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Abstract: Triatoma bassolsae, T. longipennis, T. mazzottii, T. pallidipennis, T. phyllosoma and T. picturata
are species that have great epidemiological importance in the transmission of Chagas disease in
Mexico. However, there is no consensus regarding the specific status of these species, since they
appear in various articles as species, subspecies and even subgenera. Thus, we revisited genetic,
taxonomic and evolutionary data that allowed us to assess and discuss the specific status of these
six species of the T. phyllosoma subcomplex. Phylogenetic studies were performed with nuclear (18S,
28S, ITS-2) and mitochondrial (16S, cytb, COI, COII, 12S) markers deposited in GenBank. In addition,
data from experimental crosses were pooled and the genetic distance to the cytb gene was calculated.
The phylogenetic reconstruction enabled us to rescue the six species as independent lineages. Post-
zygotic reproductive isolation barriers (sterility and/or hybrid collapse) were observed for some
experimental crosses. Although the other experimental crosses did not allow us to characterize
reproductive barriers, these species showed high genetic distances in relation to the cytb gene
(ranging from 4.6% to 14.9%). Thus, based on the revisited literature data, we confirmed the specific
status of these six species of the T. phyllosoma subcomplex based on the phylogenetic and biological
concepts of the species.

Keywords: kissing bugs; triatomines; phylogenetic systematics; experimental crosses

1. Introduction

The Chagas disease vectors of the Triatomini tribe (Hemiptera, Triatominae) have been
grouped into eight complexes and nine subcomplexes (Figure 1) [1–5]. Although these
groupings are not recognized by the International Code of Zoological Nomenclature [6],
it has been suggested that they should represent natural groups (monophyletic) [7]. The
Triatoma phyllosoma subcomplex is composed of the species T. bassolsae Alejandre Aguilar
et al., 1999; T. bolivari Carcavallo, Martínez and Pelaez, 1987; T. longipennis (Usinger, 1939);
T. mazzottii (Usinger, 1941); T. mexicana (Herrich-Schaeffer, 1848); T. pallidipennis (Stål, 1872);
T. phyllosoma (Burmeister, 1835); T. picturata (Usinger, 1939) and T. ryckmani Zeledón and
Ponce, 1972 [1]. With the exception of T. ryckmani, all the species of the T. phyllosoma
subcomplex are endemic to Mexico [8].

Triatoma bassolsae, T. longipennis, T. mazzottii, T. pallidipennis, T. phyllosoma and T. pic-
turata are species that have great epidemiological importance in the transmission of Chagas
disease in Mexico, representing more than 60% of vectorial transmissions of Trypanosoma
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cruzi (Chagas, 1909) (Kinetoplastida, Trypanosomatidae) to humans [9]. In addition to
their epidemiological importance, these insects have a complex taxonomy, since they were
once considered a single species with genetic and morphological polymorphism and/or
subspecies of T. phyllosoma [10].
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The shaded groupings represent species that have already been reported in Mexico.

Triatoma bassolsae was described in 1999 as a species of the genus Triatoma Laporte,
1832 [11]. In 2000, Carcavallo et al. [12] suggested the reclassification of the species to the
genus Meccus Stål, 1859, and recently Justi et al. [7] and Cesaretto et al. [13] demonstrated
that it is a species of Triatoma. Triatoma longipennis was described 1939 as a species of the
genus Triatoma [14]. In 1944, it was considered as a subspecies: T. p. longipennis [15]. In
2000, Carcavallo et al. [12] suggested that the subspecies was a species and grouped it into
the genus Meccus. Recently it was demonstrated that this species belongs to the genus
Triatoma [7,13]. Triatoma mazzottii was described 1941 as a species of the genus Triatoma [16].
In 1943/1944, it was considered a subspecies (T. p. mazzottii) [15,17]. Later, it came to be
considered as a species and was classified in the genus Meccus [12] and recently it has been
regrouped into the genus Triatoma [7,13].

Triatoma pallidipennis was described in 1872 as a species of the genus Triatoma [18]. In
1943/1944, it was considered a subspecies (T. p. pallidipennis) [15,17]. In 2000, it started to
be considered a species and was placed in the genus Meccus [12]. Recently Justi et al. [7]
and Cesaretto et al. [13] demonstrated that it is a speciesof Triatoma. Triatoma phyllosoma
was described in 1835 as a species of the genus Conorhinus [19]. In 1930, it came to be
considered a species of the genus Triatoma [20]. In 2000, it was classified in the genus
Meccus [12] and recently it has been regrouped into the genus Triatoma [7,13]. Finally,
T. picturata was described in 1939 as a species of the genus Triatoma [14]. In 1943/1944, it
was considered a subspecies (T. p. picturata) [15,17]. In 2000, Carcavallo et al. [12] suggested
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that the subspecies was a species and grouped it into the genus Meccus. Recently it was
demonstrated that this species belongs to the genus Triatoma [7,13].

