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A B S T R A C T

The growing availability of scanned whole-slide images (WSIs) has allowed nephropathology to open new
possibilities for medical decision-making over high-resolution images. Diagnosis of renal WSIs includes locating
and identifying specific structures in the tissue. Considering the glomerulus as one of the first structures
analyzed by pathologists, we propose here a novel convolutional neural network for glomerulus segmentation.
Our end-to-end network, named DS-FNet, combines the strengths of semantic segmentation and semantic
boundary detection networks via an attention-aware mechanism. Although we trained the proposed network on
periodic acid-Schiff (PAS)-stained WSIs, we found that our network was capable to segment glomeruli on WSIs
stained with different techniques, such as periodic acid-methenamine silver (PAMS), hematoxylin-eosin (HE),
and Masson trichrome (TRI). To assess the performance of the proposed method, we used three public data
sets: HuBMAP (available in a Kaggle competition), a subset of the NEPTUNE data set, and a novel challenging
data set, called WSI_Fiocruz. We compared the DS-FNet with six other deep learning networks: original U-
Net, our attention version of U-Net called AU-Net, U-Net++, U-Net3Plus, ResU-Net, and DeepLabV3+. Results
showed that DS-FNet achieved equivalent or superior results on all data sets: On the HuBMAP data set, it
reached a dice score (DSC) of 95.05%, very close to the first place (95.15%); on the NEPTUNE and WSI_Fiocruz
data sets, DS-FNet obtained the highest average DSC, whether on PAS-stained images or images stained with
other techniques. To the best we know, this is the first work to show consistently high performance in a
one-to-many-stain glomerulus segmentation following a thorough protocol on data sets from different medical
labs.
1. Introduction

Renal biopsy represents the most common and standard way to
diagnose several kidney diseases (Bandari et al., 2016). The conven-
tional approach to prepare a renal biopsy is to employ stained tissue
sections on histological slides. The slides can be examined under the
microscope or scanned, generating high-resolution whole slide images
(WSIs). The use of digital images to analyze samples of tissues allowed
booming the advances in the field of digital pathology whose gains
come with the more standard and easy-to-share material collection and
processing (Barisoni et al., 2017). This growing availability of WSIs
facilitated the collaboration among pathologists and the composition of
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digital libraries. While the job of localization and identification of renal
structures is the essential in the routine of pathologists, it is expected
that diagnosing over digital images will promote breakthroughs in
the field, especially through the consolidation of the computational
nephropathology as a new research field.

Among the structures present in the human kidney, the glomerulus
is the one responsible for blood filtration (Weinstein and Anderson,
2010). Due to this filtering function, primary or systemic diseases
causing lesions in the glomerulus can lead to renal failure with high
burden for the patient and public health systems. Because of the
impact in the diagnosis pipeline, glomeruli are usually one of the
first structures to be assessed by pathologists (Bellur et al., 2019).
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Fig. 1. Image samples from WSI_Fiocruz data set in different stains: Periodic acid-Schiff (PAS), periodic acid-methenamine silver (PAMS), and hematoxylin-eosin (HE).
Quantitative and qualitative evaluations of these structures are complex
and time-consuming tasks, reaching sometimes poor agreement among
pathologists. In this context, automatic segmentation pipelines can
help pathologists streamline the identification of relevant regions on
WSIs and potentially leverage rapid kidney diagnoses and prognosis
prediction.

For glomerulus localization and segmentation, due to the inherent
issues involving image annotation (e.g., time-consuming, specialist-
dependent), pre-clinical works use machine-learning (ML) approaches
considering only one stain for training and evaluation have been used
(see Table 1). By building ML experiments for one-to-one-stain evalua-
tion, high effectiveness may indeed be easier to achieve because train-
ing and validation sets have the same data distribution. Training ML
models in a one-to-one multi-stain scenario (one model for each stain)
can raise some limitations. Constraints such as time, specialists, and
computational resources are likely to occur in several nephropathology
laboratories, which might bring difficulties in gathering a vast data
collection in sets of different stains. Without a reasonable amount of
images for every staining technique, the underrepresented ones might
result in a poorly trained model, which ultimately lacks robustness in
a one-to-many stain evaluation. In such context, a question naturally
arises: what if we could use a large amount of images stained by a
unique technique to learn features for other stained images? To answer this
question, we started with the analysis of the same glomerulus viewed
in different stains, as illustrated in Fig. 1. Although differently stained,
the glomerulus seems to preserve the same characteristics on the edges,
which delineate either the Bowman’s capsule or its internal structures
(refer to Section 3 for more details on this medical topic).

Considering a convolutional neural network (CNN) architecture,
leveraged by attention techniques employed in strategical places in
the CNN to explore the boundary information, we introduce here a
novel deep-learning (DL) architecture, called DS-FNet, that achieved
promising results when evaluated on data sets gathered in different
labs – thus captured with different instrumentation – while stained
in different ways. Experiments were carried out on three data sets:
HubMAP (Borner et al., 2021), a subset of the NEPTUNE data set (Jaya-
pandian et al., 2021), and our novel data set called WSI_Fiocruz. All
data sets together contain 660 WSIs and 5309 glomeruli. Our DL archi-
tecture was trained on the HubMAP training data set, containing 3568
periodic acid-Schiff (PAS)-stained WSIs, due to the lack of a substantial
number of images for training on other stained WSIs. Our experiments
showed that DS-FNet reached equivalent or superior results in the
generalization of glomerulus segmentation, considering a one-to-many-
stain segmentation, when compared to six other DL networks: original
U-Net, AU-Net (our attention version of U-Net), U-Net++ (Zhou et al.,
2018), U-Net3Plus (Huang et al., 2020), ResU-Net (Diakogiannis et al.,
2020), and DeepLabV3+ (Diakogiannis et al., 2020).

