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Abstract

Lipophosphoglycan (LPG), the major Leishmania glycoconjugate, induces pro-
inflammatory/immunosuppressive innate immune responses. Here, we evaluated
functional/biochemical LPG properties from six Leishmania amazonensis strains
from different hosts/clinical forms. LPGs from three strains (GV02, BA276, and
LV79) had higher pro-inflammatory profiles for most of the mediators, including
tumor necrosis factor alpha and interleukin 6. For this reason, glycoconjugates
from all strains were biochemically characterized and had polymorphisms in their
repeat units. They consisted of three types: type |, repeat units devoid of side
chains; type Il, containing galactosylated side chains; and type lll, containing
glucosylated side chains. No relationship was observed between LPG type and
the pro-inflammatory properties. Finally, to evaluate the susceptibility against
antileishmanial agents, two strains with high (GV02, BA276) and one with low
(BA336) pro-inflammatory activity were selected for chemotherapeutic tests in
THP-1 cells. All analyzed strains were susceptible to amphotericin B (AmB) but
displayed various responses against miltefosine (MIL) and glucantime (GLU). The
GVO02 strain (canine visceral leishmaniasis) had the highest IC5q for MIL (3.34 uM),
whereas diffuse leishmaniasis strains (BA276 and BA336) had a higher ICsq for
GLU (6.87-12.19 mM). The highest ICsq against MIL shown by the GV02 strain
has an impact on clinical management. Miltefosine is the only drug approved for
dog treatment in Brazil. Further studies into drug susceptibility of L. amazonensis
strains are warranted, especially in areas where dog infection by this species

overlaps with those caused by Leishmania infantum.
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1 | INTRODUCTION

Leishmania infections result in a spectrum of clinical manifestations
determined by complex host-parasite interactions. Leishmania
amazonensis has been identified from patients with diverse clinical
forms of leishmaniasis including localized cutaneous leishmaniasis
(LCL), anergic diffuse (ADCL), muco-cutaneous (MCL), and canine
visceral leishmaniasis (CVL) in South American countries, mainly in
Brazil (Lainson et al., 1994; F. T. Silveira et al., 2004). Among the
cutaneous forms, ADCL is the most severe as therapeutic failures
are common. A distinguished feature of this form is an impairment
in cellular responses, causing T cells anergy and lack of delayed-
type hypersensitivity (Convit et al., 1972; Desjeux, 2004; F. T.
Silveira et al., 2005). The anergic nature of L. amazonensis remains
obscure, although several mechanisms have been suggested
(Real et al., 2013).

The reduced incidence of the number of L. amazonensis LCL
cases in the north and northeast of Brazil, where this parasite is
distributed, may be a result of its zoonotic and occupational
patterns (Camara Coelho et al., 2011; J. P. de Oliveira et al., 2007).
This species is transmitted by Bichromomyia flaviscutellata, a sand
fly species found in the ground of forested areas, having wild
rodents as hosts (Lainson & Shaw, 1968). Bats have also been
suggested as opportunistically involved in wild cycles outside the
Amazon region (E. F. de Oliveira et al., 2015; Savani et al., 2010). B.
flaviscutellata is widely distributed in the Amazon region and other
Brazilian states (Carvalho et al., 2015). In Minas Gerais, southeast-
ern Brazil, L. amazonensis was found in wild-caught sand flies (M. S.
Cardoso et al., 2019; Régo et al., 2015) and in dogs, causing CVL
(Dias et al., 2011; Valdivia et al., 2017). This finding is of particular
concern since in 2017, the treatment of dogs with miltefosine
(MIL) was approved in Brazil. Most CVL cases are caused by
Leishmania infantum and the natural resistance of L. amazonensis to
antileishmanial drugs (Bittencourt et al., 1989; Convit et al., 1989)
may lead to therapeutic failure. However, the drug susceptibility
profile from a viscerotropic L. amazonensis causing CVL is
unknown.

