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Tuberculosis (TB) is a lethal disease and remains one of the top ten causes of

mortality by an infectious disease worldwide. It can also result in significant

morbidity related to persistent inflammation and tissue damage. Pulmonary

TB treatment depends on the prolonged use of multiple drugs ranging from

6 months for drug-susceptible TB to 6–20 months in cases of multi-drug

resistant disease, with limited patient tolerance resulting from side effects.

Treatment success rates remain low and thus represent a barrier to TB

control. Adjunct host-directed therapy (HDT) is an emerging strategy in TB

treatment that aims to target the host immune response to Mycobacterium

tuberculosis in addition to antimycobacterial drugs. Combined multi-drug

treatment with HDT could potentially result in more effective therapies by

shortening treatment duration, improving cure success rates and reducing

residual tissue damage. This review explores the rationale and challenges

to the development and implementation of HDTs through a succinct report

of the medications that have completed or are currently being evaluated in

ongoing clinical trials.
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Introduction

Tuberculosis (TB) is caused by infection with
Mycobacterium tuberculosis (Mtb), and represents one of
the most important infectious diseases worldwide (1). Until the
COVID-19 pandemic, TB was the leading cause of death from a
single infectious agent (2).

Throughout the past century, TB morbidity and mortality
have declined significantly as a result of a number of factors
including improved socioeconomic conditions, introduction of
intradermal Bacilli Calmette-Guerin vaccine (BCG), particularly
in children younger than 5 years old (3, 4) and most importantly
with the introduction of antimycobacterial treatment (5). The
use of highly effective therapy against HIV, a co-infection
primarily responsible for increased TB incidence and death over
the past decades, has also positively impacted TB control (4, 6).
Notably, widespread access to anti-TB medications resulted in
the closure of inpatient hospitals with a shift to outpatient-based
treatment (5).

While worldwide efforts to curb TB incidence and mortality
have been effective, the COVID-19 pandemic and subsequent
limited access to health services has reversed years of progress in
providing essential TB services and reducing TB disease burden
(1). In addition, new challenges to control TB include continued
insufficient treatment success rates, low treatment adherence
and the emergence of drug resistant TB infections (7). In 2020,
132,222 individuals were diagnosed with multidrug resistant
or rifampicin resistant TB (MDR/RR-TB) along with 25,681
subjects classified as extensively drug resistant TB (XDR-TB)
patient, a decrease in 22% compared with 2019 (201,997) that
reflects underdiagnosis of this condition (1).

Current TB treatment relies on a combination of multiple
antimicrobial drugs with treatment duration ranging from
6 months for drug-susceptible TB to 6–20 months for
MDR/RR-TB and even longer in cases of XDR-TB or poor
clinical response (8). Globally, the TB treatment success rate
is 85% for drug-susceptible TB and 57% for MDR/RR-TB
(1). Outcomes are affected by several factors ranging from
social determinants to the long duration and complexity of
medication regimens, which directly impact patient adherence
to the therapeutic protocol as well as drug toxicity (9).
While changing social factors to improve treatment success
is a complex, lengthy, and gradual process, development of
more effective, affordable, and well-tolerated medications may
shorten treatment duration and reduce collateral effects thereby
improving treatment outcomes.

Two different strategies have been adopted to develop novel
therapeutics: (1) traditional search for new antimycobacterial
drugs, (2) host directed therapy (HDT) capable of modulating
the immune response to TB as adjuvant therapy to current
anti-TB treatment. The development of new anti-TB drugs is a
lengthy and costly process (10), thus the study of HDT may offer
an effective alternative that is readily available.

Host-directed therapy (HDT) has emerged as an attractive
adjuvant treatment option using repurposed approved
immune modulation therapy. It has become apparent
that the determinants of TB immunopathogenesis and the
mechanisms underlying successful infection control involve
the following domains: inflammation (Figures 1A–C) (11),
cellular metabolism (Figure 1D) (12), and the mechanisms
used by Mtb to evade the immune system (13; Figure 1E).
HDTs aim to modulate host factors to enhance favorable
responses and dampen host detrimental responses, which
contribute to tissue damage and perpetuation of mycobacterial
multiplication (14). If proven to be beneficial, HDT may aid in
resolving unmet needs in TB treatment, thereby resulting in
improved adherence, reduction of resistant strains, shortened
treatment duration and Mtb transmission in the community
with increased cure rates and fewer chronic sequelae caused by
excessive inflammatory response to TB (15).

