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Simple Summary: This study presents information regarding the immunological changes induced
by pesticide exposure in patients diagnosed with breast cancer occupationally exposed to pesticides.
Such changes are helpful to understand tumor behavior under pesticide exposure and can be ben-
eficial to re-stratify breast cancer patients occupationally exposed concerning their risk of disease
recurrence and death.

Abstract: Breast cancer risk stratification is a strategy based using on clinical parameters to predict
patients’ risk of recurrence or death, categorized as low, intermediate, or high risk. Both low and high
risk are based on well-defined clinical parameters. However, the intermediate risk depends on more
malleable parameters. It means an increased possibility for either suboptimal treatment, leading to
disease recurrence, or systemic damage due to drug overload toxicity. Therefore, identifying new
factors that help to characterize better the intermediate-risk stratification, such as environmental
exposures, is necessary. For this purpose, we evaluated the impact of occupational exposure to
pesticides on the systemic profile of cytokines (IL-12, IL-4, IL-17A, and TNF-α) and oxidative stress
(hydroperoxides, total antioxidants, and nitric oxide metabolites), as well as TGF-β1, CTLA-4, CD8,
and CD4 expression, investigated in tumor cells. Occupational exposure to pesticides decreased
the levels of IL-12 and significantly increased the expression of TGF-β1 and CTLA-4 in the immune
infiltrate. Nevertheless, we observed a decrease in CTLA-4 in tumor samples and CD8 in infiltrating
cells of intermediate overweight or obese patients with at least one metastatic lymph node at the
diagnosis. These findings indicate that occupational exposure to pesticides changes the molecular
behavior of disease and should be considered for intermediate-risk stratification assessment in breast
cancer patients.

Keywords: breast cancer; risk stratification; cytokine; oxidative stress; inflammation; pesticide exposure

1. Introduction

Breast cancer is the leading cause of death in women worldwide [1]. It is a heteroge-
neous disease with distinct clinical outcomes depending on patients’ characteristics and
the tumor’s biology.

Due to its complexity, several approaches guide clinicians in decision-making. In this
context, the risk stratification of disease recurrence and death is a helpful strategy based on
clinical parameters defined by international guidelines, used to guide therapeutic decisions
and predict clinical outcomes, such as response to treatment and survival [2–4].
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Although the stratification of low- and high-risk patients lies on well-defined parame-
ters, those from the intermediate-risk category represent a challenge, as they present more
conditions for categorizing patients than the other sets. This group represents the most
significant frustration for clinicians since they cannot accurately differentiate patients who
have a micro-metastatic disease and need treatment from those who are cured with local
treatment [5]. Therefore, it is clear that other parameters than those customarily used to
categorize them need to be included.

Several parameters are potential candidates that could help strengthen the current risk
stratification. Pesticide exposure depicts an embracing environmental risk factor that could
be enclosed in the risk stratification of breast cancer patients in areas of severe agrochemical
exposure, such as Brazil.

Studies demonstrate that pesticides can modify breast cancer biology by genotoxic
effects [6], chromosomal damage [7], inflammation triggering [8], and the induction of
oxidative stress [9], all closely linked to tumor development, genomic instability, and
disease progression [10,11].

Furthermore, pesticide exposure has already been shown to deregulate the inflamma-
tory and immunological axis in occupationally exposed patients diagnosed with breast
cancer, including systemic depletion of tumor necrosis factor-alpha (TNF-α) and interleukin-
1β (IL-1β), both pivotal anti-tumor cytokines [12]. It is well known that inflammation is a
hallmark of cancer [13], and its deregulation by pesticides may bring relevant consequences
to tumor progression. Cytokines can act in dual ways, inhibiting tumor development or
contributing to the chronic inflammation that supports tumor growth, which has been
associated with poor prognosis in cancer patients [14]. Although there are associations
between the risk of breast cancer and occupational exposure to pesticides [14–16] and its
induced endocrine disruption and carcinogenesis [14–18], little is known about its impact
on the risk stratification of patients and their tumor biology.