2. State-of-the-art and contributions

Although there are several works that cope with the problem of
WSI components segmentation, none of them solves the problem of
2

one-to-many-stain glomerulus segmentation. To tackle this problem,
we propose here a novel fusion-based, end-to-end DL architecture and
a novel one-to-many-stain data set. We highlight these two novelty
aspects as follows, bringing our contributions regarding the related
works.

In the pathology practice, different stains can be applied to tissue
samples in such a way that each stain stands out different morphologi-
cal components of the renal structures. The choice of the stain depends
on the problem to be assessed, personal preference of pathologists, or
the laboratory routine (Alturkistani et al., 2016; Bancroft and Gamble,
2008), directly influencing the segmentation results (see Section 3 for
more details on this topic). Considering the morphological differences
highlighted by each stain, a common ML approach is to train a neural
network model using images of a specific stain, later performing the
segmentation on images where that same stain was applied (one-to-one-
stain segmentation). This type of approach is found in the majority of
the related works summarized in Table 1, even for cases where more
than one stain was considered. Another exception is the work of Jiang
et al. (2021), which uses a many-to-many segmentation, mixing differ-
ent stains in the sets of training and testing. We introduce here a novel
one-to-many stain evaluation for glomerulus segmentation: instead of
using images with the same stain for training and prediction (just as
all the related works in Table 1), our proposed method shows that it
is possible to obtain competitive results for multi-stain glomerular seg-
mentation by training with only one stain. Next, we discuss the works
summarized in Table 1 according to the segmentation approaches and
data sets used for performance evaluation.

Segmentation approaches: All works adopt one or more DL ar-
chitectures. DL became very popular for medical imaging tasks, also
achieving state-of-the-art results in several medical domains (Seeja and
Suresh, 2019; Guo et al., 2019; Sornapudi et al., 2020; Jayapandian
et al., 2021). The majority of works uses the U-Net architecture or its
variations for image segmentation. As these works achieved superior
results in the segmentation of renal structures, we also adopted U-Net
as our baseline architecture. In fact, 10 out of 18 works in Table 1
use only U-Net (Jayapandian et al., 2021; Davis et al., 2021; Hermsen
et al., 2019; Jha et al., 2021; Bueno et al., 2020), variations of U-
Net (Gadermayr et al., 2019; Bouteldja et al., 2021) or combine it
with other methods (Mei et al., 2020; Zeng et al., 2020; de Bel et al.,
2018). The remaining works explore other DL-based segmentation ap-
proaches such as one DL network: Mask-RCNN (Jiang et al., 2021) and
DeepLabV2 (Lutnick et al., 2019; Ginley et al., 2020); two separate DL
networks: MaskRCNN and FastRCNN (Altini et al., 2020a), and SegNet
and DeepLabV3+ (Altini et al., 2020b); three separate DL networks:
Mask-RCNN, U-Net, and DeepLabV3 (Jha et al., 2021); a combination
of two DL networks: SegNet and AlexNet (Bueno et al., 2020); and
finally pipelines that combine DL approaches with conventional image
processing methods (Marsh et al., 2018; Kannan et al., 2019; Ginley
et al., 2019).

A noteworthy work, not listed in Table 1, is the one found in Gal-
lego et al. (2021), which addresses the problem of one-to-many-stain
classification. That work relies upon a standard U-Net-based workflow
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to detect and classify glomeruli in a WSI. There is no report on the
segmentation performance, but the classification results align with our
initial hypothesis for the one-to-many-stain segmentation.

Different from the previous work, we conceived an architecture
based on a fusion of branches that are optimized all together to en-
rich the features of the segmentation network while being trained in
an end-to-end fashion; all that is evaluated in a one-to-many-stain
segmentation task.

Resources for segmentation assessment: Table 1 shows that our
work considers the largest number of WSIs from different medical
labs, when it evaluates glomerulus segmentation, and the fourth largest
number of glomeruli. Due to the limited availability of public data sets
and the time-consuming in the process of annotation by pathologists,
most works build a data set comprising less than 100 WSIs and less
than 3000 glomeruli.

Instead, we opted to use as a training set the data set that contains
the stain with the greatest number of annotated glomeruli, subse-
quently testing our model in data sets from different medical labs.

Contributions: Even with differences in color, texture, and high-
lighted structures, the general shape of the glomerulus is mostly pre-
served across different stains. Our work seeks to develop a novel deep
network based on a parallel branch to assist a baseline segmentation
network on the task of segmenting the glomeruli found on WSIs. We
hypothesize that by detecting boundaries, it is possible to capture better
structural information than the features (mostly derived from color
and texture) captured by regular segmentation networks. Hopefully, by
bringing boundary information along with the features learned from the
segmentation network, we can achieve generalization of the glomerular
structure across different stains by training with just one stain. To
allow the simultaneous learning of both segmentation and boundary
detection tasks, we also adopted a set of attention mechanisms so the
information flows properly over the two networks.

Considering all that, the contributions of this work are as follows:
(i) a novel CNN architecture, called DS-FNet, that combines a modified
U-Net semantic segmentation model with a boundary detection model
via attention-aware mechanisms, and (ii) a novel multi-stain data set,
named WSI_Fiocruz, with fine annotation of glomeruli from a larger
number of renal WSIs of humans.