Currently, there are many potential therapies with ongoing
research at different stages in the pipeline for HDT in TB. Most
are repurposed drugs in pre-clinical or clinical studies to be used
as adjuvants with anti-TB therapy. This review aims to describe
the rationale used in the development of HDTs, their potential
and main challenges as adjuvant therapy, as well as to provide
a succinct report of the medications that have completed or
are evaluated in ongoing clinical trials (CT), registered in the
ClinicalTrials.gov database.

Tuberculosis and the immune system

After infection with Mtb, the development of active disease
results from both pathogen and host factors (16). Immune
response against Mtb is a very complex and dynamic process,
involving different cell types, cytokines and chemokines (17).
Multiple inflammatory cells such as macrophages, monocytes,
dendritic cells, neutrophils, epithelioid cells, and multinucleated
giant cells, enclosed by B and T lymphocytes, accumulate
at the tissue level to form a granuloma (18). Myeloid cells
produce many cytokines and chemokines that are critical to
recruit additional leukocytes from capillary vessels (19, 20).
The interaction between differentially localized populations
of intracellular Mtb and the cellular organelles will dictate
whether Mtb replicates or restrict its growth through control
of intracellular bacilli (21). The majority of Mtb exposed
individuals contain primary infection with the formation of
granulomas. Nevertheless, it is possible that a small proportion
of bacilli survive, driving infection into a latent stage. The
other potential outcome is increased hypoxic necrotic centers,
rich in lipids and foamy macrophages that fail to control
bacterial replication, ultimately leading to granuloma caseation
(20). This process is responsible for the latter formation of
cavities and destruction of alveolar cells, vessels, and bronchi,
with consequent bacilli spread (19). The fate of granulomas is
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FIGURE 1

Main potential host therapeutic targets (HDT) improve outcome in Mycobacterium tuberculosis. (A) Lipid peroxidation inhibitors, Ibuprofen,
Aspirin, N-acetylcysteine, and Vitamin D suppress proinflammatory responses, which decrease inflammation and tissue damage during active
stage of the disease. (B) Doxycycline changes the integrity of granuloma and enhances drug accessibility. (C) Vitamin A reduces bacilli growth
by apoptosis or auto-phagolysosome. (D) Doxycycline, Statin, and Metformin regulate cell-mediated immune responses, including
antigen-specific T cell responses. (E) Some HDT like vitamin D induce autophagy in infected cells.

determined by a variety of host factors that involve a network of
inflammatory cytokines, eicosanoids, prostaglandins, and other
mediators contributing to disease exacerbation as well as tissue
necrosis (19, 20). Therefore, modulating host immune response
could potentially optimize TB treatment, although the ideal
target for HDTs remains unclear (22).

Currently, multiple therapies that act on different host
immune targets are under investigation including the following:
modulation of vascular endothelial growth factor (VEGF)
potentially reduces central necrosis and improves drug delivery
(23); reduction of neutrophil-mediated inflammation (i.e.,
aspirin) to limit severe tissue damage (24); and modulation of
tumor necrosis factor alpha (TNFα), transforming growth factor
beta (TGF-β), and Interleukin-1 beta (IL-1β) may reduce lung
damage (25).

Potential advantages of host-directed
therapy in tuberculosis

Some medications studied as HDT in TB are used for
other conditions and offer a wealth of clinical experience
and research, such as acetylsalicylic acid or statins, to bypass
the need to explore the safety and toxicity properties in
prolonged use. Furthermore, most of the studied drugs are

already available worldwide with accessible costs, facilitating,
and accelerating their incorporation into routine practice if
benefit in TB treatment is proven in robust CTs (26). The use of
HDTs may avoid the undesirable adverse effects with prolonged
use of repurposed antimicrobials such as oxazolidonones,
carbapenems, and fluorquinolones in TB treatment (27).
Among other adverse effects, long-term therapies employing
broad-spectrum antibiotics will contribute to the emergence of
antibiotic-resistant strains of Mtb as well as other opportunistic
pathogens (28). Lastly, anti-inflammatory effects offered by
some HDT agents may lead to potential benefits in the host
by reducing tissue damage and improving long-term quality of
life (14).

The challenge of finding effective
host-directed therapy

In vitro studies play an essential role in the screening
of potential drugs (29), while animal studies allow the
understanding of immunopathology, as well the confirmation
of mycobacterial infection control, as measured by the drug
impact in mycobacterial load, time to sterilization of lesions,
tissue damage size and overall survival (30). With the knowledge
obtained through both experimental models, clinical studies
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to validate these findings will be critical to address questions
beyond drug efficacy (31; Figure 2).

Safety and toxicity
Though many drugs re-purposed as HDTs have known

safety profiles, they must be evaluated in the context of
individuals with TB, given that factors such as malnutrition,
co-infection with HIV and inflammation tend to alter drug
metabolism (32, 33).