As demonstrated above, the generic status of the T. phyllosoma subcomplex species has
also been widely discussed. The first species of this genus was described as Conorhinus phyl-
losoma Burmeister, 1835 [19]; in 1859 the species was transferred to the genus Meccus [20]; in
1930 it was transferred to the genus Triatoma [21]; in 2000 the genus Meccus was revalidated
based on morphological data [12] (alteration corroborated by Hypsa et al. [22] through
molecular studies); and in 2014 the genus Meccus was synonymized with Triatoma using
more sophisticated phylogenetic reconstruction methods [7] (generic alteration recently
confirmed by experimental crosses [13]).

Recently, Rengifo-Correa et al. [23] proposed an identification key for the T. phyllosoma
species group (involving species of the T. phyllosoma and T. dimidiata subcomplexes) and
suggested that T. bassolsae, T. longipennis, T. mazzottii, T. pallidipennis, T. phyllosoma and T.
picturata should be considered species. However, there is no consensus among researchers
between the specific status of these species, since they appear in articles as species [23],
subspecies [24,25] and even subgenera [26,27]. Thus, we revisited genetic, taxonomic and
evolutionary data that allowed us to assess and discuss the specific status of these six
species of the T. phyllosoma subcomplex.

2. Materials and Methods

Sequences of eight molecular markers obtained in GenBank (mitochondrial markers:
16S, cytb, COI, COII and 12S; nuclear markers: 18S, 28S and ITS-2) (Table 1) were used for
the T. phyllosoma subcomplex species (T. bassolsae, T. longipennis, T. mazzottii, T. pallidipennis,
T. phyllosoma and T. picturata) and for two Triatoma species (T. brasiliensis Neiva, 1911 and
T. vitticeps (Stål, 1859)), which were designated as an outgroup (Table 1). The sequences
were submitted to the MEGA X program [28] and aligned using the muscle method [29]. The
alignments of each marker were concatenated by name using the Seaview4 program [30]
and converted with the Mesquite program [31], resulting in an alignment with eight taxa
and 5556 nucleotides.

Table 1. GenBank access codes of sequences used in the molecular analysis of the T. phyllosoma
subcomplex species and respective nucleotide substitution models. - represents genes that have not
been sequenced.

Species

Molecular Markers
(Substitution Models)

16S 18S 28S Cytb COI COII ITS-2 12S
(GTR + I + G) (HKY +I) (HKY) (HKY + G) (GTR + I) (HKY) (HKY) (GTR)

T. phyllosoma
subcomplex

T. pallidipennis KC249045 AJ243330 - DQ198814 - - AJ286882 AF394522
T. longipennis KC249031 - KC249177 KC249267 KC249357 KC249452 KC698909 -
T. mazzottii AY035446 AJ243333 - DQ198816 DQ198805 - KC698911 -
T. picturata AY035447 AJ243332 - DQ198817 - - KC698910 -

T. phyllosoma - AJ243329 - DQ198818 DQ198806 - KC698912 -
T. bassolsae - - - MK317878 - - MK248256 -
Outgroup

T. brasiliensis KC248985 AJ421957 KC249145 KC249239 KC249318 KC249413 - AF021187
T. vitticeps KC249087 KC249132 KC249220 KC249303 KC249396 KC249491 - AF021217

The concatenated alignment was partitioned for each marker and the best nucleotide
substitution model (lowest Akaike information criterion value) was individually deter-
mined in the jModelTest 2 program [32] (Table 1). Data were submitted to MrBayes 3.2 [33]
for phylogenetic reconstruction using a Bayesian approach, with a total of 100 million
generations. Trees were sampled every 1000 generations in two independent runs, with
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burn-in adjusted to 25%. The Tracer v. 1.7 program [34] was used to verify the stabilization
(ESS values above 200) of the sampled trees and the generated phylogenetic tree was
viewed and edited in the FigTree v.1.4.4 program [35], being rooted at the midpoint. A
concatenated sequence tree was produced based on the mitochondrial and nuclear genes
once the concatenation approach had yielded more accurate trees, even when the concate-
nated sequences had evolved with very different substitution patterns [36]. The genetic
distance matrix between the T. phyllosoma subcomplex species was obtained in the MEGA
X program 21 based on the cytb sequences (Table 2) using the Kimura 2-parameter distance
model [37]. The use of only one specimen of each species in the matrix was justified because
the objective of this genetic distance analysis was to assess the taxonomic status of each
of the six taxa of this subcomplex (interspecific) and not to carry out population studies
(intraspecific).

Table 2. Genetic distance matrix for the cytochrome b gene.