3. Glomeruli, stains and segmentation

Fig. 2 A⃝ illustrates the main components of a nephron – the func-
tional kidney unit –, which is responsible for the blood filtration and
exchange of small molecules generating the urine. Each nephron is
composed of a glomerulus and its related tubules (T), interstitium (I),
and blood vessels. Even though the distinct disease can affect one or
more of the nephron components, the glomerulus is the main target
of the lesion in up to 90% of the renal diseases that require kidney
biopsy (Gesualdo et al., 2004; Polito et al., 2010; Dos-Santos et al.,
2017).

The afferent arteriole (Art) is a final branch of the renal arteries
(Ar), giving rise to the glomerulus, which is an almost spherical struc-
ture, formed by entangled vascular capillary tufts. As transiting through
these capillaries, the blood is filtered across their walls. The liquid
filtrated from blood is submitted to many exchanges of ions and small
molecules, in the renal tubules. This process leads to the production
of approximately two liters of urine per day, containing metabolic
waste. The constituents of the glomerular filter are the endothelial cell
(EnC), the underlying glomerular basement membrane, and the visceral
epithelial cell (EpC) (podocytes (P)). The glomerular capillary tufts
are supported by a central axis (mesangium) of mesangial cells (Mes)
immersed in a mesangial matrix. the glomerulus is delimited by the
Bowman’s capsule (BC). It is composed by a fibrous tissue internally
coated by a simple squamous epithelium layer. The BC encloses a space
called Bowman’s space (BS), located between the parietal and visceral
epithelial cell layers.
3

Table 1
Summary of the state-of-the-art on kidney tissue segmentation.

Reference #WSI #Glom. Method Stain

de Bel et al. (2018) 15 944 FCN
M-FCN
U-Net

PAS

Marsh et al. (2018) 48 3867 CNN(VGG-16)
LoG
Blob-detection
Linear Regression

HE

Gadermayr et al.
(2019)

24 – SW-CNN
U-Net-S
U-Net-D

PAS

Kannan et al. (2019) 275 745 Inception V3
Heatmap
Otsu binarization
Distance transform
Watershed
segmentation

TRI

Lutnick et al. (2019) 21 1147 DeepLabv2 HE
PAS

Ginley et al. (2019) 79 616 DeepLabv2
RNN(LSTM)
Color deconvolution
Color space
transformation
Otsu binarization
Naive Bayesian

PAS

Ginley et al. (2020) 65 393 DeepLabv2 PAS

Bueno et al. (2020) 47 1245 U-Net
(SegNet
AlexNet)

PAS

Altini et al. (2020b) 26 2772 SegNet
DeepLabv3+

PAS

Mei et al. (2020) – 819 Unet
Feature Maps

TRI
PAMS

Zeng et al. (2020) 400 12,418 ARPS
(U-Net
DenseNet
LSTM-GCNet
2D V-Net)

PAS

Altini et al. (2020a) 26 2772 Fast-RCNN
Mask-RCNN

PAS

Jha et al. (2021) 61 1334 Mask-RCNN
U-Net
DeepLabv3

HE
PAS
PAMS

Jayapandian et al.
(2021)

459 1196 U-Net HE
PAS
PAMS
TRI

Bouteldja et al. (2021) 168 2611 Modified U-Net PAS

Jiang et al. (2021) 348 8665 Cascade Mask R-CNN PAS
PAMS
TRI

Davis et al. (2021) 258 24,133 U-Net HE

Hermsen et al. (2019) 60 238 U-Net PAS

Ours 660 5309 DS-FNet HE
PAS
PAMS
TRI

Pre-analytical processing of renal biopsies is a fundamental step of
a proper morphological analysis. This step includes sample fixation,
paraffin-embedding, sectioning in 2–3 micrometers thin slices, and
staining by using different techniques. Most of the nephropathology
laboratories use a set of four staining techniques in diagnostic routine:
Periodic acid-Schiff (PAS), periodic acid-methenamine sil-ver (PAMS),
hematoxylin-eosin (HE), and a trichrome (TRI) stain. These staining
techniques use different pigments and set the conditions to attach them
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Fig. 2. Schematic and histological view of the nephron and examples of different stained glomerulus images. A⃝ - Graphic representation of the nephron: Blood flows from the
interlobullar artery to the afferent arteriole, enter the glomerular capillaries and leaves the glomerulus through the efferent arteriole. The blood is filtrated in the glomerulus
and the filtrate flows through the renal tubules where solutes are exchanged; urine is concentrated and discharged through the renal collecting tubule. B⃝ – HE stain reveals most
of the microscopic structures such as cells, and supporting matrix. C⃝ – PAS stain highlights the supporting membranes such as Bowman’s capsule and mesangium. D⃝ – PAMS is
a silver stain that enhance visualization of extracellular matrix (membrane and part of interstitial components). E⃝ – Masson’s trichrome stain highlights interstitial extracellular
matrix. The main structures highlighted in the stained glomeruli are: Ar = artery, Art = arteriole, BC = Bowman’s capsule, BS = Bowman’s space, EnC = endothelial cell, EpC =
parietal epithelial cell, I = interstitium, Mes = mesangium, P = podocyte, and T = tubule.
to different tissue structures. The attachment occurs according through
chemical and physical properties of components of these structures. For
instance, during HE staining (see Fig. 2 B⃝) hematoxylin binds to anionic
components of the cell nucleus while eosin binds to cathionic com-
ponents of the cell cytoplasm. Therefore, the use of different staining
techniques allows a proper visualization of different tissue structures.
In the study of renal biopsies, HE is used to obtain a general view of
the tissue. Cell nucleus and cytoplasm are clearly stained contrasting
with the light staining of the extracellular matrix. PAS (see Fig. 2 C⃝)
highlights basement membranes and sugar aggregates. There are a
variety of silver stain techniques such as Jones methenamine silver and
PAMS (see Fig. 2 D⃝) that clearly delineates details of normal or altered
basement membranes. TRI, such as Masson (see Fig. 2 E⃝) or Azan
trichromes, stains collagen and other extracellular matrix components
allowing visualization of cell-extracellular matrix relationship (Cathro
et al., 2018; Chang et al., 2012).