Drug-drug interactions
The concomitant use of HDT with anti-TB therapy needs

to be evaluated. For instance, mild risk of hepatotoxicity
of some drugs could be potentiated when used along with
anti-mycobacterial drugs. Additionally, it is important to
evaluate drug-drug interactions with antiretroviral therapy,
as co-infection with TB-HIV is common and of particular
concern (26).

Effectiveness in different populations
People living with HIV (PWH) and those with other types

of immunosuppression, children, and individuals with resistant
TB may have different immune responses to TB and thus could
respond differently to HDTs (34). Similarly, ethnic differences in

TB immune response may also be reflected in different responses
to HDTs (35). It is critical that clinical studies include ethnically
diverse and clinically relevant populations.

Effectiveness in different clinical forms of
tuberculosis

While most studies focus on pulmonary TB, extra-
pulmonary TB has a high prevalence in some areas, particularly
in countries with a high burden of TB (36) with worse outcomes
when compared with pulmonary TB (37–39). For instance,
having tuberculous meningitis or disseminated TB is associated
with lower cure rates and higher mortality rates (37–39).

Determine the most effective protocol for
host-directed therapy

There may be an ideal time for use during disease course
depending on how the host immune response is modulated,
and administration in the wrong time frame may be deleterious
(31, 40).

Evaluation of the possibility of reducing total
treatment time

Earlier sterilization and control of inflammation may
result in shorter antimycobacterial treatment durations leading

FIGURE 2

The challenge of finding effective host-directed therapy (HDTs) and the current anti-tuberculosis therapy. Perspectives for clinical studies for
HDT efficacy.
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to improved patient adherence and increased likelihood of
cure (41).

Drugs targeting the anti-inflammatory
response

Aspirin
Aspirin is a drug based on acetylsalicylic acid that performs

antiplatelet (42), anti-inflammatory (43), and analgesic (44)
functions and is a potential adjuvant in the treatment of TB
(45, 46).

The anti-inflammatory role of aspirin has been increasingly
studied for modulating neutrophil-mediated inflammatory
responses. The effect of low-dose aspirin seems to enhance
control of bacillary load and improve survival in the late
stages of TB in C3HeB/FeJ murine model (45). A study in
C3HeB/FeJ mice found that low-dose aspirin had an anti-
inflammatory effect in the later stage of active TB by reducing
excess, non-productive inflammation, while enhancing Th1-cell
responses for the elimination of bacilli (47). In BALB/c mice,
aspirin administration enhanced the effect of pyrazinamide and
resulted in additional clearance of viable mycobacteria in the
lungs and spleen during the initial phase of TB treatment
(48). However, the combination of aspirin and Isoniazid-
like treatment of murine pulmonary TB was associated with
increased mycobacterial load in the spleen and lungs (48).
Together, these findings highlight the urgent need for additional
clinical studies to assess the impact of timing in disease course
and the efficacy of concomitant aspirin use with different anti-
TB drug combinations.

In addition to the anti-inflammatory effects, the antiplatelet
role of aspirin may also be beneficial in TB treatment given
that TB promotes a basal state of hypercoagulability that
favors thromboembolic events (49) and platelets have been
directly associated with pro-inflammatory status (50). A cohort
study of pulmonary TB patients from Taiwan found that low
doses of aspirin were associated with decreased morbidity and
increased survival of patients on anti-TB regimen, without
increasing the risk of bleeding (46). Similarly, a phase two CT in
HIV-unexposed adults with tuberculous meningitis found that
1,000 mg of aspirin reduced 3-month mortality rates for this
group of patients (51). A hypercoagulation state is present in
tuberculous meningitis, leading to vascular complications (49).
Using aspirin in this scenario has previously been shown to
reduce the incidence of strokes and mortality at 3 months (52).

The results of these preliminary studies are underpowered
and require additional robust CTs to prompt a change in current
treatment guidelines. Nevertheless, they suggest that aspirin
may aid TB treatment in all cases or in subgroups, in those with
pulmonary TB or tuberculous meningitis. Importantly, the use
of aspirin would be easily implemented given the low cost, high
availability and limited side effect profile.

The ClinicalTrials.gov database lists one ongoing multi-
center, phase IIB, placebo controlled, randomized CT that aims
to evaluate the efficacy and safety of aspirin and ibuprofen as
adjunct drugs in TB treatment, as detailed in Table 1.

