$\begin{gathered} 2.52 \\ (2.23-2.75) \end{gathered}$	$\begin{gathered} 3.53 \\ (3.34-3.75) \end{gathered}$	$\begin{gathered} 3.16 \\ (2.86-3.49) \end{gathered}$	$\begin{gathered} 4.20 \\ (3.82-4.90) \end{gathered}$	$\begin{gathered} 3.68 \\ (3.45-4.34) \end{gathered}$
15	$\begin{gathered} 1.08 \\ (0.86-1.49) \end{gathered}$	$\begin{gathered} 1.28 \\ (1.04-1.57) \end{gathered}$	$\begin{gathered} 1.71 \\ (1.44-2.03) \end{gathered}$	$\begin{gathered} 1.08 \\ (0.94-1.46) \end{gathered}$	$\begin{gathered} 0.88 \\ (0.76-1.06) \end{gathered}$	$\begin{gathered} 0.68 \\ (0.43-1.06) \end{gathered}$	$\begin{gathered} 3.33 \\ (2.94-3.56) \end{gathered}$	$\begin{gathered} 3.78 \\ (3.73-3.94) \end{gathered}$	$\begin{gathered} 3.38 \\ (3.06-3.65) \end{gathered}$
16	$\begin{gathered} 1.59 \\ (1.34-1.87) \end{gathered}$	$\begin{gathered} 2.54 \\ (1.55-2.88) \end{gathered}$	$\begin{gathered} 2.95 \\ (2.22-3.47) \end{gathered}$	$\begin{gathered} 2.65 \\ (2.39-3.34) \end{gathered}$	$\begin{gathered} 2.15 \\ (2.00-2.32) \end{gathered}$	$\begin{gathered} 2.80 \\ (2.45-3.34) \end{gathered}$	$\begin{gathered} 3.23 \\ (2.43-3.96) \end{gathered}$	$\begin{gathered} 4.03 \\ (3.29-4.63) \end{gathered}$	$\begin{gathered} 3.77 \\ (3.06-4.48) \end{gathered}$
19	$\begin{gathered} 0.26 \\ (0.20-0.35) \end{gathered}$	$\begin{gathered} 1.48 \\ (1.34-1.69) \end{gathered}$	$\begin{gathered} 1.86 \\ (1.69-2.39) \end{gathered}$	$\begin{gathered} 2.59 \\ (2.36-2.85) \end{gathered}$	$\begin{gathered} 2.04 \\ (1.78-2.18) \end{gathered}$	$\begin{gathered} 2.53 \\ (2.33-2.74) \end{gathered}$	$\begin{gathered} 2.80 \\ (2.30-3.35) \end{gathered}$	$\begin{gathered} 2.16 \\ (1.83-2.68) \end{gathered}$	$\begin{gathered} 2.50 \\ (2.33-2.77) \end{gathered}$
20	$\begin{gathered} 3.08 \\ 1.48-6.46 \end{gathered}$	$\begin{gathered} 0.89 \\ (0.82-1.00) \end{gathered}$	$\begin{gathered} 1.74 \\ (1.22-2.15) \end{gathered}$	$\begin{gathered} 3.23 \\ 2.38-4.38 \end{gathered} b$	$\begin{gathered} 1.19 \\ 1.08-1.34 \end{gathered}$	$\begin{gathered} 1.34 \\ (1.15-1.45) \end{gathered}$	nd	$\begin{gathered} 3.27 \\ (2.97-3.53) \end{gathered}$	$\begin{gathered} 2.67 \\ (2.26-3.49) \end{gathered}$
21	$\begin{gathered} 0.07 \\ (0.02-0.16) \end{gathered}$	$\begin{gathered} 0.14 \\ (0.11-0.25) \end{gathered}$	$\begin{gathered} 0.38 \\ (0.29-0.67) \end{gathered}$	$\begin{gathered} 0.34 \\ (0.20-0.45) \end{gathered}$	$\begin{gathered} 0.23 \\ (0.16-0.38) \end{gathered}$	$\begin{gathered} 0.20 \\ (0.14-0.43) \end{gathered}$	$\begin{gathered} 1.39 \\ (1.12-1.53) \end{gathered}$	$\begin{gathered} 1.13 \\ (1.03-1.26) \end{gathered}$	$\begin{gathered} 0.94 \\ (0.86-1.15) \end{gathered}$
22	$\begin{gathered} 1.29 \\ (1.03-1.59) \end{gathered}$	$\begin{gathered} 2.52 \\ (2.00-2.88) \end{gathered}$	$\begin{gathered} 2.43 \\ (1.87-3.21) \end{gathered}$	$\begin{gathered} 1.31 \\ (1.10-1.59) \end{gathered}$	$\begin{gathered} 1.06 \\ (0.99-1.12) \end{gathered}$	$\begin{gathered} 2.26 \\ (1.66-3.06) \end{gathered}$	$\begin{gathered} 1.76 \\ (1.44-2.11) \end{gathered}$	$\begin{gathered} 2.65 \\ (1.76-3.16) \end{gathered}$	$\begin{gathered} 2.30 \\ (1.89-2.71) \end{gathered}$
25	$\begin{gathered} 0.82 \\ (0.55-1.45) \end{gathered}$	$\begin{gathered} 0.63 \\ (0.43-0.86) \end{gathered}$	$\begin{gathered} 0.51 \\ (0.24-0.59) \end{gathered}$	$\begin{gathered} 0.39 \\ (0.31-0.43) \end{gathered}$	$\begin{gathered} 0.39 \\ (0.27-0.59) \end{gathered}$	$\begin{gathered} 0.35 \\ (0.12-0.47) \end{gathered}$	$\begin{gathered} 1.80 \\ (1.57-2.15) \end{gathered}$	$\begin{gathered} 0.82 \\ (0.67-1.14) \end{gathered}$	$\begin{gathered} 1.06 \\ (0.94-1.18) \end{gathered}$
