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The species Mycobacterium tuberculosis variant bovis (M. tuberculosis var.

bovis) is associated with tuberculosis, mainly in cattle and bu�aloes. This

pathogen has the potential to infect other mammals, including humans.

Tuberculosis caused by M. tuberculosis var. bovis is a zoonosis clinically

identical to tuberculosis caused by Mycobacterium tuberculosis, and the

recommended treatment in humans results in the use of antibiotics. In this

study, we used the whole genome sequencing (WGS) methodology Illumina

NovaSeq 6000 System platform to characterize the genome ofM. tuberculosis

var. bovis in cattle circulating in Mato Grosso, identify mutations related to

drug resistance genes, compare with other strains ofM. tuberculosis var. bovis

brazilian and assess potential drug resistance. Four isolates of M. tuberculosis

var. bovis of cattle origin representing the main livestock circuits, which

had been more prevalent in previous studies in the state of Mato Grosso,

were selected for the genomic study. The genome sizes of the sequenced

strains ranged from 4,306,423 to 4,332,964 bp, and the GC content was

65.6%. The four strains from Mato Grosso presented resistance genes to pncA

(pyrazinamide), characterized as drug-resistant strains. In addition to verifying

several point mutations in the pncA, rpsA, rpsL, gid, rpoB, katG, gyrB, gyrA,

tlyA, embA, embB, embC, fgd, fbiB, and fbiC genes, these genes were similar

to antibiotic resistance in more than 92% of the Brazilian strains. Therefore,

our results indicated a high genetic diversity between our isolates and other

M. tuberculosis var. bovis isolated in Brazil. Thus, multiple transmission routes
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of this pathogen may be present in the production chain. So, to achieve a

bovine tuberculosis-free health status, the use of the WGS as a control and

monitoring tool will be crucial to determine these transmission routes.

KEYWORDS

Mycobacterium tuberculosis variant bovis, mutation, phylogeny, drug resistance,

zoonosis

Introduction

Mycobacterium tuberculosis variant bovis (M. tuberculosis

var. bovis) is the etiological agent of bovine tuberculosis (bTB)

(1). This pathogen belongs to the group of mycobacteria

belonging to theMycobacterium tuberculosis Complex (MTBC),

which share genomic similarities of ∼99.9% (2).M. tuberculosis

var. bovis has zoonotic potential and can cause tuberculosis

in humans (1). Transmission to humans can happen directly

through the air, in which the pathogen is inhaled in aerosols

from infected animals or carcasses, as well as indirectly through

contamination through the consumption of contaminated

animal products, such as raw milk and other dairy products

without heat treatment, and through the consumption of

undercooked or raw meat (3, 4).

This zoonosis mainly affects vulnerable people, such as HIV

(human immunodeficiency virus) but also immunocompetent

people (5), and is mainly related to factors such as poverty,

unemployment, and a low level of education (6); it is also a

public health problem and is clinically identical to tuberculosis

caused by the bacterium Mycobacterium tuberculosis (M.

tuberculosis), making differential diagnosis difficult (7, 8).

According to Sisco et al. (9), there is the possibility of

acquiring tuberculosis through the BCG vaccine, especially in

immunocompromised patients. They found a strain resistant

to ethambutol, rifampicin, and isoniazid. With intrinsic or

acquired antibiotic resistance, there is a need to perform drug

susceptibility screening of the strain before or during patient

treatment (9).

Bovine tuberculosis presents a chronic evolution

characterized by the development of nodular lesions called

tubercles, which can be located in any organ or tissue of the

animal (10). In cases of tuberculosis in humans, treatment is

carried out with the use of combinations of antibiotics, mainly

rifampicin, isoniazid, ethambutol, streptomycin, ethionamide,

pyrazinamide, and fluoroquinolones (6). UnlikeM. tuberculosis,

M. tuberculosis var. bovis is naturally resistant to pyrazinamide,

one of the drugs used in the treatment of tuberculosis (11).

M. tuberculosis var. bovis have reference genes that

encode proteins with known or unknown functions, such

as catalase/peroxide activity (katG gene); encoding the

DNA gyrase A subunit (gyrA); in the rpoB gene, which

encodes a β subunit of RNA polymerase; RNA loops in the

loops of RNA, which is encoded by the gene, related to

changes in cell wall permeability (12); another example are

bacteria related in genes of the emb region (embA, embB,

and embC) with the biosynthesis of arabinogalactan and

lipoarabinomannan, structural components of the tamarin wall

(target ethambutol) (13).