Ibuprofen
Ibuprofen is a non-steroidal anti-inflammatory drug that

inhibits both COX1 and COX2 cyclooxygenases. It is widely
used and has an excellent safety profile, even in children (76).
In a mouse model mimicking active TB in humans, the use of
ibuprofen reduced bacillary load and affected lung area, leading
to increased survival (77). These effects are mainly attributed to
inhibition of the synthesis of PGE2, which inhibits phagocytosis,
bacterial killing, production of nitrite (76) and T-helper 1
cytokines, and production of tumor necrosis factor α (TNF-α)
(78). Another study in a murine model noted that ibuprofen
enhanced the bactericidal effect of pyrazinamide during TB
treatment (48). As noted above, this approach is currently under
investigation in a phase II multi-center placebo-controlled trial
(Table 1).

Antioxidants: N-acetylcysteine and lipid
peroxidation inhibitors

N-acetylcysteine (NAC) is a potent antioxidant widely used
as a mucolytic agent in chronic obstructive pulmonary disease
(COPD) and cystic fibrosis (79). The role of NAC in TB therapy
remains under study. To date, prior studies have indicated that
NAC might reduce host oxidative responses (80), reduce pro-
inflammatory cytokines such as IL-1, IL-6, and TNF-α (81) and
have direct antimycobacterial properties (81, 82).

A study conducted in Brazil compared oxidative stress
status in plasma of patients with pulmonary TB, latent TB
infection, and healthy uninfected individuals (82). Pulmonary
TB patients exhibited higher levels of oxidation products and
a reduction of antioxidants compared with latent TB cases or
uninfected controls. Cultures were exposed to different doses
of NAC and the authors found decreased oxidative stress in
treated macrophages and reduced mycobacterial growth when
exposed to a high concentration of NAC (82). The capacity of
NAC to control Mtb infection was further tested in vivo in a
mouse (C57BL/6) model, resulting in a significant reduction of
mycobacterial loads in the lungs (82).

In a phase II randomized CT that evaluated the adjuvant use
of NAC in hospitalized individuals with TB-HIV (RIPENACTB
study) (80), NAC-treated patients exhibited a significant
increase in glutathione levels and total antioxidant status along
with lowered levels of lipid peroxidation, a toxic process of
oxidative stress response. In this study, the adjuvant use of
NAC was not unsafe (80). Similarly, another randomized CT in
those with newly diagnosed pulmonary TB in India reported a
significant increase in glutathione peroxidase levels in patients
receiving NAC and conventional anti-TB therapy compared
to placebo group (patients under TB therapy only). Patients

Frontiers in Medicine 05 frontiersin.org

https://doi.org/10.3389/fmed.2022.970408
https://clinicaltrials.gov
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-970408 September 17, 2022 Time: 14:13 # 6

Cubillos-Angulo et al. 10.3389/fmed.2022.970408

TABLE 1 Clinical trials investigating drugs for host directed therapy in pulmonary tuberculosis (TB).

Adjunctive
HDT

Principal
investigator
and year
(last update
posted)

Study
setting
(s)

Trial
registration

Type, dose
and route of
treatment
(intervention)

References (PMID
or clinical trials
website)

Status Next step
drug

Aspirin (53) South Africa NCT04575519 300 mg of Aspirin https://clinicaltrials.gov/
ct2/show/NCT04575519?
term=aspirin&cond=
Tuberculosis&draw=2&
rank=4

Recruiting Evaluate safety
and efficacy of
the adjunctive
use with TB
therapy

Ibuprofen (53) Georgia and
South Africa

NCT04575519 400◦mg Ibuprofen
(twice daily
during)

https:
//www.clinicaltrials.gov/
ct2/show/NCT04575519?
term=ibuprofen&cond=
Pulmonary+
Tuberculoses&draw=2&
rank=1

Recruiting Determine the
impact of
ibuprofen on
long-term
antituberculosis
drugs and know
the side effects
in humans.

N Acetyl
Cysteine

(54) Tanzania NCT03702738 N-acetylcysteine
1,200 mg

https://clinicaltrials.gov/
ct2/show/NCT03702738?
term=N+Acetyl+
Cysteine&cond=
Tuberculosis&draw=2&
rank=1

Recruiting Evaluate the
synergize with
current
therapies in TB
and multi-drug-
resistant
(MDR)-TB
treatment

(55) Brazil NCT03281226 N-acetylcysteine
1,200 mg (600◦mg
twice daily)

https://clinicaltrials.gov/
ct2/show/NCT03281226?
term=N+Acetyl+
Cysteine&cond=
Tuberculosis&draw=2&
rank=3

Unknown

Vitamin D (56) Indonesia NCT05073965 1000IU Vitamin D Completed Need to
standardize the
doses and
optimize the
schedule of
administration.