The exuberant growth of L. amazonensis in culture facilitated
its use as a model species for immunology and chemotherapy
(Rocha et al., 2013; Rodrigues et al., 2010). The classical TH1/TH2
phenotype, observed for Leishmania major in C57BL/6 and BALB/c
mice, is not followed by L. amazonensis. It causes severe cutaneous
lesions in both mice with a mixed cytokine profile (Pereira &
Alves, 2008). Several reports attempted to elucidate Leishmania
virulence factors during infection, especially those involving the

parasite glycoconjugates. Lipophosphoglycan (LPG), the major cell

surface glycoconjugate of Leishmania, has been implicated in a
wide range of functions (de Assis et al, 2012). Regarding
dermotropic species, functional studies of L. amazonensis LPGs
have shown their role in macrophages and neutrophils. Those
include induction of neutrophil extracellular traps (Guimaries-
Costa et al, 2009), double-stranded RNA-dependent protein
kinase (PKR) (de Carvalho Vivarini et al.,, 2011), LTB, (Tavares
et al, 2014), NO/cytokines via TLR4 (Nogueira et al., 2016),
caspase-11 via NLRP3 (de Carvalho et al., 2019), and IL-32 via
TLR2/NOD2 (Silveira et al., 2022). However, an unknown aspect
of L. amazonensis glycobiology is to what extent LPG polymor-
phisms from different strains may functionally affect macrophage
responses.

LPG structures have been described as several dermotropic
and viscerotropic Leishmania species worldwide. Inter- and
intraspecies polymorphisms are usually found in the sugars
branching off the conserved Gal(B1,4)Man(al1)-PO, motif (de
Assis et al., 2012). However, studies focusing on LPG intraspecies
polymorphisms have used a limited number of strains (Mahoney
et al., 1999; Nogueira et al., 2017; Paranaiba et al., 2015; Soares
et al., 2004). In the past few years, some studies have increased
the panel of strains from different clinical manifestations/hosts.
LPGs from viscerotropic/dermotropic L. infantum possess three
types of LPG: (I) without side chains, (Il) with one B-glucose linked
to the repeat units, and (lll) with two to three B-glucoses as side
chains. Those polymorphisms did not affect sand fly development
but affected NO/cytokine production by murine macrophages
(Cardoso et al., 2020; Coelho-Finamore et al., 2011; Soares
et al., 2002). Like L. infantum, Leishmania braziliensis LPGs from
different clinical forms also displayed unbranched and branched
sugars in their repeat units. These polymorphisms did not
correlate with NO and cytokine production by murine macro-
phages (Vieira et al., 2019). Finally, preliminary reports on
L. amazonensis LPG showed glycosylated and galactosylated side
chains in the strains PH8 and Josefa, isolated from sand flies and
humans, respectively. These LPGs were potent TLR4 agonists
and induced NO and cytokine production by murine macro-
phages. However, they did not affect sand fly interaction with
Migonemyia migonei and Lutzomyia longipalpis (Nogueira
et al., 2016, 2017).

As part of a wider project on the glycobiology of Leishmania
parasites, we evaluated the role of L. amazonensis LPGs from
distinct clinical forms/hosts during interaction with murine
macrophages. Since we have a valuable panel of strains, we also
evaluated their susceptibility profile against antileishmanial

drugs.
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TABLE 1 Leishmania amazonensis strains isolated from distinct clinical forms and hosts
Strain Nomenclature used in the text Clinical form Host Origin
IFLA/BR/1967/PH8 PH8 ND B. flaviscutellata Pard/BR
MHOM/BR/1987/BA115 BA115 LCL Homo sapiens Bahia/BR
MHOM/BR/1987/BA125 BA125 LCL H. sapiens Bahia/BR
MHOM/BR/1987/BA276 BA276 ADCL H. sapiens Bahia/BR
MHOM/BR/1989/BA336 BA336 ADCL H. sapiens Bahia/BR
MCAN/BR/2012/GV02 GV02 CVL Canis familiaris Minas Gerais/BR
MPRO/BR/72/M1845 Lv78 ND Proechimys sp. Pard/BR

Abbreviations: ADCL, anergic diffuse cutaneous leishmaniasis; B. Flaviscutellata, Bichromomyia flaviscutellata; CVL, canine visceral leishmaniasis; LCL,

localized cutaneous leishmaniasis; ND, not determined.

2 | MATERIALS AND METHODS

2.1 | Parasite culture and molecular typing

Six strains of L. amazonensis were evaluated (Table 1). Glycobiology
experiments used L. amazonensis reference strain (IFLA/BR/1967/
PH8) as control (Nogueira et al., 2017). Promastigotes were cultured
in M199 medium supplemented with 10% fetal bovine serum (FBS)
(Invitrogen/Thermo Fisher Scientific, penicillin, 200 u/ml), and strep-
tomycin (200 pg/mL) (all Merck KGaA), at 25°C. To confirm parasite
identity, molecular typing (hsp70 gene) was performed (Garcia
et al., 2004). Confirmed L. amazonensis sequences were deposited
in the GenBank database (accession numbers OM780131-
OM780136).