According to Vázquez-Chacón et al. (14), there are highly

reliable mutations in M. tuberculosis var. bovis that confer drug

resistance. For example, mutations in the katG S315T genes; rpsL

K43R or K88R; rrs A1401G and gyrA D94G confer resistance to

isoniazid, streptomycin, aminoglycosides and fluoroquinolones,

and these were identified in M. tuberculosis var. bovis (14).

All M. tuberculosis var. bovis strains are naturally resistant to

pyrazinamide (pncA), mutations were found at position C169G,

and Mycobacterium bovis bacillus Calmette-Guérin (BCG) and

Mycobacterium canetti strains are also resistant to this drug (15).

The circulation of drug-resistant strains in cattle, especially those

used in the treatment of tuberculosis in humans, represents a

great risk for the occurrence of multidrug-resistant strains in the

population (14).

Multidrug resistance (MDR) has increased worldwide,

which is considered a threat to public health. Several recent

investigations have reported the emergence of multidrug-

resistant bacterial pathogens of different origins that increase the

need for the appropriate use of antibiotics. In addition, routine

application of antimicrobial susceptibility testing to detect the

antibiotic of choice, as well as screening for emerging MDR

strains (16–19).

The aim of this study was to characterize the genome of

M. tuberculosis var. bovis in cattle circulating in Mato Grosso,

identify mutations related to drug resistance genes, compare

with other strains of M. tuberculosis var. bovis brazilian and

assess potential drug resistance.

Materials and methods

Geographic area of study

This study was carried out in the state of Mato Grosso,

located in midwestern Brazil (Latitude: 15◦ 35′ 56′′ South,

Longitude: 56◦ 5′ 42′′ West), which is categorized by four
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FIGURE 1

Map of Mato Grosso state with the municipalities demarcating the origins of the strains selected for genome sequencing.

livestock circuits (20), called CP 01—Pantanal; CP 02—Milk

production; CP 03—Fattening and CP 04—Breeding, according

to the predominant animal production characteristics, local

ecosystem, and animal transit network (Figure 1).

Sampling and zootechnical data

A total of 41 suspected bTB lesion samples of the same

number of animals were collected between September 2017 and

May 2018, stored in sterile packaging and frozen during the

postmortem inspection procedure. The sampling was carried

out in slaughterhouses in the state of Mato Grosso by Federal

(SIF) and state (SISE/MT) inspection authorities using the

criteria established by the regulation of inspection industrial and

sanitary of animal products (RIISPOA) (21). Simultaneously,

sanitary inspection and collection of suspicious lesions were

carried out following normal routine at slaughterhouses in

the state.

Nucleic acid extraction from bovine
tissue fragments containing suspicious
lesions

Samples were divided into two aliquots, one for DNA

extraction and another for culture. Sample preparation and

DNA extraction from bovine tissue fragments containing

suspicious lesions were performed according to Furlanetto et al.

(22) using a commercial Dneasy Blood and Tissue kit (Qiagen
R©
,

Hilden, Germany). After extraction, the DNA was quantified

by the fluorometric method using the QUBIT TM 2.0 Kit

(Invitrogen
R©
, Carlsbad, CA, United States).

Nested real-time PCR (nested qPCR) of
DNA extracted from animal tissue
fragments

Nested q-PCR was performed using TaqMan PCR Master

Mix (Applied Biosystems
R©
, Foster City, CA, United States),

primers and probes for the Rv2807 gene (Applied Biosystems
R©
,

Foster City, CA, United States) specific for species belonging to

MTBC and primers and probes for the TbD1 region (Applied

Biosystems
R©
, Foster City, CA, United States) ofM. tuberculosis

var. bovis based on themethod described by Araújo et al. (23, 24)

and modified by Carvalho et al. (25).

Bacterial isolation and identification

After detection of MTBC and M. tuberculosis var. bovis

by nested q-PCR, samples positive for Rv2807 and TbD1

were submitted to microbiological culture, undergoing a
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decontamination process with 0.75% hexadecyl pyridinium

chloride (HPC) and 10% sulfuric acid (H2SO4) (22, 26).