(57) Pakistan NCT01130311 Vitamin D
(cholecalciferol)
600,000 IU
intramuscular

Completed

(58) Indonesia NCT00677339 Vitamin D3,
“Calciferol
Strong R©” 50,000
IU (1,250 mcg, 1
tablet)

Completed

(59) Pakistan NCT02169570 600,000 IU of
(I/M) Vitamin D

https://clinicaltrials.gov/
ct2/show/NCT02169570?
term=Vitamin+D&
cond=Tuberculosis&
draw=2&rank=13

Unknown

(60) Mexico NCT02464683 Vitamin D 200 IU
(oral dose)

https://clinicaltrials.gov/
ct2/show/NCT02464683?
term=Vitamin+D&
cond=Tuberculosis&
draw=2&rank=2

Unknown

(61) India NCT00366470 3.3◦ml (100,000
IU) dose of
Vitamin D

Completed

(Continued)
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TABLE 1 (Continued)

Adjunctive
HDT

Principal
investigator
and year
(last update
posted)

Study
setting
(s)

Trial
registration

Type, dose
and route of
treatment
(intervention)

References (PMID
or clinical trials
website)

Status Next step
drug

(62) Bangladesh, NCT01580007 500 mg orally
(5,000 IU) Vitamin
D

Completed

(63) Ethiopia NCT01698476 5,000 IU of
Vitamin D
(cholecalciferol
tablets)

Completed

(64) India NCT00507000 Vitamin D 60,000
IU

https://clinicaltrials.gov/
ct2/show/NCT00507000?
term=Vitamin+D&
cond=Tuberculosis&
draw=2&rank=5

Unknown

(65) South Africa NCT02968927 Vitamin D Unknown

(66) Tanzania NCT00311298 Vitamin D
5 µg/200 IU

Completed

(67) United
Kingdom

NCT03011580 9,600 IU/day Oral
Vitamin D

https://clinicaltrials.gov/
ct2/show/NCT03011580?
term=Vitamin+D&
cond=Tuberculosis&
draw=2&rank=17

Completed

Doxycycline (68) Singapore NCT02774993 Doxycycline
100 mg

https://clinicaltrials.gov/
ct2/show/NCT02774993

Completed Results from
phase II may
provide insights
regarding safety
and efficacy.
New CTs to be
performed,
including
greater sample
size and
different TB
clinical forms
besides
pulmonary TB.

Vitamin A (69) Malawi NCT00057434 Vitamins A 8,000
IU

Completed Larger CTs
looking at effects
of Vitamin A in
clinical
outcomes
(death/cure/
relapse)

(66) Tanzania NCT00311298 Vitamin A 5,000
IU

Completed

(70) India NCT00801606 Vitamin A 250 mg Completed

Statin (31) South Africa NCT03882177 Pravastatin 40 mg,
80 mg, 100 mg and
160 mg

https://clinicaltrials.gov/
ct2/show/NCT03882177?
term=Statin&cond=
Tuberculosis%2C+
Pulmonary&draw=2&
rank=2

Recruiting Dose finding
studies. Phase II
CTs are ongoing.
If promising
results, Phase III
trials.

(71) South Africa NCT04147286 Atorvastatin
40◦mg

https://clinicaltrials.gov/
ct2/show/NCT04147286?
term=Statin&cond=
Tuberculosis%2C+
Pulmonary&draw=2&
rank=4

Recruiting

(Continued)
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TABLE 1 (Continued)

Adjunctive
HDT

Principal
investigator
and year
(last update
posted)

Study
setting
(s)

Trial
registration

Type, dose
and route of
treatment
(intervention)

References (PMID
or clinical trials
website)

Status Next step
drug

(72) United
Kingdom

NCT04721795 Atorvastatin oral
30/40◦mg

https://clinicaltrials.gov/
ct2/show/NCT04721795?
term=Statin&cond=
Tuberculosis%2C+
Pulmonary&draw=2&
rank=1

Recruiting

(73) Philippines,
Singapore,
Uganda,
Vietnam

NCT04504851 Rosuvastatin
10◦mg

https://clinicaltrials.gov/
ct2/show/NCT04504851?
term=Statin&cond=
Tuberculosis%2C+
Pulmonary&draw=2&
rank=3

Not yet
recruiting

Metformin (74) Thailand NCT05215990 Metformin 500 Mg
Oral

https://clinicaltrials.gov/
ct2/show/NCT05215990?
term=Metformin&cond=
Tuberculosis%2C+
Pulmonary&draw=2&
rank=1

Recruiting Phase II and
dose finding
studies

(75) South Africa NCT04930744 Metformin
hydrochloride
500 mg

https://clinicaltrials.gov/
ct2/show/NCT04930744?
term=Metformin&cond=
Tuberculosis%2C+
Pulmonary&draw=2&
rank=2