Therefore, the present study investigates whether occupational exposure to pesticides
in women with breast cancer affects tumor biology in patients classified as intermediate-risk.
For this purpose, we investigated the systemic inflammatory profile by analyzing the levels
of tumor necrosis factor-alpha (TNF-α), interleukin 4 (IL-4), interleukin 17A (Il-17A), and
interleukin 12 (IL-12), as well as oxidative stress markers and tumor expression of cytotoxic
T-lymphocyte-associated antigen 4 (CTLA-4), transforming growth factor-beta 1 (TGF-β1),
CD8, and CD4 tumor immune infiltrate. In addition, we correlated these findings with
clinicopathological features from patients.

2. Materials and Methods
2.1. Study Design

The primary collection of data of women treated at the Cancer Hospital of Francisco
Beltrão, Paraná, Brazil (CEONC), was carried out between May 2015 and August 2021;
664 patients were screened during this period, and 342 were diagnosed with breast cancer.

The Institutional Ethics Committee approved this proposal under the number CAAE
35524814.4.0000.0107, and only patients who signed an informed consent form were con-
sidered for this study.

The risk stratification of disease recurrence and death was performed according to the
following information collected from the medical records: estrogen receptor expression
(ER), progesterone receptor expression (PR), human epidermal growth factor 2 receptor
amplification (HER2), histological tumor grade, presence of lymph node metastases, tumor
size, the molecular subtype of breast cancer, and age at diagnosis.

Patients’ pesticide occupational exposure profile was obtained based on a systematized
instrument containing questions about their working routine, such as time of exposure
in years, type of exposure, amount, and chemical classes of pesticides [19]. All patients
included in the study were continuously exposed to pesticides, before and after diagnosis,
since they were rural workers.
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Thus, based on the combined risk stratification and pesticide exposure data, 130 women
were eligible for this study and stratified as intermediate-risk patients occupationally ex-
posed to pesticides (IE, n = 77) and intermediate-risk patients not exposed to pesticides
(INE, n = 53). The study design is shown in Figure 1, and all parameters considered for risk
stratification are shown in Table 1.
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Figure 1. Study design. Six hundred sixty-four patients were screened. Three hundred forty-two were
diagnosed with breast cancer. Based on risk stratification and pesticide exposure data, 130 patients
were included and categorized into intermediate-risk exposed to pesticides (n = 77) and intermediate-
risk unexposed to pesticides (n = 53). The in situ analysis was randomly selected by lot (n = 80).
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Table 1. Criteria for risk stratification of recurrence and death of patients diagnosed with breast
cancer (based on Goldhirsch et al. [4]).

Low risk

Negative lymph nodes and all the following criteria:

pT under 2 cm;

Histological grade 1;

ER or PR positive;

HER-2 negative;

Molecular subtype luminal A; and

Age equal to or above 35 years old.

Intermediate risk

Negative lymph nodes and at least one of the following criteria:

pT higher than 2 cm; or

Histological grade 2–3; or

ER or PR negative; or

Molecular subtype luminal B (HER-2 negative); or

Age under 35 years old; or yet

1 to 3 affected lymph nodes if ER and PR positive.

High risk

4 or more positive lymph nodes; or

Lymph nodes negative with ER. PR and HER-2 negative. pT higher than
2 cm; or

Lymph node negative. pT higher than 1 cm and HER-2 positive.
pT: tumor size; ER: estrogen receptor; PR: progesterone receptor; HER-2: human epidermal growth factor
receptor 2.

2.2. Sample Obtention and Determination of the Systemic Inflammatory Profile

Heparinized blood samples (5 to 10 mL) were centrifuged for 5 min at 4000 rpm, and
the plasma obtained was stored at −20 ◦C until the analysis.