2.2 |
of LPG

Extraction, purification, and quantitation

LPGs were extracted with organic solvents and purified using phenyl-
Sepharose from late log-phase cells (Nogueira et al., 2017). Organic
eluates were dried through N, evaporation and purified LPGs were
resuspended in endotoxin-free water (Sanobiol) and quantitated using
the phenol-sulfuric method (Dubois et al., 1956). The LPG concentrations
were adjusted to 10ug/mL in RPMI before functional experiments
(Nogueira et al., 2016) (Figure 1a).

2.3 | Functional assays

To evaluate the functional properties of LPGs, they were added to
murine macrophages. Intraperitoneal macrophages previously stimu-
lated with 2ml of 3% sterile thioglycolate were extracted from
BALB/c mice through sequential washing with cold RPMI without
supplement. Cell viability was checked by trypan blue. Cells (3 x 10°/
well) were seeded into 96-well culture plates for adhesion (1 h, 37°C,
5% CO,) with RPMI supplemented with 2 mM glutamine, 50 U/ml of
penicillin, 50 pg/ml streptomycin, and 10% FBS. Cells were primed
with interferon-gamma (IFN-y) (3 U/ml) for 18 h before incubation

with LPGs (10 pg/ml) from each strain and lipopolysaccharide (LPS)
(100 ng/ml, positive control) (48 h, 37°C, 5% CO,) (Figure 1a).

2.4 | Cytokine, chemokine, and nitrite
measurements

To evaluate the production of different mediators in response to LPG and
LPS, macrophage culture supernatants were collected after 48h of
incubation. Tumor necrosis factor alpha (TNF-a), interleukin 6 (IL-6),
IL-10, IL-12p70, and MCP-1 concentrations were determined using BD
cytometric bead array (CBA) Mouse Inflammation Kit (BD Biosciences)
according to the manufacturer's specifications. Flow cytometry measure-
ments were performed on FACSVerse flow cytometry (BD Biosciences).
The Cell-Quest software package provided by the manufacturer was used
for data acquisition and the FlowJo v. 7.6.4 (Tree Star Inc.) was used for
data analysis. A total of 2500 events were acquired for each analysis. The
results are representative of three experiments in duplicate. Nitrite (NO)
concentrations were determined by the Griess reaction (Drapier
et al., 1988).

2.5 | Fluorophore-assisted carbohydrate
electrophoresis (FACE)

As LPGs have differently activated murine macrophages, our next
step was to evaluate the existence of sugar polymorphisms in their
repeat units. LPGs were depolymerized after mild acid hydrolysis and
phosphorylated repeat units were recovered after butanol:water
partition (Soares et al., 2002). Then, they were treated with alkaline
phosphatase (1 U) in 15 mM Tris buffer (pH 9.0, 16 h, 37°C). Samples
were desalted by passage through a two-layered column of AG50W-
X12 (H+) over AG1-X8 (acetate) and fluorescently labeled with
0.05N ANTS (8-aminonaphthalene-1,3,6-trisulfate) and 1 M cyano-
borohydride for 16 h, 37°C (Soares et al., 2004). After this step,
samples were subjected to FACE analysis, including the labeled oligo-
glucose ladders (G1-G;) used as standards. For monosaccharide
analysis, the repeat units were subjected to strong acid hydrolysis

(2N trifluoroacetic acid, 3h, 100°C). Samples were desalted as
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FIGURE 1 Strategies employed for Leishmania amazonensis strains characterization. (a) Extraction, purification, dot-blots, and interaction with murine
macrophages. Parasite cell pellets were subject to extraction with organic solvents as described elsewhere. For purification, the solvent E extract was
dried under N, evaporation and applied into a phenyl-Sepharose column. Purified lipophosphoglycan (LPGs) were used for biological and immunological
assays. (b) Biochemical characterization of LPG repeats units by fluorophore-assisted carbohydrate electrophoresis (FACE). LPG was depolymerized,
subjected to butanol:water partition and treated with alkaline phosphatase. After desalting, neutral repeat units were subjected to FACE.