Recruiting

HDT, host-directed therapy; IU, international unit; NCT, the National Clinical Trial.

receiving NAC-based adjunctive therapy exhibited significant
reduction of radiological lung infiltration, faster sputum
conversion and more regulated immunological response, when
compared to the group without NAC. A substantial body
weight gain and improved antioxidant status was noted in
the intervention group suggesting a potential promising role
for NAC as adjuvant anti-TB therapy (83). Moreover, NAC
may play a role in preventing hepatotoxicity of anti-TB usual
therapy. An Iranian randomized CT (84) evaluated the effect of
adjuvant NAC in those undergoing four drug anti-TB therapy
compared with those without NAC therapy. Liver enzyme levels
including aspartate aminotransferase, alanine aminotransferase
and bilirubin were significantly lower following 1 and 2 weeks of
NAC treatment. In this study NAC co-administration appeared
to reduce the risk of hepatotoxicity commonly associated with
anti-TB therapy.

N-acetylcysteine is a low-cost drug that seems to be safe for
use in pulmonary TB treatment. Nevertheless, its effectiveness is
still to be proven. One CT is currently in progress to clarify this
question (Table 1).

Autophagy induction

Vitamin D
Vitamin D (VITD) participates in the reabsorption of

calcium from the bone and intestine and has a fundamental

role in bone constitution and remodeling (85). It also acts as
an immunomodulatory hormone and influences other processes
including central nervous system function and cardiovascular
health (86, 87).

In the presence of Mtb, VITD plays an essential role
in activated macrophages and monocytes in response to
antigen exposure by enhancing levels of 1,25(OH) 2D in
monocyte/macrophages from normal human hosts (88). The
increased levels of 1,25(OH) 2D induces the expression of
cathelicidin, an antimicrobial protein responsible for killing
infectious agents like Mtb (89). Some studies have reported
that VITD can down-regulate the expression of mTOR protein,
thus inducing autophagy (90). Importantly, VITD deficiency
has been associated with susceptibility to TB infection in
a comparative cross-sectional study that identified a high
prevalence of VITD deficiency among newly diagnosed TB
patients and in their household contacts (91). To date, 10
completed studies and four ongoing related to VITD and
pulmonary TB were identified in the ClinicalTrials.gov records
(Table 1).

The use of VITD as adjunctive therapy has had conflicting
results regarding improvement of sputum conversion. Faster
sputum conversion rates were found in TB patients receiving
adjunctive VITD supplementation in a randomized placebo-
controlled CT in Indonesia (92) and China (93). Another CT
from Bangladesh demonstrated enhanced intracellular killing
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of Mtb in macrophages ex vivo in combination with increased
sputum culture conversion at week 4 and at week 8 compared
to the placebo group (94). This effect, however, was unable to
be replicated in a number of CTs of VITD supplementation in
TB disease (93, 95–97). Two CTs with MDR/RR-TB patients
in Georgia (95) and Mongolia (96) identified higher sputum
culture conversion with high dose of VITD use, suggesting
a possible role in this subset of patients with MDR/RR TB.
Another randomized controlled trial found that daily VITD
administration in TB infected patients led to enhanced clinical
recovery, particularly those with lower levels of VITD and an
elevated TB score at enrollment (97).

Although lower levels of VITD are commonly observed
in individuals with pulmonary TB, clinical and bacteriological
results from randomized controlled trials of adjunctive VITD
supplementation have demonstrated limited clinical benefits.
A meta-analysis found that there is no evidence to support
the adjuvant use of VITD. Most studies are limited by small
sample sizes and include only HIV-uninfected adults with
pulmonary TB (98). Additional larger studies are needed to
investigate the effects of VITD and other micronutrients in
specific TB treatment subgroups that have worse prognosis,
immunosupression, MDR/RR-TB and individuals with diabetes.