As previously described, pro-oxidative profile was determined by measuring the plas-
matic hydroperoxide levels using high-sensitivity chemiluminescence (CL) [20]. Aliquots
of 125 µL of plasma were added to 855 µL of monobasic phosphate buffer (10 mM, pH 7.4).
The reaction was initiated by adding 20 µL of tert-butyl solution (3 mM) and monitored in
a Glomax 20/20 luminometer (Promega, Madison, WI, USA). The results were obtained
by integrating the area under the curve of photon emission and expressed in relative light
units (RLU).

The antioxidant profile was obtained by analyzing the total radical antioxidant param-
eter (TRAP) [21]. It consisted of adding 50 uL of 20 mM 2,2′-azobis (2-amidinopropane,
ABAP) solution and 50 uL of a 40 µM luminol solution in 10 uL of plasma samples diluted
1:50 in a saline buffer. The reaction was monitored in a Glomax luminometer, one read per
second for 5 to 30 min. The results were calculated concerning a standard curve using a
hydrosoluble form of vitamin E standard (Trolox). Results were expressed as µM of Trolox.

The oxidation index was obtained from the ratio between CL and TRAP and expressed
in arbitrary units.

To estimate the levels of nitric oxide metabolites (NOx), aliquots of 60 uL of plasma
samples were deproteinized with zinc sulfate (ZnSO4, 75 mM) and 70 µL sodium hydroxide
(NaOH 100 mM) solution. After centrifugation at 10,000 rpm for 2 min, the supernatant
was recovered, and 50 µL of glycine (NaOH 45 g/L pH 9.7) buffer was added. The nitrate-
to-nitrite conversion was performed using the cadmium–copper reaction method, and the
detection of total nitrite was performed using Griess reagent, as described [22]. The results
are expressed in µM of nitrite.

The cytokines IL-12, IL-4, IL-17A, and TNF-α were quantified using the enzyme
immunoassay (enzyme-linked immunosorbent assay (ELISA)) method, using a commercial
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kit (e-Biosciences, San Diego, CA, USA), according to the manufacturer’s guidelines. Results
were calculated in pg/mL from standard curve data for each cytokine. The kit’s detection
limit is 2 pg/mL.

2.3. Tumor Analysis: Immunofluorescence Labeling for Transforming Growth Factor-β1, Cytotoxic
T-Lymphocyte-Associated Antigen 4, and CD4/CD8 Lymphocyte Labeling

TGF-β1, CTLA-4, CD4, and CD8 expression levels in tumor samples were analyzed by
immunofluorescence under the conditions presented in Table 2. Poly-lysine-coated slides
containing 3 µm thick sections were kept for 24 h in an incubator at 65 ◦C. Subsequently,
a chemical deparaffinization was carried out for 5 min consecutively in xylene, ethanol,
and water. Antigen retrieval was performed only for CTLA-4 in humid heat with the
immersion of the slides in 1 mM sodium citrate buffer at pH 6.0 for 15 min at 100 ◦C.
TGF-β1, CD4, and CD8 did not require antigenic retrieval because they presented excellent
immunostaining without this process. Slides were incubated in a 3% hydrogen peroxide
solution for 15 min to block endogenous peroxidase. Sections were washed between
each step with saline solution (sodium chloride—150 mM NaCl in pH 7.6) and 1% Tween
20. Blocking of non-specific binding sites was also performed with a 5% powdered milk
solution for 15 min. Then, the slides were incubated with the specific primary antibody
in a closed humid chamber, as specified in Table 2. Afterward, the slides were washed
and usually incubated for 1 h with diluted secondary antibody. The sections were treated
with 4,6 diamidinophenylindole (DAPI) (Sigma Aldrich, St. Louis, MO, USA), 5 mg/mL
solution, for 30 min for nuclear counterstaining and assembled in glycerol.

Table 2. Conditions of immunofluorescence reactions and antibody specifications.