(c) Chemotherapeutic assays. THP-1 cells were exposed to parasites (MOl 10:1) before drug exposure and ICsq determination.

described above and fluorescently labeled with 0.1 M AMAC
(2-aminoacridone) in 5% acetic acid and 1M cyanoborohydride.
Then, monosaccharides were also subjected to FACE. Poly- and
monosaccharide gels were visualized under UV exposure (Nogueira
et al., 2017) (Figure 1b).

2.6 | Immunoblotting

To confirm the quality of the side chains observed in the FACE analysis,
purified LPGs were subjected to dot-blot analysis. LPG (2 ug) was blotted
onto a nitrocellulose membrane (Amersham Protran, 0.45um—GE
Healthcare), blocked (1 h) in 5% powdered and skimmed milk (Molico,
Nestlé), and probed for 18 h with mAb CA7AE (1:1000) that recognizes
the Gal(1,4)Man(al)-PO, epitope (Tolson et al., 1994) and mAb LT22
(1:1000), that recognizes B-glucose side chains (Lira et al., 1998). Then,
the membrane was washed three times in PBS (3 x 5 min) and incubated

with anti-mouse IgG conjugated with peroxidase (1:10,000) for 1 h. After
a final wash with PBS (3 x 5 min), the reaction was visualized with luminol
(Guimaraes et al., 2018).

2.7 | Macrophage experimental infection and drug
susceptibility assay

To evaluate the susceptibility of L. amazonensis strains to current
antileishmanial drugs, chemotherapeutic assays were performed as
previously reported (Rugani et al., 2018). Briefly, human monocyte-
derived macrophages from THP-1 cell line (ATCC#TIB-202) were
infected with 2x 10° stationary-phase promastigotes (MOl 10:1) for
3 h. Noninternalized parasites were removed, and cells were incubated
for 72 h in the presence/absence (untreated control) of amphotericin B
(AmB), MIL, and glucantime (GLU). Assays were performed twice in three
replicates. The infection index was obtained by dividing the total number
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FIGURE 2 Nitrite (a) and cytokines/chemokine (b-f) production by interferon-gamma primed murine macrophages stimulated with
lipophosphoglycan (LPGs) from distinct Leishmania amazonensis strains. Nitrite concentration was measured by Griess reaction and cytokine
concentrations were determined by flow cytometry. Negative control and positive control were medium and lipopolysaccharide (100 ng/ml), respectively.

Asterisks indicate statistical differences (p <.05).

of infected cells at each drug concentration by the number of infected
cells from the untreated control. The mean number of amastigotes was
represented by the total of amastigotes per 100 macrophages and the
number of amastigotes per macrophage was obtained by dividing the
number of intracellular amastigotes by the total of infected host cells

(Figure 1c).

2.8 | Statistical analysis

For nitrite, cytokine, and chemokine measurements, the

Shapiro-Wilk normality test was conducted to test the null
hypothesis that data were sampled from a Gaussian distribution.
Ordinary one-way analysis of variance was performed to compare
the nitrite, cytokines, and chemokine productions among L. amazo-
nensis strains. The data were analyzed using GraphPad Prism 7.0
(Graph Inc.). The half-maximal inhibitory

software Prism

concentration (ICso) of the antileishmanial drugs was calculated
based on the infectivity index profile where log transformed drug
concentration values versus normalized responses with variable
slopes, were applied in sigmoidal dose-response curves, performed
using GraphPad Prism version 7.0 software (Graph Prism Inc.). The
p values below .05 were considered statistically significant.

3 | RESULTS

3.1 | Functional analysis

LPGs were able to differentially stimulate the production of different
mediators by peritoneal murine macrophages (Figure 1). LPGs from
BA276, LV78, and GVO2 strains induced higher levels of NO, IL-6,
and TNF-a than the others (p <.05) (Figure 2a-c). Those levels were
even higher than that for LPS (positive control). The heterogeneous
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FIGURE 3 Biochemical characterization of lipophosphoglycan (LPGs) from distinct Leishmania amazonensis strains. Fluorophore-assisted
carbohydrate electrophoresis of dephosphorylated repeat units. (a) G,-G, oligoglucose ladder; lane 1, PH8 strain; lane 2, GV02 strain; lane 3,
BA125 strain and lane 4, BA276 strain. (b) G,-G-, oligoglucose ladder; lane 1, BA115 strain; lane 2, BA336 strain and lane 4, LV78 strain. (c, d)
Dot blot analysis of intact LPG using mAbs (1:1000) CA7AE (upper), and LT22 (lower).

production of IL-12p70 and MCP-1 was observed among strains
being statistically higher than the BA336 strain (Figure 2d,e). Finally,
IL-10 production was higher for GV0O2 and LV78 LPGs only
(Figure 2f).