Species 1 2 3 4 5 6 7 8

1 T. pallidipennis
2 T. longipennis 0.104
3 T. mazzottii 0.136 0.102
4 T. picturata 0.090 0.106 0.148
5 T. phyllosoma 0.124 0.091 0.122 0.147
6 T. bassolsae 0.046 0.099 0.149 0.084 0.132
7 T. brasiliensis 0.315 0.296 0.326 0.360 0.276 0.336
8 T. vitticeps 0.295 0.267 0.295 0.265 0.267 0.256 0.302

3. Results and Discussion

The phylogenetic reconstruction, obtained by combining different mitochondrial and
nuclear markers, could be used to rescue the six species of the T. phyllosoma subcomplex
as independent lineages with strong bootstrap values (values ≥ 70%) [38] (with support
values ranging from 0.82 to 1) (Figure 2). In addition, these species showed high genetic
distances from the cytb gene, ranging from 4.6% to 14.9% (Table 2).

Phylogenetic studies performed by Martinez-Ibarra et al. [10] and Martínez et al. [39]
led those authors to propose changing the specific status of species T. bassolsae, T. longipennis,
T. mazzottii, T. pallidipennis, T. phyllosoma and T. picturata to subspecies of T. phyllosoma
(T. p. bassolsae, T. p. longipennis, T. p. mazzottii, T. p. pallidipennis, T. p. phyllosoma and
T. p. picturata). However, the phylogenetic reconstruction obtained by combining different
mitochondrial and nuclear markers enabled us to rescue the six species of the T. phyllosoma
subcomplex as independent lineages (Figure 2), confirming the specific status of these
vectors based on the phylogenetic concept of species (“ . . . the smallest diagnosable cluster
of individual organisms forming a monophyletic group within which there is a parental
pattern of ancestry and descent” [40]).

Post-zygotic reproductive isolation barriers (sterility and/or hybrid collapse) that
make the hybrids resulting from the crosses between T. mazzotti and most other species
of the T. phyllosoma subcomplex unfeasible, as well as those between T. phyllosoma and
T. pallidipennis and between T. phyllosoma and T. bassolsae, were described by Martinez-
Ibarra [41–43] (Table 3). The characterization of these barriers under laboratory conditions
confirmed the specific status of the parent species based on the biological species concept
(“ . . . groups of actually or potentially interbreeding natural populations, which are re-
productively isolated from other such groups” [44,45]). Although the other experimental
crosses did not allow the characterization of interspecific reproductive barriers (Table 3),
these species showed high genetic distances from the cytb gene (the choice of the cytb
gene to calculate the genetic distance was based on the minimum interspecific distance
established by Monteiro et al. [46]), ranging from 4.6% to 14.9% (Table 2), which confirmed
the specific status of all taxa, since these were greater than the minimum value established
to separate species using the cytb gene (2%) [46].
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Table 3. Experimental crosses carried out between species of the phyllosoma subcomplex.

Experimental Crosses Pre-Zygotic
Barriers

Post-Zygotic
Barriers References

♀T. mazzottii × ♂T. longipennis Absent Hybrid Collapse Martínez-Ibarra et al. [41]

♂T. mazzottii × ♀T. longipennis Absent Hybrid Collapse Martínez-Ibarra et al. [41]

♀T. mazzottii × ♂T. picturata Absent Hybrid sterility Martínez-Ibarra et al. [41]

♂T. mazzottii × ♀T. picturata Absent Hybrid sterility Martínez-Ibarra et al. [41]

♀T. mazzottii × ♂T. pallidipennis Absent Hybrid sterility Martínez-Ibarra et al. [41]

♂T. mazzottii × ♀T. pallidipennis Absent Hybrid sterility Martínez-Ibarra et al. [41]

♀T. mazzottii × ♂T. bassolsae Absent Hybrid sterility Martínez-Ibarra et al. [41]

♀T. phyllosoma × ♂T. pallidipennis Absent Hybrid sterility Martínez-Ibarra et al. [42]

♀T. pallidipennis × ♂T. phyllosoma Absent Hybrid sterility Martínez-Ibarra et al. [42]

♀T. phyllosoma × ♂T. bassolsae Absent Hybrid sterility Martínez-Ibarra et al. [42]

♀T. bassolsae × ♂T. phyllosoma Absent Hybrid sterility Martínez-Ibarra et al. [42]

♀T. longipennis × ♂T. picturata Absent Absent Martínez-Ibarra et al. [41]

♂T. longipennis × ♀T. picturata Absent Absent Martínez-Ibarra et al. [41]

♀T. phyllosoma × ♂T. longipennis Absent Absent Martínez-Ibarra et al. [42]

♀T. longipennis × ♂T. phyllosoma Absent Absent Martínez-Ibarra et al. [42]

♀T. phyllosoma × ♂T. picturata Absent Absent Martínez-Ibarra et al. [42]

♀T. picturata × ♂T. phyllosoma Absent Absent Martínez-Ibarra et al. [42]

♀T. phyllosoma × ♂T. mazzottii Absent Absent Martínez-Ibarra et al. [42]
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Table 3. Cont.