In the analysis of renal biopsy, each glomerulus must be iden-
tified and individually examined. Renal biopsy analysis requires a
trained pathologist and is very time-consuming. Accuracy in glomeruli
identification is essential for accessing activity or chronicity of renal
diseases.

4. One-to-many-stain glomerulus segmentation

In Fig. 1, the same glomerulus is stained with PAS, PAMS, and
HE. Although each stain highlights different structural components,
it is possible to recognize the same shape of the glomeruli with all
stains. The features highlighted by these stains allow ML models to
create different embeddings that represent the glomerulus in different
ways. We hypothesize that a semantic segmentation model trained in
one coloration, e.g. PAS, could find similar features when applied to
segment glomeruli in other colors, such as HE, as long as the correct
information could pass throughout the higher layer in the networks.
Bearing this in mind, we conceived the DS-FNet segmentation model
grounded in attention-aware mechanisms.
4

The conception of DS-FNet followed three main steps. The first
step consisted of identifying a robust baseline model for the glomeruli
segmentation task. For model selection, we considered which model
reached the most competitive results reported in the literature for
glomerulus segmentation. The baseline segmentation model that met
this requirement was the U-Net (Ronneberger et al., 2015). Modified
versions of U-Net reached the first places on HubMAP challenge, and
this network is also used in the majority of the works in Table 2, as
discussed in Section 2.

The U-Net network is based on an encoder–decoder architecture
that combines low-level features (edges) with more high-level semantic
features. In the second step, we modified U-Net by adding attention
on the feature channels and on spatial location in order to deal with
different edge information present in different stained images. In the
original version of U-Net, a VGG (Simonyan and Zisserman, 2014)
network is used as an encoder. Instead, we used an EfficientNet B1 (Tan
and Le, 2019) as the encoder due to its high balance among accuracy,
model size, number of parameters and the inference time. From this
version of U-Net, we propose the so-called AU-Net, which is based on
attention mechanisms.

In the last step, we added a stream to AU-Net in charge of de-
tecting the semantic boundary of the glomerulus. The rationale for
adding a semantic boundary detector is that the boundary is one
of the main information preserved across different stains. This way,
we propose a CNN architecture that contains a semantic boundary
detection module ultimately combined with the flow that performs the
segmentation conceived in the first and second steps. The combination
of segmentation and boundary detection tasks in DS-FNet was essential
to achieve high performance on data sets gathered with images of
different characteristics.

4.1. AU-Net

Attention modules try to capture a broader context in the image
when compared to the image representation captured by convolutional
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Fig. 3. Detailed architecture of our DS-FNet. The input image is fed to a backbone that generates a set of 𝐹𝑚 features maps: 𝐹1, 𝐹2, 𝐹3, 𝐹4, and 𝐹5 with different scales. The
feature maps 𝐹𝑛 are used in the boundary stream to obtain a set of 𝑆𝑛 features: 𝑆1, 𝑆2, and 𝑆3. Each 𝑆𝑛 in the boundary stream represents the boundary from the feature maps of
different scales from 𝐹𝑛. ∇𝐹5 is a pseudo gradient obtained using a maxpool with kernel 2 and stride 3 over 𝐹5. The semantic boundary detection module combines ∇𝐹5 and 𝑆1,
𝑆2, and 𝑆3 to obtain the semantic boundaries (SE), which ultimately combine with the coarse semantic segmentation (CSS) through the attention gate to output the segmented
image. The residual attention maps is the module that sequentially combines the attention on feature channel (AC) and on feature spatial location (AS).
layers. In image segmentation and classification tasks, the attention
module has been used to improve results in both aforementioned
tasks (Huang et al., 2019; Zhang et al., 2020; Park et al., 2018; Hu
et al., 2018). In Hu et al. (2018), a simple attention module per feature
channel is used to improve the performance of a classification network.
Here we explored the attention module proposed by Hu et al. (2018)
by modifying it to work with feature spatial attention. The rationale
to explore the attention module in U-Net was based on increasing
the context representation of the local convolutional features, thus
improving AU-Net output to get a more robust semantic segmentation.
Attention module on feature channels, �̃�, is given by

�̃� = 𝐀⊙ 𝜎(fc(Ψ(𝐀))), (1)

where 𝐀 represents the input features, fc denotes the fully connected
network, ⊙ denotes an element-wise product, and 𝛹 is a global average
pooling function.

In turn, attention module on feature spatial location, �̃�, is given by

�̃� = 𝐄⊙ 𝜎(⊛1×1(⊛1×1(𝐄))), (2)

where 𝐄 represents the input features, 𝜎 is a sigmoid function, ⊙
denotes a element-wise product, and ⊛1×1 represent a convolution
operation with filters of size 1 × 1, with zero-padding and stride of
1.

Attention on feature channels and feature spatial location modules
are sequentially combined in the residual attention map (RAM) mod-
ule, as shown in Fig. 3, in the non-boundary stream module. The RAM
5

is defined as

RAM(D) = �̃�(�̃�(⊛1×1(D))) + D, (3)

where D is an array of features.
After each block of the U-Net decoder, we apply the RAM module,

obtaining five feature matrices. The matrices are concatenated and
convoluted to obtain the final semantic segmentation in the top of
AU-Net.