26	$\begin{gathered} 0.13 \\ (0.04-0.29) \end{gathered}$	$\begin{gathered} 0.24 \\ (0.18-0.31) \end{gathered}$	$\begin{gathered} 0.24 \\ (0.20-0.27) \end{gathered}$	$\begin{gathered} 0.22 \\ (0.20-0.24) \end{gathered}$	$\begin{gathered} 0.29 \\ (0.22-0.33) \end{gathered}$	$\begin{gathered} 0.07 \\ (0.02-0.13) \end{gathered}$	$\begin{gathered} 1.31 \\ (1.11-1.40) \end{gathered}$	$\begin{gathered} 0.44 \\ (0.22-0.60) \end{gathered}$	$\begin{gathered} 0.62 \\ (0.49-0.78) \end{gathered}$
28	$\begin{gathered} 0.31 \\ (0.20-0.43) \end{gathered}$	$\begin{gathered} 0.24 \\ (0.16-0.39) \end{gathered}$	$\begin{gathered} 0.39 \\ (0.16-0.63) \end{gathered}$	$\begin{gathered} 0.35 \\ (0.12-0.47) \end{gathered}$	$\begin{gathered} 0.20 \\ (0.04-0.27) \end{gathered}$	$\begin{gathered} 0.35 \\ (0.27-0.43) \end{gathered}$	$\begin{gathered} 3.21 \\ (2.58-4.27) \end{gathered}$	$\begin{gathered} 2.47 \\ (2.27-3.02) \end{gathered}$	$\begin{gathered} 2.15 \\ (1.88-2.70) \end{gathered}$
29	$\begin{gathered} 0.82 \\ (0.58-1.09) \end{gathered}$	$\begin{gathered} 2.42 \\ (1.80-3.26) \end{gathered}$	$\begin{gathered} 1.40 \\ (1.13-1.71) \end{gathered}$	$\begin{gathered} 0.98 \\ (0.69-1.44) \end{gathered}$	$\begin{gathered} 0.62 \\ (0.42-1.02) \end{gathered}$	$\begin{gathered} 0.91 \\ (0.75-1.11) \end{gathered}$	$\begin{gathered} 2.80 \\ (2.53-3.04) \end{gathered}$	$\begin{gathered} 2.02 \\ (1.64-2.44) \end{gathered}$	$\begin{gathered} 2.15 \\ (2.04-2.53) \end{gathered}$
36	$\begin{gathered} 2.14 \\ (1.99-2.49) \end{gathered}$	$\begin{gathered} 3.25 \\ (3.01-3.76) \end{gathered}$	$\begin{gathered} 2.25 \\ (1.92-2.40) \end{gathered}$	$\begin{gathered} 2.93 \\ (2.77-3.08) \end{gathered}$	$\begin{gathered} 2.01 \\ (1.64-2.47) \end{gathered}$	$\begin{gathered} 2.58 \\ (2.21-2.97) \end{gathered}$	$\begin{gathered} 6.34 \\ (5.70-6.66) \end{gathered}$	$\begin{gathered} 2.51 \\ (2.03-2.86) \end{gathered}$	$\begin{gathered} 3.43 \\ (3.01-3.78) \end{gathered}$
37	$\begin{gathered} 1.11 \\ (0.96-1.23) \end{gathered}$	$\begin{gathered} 1.67 \\ (1.43-2.05) \end{gathered}$	$\begin{gathered} 2.29 \\ (2.07-2.53) \end{gathered}$	$\begin{gathered} 1.61 \\ (1.43-1.89) \end{gathered}$	$\begin{gathered} 1.43 \\ (1.17-1.81) \end{gathered}$	$\begin{gathered} 2.37 \\ (1.87-2.49) \end{gathered}$	$\begin{gathered} 3.86 \\ (3.78-4.04) \end{gathered}$	$\begin{gathered} 3.03 \\ (2.87-3.40) \end{gathered}$	$\begin{gathered} 3.30 \\ (2.97-3.62) \end{gathered}$
38	$\begin{gathered} 1.13 \\ (0.78-1.20) \\ \hline \end{gathered}$	$\begin{gathered} 1.72 \\ (1.42-1.98) \end{gathered}$	$\begin{gathered} 2.08 \\ (1.84-2.41) \end{gathered}$	$\begin{gathered} 0.97 \\ (0.85-1.28) \end{gathered}$	$\begin{gathered} 3.09 \\ (2.72-3.76) \end{gathered}$	$\begin{gathered} 1.89 \\ (1.46-2.67) \end{gathered}$	$\begin{gathered} 4.75 \\ (4.44-5.06) \end{gathered}$	$\begin{gathered} 3.99 \\ (3.40-4.49) \end{gathered}$	$\begin{gathered} 3.83 \\ (3.76-3.97) \end{gathered}$
39	$\begin{gathered} 2.21 \\ (1.91-2.56) \end{gathered}$	$\begin{gathered} 4.27 \\ (4.22-4.52) \end{gathered}$	$\begin{gathered} 2.16 \\ (1.76-2.71) \end{gathered}$	$\begin{gathered} 3.41 \\ (3.11-3.62) \end{gathered}$	$\begin{gathered} 2.36 \\ (1.91-2.91) \end{gathered}$	$\begin{gathered} 3.51 \\ (3.16-4.27) \end{gathered}$	$\begin{gathered} 8.64 \\ (7.53-9.69) \end{gathered}$	$\begin{gathered} 5.77 \\ (4.62-6.73) \end{gathered}$	$\begin{gathered} 5.17 \\ (4.27-5.97) \end{gathered}$
40	>12.68	>12.68	>12.68	>12.68	>12.68	>12.68	>12.68	>12.68	>12.68