Antibody Clone Reactivity Titration Incubation

Anti-TGF-β Monoclonal antibody Mouse anti-human 1:300 2 h in dark and humid
chamber at room temperature

Alexa Fluor 488 a Superclonal recombinant
secondary antibody Goat anti-mouse IgG 1:500 1 h in dark and humid

chamber at room temperature

Anti-CTLA-4 BNI3 monoclonal antibody Mouse anti-human CD152 1:1000 overnight in dark and humid
chamber at 4 ◦C

Alexa Fluor 488 b Superclonal recombinant
secondary antibody Goat anti-mouse IgG 1:1000 1 h in dark and humid

chamber at room temperature

Anti-CD4 Monoclonal antibody Mouse anti-human 1:1000 overnight in dark and humid
chamber at 4 ◦C

Anti-CD8 Monoclonal antibody Mouse anti-human 1:1000 overnight. in dark and humid
chamber at 4 ◦C

Texas Red c Superclonal recombinant
secondary antibody Goat anti-mouse IgG 1:1000 2 h in dark and humid

chamber at room temperature

a For TGF-β1 labeling. b For CTLA-4 labeling. c For CD4 and CD8 labeling.

Images were captured in a Motic BA410E fluorescence microscope coupled to a MOTI-
CAM ProS5 Plus camera and Motic Images Plus 3.0 ML image acquisition and processing
software. Slides were read using a DAPI excitation filter at 200 or 400 × magnification. The
following adjustments were predefined: auto exposure, gain + 20, and zero offsets. The
images obtained were stored in BMP format, resolution 2048 × 1536 pixels. The Reporting
Recommendations for Tumor Marker Prognostic Studies (REMARK) were followed.

2.4. Statistical Analysis

Data distribution was tested using the Shapiro–Wilk test. Thus, normally distributed
variables were analyzed with parametric tests. When the normality assumption was not
met, nonparametric tests were applied. To compare molecular data between the interme-
diate group occupationally exposed and unexposed to pesticides, Student’s t-test or the
Mann–Whitney test was used to compare the two groups. The results were analyzed using
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GraphPad Prism version 7.0 (Graphpad Software, San Diego, CA, USA). The primary data
comparative analysis of the risk stratification profile of patients according to occupational
exposure to pesticides was performed using the chi-square test for independence. Correla-
tion analysis of clinicopathological data according to systemic levels of IL-12 was performed
with the R programming language (R Development Core Team). Data are represented as
median, minimum, and maximum in the results description and box-plot graphs.

3. Results

Descriptive data and a comparative analysis of the clinicopathological parameters
of intermediate-risk patients from pesticide-exposed and unexposed groups are shown
in Table 3. The predominant molecular subtype was luminal B for both groups (43% in
the IE and 57% in the INE group). Other key characteristics for both groups were: tumor
size above 2, histological grade I/II, no lymph node metastases, age above 50 years, Ki67
proliferation index, and menopause at diagnosis. No statistical differences were observed
between the groups regarding such features. However, the IE group showed a significant
predominance of overweight/obese patients (p = 0.04) and at least one affected lymph node
at the time of diagnosis (p = 0.03).

The oxidative stress profile (Figure 2) was evaluated by measuring the systemic
hydroperoxide level (Figure 2A), TRAP (Figure 2B), oxidation index (Figure 2C), and NOx
levels (Figure 2D).
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Figure 2. Oxidative stress analysis of plasma samples of exposed and unexposed breast can-
cer patients from intermediate-risk stratification. (A) Plasma hydroperoxide levels, measured in
RLU = relative light units. (B) Total plasma antioxidant capacity (TRAP), measured in nM of Trolox.
(C) Oxidation index in arbitrary units. (D) Levels of nitric oxide metabolites, measured in µM.
Results are represented in box plots (min–max). Analyses were performed with GraphPad Prism 7.0
(GraphPad Software. San Diego, CA, USA).
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Table 3. Comparative analysis of clinicopathological data of exposed and unexposed breast cancer
patients from intermediate-risk stratification.