4.2. DS-FNet: Semantic fusion of AU-Net and boundary detection

Fig. 3 depicts our DS-FNet architecture. We combined AU-Net, a
non-boundary stream, with a boundary stream via a semantic fusion
gate. The boundary stream is composed by a boundary detection mod-
ule and a semantic boundary detection module. By combining these
streams, both segmentation and boundary detection tasks could be
optimized, improving the overall segmentation result.

Boundary detection. We use features from different stages of the
encoder module of AU-Net, namely, 𝐹1, 𝐹3, 𝐹4, 𝐹5

1 (refer to Fig. 3).
These features are sequentially combined by using attention gates (𝐺𝐴)
followed by a residual module and a 1 × 1 convolution operation. The

1 Feature 𝐹2 was not used in the boundary stream because it keeps a large
similarity with feature 𝐹 .
1
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purpose of each gate, 𝐺𝐴, is to ensure that the information about
the boundaries is selected, preventing the non-boundary and boundary
information getting mixed. This way, the attention gates (𝐺𝐴)2 are
denoted as

GA = ⊛1×1(𝐹𝑛 ⊙ (𝜎(⊛1×1(𝐹𝑛 ∥ 𝐹 ′
𝑛)) + 1)) , (4)

where 𝐹𝑛 represents the backbone features from the 𝑛𝑡ℎ stage of AU-
Net encoder, 𝐅′

𝑛 are the same 𝐅𝑛, ∥ after convoluted in the boundary
detection module, ⊛1×1 is a convolutional layer, 𝜎 is the sigmoid
function, and ⊙ is an element-wise product. The output of each gate
𝐺𝐴 is a matrix defined as 𝑆1, 𝑆2, 𝑆3 ∈ R𝐻×𝑊 ×1.

Semantic boundary detection (SBD). This module uses the fusion of
high-level (semantic) and low-level features based on the work found
in Hu et al. (2019). In addition, we incorporated the ∇𝐹5 and the
matrices 𝑆1, 𝑆2, and 𝑆3 as inputs in this module. After weighing 𝑆1,
𝑆2, and 𝑆3, we perform a 1 × 1 convolution operation. ∇𝐹5 is obtained
by a pseudo-gradient operation in order to achieve semantic boundaries
without causing ambiguity during back-propagation, and is given by

∇𝐹5 ≈ 𝜎(𝐹5 − 𝜇3×3(𝐹5)), (5)

where 𝜇3×3 represents a maximum-pooling operation in the 2D space
using a 3 × 3 kernel.

The SBD takes as inputs ∇𝐹5 and the matrices 𝑆𝑛. First, ∇𝐹5 is
upsampled by two transposed convolution layers with stride of 8 pixels.
The result is then split into 𝑘 slices. Each slice is concatenated with
the 𝑆𝑛 sets and linearly combined by a ⊛1×1, called 𝐹𝑒𝑑𝑔𝑒𝑠. Finally, the
features 𝐹𝑒𝑑𝑔𝑒𝑠 go through an attention gate SBatt, given by

SBatt = 𝐿𝑎𝑑𝑎𝑝𝑡(∇𝐹5)⊙ 𝐹𝑒𝑑𝑔𝑒𝑠, (6)

where, 𝐿𝑎𝑑𝑎𝑝𝑡 is a 1 × 1 convolution followed by batch normalization
and ReLU activation, and ⊙ denotes an element-wise product. The
rationale here is to reinforce the boundaries formed by both low-
level and high-level features with more semantic information. Finally,
the resulting SBatt is convoluted by a ⊛1×1, resulting in the semantic
boundary feature 𝐒𝐁 ∈ R𝐻×𝑊 ×1.

Semantic fusion gate. Given the output from AU-Net (CSS ∈ R𝐻×𝑊 ×1)
and the output from boundary stream (SB ∈ R𝐻×𝑊 ×1), we first feed CSS
with 2 convolutional sets. The output of the first set is denoted as CSS′
eatures, while the second set outputs a mask M. A sof tmax function
s applied in the CSS′, obtaining the segmentation S. The matrix SB
s multiplied by 1 − M. The result is added with S, getting the final
egmentation. The semantic fusion gate avoids ambiguity in classifying
oundary pixels, as it combines the appropriate information from each
tream.

. Materials and methods

.1. Data sets

Our experimental analyses relied upon three data sets whose char-
cteristics are summarized in Table 2 and described next.

.1.1. HuBMAP - ‘‘Hacking the Kidney’’ data set
Sponsored by the National Institutes of Health (NIH), the human

iomolecular atlas program (HuBMAP) managed a glomerulus segmen-
ation competition in the Kaggle (Borner et al., 2021) platform. This
hallenge consisted of developing a supervised model for glomerulus
egmentation given a set of 20 human kidney WSIs. The data set
ncludes 11 fresh frozen and 9 formalin-fixed paraffin-embedded (FFPE)

2 Unlike an attention module, the attention gate tries to split the feature
et into two or more separate feature sets and not only highlights important
nformation for the next block in the network.
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Table 2
Summary of the data set characteristics.

Dataset Stain #WSI #Glom. Set Width/Height (avg. px.)

HuBMapa PAS 15 3568 Train 10k/12k
PAS 5 – Test –

PAS 203 428 Test 3k/3k
PAMS 123 295 Test 3k/3k

NEPTUNE HE 157 339 Test 3k/3k
TRI 137 325 Test 3k/3k

Total 620 1387

WSI_Fiocruz

PAS 10 136 Test 23k/11k
PAMS 5 70 Test 21k/9k
HE 10 148 Test 23k/10k

Total 30 354

aNote that the columns #Glom. and Width/Height were not reported as they are not
available on the Kaggle platform for the private test set.