3.2 | LPG polymorphisms in L. amazonensis strains
To investigate if functional variations could be due explained by the
LPG polymorphisms, these molecules were biochemically character-
ized. They displayed qualitative differences in their repeat units by
FACE analysis that were further and confirmed by the dot-blot
analysis (Figure 3). Carbohydrate profiles showed the presence of the
disaccharide Gal(1,4)Man(al) (G,), and one to two side chains
(G3-Gy) in the repeat units of GV02, BA125, BA276, and LV78
strains (Figure 3a, lanes 2-4 and; Figure 3b, lane 3). The repeat units
of BA115 and BA336 strains were devoid of side chains and co-
migrated with the disaccharide G,, confirming the structure of Gal
(B1,4)Man(al) common to all LPGs (Figure 3b, lanes 1 and 2). As
expected, the repeat units of the PH8 strain (control) showed 1-2
B-glucoses as side chains (G3-G,4) branching-off the disaccharide Gal
(B1,4)Man(al) (G,) as previously reported (Nogueira et al., 2017)
(Figure 3a, lane 1).

To confirm the quality of the hexoses branching-off the
repeat units of the LPGs from GV02, BA125, BA276, and, LV79,
two mAbs were used: mAb CA7AE, which recognizes the
unsubstituted disaccharide Gal(B1,4)Man(al) (Figure 2c,d, upper)
and LT22, specific for glucose/galactose side chains (Figure 2c,d,
lower). Consistent with the FACE analysis, all strains were
recognized by CA7AE, confirming the structure of Gal(B1,4)Man

1 2 3 4 5
Man — 4
=l R R
Gal —]
PH8 GV02 BA125  BA276

FIGURE 4 Fluorophore-assisted carbohydrate electrophoresis
(FACE) of monosaccharides from distinct Leishmania amazonensis
strains. hydrolysis. Lane 1, monosaccharide standards; lane 2, control
strain (PH8); lane 3, (GV02); lane 4, BA125, and, lane 5, BA276). Man,
mannose; Gal, galactose; Glc, glucose.

(al) (Gy) common to all LPGs. However, LT22 only recognized
branched structures in the LPGs from strains PH8 (control),
GV02, BA125, Ba276, and LV78 (Figure 2c,d, lower). Since LPGs
from L. amazonensis have either galactose or glucose as side
chains, monosaccharide analysis was performed in four strains to
confirm the quality of sugars branching-off the repeat units
(Figure 4). Confirming previous data, the repeat units of PH8
(control) showed expected galactose, mannose, and a glucose
band (Figure 4, lane 2) (Nogueira et al., 2017). Like PH8, the
monosaccharide profile of the GV02 strain also had glucose as
side chains (Figure 4, lane 3). Finally, BA125 and BA276 LPGs had
only galactose and mannose in their monosaccharide content
(Figure 4, lanes 4 and 5). However, the higher intensity of the
galactose band implies that this sugar is present in their side
chains. Altogether, those data confirmed intraspecies polymor-
phisms in the LPGs of L. amazonensis strains bearing galactose
and glucose as side chains and, unbranched repeat units. The

proposed LPG repeat units for different L. amazonensis strains
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TABLE 2 Proposed LPG structures (types I-1ll) of Leishmania (types I-111) from different clinical forms/hosts are summarized in
amazonensis strains from different clinical forms and hosts Table 2.

Strain Clinical form  Side chain Type

MHOM/BR/1987/BA115 LCL None | - . .

3.3 | Susceptibility to antileishmanial drugs
MHOM/BR/1989/BA336  ADCL None |

MHOM/BR/1975/Josefa®  LCL 1-3 galactoses |l

MHOM/BR/1987/BA125 LCL 1-2 galactoses I

MHOM/BR/1987/BA276  ADCL 1-2 galactoses |l

IFLA/BR/1967/PH8* ND 1-2 glucoses 1}

MCAN/BR/2012/GV02 CVL 1-2 glucoses 1

MPRO/BR/72/M1845 ND 1-2 hexoses® Ilor 1l

Abbreviations: ADCL, anergic diffuse cutaneous leishmaniasis;

FACE, fluorophore-assisted carbohydrate electrophoresis; CVL, canine
visceral leishmaniasis; LCL, localized cutaneous leishmaniasis; LPG,
lipophosphoglycan; ND, not determined.

aStructures extracted from Nogueira et al. (2017).

bBased on FACE analysis and reactivity to LT22.