Compd	HL-60	HCT-116	PC3	SF295	MDA-MB-435	OVCAR-8	PBMC	V79	L929
$\mathbf{4 8}$	8.26	7.22	7.79	5.58	6.82	7.90	7.45	6.74	7.16
	$(8.00-9.17)$	$(6.78-7.56)$	$(7.46-8.07)$	$(5.41-6.00)$	$(6.23-7.16)$	$(7.37-8.19)$	$(7.24-7.71)$	$(6.04-7.05)$	$(6.91-7.50)$
$\mathbf{4 9}$	>8.67	>8.67	>8.67	>8.67	>8.67	>8.67	>8.67	>8.67	>8.67
β-lap.	1.57	0.87	1.65	0.95	0.25	1.16	>20.63	-	-
	$1.11-1.69$	$0.74-0.95$	$1.40-1.94$	$0.70-1.03$	$0.16-0.33$	$0.97-1.25$			
DOXO	0.06	0.15	0.02	0.51	0.96	0.41	0.55	0.28	0.23
	$0.02-0.09$	$0.09-0.21$	$0.02-0.04$	$0.43-0.58$	$0.87-1.10$	$0.36-0.49$	$0.41-0.58$	$0.21-0.36$	$0.15-0.30$

nd, not determined.
${ }^{a}$ Ref. 41
$b_{\text {Ref. } 25 .}$

Table 2
Selectivity index for the most active compounds (only IC_{50} values $<2 \mu \mathrm{M}$ for cancer cell lines were considered) [Selectivity index, represented by the ratio of cytotoxicities between normal cells and different lines of cancer cells].