Variable Group Category % p Value

Estrogen receptor

Exposed Negative 7.79

>0.05
Positive 92.21

Unexposed Negative 5.88
Positive 94.11

Progesterone receptor

Exposed Negative 44.16

>0.05
Positive 55.84

Unexposed Negative 45.09
Positive 54.9

KI67 (%)

Exposed <14 41.09

>0.05
>14 58.9

Unexposed <14 45.83
>14 54.16

Molecular subtype

Exposed
Luminal A 38.96

>0.05

Luminal B 57.14
Triple negative 3.9

Unexposed
Luminal A 43.13
Luminal B 47.05
Triple negative 9.8

Tumor size (cm)

Exposed <2 35.61

>0.05
>2 64.38

Unexposed <2 40
>2 60

Histological grade

Exposed I and II 81.33

>0.05
III 18.66

Unexposed I and II 80.39
III 19.6

Lymphnodal metastases

Exposed None affected 60

0.0353 *
At least one affected 40

Unexposed None affected 74
At least one affected 26

Age at diagnosis

Exposed <50 32.47

>0.05
>50 67.53

Unexposed <50 39.21
>50 60.78

Menopause status at diagnosis

Exposed No 27.27

>0.05
Yes 72.73

Unexposed No 35.29
Yes 64.7

BMI

Exposed Eutrophic 25

0.0478 *
Overweight/obese 75

Unexposed Eutrophic 38
Overweight/obese 62

* p < 0.05. Chi-square analysis.

No significant differences were found when comparing IE versus INE patients for
hydroperoxide (772.13: 268.25–1904.08 RLU and 823.14: 290.91–2019.60 RLU, respec-
tively, p = 0.55), TRAP (358.1: 82.84–1074 nM Trolox for IE and 298.8: 26.93–828.8 nM
Trolox for INE, p = 0.41), oxidation index (2941: 132.4–9655 arbitrary units for IE and
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4226: 143.4–14,777 arbitrary units for INE, p = 0.19), and NOx (32.33: 7.19–59.15 µM for IE
and 32.07: 6.54–58.93 µM for INE), p = 0.89).

For the cytokine profile (Figure 3), IL-4 (Figure 3A), IL-17-A (Figure 3B), and
TNF-α (Figure 3C) were evaluated and showed no significant differences (IL-4—36.89:
9.73–117.1 pg/mL for INE and 32.84: 6.46–72.22 pg/mL for IE, p = 0.39; IL-17A—71.2:
6.32–222.7 pg/mL for INE and 7765: 13.52–204.1 pg/mL for IE, p = 0.57; TNF-α—94.87:
19.38–151 pg/mL for INE and 95.36: 12.21–245 pg/mL for IE, p = 0.96).
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Figure 3. Cytokine profile of exposed and unexposed breast cancer patients from intermediate-risk
stratification. (A) Interleukin 4. (B) Interleukin 17-A. (C) TNF-α. (D) Interleukin 12. All measured in
pg/mL. Results are represented in box plots (min–max). * Indicates statistically significant difference
(p < 0.05). Analyses were performed with GraphPad Prism 7.0 Software (San Diego, CA, USA).

Nevertheless, IL-12 (Figure 3D) showed a significant decrease in the IE patients compared to
those from the INE group (61.32: 5.66–190.9 pg/mL for INE and 27.37: 10.88–49.81 pg/mL for IE,
p = 0.03).

Spearman’s correlation analysis was performed concerning IL-12 levels and all clinico-
pathological parameters in both groups (Figure 4). The heat map shows that the stronger
correlations (red squares) are located in opposite parameters when comparing IE and INE
groups (Figure 4A,B). It is possible to note that the strongest correlations regarding IL-12
levels observed in the IE group are focused on tumor characteristics (hormone receptors,
Ki67 index, tumor subtypes). At the same time, INE patients concentrate on patients’
characteristics (BMI, menopause, age at diagnosis). A significant positive correlation was
found between overweight/obese patients and positive hormonal receptors for IE patients,
R= 0.52 and p = 0.002.