After processing, the material was inoculated in duplicate

in tubes with Stonebrink culture medium (Reagents:

Malachite Green- C23H25CIN2/VETEC Rio de Janeiro,

Brazil; Disodium Phosphate- NaHPO4/ISOFAR Rio de Janeiro,

Brazil; Sodium pyruvate- C3H3NaO3/VETEC Rio de Janeiro,

Brazil; monopotassium phosphateresiste—KH2PO4/SYNTH

São Paulo, Brazil) a 2%, and incubated at 37◦C under aerobic

conditions for 90 days, with weekly control to record the

multiplication rate, shape and recognition of characteristic

colonies of mycobacteria (27–29).

The colonies suggestive of mycobacteria were the presence

of bacilli identified by the technique of alcohol-acid resistant

bacilli (AARB), by the Ziehl-Neelsen technique. Small, white

colonies with irregular borders and a granular surface typical of

M. tuberculosis var. bovis and after performing Ziehl-Neelsen, a

massive presence of AARB was observed, thus, the colonies were

identified as belonging to M. tuberculosis var. bovis, confirming

what had been previously identified by nested q-PCR (30, 31).

DNA extraction from Mycobacterium

tuberculosis variant bovis isolates

After microbial isolation, the process of extracting DNA

from the isolates was carried out by the cetyl trimethyl

ammonium bromide (CTAB) enzymatic method, following the

protocol described by Van Soolingen et al. (32), and quantified

by a NanoDrop
R©

2000 spectrophotometer (Thermo Scientific)

to obtain a concentration of ≥ 50 ng/µL.

Genome sequencing and data analysis

Of the 41 samples analyzed, they were submitted to nested

qPCR forMTBC (Rv2807 gene) and forM. tuberculosis var. bovis

(TbD1 gene) and were submitted to microbiological culture,

through which 23 isolates with characteristic colonies of M.

tuberculosis var. bovis were obtained. Of these 23 isolates, four

were selected as representatives of the regions studied, adopting

criteria referring to representing the main livestock circuits that

had shown higher prevalence in previous studies in the state of

Mato Grosso (33, 34).

Four strains were selected for genome sequencing based on

each different livestock circuits in the state of Mato Grosso (20).

These livestock circuits were previously established due to the

higher prevalence of M. bovis in the state (33, 34). The state of

Mato Grosso is divided into four regions, called livestock circuits

(CP), according to the bovine production that is predominant

in that region. Circuit 1 represents the municipalities that have

a predominant production of extensive breeding; circuit 2 is

representative of milk production; circuit 3 are municipalities

with a fattening cycle and circuit 4 with predominant production

for the rearing system (18).

Of the 41 samples analyzed, after cultivation, 23 isolates were

obtained, including 17 strains of CP 2 and six strains of CP 4.

The four strains were then selected for sequencing, identified

as TMT24 and TMT116 (CP 2) and TMT05 and TMT123

(CP 4), which represent the municipalities of Alta Floresta

(TMT05—CP4), Lucas do Rio Verde (TMT123—CP4), Salto do

Céu (TMT24—CP2), and Rondonópolis (TMT116—CP2).

Sequencing was performed using the Illumina NovaSeq 6000

System platform (Illumina, Inc., San Diego, CA, USA) and S4

Flow Cell Type PE150 (Illumina, Inc., San Diego, CA, USA) and

operated by GenOne Biotechnologies (Rio de Janeiro, Brazil).

To assess the raw sequence quality we used a FastQC (Version

0.11.8) (35). Thereafter, we used the Trimmomatic (version

0.36) to cut Illumina adapters. The parameters used were sliding

window trimming applied as operator, 4 bases to average across,

and 20 bases required for average quality. To carry out the

assembly, we used Shovill version 1.1.0 (https://github.com/

tseemann/shovill), with Spades used as an assembler, a depth

of 100, a minimum contig length of 200 bp and a minimum

coverage of 5 (36). After the generation of contigs, genomic

annotation was obtained using Prokka version 1.14.5, with

default parameters applied (37), and the presence of resistance

and virulence genes was analyzed in silico. Nevertheless, other

specific analyses for TB, such as the determination of the strain’s

lineage, spoligotyping in silico, and detection of resistance genes

and mutations, we used TB profiler version 2.8.14 (https://

github.com/jodyphelan/TBProfiler) (38). To check the assembly

sequencing quality we used Quast (version 5.0.2) (39) with

default parameters applied.