Experimental Crosses Pre-Zygotic
Barriers

Post-Zygotic
Barriers References

♀T. mazzottii × ♂T. phyllosoma Absent Absent Martínez-Ibarra et al. [42]

♀T. bassolsae × ♂T. pallidipennis Absent Absent Martínez-Ibarra et al. [42]

♀T. pallidipennis × ♂T. bassolsae Absent Absent Martínez-Ibarra et al. [42]

♀T. bassolsae × ♂T. longipennis Absent Absent Martínez-Ibarra et al. [42]

♀T. longipennis × ♂T. bassolsae Absent Absent Martínez-Ibarra et al. [42]

♀T. bassolsae × ♂T. picturata Absent Absent Martínez-Ibarra et al. [42]

♀T. picturata × ♂T. bassolsae Absent Absent Martínez-Ibarra et al. [42]

♀T. longipennis × ♂T. pallidipennis Absent Absent Martínez-Ibarra et al. [43]

♀T. pallidipennis × ♂T. longipennis Absent Absent Martínez-Ibarra et al. [43]

♀T. pallidipennis × ♂T. picturata Absent Absent Martínez-Ibarra et al. [43]

♀T. picturata × ♂T. pallidipennis Absent Absent Martínez-Ibarra et al. [43]

Usinger [15] was the first researcher to question the specific status of T. longipen-
nis, T. mazzottii, T. pallidipennis, T. phyllosoma and T. picturata, suggesting the shifting of
T. phyllosoma from a species to subspecies (considering this species as polytypic). Lent
and Wygodinsky [47], based on morphological data, elevated its status to a species. On
the other hand, Marcilla et al. [48], Martínez et al. [39], Martinez-Ibarra et al. [10] and
Bargues et al. [49] performed molecular studies and observed very low interspecific vari-
ations, suggesting that classifying the species as subspecies would be more appropriate.
However, Renfigo-Correa et al. [23,50], based on the phenetics and cohesion species con-
cept considered T. bassolsae, T. longipennis, T. mazzottii, T. pallidipennis, T. phyllosoma and
T. picturata as valid species. These concepts suggest, respectively, that "a species is a set
of organisms that are phenotypically similar and that look different from other sets of
or-ganisms [51]" and "a species is an evolutionary lineage that serves as the arena of action
of basic micro-evolutionary forces, such as gene flow—when applicable—genetic drift and
natural selection [52]".

As mentioned above, although T. longipennis, T. pallidipennis and T. picturata live in
sympatry and produce natural hybrids [10], there is some evolutionary factor that makes
these hybrids unfeasible under natural conditions [which was not visualized under artificial
conditions (Table 3)], since these taxa have a high interspecific genetic distance (Table 2),
which demonstrates the genetic integrity of the three species, possibly resulting from
reproductive isolation due to a post-zygotic barrier (a barrier that possibly inhibits the
backcrossing and gene introgression between T. longipennis, T. pallidipennis and T. picturata
under natural conditions).

Chagas disease is one of the most important yet neglected parasitic diseases in Mexico
and is transmitted by Triatominae [53]. Nineteen of the 31 Mexican triatomine species are
considered important species from an epidemiological point of view (including the six
species studied here), as they invade human houses and all have been found to be naturally
infected with T. cruzi [53]. The precise classification of T. bassolsae, T. longipennis, T. mazzottii,
T. pallidipennis, T. phyllosoma and T. picturata species has epidemiological implications, as it
allows vector control programs to direct monitoring and control activities directly to the
species with the greatest vector importance.

These six species have interspecific morphological divergences that allow the species
to be differentiated (also allowing the organization of dichotomous keys) [23,47]. Fur-
thermore, the study of their external female genitalia [54] and the eggs [55] by means of
scanning electron microscopy showed significant interspecific differences that allowed for
the confirmation of the specific status of the species.
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4. Conclusions

Thus, based on the literature data that were revisited and discussed here (morpho-
logical, genetic and evolutionary data), we confirmed the specific status of T. bassolsae,
T. longipennis, T. mazzottii, T. pallidipennis, T. phyllosoma and T. picturata based on the phylo-
genetic, phenetic, cohesion and biological concepts of the species. Finally, we consider it
important to carry out further studies to evaluate the presence/absence of interspecific gene
flow (such as microsatellite markers and next-generation sequencing) between T. phyllosoma
subcomplex species under natural conditions.
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