Since IL-12 was systemically reduced, we also investigated the expression of molecules
described as negative regulators of the immune response, TGF-β1 and CTLA-4 (Figure 5).
Tumor-infiltrating cells from the IE group showed significantly increased expression of
both markers (TGF-β1, p = 0.001 and CTLA-4, p = 0.002, Table 4). Meanwhile, in tumor cells
from INE patients, a higher expression of CTLA-4 was found concerning IE (p = 0.001).
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risk patients exposed (IE) or unexposed (INE) to pesticides. Labeling was evaluated in breast tumors and infiltrating leukocytes (400×). The images sequentially 
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Figure 5. Immunostaining of TGF-β1 (A,B), CTLA-4 (C,D), CD8+ lymphocytes (E,F), and CD4+ lymphocytes (G,H) in breast tumor biopsies from intermediate-risk
patients exposed (IE) or unexposed (INE) to pesticides. Labeling was evaluated in breast tumors and infiltrating leukocytes (400×). The images sequentially represent
(horizontal view) DAPI labeling, marker labeling, and the merge of DAPI + marker. The resulting images were merged in ImageJ to generate the final images. For all
images: immunostaining in green for Alexa Fluor (positive staining), red for Texas Red (positive staining), and blue for DAPI (negative counterstaining). The yellow
arrows indicate the labeled areas.
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Table 4. TGF-β1 and CTLA-4 expression profile in tumor tissue and immunological infiltrate from
tumor biopsies.

Marker INE IE p Value ∆

TGF-β1 tumor a 70% 80% NS
TGF-β1 infiltrate a 40% 90% <0.001 *
CTLA-4 tumor a 40% 10% <0.001 *

CTLA-4 infiltrate a 70% 100% <0.002 *
CD4 infiltrate b 50% 60% NS
CD8 infiltrate b 50% 30% 0.0059 *

* Indicates p < 0.05. NS: not significant (>0.05). a Any positive labeling. b Positive labeling in at least 25% of
observed lymphocytes. ∆ Fisher’s exact test.

We also labeled CD4 and CD8 lymphocytes in IE and INE tumor samples to charac-
terize the infiltrating cells. The results demonstrated that the proportion of CD4 cells is
similar in both groups (p > 0.05). However, CD8 infiltrate was significantly reduced in the
IE group, displaying positivity in only 30% of all analyzed samples (p = 0.0059, Table 4).

4. Discussion

This study evaluated the meaning of inflammatory parameters in the clinical context
of the risk stratification of recurrence and death and pesticide exposure for breast cancer
patients. We observed that pesticides could induce significant changes in immune compo-
nents, reducing anti-tumor mediators in the bloodstream and enhancing the expression of
immune evasion proteins in tumor-infiltrating cells. These findings reinforce the impact of
pesticide-induced deregulation on the anti-tumoral immune response in intermediate-risk
breast cancer patients, the most undefined clinic condition regarding breast cancer risk
stratification for recurrence and death. As far as we know, this information is novel and
adds to the literature regarding the importance of anti-tumoral immune response in the
context of breast cancer prognostic and therapeutic decisions.

Breast cancer is a disease characterized by an extensive systemic inflammatory re-
sponse that includes variations in cytokines, immune signaling mediators, and oxidative
stress metabolite levels [23–26]. In particular, investigating patients’ immunological profiles
has emerged as a point of interest over the years.

Activation of immunity against tumors triggers the production of a series of circulating
mediators [27], which can act dually, inhibiting tumor development or contributing to
the chronic inflammation that supports tumor growth, associated with poor prognosis in
cancer patients [14].

In this context, we analyzed the circulating levels of cytokines linked to specific
T-helper profiles and observed a reduction in IL-12 in the intermediate-risk patients occu-
pationally exposed to pesticides. IL-12 is one of the main anti-tumor interleukins, acting
through pleiotropic effects on different immune cells that form the tumor microenviron-
ment, establishing links between innate and adaptive responses [28]. This cytokine can
suppress tumorigenesis and induce regression of established tumors, promoting Th1-
related adaptive immunity and cytotoxic response. The IL-12 depletion observed in the
exposed patients may impair the immune response against tumors, leading to a higher
risk of poor disease-related outcomes. In addition, such patients exhibited a concomitant
increase in TGF-β1 and CTLA-4 expression in tumors’ infiltrate cells.