As L. amazonensis strains elicited distinct immunomodulatory
responses on macrophage experimental infection, we investigated
the drug susceptibility status of three strains: one isolated from a dog
(GV02) and two (BA276 and BA336) isolated from ADCL patients
that are often resistant to available antileishmanial protocols
(Zauli-Nascimento et al., 2010). All strains were sensitive to GLU,
AmB, and MIL in a dose-dependent manner (Figure 5). However,
intraspecies variations in ICsq values showed different susceptibility
profiles against antileishmanial drugs (Table 3, Figure 6). As expected,
all strains were equally susceptible to AmB showing the lowest
ICso values. However, ACDL strains (BA276 and BA336) had higher
ICso values than CVL (GV02). Conversely, GV02 strain had a higher
(~3-fold) ICsq value for MIL (Table 3).
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FIGURE 5 Susceptibility profile of GV02 BA276 and Ba336 strains of Leishmania amazonensis to current antileishmanial agents. Bars
indicate the percentage of infection of monocyte-derived human THP-1 macrophages (y axis) in serial-diluted drug concentrations
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amastigotes per macrophage. The data refer to an average of three independent experiments, with error bars representing the standard

error of the mean.
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Half inhibitory concentrations (ICs) of antileishmanial drugs against intracellular amastigotes of L. amazonensis from different

TABLE 3
strains
1Cso (Cl 95%)
Samples Clinical form Glucantime (mM)
BA276 ADCL 6.87 (4.12-11.36)
BA336 ADCL 12.19 (8.33-18.32)
GV02 CVL 1.38 (1.01-1.75)

Amphotericin B (uM)
0.14 (0.13-0.15)

Miltefosine (M)
1.11 (0.54-1.72)
0.014 (0.011-0.016) 2.80 (2.32-3.35)

0.041 (0.029-0.052) 3.34 (2.66-4.19)

Abbreviations: ADCL, anergic diffuse cutaneous leishmaniasis; CVL, canine visceral leishmaniasis.
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FIGURE 6 Susceptibility profile of GV02 BA276 and Ba336 strains of Leishmania amazonensis strains to antileishmanial agents. Drug curve

plots are shown as mean and standard deviation in triplicate.

4 | DISCUSSION

Several factors affect infectivity and/or pathogenicity among Leish-
mania strains. In L. amazonensis, factors favoring its ability to cause a
wide spectrum of clinical manifestations are unknown. Parasite
surface glycoconjugates are important virulence factors (De Assis
et al., 2012; Sacks & Kamhawi, 2001). However, we do not know in
which extent they contribute for intraspecies variations and clinical
outcomes. Preliminary observations reported LPG polymorphisms in
(PH8 Josefa) (Nogueira
et al., 2016, 2017). Although LPG polymorphisms were evident, they

did not trigger differential immune responses in macrophages. Here,

two L. amazonensis strains and

to better address this subject, the number of L. amazonensis strains
was expanded. The functional properties of their LPGs and
susceptibility to current antileishmanial drugs were evaluated.
Functionally, L. amazonensis LPGs were able to trigger distinct
pro-inflammatory innate immune responses. The Leishmania LPGs
from dermotropic species/strains can usually induce higher NO/
cytokines production than viscerotropic ones (Cardoso et al., 2020;
Ibraim et al., 2013; Nogueira et al., 2016; Paranaiba et al., 2015; Vieira
et al,, 2019). When an increased number of strains is used, variations
in their pro-inflammatory/immunosuppressive LPG properties were
documented (Cardoso et al., 2020; Coelho-Finamore et al., 2011;
Vieira et al., 2019). Consistent with these observations, L. amazonensis
also followed this pattern. With exception of IL-10 (BA276), higher
induction of NO, IL-6, TNF-a, and IL-10 were observed for BA276

(ADCL), LV78 (rodent), and GV02 (CVL) strains. In some cases, this
induction was even higher than that caused by LPS. Overall, IL-10 is a
pleiotropic immunomodulatory cytokine suppressing Th1l-dependent
cell-mediated immunity and increasing TH2 immune responses (De
Waal Malefyt et al., 1991; Fernandez-Botran et al., 1988). High IL-10
levels in the initial phase of VL lead to susceptibility of infection by
decreasing the frequency of multifunctional CD4 T cells (Mesquita
et al., 2018). Here, highest IL-10 levels for rodent (LV78) and canine
(GV02) were detected. VL pathogenesis appears at least in part due to
a shift in the balance of effector/regulatory mechanisms. In this
specific case, the higher IL-10 level triggered by L. amazonensis LPG
from a canine strain may contribute to an inefficient TH1 response.