Data collection and construction of the
phylogenetic tree

A total of 76 M. tuberculosis var. bovis genomes were used

to construct the phylogenetic tree. Of these 76 genomes, four

are the genomes obtained in the present study, another 49

SRA were obtained from the NCBI (Keywords: Mycobacterium

bovis AND Brazil), and another 23 sequences were identified

in scientific articles published but not covered by the NCBI

Search (Supplementary material 1). Among the sequences, we

selected the first M. tuberculosis var. bovis strain sequenced

in Brazil, isolated from a bovine in 2010 in the state of São

Paulo, of identification SRA: SRR6705904 (40). However, in

a recent study carried out by Rodrigues et al. (33), 74 M.

tuberculosis var. bovis genomes were made available at NCBI

under BioProject PRJEB39667. However, as a convenience, we

divided the 74 samples into eight different clades, as specified in

the authors’ phylogenetic tree, and analyzed one strain belonging

to each clade (41). Additionally, 19 sequences were included
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belonging to the study performed by Conceição et al. (42)

in a study of M. tuberculosis var. bovis isolated from Ilha de

Marajó (42). A total of 19 genomes came from a study on M.

tuberculosis var. bovis in animals raised in Amazonas under

BioProject PRJNA675550. Another 17 genomes were derived

from M. tuberculosis var. bovis isolated in deer in a safari

park in southern Brazil under the BioProject PRJNA675476

(35). Finally, other genomes isolated from wild animals were

included, such as 3 genomes from the isolation ofM. tuberculosis

var. bovis in llamas (SRR6865435, SRR7693877, SRR9850830)

and 1 genome in capybara (SRR9850824). Another 3 strains

described as BCG (Bacillus Calmette Guerin) were also

inserted into the phylogenetic tree (9). Finally, 1 single

genome (SRR12511761) from a bovine isolate was inserted

into the construction of the phylogenetic tree. We added three

outgroups, M. africanum, M. caprae, and M. tuberculosis, for

better visualization of the clades. To construct the phylogenetic

tree, the data were submitted to the Snippy package version

4.6.0 (https://github.com/tseemann/snippy). This tool was used

to perform variant calling and core-genome alignment. For

this, paired-end reads of all strains were analyzed using a

minimum mapping quality of 60, with a minimum coverage

of 10x, and a minimum proportion for variant evidence of

0.9. Mycobacterium tuberculosis H37Rv (NC_000962.3) was

used as a reference strain for creating the core alignment.

Subsequently, all multiple Snippy outputs from the core

alignment with variant calling were combined into a SNP core

alignment using Snippy-core version 4.6.0 (https://github.com/

tseemann/snippy). Thus, the core-genome SNP alignment was

used to perform a phylogenetic tree using the approximately

maximum likelihood phylogenetic trees method with FastTree

v. 2.1.11, with a site rate of 20, and turn off the minimum-

evolution nearest-neighbor interchanges (NNIs) and minimum-

evolution subtree-pruning-regrafting (SPRs). The phylogenetic

tree image was obtained using Geneious Prime (v2021.2.2)

and annotated using FigTree v1.4.4 (Figure 2) (39). An

important point was that we removed four strains (ERR3445501,

ERR3445502, ERR3445503, and ERR3445504) after generating

the phylogenetic tree because possible DNA contamination may

occur, one time that RDscan and the phylogenetic tree showed

an unusual pattern.

Identification of regions of di�erence in
Brazilian Mycobacterium tuberculosis

variant bovis strains

RDscan (https://github.com/dbespiatykh/RDscan) was used

to verify the deletion regions (RDs) in the analyzed genomes

to understand the differentiation of M. tuberculosis var.

bovis strains from Mato Grosso with the reference strain

(Mbovis_AF212297) and the other Brazilian strains.

Results

Nested qPCR and microbiological culture

From the 41 suspected bTB lesions collected according to

Brazilian official judgment criteria, 100% (41/41) positive for

MTBC, 70.7% (29/41) positive for M. tuberculosis var. bovis in

nested qPCR were submitted to cultivation, and 56% (23/41)

generated colonies suggestive of M. tuberculosis var. bovis in

Stonebrink medium. All were submitted and confirmed by

this q-PCR, and four strains were selected for sequencing to

represent two livestock circuits in the state of Mato Grosso, not

only within a single circuit, in addition to selecting strains of

M. tuberculosis var. bovis, which in previous studies were more

prevalent (33, 34).