PAS-stained kidney images. Among the WSIs, 15 are used for training
and 5 are left for testing. Test images and annotations are not avail-
able, and model results can only be verified through Kaggle platform
submissions. Fig. 4 illustrates some data set samples.

5.1.2. NEPTUNE subset
This data set includes renal sections collected from the multicenter

nephrotic syndrome study network (NEPTUNE) (Jayapandian et al.,
2021), here referred as NEPTUNE subset (or NEPTUNE for short).
This data set provides 620 publicly available WSI crops, which are
treated here as WSIs for easy reference. The data set annotations
were originally provided by five nephropathologists. As we included
annotations for partially-occluded glomeruli, our quantities of WSIs and
glomeruli differ from Jayapandian et al. (2021). Our study focused on
glomeruli whose annotations included Bowman’s space (also following
annotations in HuBMAP and WSI_Fiocruz data sets), and then we con-
sidered only the glomerular units in this data set rather than glomerular
tufts as in Jayapandian et al. (2021). The final NEPTUNE subset we
used contains 1387 glomeruli, with each stained image extracted with
5× digital magnification. Fig. 5 illustrates some data set samples.

5.1.3. WSI_Fiocruz data set
Our data set contains images from human kidney biopsies collected

in referral nephrology services of public hospitals in Bahia, Brazil. The
renal tissues were fixed in formalin-acetic acid-alcohol (FAA). Sections
of 2 μm were stained with PAS, PAMS, and HE. The WSI images were
captured using a VSI500 Olympus scanner with 40× magnification.
The glomeruli were manually annotated by a senior nephropathologist.
Fig. 6 illustrates some data set samples.

5.2. Implementation details

Throughout this work, the experiments followed the same train-
ing and testing protocol for all architectures. We used the Efficient-
net B1 (Tan and Le, 2019) as an encoder for all network models,
removing the last dense layer used for classification. We adopted
a polynomial learning rate schedule defined as 𝑙𝑟 = 𝑏𝑎𝑠𝑒 ∗ (1 −

𝑖𝑡𝑒𝑟
𝑡𝑜𝑡𝑎𝑙_𝑖𝑡𝑒𝑟 )

𝑝𝑜𝑤𝑒𝑟, where 𝑏𝑎𝑠𝑒 is the initial learning rate with a value of

0−4, 𝑖𝑡𝑒𝑟 is the number of iterations during training, 𝑡𝑜𝑡𝑎𝑙_𝑖𝑡𝑒𝑟 is the
otal number of iterations, and 𝑝𝑜𝑤𝑒𝑟 is the degree of the polynomial.
s an optimization method, we used the parameterized SGD with a
omentum of 0.9 and weight decay set to 0.0005.

The experiments were run in a computer equipped with eight
VIDIA V100, each one containing 16 GB of memory. The batch size

or training was 16 images. We divided the WSI images into crops of
024 × 1024 pixels with a stride of 512 pixels. Each crop was resized to
20 × 320 and then used for training. We used mixed-precision during
raining to reduce memory consumption in order to increase training
peed.
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Fig. 4. Image samples from the HuBMAP data set. In (a), an image sample of the train set with the glomeruli annotated in yellow; in (b), an image sample of the testing set.

Fig. 5. Image samples from the NEPTUNE data set. (a) HE image sample, (b) PAS image sample, (c) PAMS image sample and (d) TRI image sample.



Computerized Medical Imaging and Graphics 100 (2022) 102104J. Silva et al.
Fig. 6. Image samples from the WSI_Fiocruz data set. (a) HE image sample, (b) PAS image sample, and (c) PAMS image sample.
Training process. To train the models, we split the HubMAP data set
into four folds (see Table 2), having three folds for training and one left
for validation. After four different training sets, we had four different
models according to a given performance metric in the validation
set. We used the dice score (DSC) to evaluate whether the validation
performance of each epoch has increased or not, keeping only the
model whose epoch returned the highest DSC. We set a total of thirty
epochs for training each architecture, because after some preliminary
experiments the networks best reached convergence. The glomerulus
segmentation data sets are unbalanced if we consider the proportion
of glomerulus and non-glomerulus pixels. To avoid a considerable
unbalanced data presentation to the network, we have divided the
patch set into two types: The first set contains patches without pixels
of glomerulus, while the second set does contain. Thus, an equivalent
amount of each set was selected to be used during the training.

Self-training . We refined the training of all networks by using a self-
training approach (Lee et al., 2013) to improve the generalization of
the final trained models. For that, it was used the public training set of
HubMap. First we trained a model from all networks using just the label
images with the initial aforementioned parameters. We then run these
models on the images belonging to the public testing set of HubMAP
(see Table 2). With the segmentation masks in hand obtained over
initial unlabeled images, the predicted images were added to the ex-
isting training set, thereby increasing our initial training data. Finally,
we retrained all the models considering a learning rate of 10−6 in ten
epochs with the updated training set (manual- and machine-labeled
images).
8

5.3. Evaluation protocol

To assess the performance of our proposed method, we followed a
set of experiments with the goal of firstly define the best parameters
of our network, then evaluating our best architecture over the chosen
data sets. We conducted an ablation study on DS-FNet considering
only the HubMAP data set by means of the Kaggle platform. In the
ablation study, we ranked the best model of the original U-Net and
AU-Net. These early experiments was mainly performed to assess what
would be the best combination of loss functions and if the use of a
class supervision3 would improve the final segmentation performance.
In this stage, considering the differences of U-Net and AU-Net, we also
evaluated the impact of the feature channel and feature spatial location
attention modules. The second set of experiments was to compare the
best model obtained in the ablation stage with the other competitors
in Kaggle’s leaderboard. The last set of experiments was thought to
evaluate the generalization of DS-FNet in terms of different stains
and data sets: After trained only on the HubMAP data set, our best
model was evaluated on the NEPTUNE subset and the WSI_Fiocruz data
sets. Given that specific training, validation, and testing splits were
not available in the NEPTUNE subset, it was not possible to directly
compare our proposed network with the results found in Jayapandian
et al. (2021).