It is known that TGF-β1 negatively regulates IL-12 levels [29] and is linked to immune
evasion and poor responses to cancer immunotherapy [30]. In the early stages of the
disease, TGF-β1 inhibits epithelial cell cycle progression and promotes apoptosis, showing
tumor-suppressive effects. However, in more advanced settings, it is related to tumor
progression, cell motility, cancer invasiveness, and metastasis [31,32].

Pesticides can increase TGF-β1 expression and activation in breast cancer cells, enhanc-
ing migration and invasion [33]. These findings support a putative mechanism triggered by
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pesticide exposure, which has pro-tumor effects on intermediate-risk patients by enhancing
TGF-β1 expression in breast tumors and depleting their systemic IL-12 levels.

We also observed high expression of the immune checkpoint regulator CTLA-4 in
breast tumor infiltrates from the exposed patients. Literature reports some associations
between CTLA-4 expression in the tumor microenvironment and worse outcomes [34],
reaching more than 50% of cases [35]. Even though we did not find any specific study about
the impact of pesticides on CTLA-4 expression and considering the IL-12 and TGF-β1-
induced changes, exposure to such substances significantly affects the negative regulation
of the immune environment of breast cancer patients.

Concerning the profile of tumor-infiltrating cells, despite CD4-positive cells being
found in a similar proportion in both groups, CD8-positive cells were significantly reduced
in the exposed group. Although there are no literature data about the impact of pesticide
exposure on the immune profile of breast tumor infiltrate, pesticide-induced lymphocyte
toxicity has been demonstrated by several mechanisms, including reduced cell count-
ing [36], decreased Th1 cells [37], and low CD4+ and CD8+ subpopulations in blood [38].
This shows that pesticide exposure affects the leukocyte infiltrate pattern and impairs
cytokine production in breast cancer patients categorized as intermediate-risk for disease
recurrence and death when they are occupationally exposed. Evaluating these markers may
help refine disease stratification in breast cancer patients under chronic pesticide exposure,
as in the Brazilian population.

Although several pertinent pathways for the effects of xenobiotics have been identified,
the mechanisms of action for IL-12, TGF-β1, and CTLA-4 in this context remain to be
established. Considering the clinical meaning of our findings, we observed that most
patients exhibiting deregulation of the anti-tumor immune response are overweight or
obese at the time of diagnosis. In addition, patients with overweight/obesity showed
a high correlation with hormonal receptors according to IL-12 levels. Obesity is a well-
known risk factor for breast tumor development associated with inferior survival, and
the described mechanisms include a complex network formed by inflammation, ROS
generation, epigenetic changes, and mitochondrial dysfunction [39–41]. Furthermore,
obesity can increase the risk of disease recurrence and death by 35 to 40% [42]. A case
–control study [43] observed a positive association between obesity and premenopausal
breast cancer risk. Thus, understanding what lies behind this is a significant opportunity to
improve prognosis, therapy decisions, and outcomes.

Most of these patients also presented one or more affected lymph nodes, implying a
greater probability of metastases to distant organs, increasing the risk of disease recurrence
and decreasing the overall survival [44,45]. Our results demonstrate that pesticide exposure
affects critical immunologic anti-tumor responses in breast cancer women stratified as
having an intermediate risk of recurrence, suggesting it as a valuable possible additional risk
factor to be further investigated in the risk stratification of recurrence and death protocol.

5. Conclusions

As summarized in Figure 6, the present study shows that occupational exposure
to pesticides has a meaningful impact on breast cancer patients’ systemic and tumor
inflammatory profile from the intermediate risk of recurrence and death. Impairment
in systemic IL-12 levels associated with increased expression of TGF-β1 and CTLA-4 in
tumor and infiltrated immune cells may represent a putative signature of pesticide-induced
immune impairment in breast cancer that should be considered when calculating the risk
of recurrence and death of these patients.