Targeting the granuloma structure
disruption

Doxycycline
Matrix metalloproteinases (MMPs) are proteolytic enzymes

capable of degrading collagen and other structural proteins (99).
When highly expressed, as in inflammatory conditions, they
contribute to tissue damage (100). TB leads to upregulation of
MMPs and an imbalance between MMPs and tissue inhibitors
of metalloproteinases (TIMPs) (101, 102). This imbalance is
associated with TB severity and extent of TB lesions, as well as
formation of lung cavitation (103), which in turn is associated
with high bacillary burden, delayed sputum culture conversion,
emergence of drug resistance, and higher transmission of Mtb
(104). MMPs also play a role in the formation of granulomas
(105) and are responsible for the breakdown of the blood brain
barrier, leading to poor outcomes in cases of central nervous
system TB (106–108). In this context, inhibitors of MMPs may
be a particularly effective HDT for TB. Doxycycline is the only
FDA−approved MMP inhibitor (102). It is originally used as
a bacteriostatic antibiotic of the tetracycline class. It is also an
inhibitor of MMP1 and MMP9 (102) which may be responsible
for reducing pulmonary cavity volume and loss of granuloma
size (68). Doxycycline has been shown to inhibit mycobacterial
growth in animal and in vitro models (109, 110). A pilot phase
2 CT (Doxy-TB) (68), comparing doxycycline plus standard TB
therapy to placebo plus standard TB therapy has been concluded
with results pending (Table 1). Doxycycline is a licensed, safe
and affordable drug, with significant potential to improve TB
outcomes (111). Future CTs are needed with larger sample sizes

and different TB clinical forms besides pulmonary TB, such as
central nervous system TB.

Improving macrophage antimicrobial
responses

Vitamin A
Vitamin A deficiency is a serious and widespread public

health problem (112). It is more common during infection and
can increase the severity of infectious diseases and the risk of
death (112).

A recently systematic review/meta-analysis found that
supplementation with vitamin A associated with earlier sputum
conversion, decreased abnormalities in chest radiography, and
improved lung function in patients undergoing TB treatment
(113). A randomized controlled trial with a 2× 2 factorial design
in Qingdao, China determined that adjunctive supplementation
with vitamin A did not improve time to smear conversion
in pulmonary TB patients (93). Conversely, a double-blind,
placebo-controlled study in patients with newly diagnosed
TB found that vitamin A supplementation was associated
with earlier sputum smear conversion (114). Furthermore,
a randomized placebo-controlled, double-blind, two-by-two
factorial trial evaluated the use of multivitamin/mineral
supplementation with vitamin A and found a significant
decrease in mortality during treatment of sputum-positive TB
patients co-infected with HIV (66).

Three CTs registered with ClinicalTrials.gov with the status
of completed were identified for Vitamin A supplementation in
TB treatment (Table 1). The CT NCT00057434 conducted in
Malawi did not identify a survival benefit with micronutrient
supplementation with vitamin A in adults with HIV and
pulmonary TB (69). Another CT (NCT00311298) found that
multi-vitamin/mineral supplementation (Vitamin A) and zinc
decrease mortality during treatment in patients with HIV
and pulmonary TB (66). The remaining CT (NCT00801606)
observed that micronutrient supplementation (Vitamin A)
during treatment is associated with weight gain in children with
TB though did not impact the clearance of lesions by chest X-ray
(115).

These studies highlight conflicting results, though
significantly lack evaluation of impact on clinical relevant
outcomes (cure/death/recurrence). Larger trials with clinical
important outcomes are needed to better evaluate the adjuvant
use of vitamin A in TB treatment.

Enhancing cell-mediated immune
response

Statins
Mycobacterium tuberculosis has been shown to thrive in

cholesterol rich environments, as cholesterol can improve both
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survival and growth of the pathogen in a host cell. Mtb uses
cholesterol in the macrophage membrane to bind and enter
the cell (116). Subsequently, after the infection, macrophage
accumulates lipid bodies forming foamy cells that utilize
cholesterol as the main source of nutrition for bacteria. The lipid
bodies have also been associated with Mtb growth restriction,
drug resistance and delayed phagosome maturation due to
enhanced IL-10 induction (117).

Statins are the most used cholesterol reducing drugs.
They are inhibitors of 3-hydroxy-3-methylglutaryl coenzyme
reductase (HMG-CoA), with both cholesterol lowering and
anti-inflammatory and immunomodulatory functions and offer
the most promising candidates for adjuvant HDT against
TB (15, 118). The mechanism of action of statins against
TB continue to be studied though research to date has
identified the following: restrict the generation of foamy
cells that otherwise support Mtb persistence by decreasing
cholesterol biosynthesis (119); promote phagosome maturation
and autophagy (120); increase percentages of Natural killer T
(NKT) cells within cultures and expression of co-stimulatory
molecules on monocytes, with higher secretion of IL-1b and IL-
12p70 (121, 122); inhibit TGF-β (123, 124). Animal studies have
found that simvastatin therapy in Mtb-infected mice reduces
dissemination of Mtb from the lungs (120), promotes killing of
intracellular Mtb by macrophages and enhances the bactericidal
activity of isoniazid (117) and rifampin (125). A study in mice
evaluated the treatment-shortening potential of therapy with
statins plus anti-TB drugs and found a reduced time required
to eradicate TB infection with no increased risk of relapse (126).