Sequencing, assembly, and genome
annotation of the sequenced
M. tuberculosis var. bovis strains

M. tuberculosis var. bovis genomic DNA was sequenced on

an Illumina NovaSeq 6000 System platform with 28x to 31x

coverage. DNA sequencing and assembly generated 4,306,423

to 4,332,964 nucleotides and a GC content of 65.6. As a result

of the genome reading, the number of contig values obtained

ranged from 70 to 95. With the Quast version 5.0.2 tools,

we obtained N50 values that ranged from 137.022 to 205.012.

Table 1 describes the size of the genomes, the number of

CDSs that varied from 3,981 to 4,010, and other assembly and

annotation results.

Lineage, resistance genes, and mutations
found in Mycobacterium tuberculosis

variant bovis strains

To characterize the strains to the lineage level, spoligotyping

in silico, and verification of the presence of resistance-associated

genes, we used TB profiler version 2.8.14 software. Our results

show that all strains in this study TMT05 (SRR15649880),

TMT116 sample (SRR15649878), TMT24 (SRR15649879), and

TMT123 (SRR15649877) belonged to the M. tuberculosis var.

bovis lineage BOV AFRI and the spoligotype BOV 1; BOV 2.

Another 71 genomes belong to the BOV 1 spoligotype, BOV 11,

with the exception of two genomes (ERR3445502, ERR3445504).

The pncA gene, which is responsible for pyrazinamide

resistance, was detected in all sequenced strains in this study,

as expected. As in the other 71 Brazilian strains, with the

exception of the two strains (ERR3445502, ERR3445504). Using

Prokka version 1.14.5, it was possible to detect other genes that

are associated with resistance to several antimicrobials, pncA
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FIGURE 2

Maximum likelihood phylogenetic tree of Mycobacterium tuberculosis variant bovis genomes sequenced in the state of Mato Grosso grouped

with other genomes sequenced in other states of Brazil. Four Mycobacterium tuberculosis variant bovis genomes isolated from bovine TMT05

(SRR15649880), TMT116 (SRR15649878), TMT24 (SRR15649879), and TMT123 (SRR15649877) from the state of Mato Grosso. Identifications in

red: Mycobacterium tuberculosis variant bovis genomes obtained from cattle and sequenced in this study; green: Mycobacterium tuberculosis

variant bovis genomes from cattle or bu�alo from Marajó Island, Pará; orange: genomes of Mycobacterium tuberculosis variant bovis obtained

from cattle or bu�aloes from the Amazon; dark blue: Mycobacterium tuberculosis variant bovis genomes obtained from cattle from southern

Brazil; pink: Mycobacterium tuberculosis variant bovis genomes obtained from deer from a safari in southern Brazil; yellow: llama; light blue:

BCG strain genome; light green: capybara; gray: Mycobacterium tuberculosis variant bovis isolated from cattle; black: first Mycobacterium

tuberculosis variant bovis strain sequenced in Brazil; outgroups: Mycobacterium africanum (purple), Mycobacterium caprae (light pink), and

Mycobacterium tuberculosis (black).
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TABLE 1 Assembly and annotation of sequencedMycobacterium

tuberculosis variant bovis genomes.

Strains TMT05 TMT24 TMT116 TMT123

Total of reads 505,512 340,469 296,049 269,963

No. of contigs 70 94 76 95

N50 (bp) 205,012 16,519 137,022 137,022

Genome size (bp) 4,327,320 4,332,203 4,306,423 4,332,964

No. of CDSs 3,997 401 3,981 3,999

rRNA 3 3 3 3

Repeat region 2 2 2 2

tRNA 52 52 52 52

tmRNA 1 1 1 1

Sequencing depth (x) 28 31 28 30

G+C contents (%) 65.61 65.62 65.62 65.62

pb, base pairs; CDS, coding sequence; rRNA, ribosomal ribonucleic acid; tRNA, transfer

ribonucleic acid; tmRNA, transfer messenger ribonucleic acid.

TABLE 2 Resistance genes inMycobacterium tuberculosis variant

bovis strains isolated in Mato Grosso associated with antibiotics

routinely used in the treatment of human TB.