Cancers 2022, 14, 5199 13 of 15

Cancers 2022, 14, x FOR PEER REVIEW 13 of 16 
 

 

disease recurrence and death when they are occupationally exposed. Evaluating these 
markers may help refine disease stratification in breast cancer patients under chronic pes-
ticide exposure, as in the Brazilian population.  

Although several pertinent pathways for the effects of xenobiotics have been identi-
fied, the mechanisms of action for IL-12, TGF-β1, and CTLA-4 in this context remain to be 
established. Considering the clinical meaning of our findings, we observed that most pa-
tients exhibiting deregulation of the anti-tumor immune response are overweight or obese 
at the time of diagnosis. In addition, patients with overweight/obesity showed a high cor-
relation with hormonal receptors according to IL-12 levels. Obesity is a well-known risk 
factor for breast tumor development associated with inferior survival, and the described 
mechanisms include a complex network formed by inflammation, ROS generation, epige-
netic changes, and mitochondrial dysfunction [39–41]. Furthermore, obesity can increase 
the risk of disease recurrence and death by 35 to 40% [42]. A case–control study [43] ob-
served a positive association between obesity and premenopausal breast cancer risk. 
Thus, understanding what lies behind this is a significant opportunity to improve prog-
nosis, therapy decisions, and outcomes. 

Most of these patients also presented one or more affected lymph nodes, implying a 
greater probability of metastases to distant organs, increasing the risk of disease recur-
rence and decreasing the overall survival [44,45]. Our results demonstrate that pesticide 
exposure affects critical immunologic anti-tumor responses in breast cancer women strat-
ified as having an intermediate risk of recurrence, suggesting it as a valuable possible ad-
ditional risk factor to be further investigated in the risk stratification of recurrence and 
death protocol. 

5. Conclusions 
As summarized in Figure 6, the present study shows that occupational exposure to 

pesticides has a meaningful impact on breast cancer patients’ systemic and tumor inflam-
matory profile from the intermediate risk of recurrence and death. Impairment in systemic 
IL-12 levels associated with increased expression of TGF-β1 and CTLA-4 in tumor and 
infiltrated immune cells may represent a putative signature of pesticide-induced immune 
impairment in breast cancer that should be considered when calculating the risk of recur-
rence and death of these patients. 

 
Figure 6. Pesticide-induced immune deregulation may worsen the prognosis in women with breast 
cancer from the intermediate risk of death and recurrence. Women diagnosed with breast cancer 
occupationally exposed to pesticides exhibit several significant alterations in the tumor microenvi-
ronment, affecting its immunosurveillance. Decreased TCD8+ lymphocyte infiltrate and increased 
expression of negative regulators of tumor-driven immune responses such as TGF-β and CTLA-4 
are found in tumors from pesticide-exposed women compared to the unexposed ones. In addition, 
reduced levels of circulating interleukin 12 are reported, reducing the anti-tumor arsenal of pesti-
cide-exposed women. This immunocompromised scenario may result in a worse clinical prognosis 
since women from the exposed group have more metastasis than the unexposed ones. 

Figure 6. Pesticide-induced immune deregulation may worsen the prognosis in women with breast
cancer from the intermediate risk of death and recurrence. Women diagnosed with breast cancer occu-
pationally exposed to pesticides exhibit several significant alterations in the tumor microenvironment,
affecting its immunosurveillance. Decreased TCD8+ lymphocyte infiltrate and increased expression
of negative regulators of tumor-driven immune responses such as TGF-β and CTLA-4 are found
in tumors from pesticide-exposed women compared to the unexposed ones. In addition, reduced
levels of circulating interleukin 12 are reported, reducing the anti-tumor arsenal of pesticide-exposed
women. This immunocompromised scenario may result in a worse clinical prognosis since women
from the exposed group have more metastasis than the unexposed ones.
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