3 Class supervision is a branch for classifying the presence of glomeruli or
part of the glomeruli in image patches during training.
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Fig. 7. Ensemble method used in the evaluation protocol. First, a WSI image is divided into patches 1024 × 1024 pixels and each patch is resized to 320 × 320 pixels. Each patch
follows for the best model of each fold. The results of the predictions of each best model in each fold are pixel-wise summed to obtain the segmentation mask of each patch. We
used the ensemble to obtain the final segmentation for each one of evaluated networks.
Table 3
Summary of the ablation on the HuBMAP private testing data considering U-NET and
AU-Net and all possible combinations of loss functions (BCE, dice, WBCE) and class
supervision technique.

Method Loss function Class DSC

BCE dice supervision

U-Net ✓ – – 0.87
U-Net ✓ ✓ – 0.89
U-Net ✓ ✓ ✓ 0.91

AU-Net ✓ – – 0.90
AU-Net ✓ ✓ – 0.91
AU-Net ✓ ✓ ✓ 0.92

Table 4
Results of all networks on the HuBMAP private testing data, using bce and dice loss
functions and class supervision.

Method DSC

U-Net 0.91
AU-Net 0.92
U-Net++ (Zhou et al., 2018) 0.90
U-Net3Plus (Huang et al., 2020) 0.92
ResU-Net (Diakogiannis et al., 2020) 0.89
DeepLabV3+ (Chen et al., 2018) 0.88
DS-FNet 0.95

Instead of using just one model of each network architecture, we
ensemble the four models obtained through the 4-fold cross-validation
procedure described in Section 5.2. Fig. 7 illustrates how the models
are ensembled to provide the final segmentation masks. The ensem-
ble segmentation strategy starts with the division of the image into
1024 × 1024 patches considering 512 pixels of stride between patches.
Each patch is resized to 320 × 320 pixels, and only then it is used
as input to the segmentation models. The results of each model for
each corresponding patch are summed and then a sigmoid function is
applied to the resulting image. Finally, we resized the mask with the
segmentation of the glomerulus to the original input size.

6. Results and discussion

Each architecture listed in this section is a result of the ensemble
depicted in Fig. 7. The results of the ablation study on the HuBMAP
private testing set are summarized in Table 3. We did not use wbce
in U-Net and AU-Net because this loss was designed for boundary
detection (Yu et al., 2017). The wbce loss considers equally important
classes in each image, even if there are very rare classes in the image.
For the pure semantic segmentation task, the use of this loss can
be a problem as it can reduce the performance of the segmenter in
terms of coverage. The results demonstrated that the introduction of
the dice loss optimization allowed slight improvements for both U-
Net and AU-Net while the class supervision also improved the AU-Net
9

Table 5
Results of the Kaggle competition on the HuBMAP private testing data set (Borner
et al., 2021), considering the four first competitors and DS-FNet. It is noteworthy that
we did not participate in the competition, but posteriorly evaluated our method.

Method DSC

U-Net (SE_ResNext101) 0.9503
U-Net (EfficientNet-B1) 0.9503
DS-FNet 0.9505
No method description 0.9507
U-Net (SE_ResNext101) 0.9515

Table 6
Results on the data sets from different medical labs stained only in PAS.

Method HuBMap NEPTUNE WSI_Fiocruz Avg. DSC

U-Net 0.89 0.89 0.67 0.82
AU-Net 0.92 0.91 0.83 0.89
U-Net++ (Zhou et al., 2018) 0.90 0.89 0.78 0.86
U-Net3Plus (Huang et al., 2020) 0.92 0.90 0.81 0.88
ResU-Net (Diakogiannis et al., 2020) 0.89 0.86 0.71 0.82
DeepLabV3+ (Chen et al., 2018) 0.88 0.89 0.70 0.82
DS-FNet 0.95 0.92 0.86 0.91

performance. Considering the best parameters of AU-Net, and a DS-
FNet that also uses wbce loss because the aforementioned reasons, our
proposed network achieved the best results on the HuBMap testing
private set as presented in Table 4.

Also, when the best parameterized DS-FNet is benchmarked with
the other methods in the HuBMAP leaderboard in Kaggle platform,4 it
is clear in Table 5 that our network presents similar results to the four
best methods (among 1216 submissions). Indeed, considering the four
decimal places of the competition, our model is just 0.01 percentage
point behind the very first place.

Considering the best DS-FNet on HuBMap data set, our work was
to evaluate how robust would be our network: Over data sets from
different labs, using only the PAS stain and also images stained with
different techniques. Table 6 shows the result of the average DSC of
each one of the networks on the three data sets, with images stained
only in PAS. DS-FNet reached the best results on the three data sets.
Besides outperforming U-Net by 9 percentage points, the DS-FNet also
outperformed AU-Net (the second best result) by two percentage points.
As these results are taken from images stained in PAS, it was already
expected that the differences between the results of the attention-
based networks (AU-Net and DS-FNet) were not considerably high in
comparison with the other ones.