Compd	PBMC, V79 and L929 vs. HL-60	PBMC, V79 and L929 vs. HCT-116	$\begin{gathered} \text { PBMC, V79 } \\ \text { and L929 vs. } \\ \text { PC3 } \end{gathered}$	PBMC, V79 and L929 vs. SF295	PBMC, V79 and L929 vs. MDA-MB-435	$\begin{gathered} \text { PBMC, V79 and } \\ \text { L929 vs. } \\ \text { OVCAR-8 } \end{gathered}$
5	3.6, 2.2 and 2.4	-	-	2.9, 1.7 and 2.0	-	4.1, 2.4 and 2.7
6	$2.0,1.8$ and 1.6	-	-	2.2, 1.9 and 1.7	2.8, 2.4 and 2.2	-
9	$2.5,1.6$ and 1.4	-	2.1, 1.4 and 1.2	$1.8,1.2$ and 1.0	$2.3,1.5$ and 1.3	-
10	$1.5,1.7$ and 1.4	1.6, 1.9 and 1.5	$0.9,1.1$ and 0.9	1.2, 1.4 and 1.1	$1.4,1.6$ and 1.3	2.0, 2.3 and 1.8
15	$3.0,3.5$ and 3.1	2.6, 2.9 and 2.6	1.9, 2.2 and 1.9	$3.0,3.5$ and 3.1	3.7, 4.2 and 3.8	4.8, 5.5 and 4.9
19	10.7, 8.3 and 9.6	$\begin{gathered} 1.89,1.45 \text { and } \\ 1.68 \end{gathered}$	$\begin{gathered} 1.50,1.1 \text { and } \\ 1.3 \end{gathered}$	-	-	-
21	$\begin{gathered} 19.8,16.1 \text { and } \\ 13.4 \end{gathered}$	$9.9,8.0$ and 6.7	3.6, 2.9 and 2.4	4.0, 3.3 and 2.7	6.0, 4.9 and 4.0	6.9, 5.6 and 4.7
22	1.3, 2.0 and 1.7	-	-	1.3, 2.0 and 1.75	1.6, 2.5 and 2.1	-
25	$2.1,1.0$, and 1.2	2.8, 1.3 and 1.6	3.5, 1.6 and 2.0	4.6, 2.1 and 2.7	4.6, 2.1 and 2.7	5.1, 2.3 and 3.0
26	10.0, 3.3 and 4.7	5.4, 1.8 and 2.5	5.4, 1.8 and 2.5	5.9, 2 and 2.8	$4.5,1.5$ and 2.1	18.7, 6.2 and 8.8
28	10.3, 7.9 and 6.9	13.3, 10.2 and 8.9	8.2, 6.3 and 5.5	$9.1,7.0$ and 6.1	$\begin{gathered} 16.0,12.3 \text { and } \\ 10.7 \end{gathered}$	$9.1,7.0$ and 6.1
29	3.4, 2.4 and 2.6	-	2.0, 1.4 and 1.5	2.8, 2.0 and 2.1	4.5, 3.2 and 3.4	3.0, 2.2 and 2.3
37	3.4, 2.7 and 2.9	2.3, 1.8 and 1.9	-	$2.3,1.8$ and 2.0	$2.6,2.1$ and 2.3	-
38	4.2, 3.5 and 3.3	2.7, 2.3 and 2.2	-	4.8, 4.1 and 3.9	-	-
Doxorubicin	9.1, 4.6 and 3.8	3.6, 1.8 and 1.5	$\begin{gathered} 27.5,14.0 \text { and } \\ 11.5 \end{gathered}$	$1.0,0.5$ and 0.4	$0.5,0.2$ and 0.2	$1.3,0.6$ and 0.5

Table 3
NQO1-dependent lethal responses of various compounds. IC_{50} values are reported for cells exposed for two hours in the absence or presence of dicoumarol (DIC).

Compound	Activity	NQO1 Specific	$\mathbf{I C}_{\mathbf{5 0}}(\boldsymbol{\mu} \mathbf{M})$	$\mathbf{I C}_{\mathbf{5 0}}(\boldsymbol{\mu} \mathbf{M})+\mathbf{D I C}$	DIC protection
$\mathbf{2 1}$	Yes	Yes	0.64	>3.2	Yes
$\mathbf{2 2}$	Yes	Yes	1.2	>3.2	Yes
$\mathbf{5 0}$	Yes	Yes	2.6	>3.2	Yes
$\mathbf{5 1}$	Yes	Yes	1.8	>3.2	Yes
$\mathbf{5 2}$	Yes	Yes	2.4	>3.2	Yes
$\mathbf{5 3}$	Yes	Yes	1.3	>3.2	Yes
$\boldsymbol{\beta}$-lapachone	Yes	Yes	3.4	>10	Yes

[^0]: *Corresponding author: E.N. da Silva Júnior: eufranio@ufmg.br; Fax: +55 3134095700 ; Tel.: +55 3134095720.
 Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
 Supporting Information
 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for all the unpublished compounds and 2D NMR spectra (COSY, HMBC and HSQC) for compounds $\mathbf{6}, \mathbf{1 0}$, $\mathbf{1 5}, \mathbf{1 6}, 21,22,26,29,38$ and 49 . This material is available free of charge via the Internet at http://pubs.acs.org.
 The authors declare no competing financial interest.