On the other hand, BA336 (causing ADCL) LPG, was a poor
inducer of IL-12 and MCP-1. IL-12 is a key cytokine promoting cellular
activation during Leishmania infection, leading to a TH1-type response
(Lohoff et al., 1999). Although this finding was interesting, it could not
be correlated to anergy since the LPG from another ADCL strain
(BA276) induced higher levels of this cytokine. Based on the pro-
inflammatory properties of the LPGs, a clear correlation between
clinical form/host was not noticed. Our next step was to check for
LPG polymorphisms affecting macrophage activation.

Consistent with our previous reports, polymorphisms in repeat
units were detected and considered to be of three types: Some were
devoid of side chains (type I), others had 1-2 B-galactoses (type II) or
1-2 B-glucoses (type Ill) as side chains (summarized in Table 2). Type Il
and Il structures were already reported for L. amazonensis (Nogueira
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et al., 2017). Here, we reported for the first-time unbranched repeat
units (type 1) in two dermotropic strains BA115 (LCL) and BA336
(ADCL). Type | LPG is found in most L. infantum strains (Coelho-
Finamore et al., 2011), L. braziliensis (Soares et al., 2005; Vieira
et al., 2019), and Leishmania shawi (Passero et al., 2015). Type Il
repeat units were detected in dermotropic strains BA125 (LCL) and
BA276 (ADCL). Poly-galactosylated LPGs were already reported in L.
major (Dobson et al., 2003; McConville et al., 1992), and Leishmania
tropica (Soares et al., 2004). Finally, type Il (glucosylated) LPG were
found in GV02 and PHS8 strains. This type of LPG has already been
reported for L. infantum (Coelho-Finamore et al., 2011) and
Leishmania donovani (Mahoney et al., 1999). Confirming previous
functional studies, polymorphisms in L. amazonensis LPGs did not
correlate with clinical forms/hosts. For example, carbohydrate motifs
of ADCL and LCL strains were identical. This suggests that functional
LPG abilities are strain specific. In summary, our panel of L.
amazonensis strains displayed functional/biochemical variations. This
species is often resistant to antileishmanial drugs, and we have one
unique strain isolated from a canine infection. Our next step was to
evaluate intraspecies susceptibility to several antileishmanial agents.

Although L. infantum is the main CVL species in Brazil, detection of L.
amazonensis causing similar symptoms in dogs is worrisome. All strains
were sensitive to AmB, but differences in I1Csq values were detected for
GLU and MIL. For example, the ADCL strain exhibited higher (~7- to 12-
fold) ICso values than the GV02, reinforcing field observations on
antimonial therapeutic failure in human patients. Conversely, for MIL, a
higher (~1.3-fold) ICsp value was observed for the GV02 strain. Although
this difference was within a range closer to the ADCL strains, it shows
that the GVO02 strain is slightly more resistant to MIL. Miltefosine is the
only approved drug for CVL treatment in Brazil and its efficacy against L.
amazonensis strains is scarce. The finding that the strain isolated from the
dog is less susceptible to MIL may have implications for clinical veterinary
practice. Further studies are needed to ascertain etiological agents
causing CVL other than L. infantum and their susceptibilities to

antileishmanial agents.

5 | CONCLUSIONS

L. amazonensis strains isolated from different clinical forms/hosts
displayed functional and biochemical polymorphisms in their LPGs.
Qualitative differences with respect to side chain substitutions
enabled the description of three types of LPG (I-1ll). Although three
strains (GV02, BA276, and LV78) bearing side chains in their LPGs
had higher pro-inflammatory profiles, a clear correlation was not fully
established in murine macrophages. Finally, the lower in vitro
susceptibility L. amazonensis to MIL warrants further investigation
into viscerotropic species affecting dogs and, consequently, the
clinical management and therapeutic approaches against CVL.
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