In Table 7, the results evidenced that DS-FNet consistently out-
performed the other methods for all types of stains. Now, higher
differences between the network results were found when the stains in

4 https://www.kaggle.com/c/hubmap-kidney-segmentation/leaderboard/.

https://www.kaggle.com/c/hubmap-kidney-segmentation/leaderboard/
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Table 7
Results on the data sets from different medical labs stained with periodic
acid-methenamine silver (PAMS), hematoxylin-eosin (HE), and trichrome (TRI).

Dataset Method HE PAMS TRI Avg. DSC

NEPTUNE

U-Net 0.68 0.81 0.66 0.72
AU-Net 0.72 0.86 0.75 0.78
U-Net++ (Zhou et al., 2018) 0.67 0.83 0.65 0.72
U-Net3Plus (Huang et al., 2020) 0.71 0.85 0.76 0.77
ResU-Net (Diakogiannis et al., 2020) 0.65 0.80 0.63 0.69
DeepLabV3+ (Chen et al., 2018) 0.66 0.81 0.67 0.71
DS-FNet 0.83 0.88 0.80 0.84

WSI_Fiocruz

U-Net 0.67 0.63 – 0.65
AU-Net 0.67 0.71 – 0.69
U-Net++ (Zhou et al., 2018) 0.67 0.65 – 0.66
U-Net3Plus (Huang et al., 2020) 0.69 0.71 – 0.70
ResU-Net (Diakogiannis et al., 2020) 0.63 0.61 – 0.62
DeepLabV3+ (Chen et al., 2018) 0.70 0.67 – 0.69
DS-FNet 0.80 0.79 – 0.80

the prediction were different from the stain in the training. Even though
the average results in that table is lower than those in Table 6, it is clear
that DS-FNet still preserves considerably high DSC, while substantially
increases the average difference from the U-Net3Plus (second best
result) to 7 and 10 percentage points in the Neptune subset and the
WSI_Fiocruz data set, respectively. These findings corroborate with the
initial hypothesis of generalization potential of the proposed method
in the challenging simultaneous cross-lab and cross-stain segmentation
tasks.

Over the results in Tables 6 and 7, we applied the McNemar’s test to
evaluate whether there was a statistically significant difference between
the results of the DS-FNet and the other networks presented in those
tables. As the granularity of the segmentation is in the pixel level, the
semantic segmentation of the pixel was used as the classification result
for the statistical test. By taking the 𝑝-value as lower than 0.05, the
test showed that DS-FNet results were statistically different from the
networks tested in Tables 6 and 7, for the NEPTUNE and WSI_Fiocruz
data sets.

6.1. Qualitative results

Figs. 8 and 9 illustrate visual comparisons of the segmentation
results of all networks over challenging image samples of the testing
data sets. In Fig. 8, on the NEPTUNE subset samples, the AU-Net and
DS-FNet were able to reduce the false positives (yellow) significantly.
DS-FNet was also effective in significantly reducing the false negatives
(red) by including some glomeruli regions completely missed by the
other methods. On the WSI_Fiocruz data set, AU-Net better identified
positive regions at the expense of too many false positives, and the
DS-FNet again outperformed it. In the samples shown in Fig. 9, visual
results of the DS-FNet are compared with U-Net++ (Zhou et al., 2018),
U-Net3Plus (Huang et al., 2020), ResU-Net (Diakogiannis et al., 2020),
and DeepLabV3+ (Chen et al., 2017). Considering those challenging
samples, DS-FNet is significantly superior to the other networks con-
cerning true positive results (in green), presenting few false negatives
(in red). The only situations in which the other networks showed results
close to the DS-FNet in the visual inspection of Fig. 9 were those found
in PAS and PAMS on NEPTUNE subset, in detriment of presenting some
false negatives. The DS-FNet presented near-perfect segmentations in
these particular samples, especially on the boundaries.

7. Conclusion

Our work brings as contributions a novel DL approach evaluated via
a challenging protocol. Our proposed network called DS-FNet explored
the possibility of using boundary detection combined with a semantic
segmentation network to improve one-to-many-stain segmentation. The
empirical evidence presented in this work shows that our proposed
10
Fig. 8. Some results of U-Net, AU-Net, DS-FNet on NEPTUNE subset (Jayapandian
et al., 2021) and our WSI_Fiocruz data sets using four staining techniques: Periodic
acid-Schiff (PAS), periodic acid-methenamine silver (PAMS), hematoxylin-eosin (HE),
and trichrome (TRI). Glomeruli in yellow are false positives, in red are false negatives,
and in green are true positive.

network has a superior result when compared with six other DL net-
works in all evaluations over data sets characterized by cross-stain
and cross-lab scenarios. The experimental results also followed the
theoretical expectation that glomeruli stained with different techniques
keep common characteristics, and this was definitely explored by the
attention mechanisms precisely placed throughout our network to in-
tegrate non-boundary and boundary information. As future work, we
are evaluating DS-FNet over other histological renal structures. We also
plan to expand the number of WSIs to 400 in the WSI_Fiocruz data set,
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Fig. 9. Some results of U-Net++ (Zhou et al., 2018), U-Net3Plus (Huang et al., 2020), ResU-Net (Diakogiannis et al., 2020), DeepLabV3+ (Chen et al., 2017), and DS-FNet on
NEPTUNE subset (Jayapandian et al., 2021) and our WSI_Fiocruz data set using four staining techniques: Periodic acid-Schiff (PAS), periodic acid-methenamine silver (PAMS),
hematoxylin-eosin (HE), and trichrome (TRI). Glomeruli in yellow are false positives, in red are false negatives, and in green are true positive.
making it available with the goal of providing a challenging data set to
the researchers in this field.
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