Some retrospective studies in Taiwan and South Korea have
evaluated the role of statin use in preventing TB finding that
chronic statin users had a lower risk of developing TB, compared
to non-statin users (118, 127). Though intriguing, these study
findings unfortunately have not been reproduced in different
populations distinct from those with COPD and diabetes and
lack adjustment for important confounding factors (128–132).
A meta-analysis of data from nine of these cohort studies
concluded that statin use was associated with reduced incidence
of active TB (133). To our knowledge no retrospective studies
have evaluated the impact of statins during TB treatment on
clinical outcomes.

Four ongoing CTs of statins in TB may offer further
clarity (Table 1): StAT-TB, a phase 2B dose finding study
using pravastatin (NCT03882177); ATORTUB, using
atorvastatin (NCT04721795); ROSETTA, using rosuvastatin
(NCT04504851), and StatinTB (NCT04147286), a proof-of-
concept phase II study testing the use of atorvastatin in reducing
lung inflammation after TB treatment.

Given the pre-clinical studies results and the number
of ongoing CTs, statins may represent one of the most
promising drugs in the pipeline for HDT. If proven beneficial
in clinical studies, its use in clinical practice can be easily
implemented, considering its low cost and wide availability

though likely will need additional safety testing given the
possibility of hepatoxicity.

Metformin
Metformin is the first-line therapy in those with type 2

diabetes (134) and is a safe and widely used medication. Results
from multiple studies suggest that concurrent use of metformin
for TB may be beneficial even in non-diabetic individuals (135).

How metformin acts against TB remains unclear. Pre-
clinical studies have found that it facilitates phagosome-
lysosome fusion and promotes expression of 5′ adenosine
monophosphate-activated protein kinase (AMPK) (14), an
enzyme usually activated during metabolic stress that controls
energy homeostasis (136). As such, metformin may promote
increased production of reactive oxygen species (ROS) and
subsequent killing of intracellular Mtb (14).

A study performed by Singhal et al. in TB infected mice
revealed that metformin reduced intracellular growth of Mtb,
enhanced the efficacy of anti-TB drugs, and reduced lung
damage and inflammation (137). This study served as a proof-
of-concept demonstrating that metformin may be an option
as adjunctive therapy of TB. Another study evaluating the
sterilizing role of metformin found no differences in Mtb
burden in the metformin adjuvant group versus TB treatment
alone (138). Some possible reasons for the divergent results
are the different model mouses and the different TB drugs
used in both studies. Singhal et al. used a single anti-TB drug
(isoniazid or ethambutol), whereas Duta NK et al. employed
four drugs, which may have masked a possible role of metformin
in sterilization. The inclusion of rifampin may also have altered
the pharmacokinetics of metformin (138). Alternatively, it may
be that metformin acts in an immunomodulatory role that is
more clinically relevant than sterilization. Another study with
mice found that metformin enhanced the effectiveness of Mtb-
specific CD8 + T cell responses in local and systemic sites
during infection, with increased decreased mortality and anti-
mycobacterial properties and decreased inflammatory cytokine
production such as TNF (139). Furthermore, Bohme J. et al.
found that metformin enhances the immunogenicity and
protective efficacy of BCG in mice (140).

Prior retrospective studies in patients with type 2 diabetes
and TB suggest that metformin use was beneficial during TB
treatment with reduced risk of cavitary TB (137), more rapid
sputum conversion (141), lower mortality despite significantly
higher glycated hemoglobin values (137, 142) and lower risk of
recurrence (143) when compared to the use of other diabetes
treatment regimens during TB treatment.

Considering the evidence above, the drug safety profile,
wide availability, and low cost, there remains an important
role for CTs to evaluate the effectiveness of metformin as TB
adjunctive therapy. Currently, ClinicalTrials.gov reports two
CTs investigating Metformin use in individuals with pulmonary
TB that are currently recruiting participants in Thailand and
South Africa (Table 1).
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Conclusion

Novel TB interventions beyond antimicrobials are urgently
needed to improve treatment effectiveness with shorter duration
and without increased adverse effects. HDTs offer a promising
strategy through repurposing of pre-existing drugs, that often
are widely available with low cost, and therefore easily
implemented if efficacy and safety are proven in robust CTs.
Currently, HDT drugs are in different stages of research with
primarily pre-clinical studies with conflicting conclusions. New
CTs, ideally multicenter, are underway to answer questions
regarding HDT drugs in TB treatment, including all populations
of clinical relevance. The existent TB networks or consortia
that include standardized cohorts of patients with confirmed
TB represent an opportunity for harmonized CTs with
heterogenous populations and homogeneous protocols. We
suggest the use of these networks or consortia to expedite quality
research in this field.
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