Drug or drug class Resistance genes

Pyrazinamide pncA, rpsA

Isoniazid katG, inhA, ahpC, and glf

Rifampicin rpoB

Streptomycin rpsL, gid

Ethambutol embA, embB, and embC

Ethionamide inhA, ethA, and ethR

Quinolones gyrA and gyrB

Kanamycin/amikacin Eis

Capreomycin tlyA

Paraminosalicylic Acid thyA and ribD

Cycloserine alr, ddl, and cycA

Bedaquiline atpE andmmpR5

Linezolid rplC

Delamanid ddn, fgd1, fbiA, fbiB, fbiC, and fbiD

and rpsA (pyrazinamide); katG, inhA, ahpC and glf (isoniazid);

rpoB (rifampicin); rpsL and gid (streptomycin); embB, embB

and embC (ethambutol); inhA, ethA and ethR (ethionamide);

gyrA and gyrB (florquinolones); eis (kanamycin/amikacin); tlyA

(capreomycin); thyA and ribD (paraminosalicylic acid); alr, ddl

and cycA (cycloserine); atpE and mmpR5 (bedaquiline); rplC

(linezolid); ddn, fgd1, fbiA, fbiB, fbiC, and fbiD (delamanid)

(6, 43–48), according to Table 2.

Mutations were detected in the genes pncA, rpsA, rpsL, gid,

rpoB, katG, gyrB, gyrA, tlyA, embA, embB, embC, fgd1, fbiB, and

fbiC, as described in Table 3 and Supplementary material 2.

The strains sequenced in this work SRR15649878 (TMT116),

SRR15649879 (TMT24), SRR15649877 (TMT123), and

SRR15649880 (TMT05) as well as 68 Brazilian M. tuberculosis

var. bovis strains were classified as drug resistant using

the TBProfiler. Another three BCG strains (SRR10997360,

SRR10997362, and SRR10997361) were classified as multidrug

resistant (MDR), and another strain, ERR3445487, was also

classified as MDR (Table 4).

Genomic analysis of M. tuberculosis var.
bovis strains

Illumina raw data [sequence read archive (SRA)] and the

contigs genome with respective annotations were deposited with

the NCBI and are described in Table 4. All SRA and genome

annotation data were included under BioProject number

PRJNA756983 (Table 5).

In the phylogenetic tree (Figure 2), two large branches were

determined, with a bootstrap value of 77.7% for each branch,

called a clade. Through the phylogenetic tree, it can be observed

that the lineages of M. tuberculosis var. bovis from the state of

Mato Grosso are distributed in both clades.

Deletion regions (RDs) were identified in the four strains

sequenced in this study as well as in the other 71 genomes

analyzed, except for two genomes (ERR3445502; ERR3445503),

through RDscan, including RD4, RD5, RD6, RD7, RD8, RD9,

RD10, RD12, and RD13 (Supplementary material 4).

Some regions were deleted (Rv0095c, Rv0867c, and Rv1563c),

and others were preserved (Rv3798) in the four strains

sequenced in this study compared to the reference strain

(Mbovis_AF212297). The Mato Grosso strain SRR15649880

(TMT05) showed the absence of the RDoryx_1 region and the

Rv3508 gene, which differs from the reference strain.

The SRR15649878 (TMT116) genome showed deletion of

the Rv0578c, RD145, Rv3511, Rv3512, Rv3513c, and Rv3514

regions and preservation of the RDoryx_4, RD182, Rv1361c,

Rv1758, Rv1757c, Rv1756c, Rv2168c, and Rv2167c regions of

the reference.

Discussion

The M. tuberculosis var. bovis lineage was identified by

in silico spoligotyping in the four strains sequenced in this

work TMT05 (SRR15649880), sample TMT116 (SRR15649878),

TMT24 (SRR15649879), and TMT123 (SRR15649877) and

belonged to the lineage BOV AFRI and BOV1 BOV2, the same

lineage identified in another study ofM. tuberculosis var. bovis in

cattle from Bahia, Brazil (49). Another 71 genomes belong to the

BOV1 spoligotype, BOV11, with the exception of two genomes

(ERR3445502, ERR3445504).

According to Smith (50), the African 1 and African 2 clonal

complexes are never or rarely found in cattle outside Africa.

Carneiro et al. (51) pointed out that the current clonal complexes
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TABLE 3 Mutations present inMycobacterium tuberculosis variant bovis strains isolated from caseous lesions obtained from bovine carcasses in the

state of Mato Grosso, Brazil, with other Brazilian strains.

Gene Position Mutation Mato Grosso

strains

frequency (n = 4)

Brazilian strains

(n = 77)

Mutations in

Brazilian

strains (%)

pncA 57 His Asp 4 75 97.4

rpsA 440 Ala Thr 4 73 94.8

rpsL 165 T>C 4 75 97.4

Gid 615 T>C 4 73 94.8

rpoB 3,225 T>C 4 73 94.8

katG 463 Arg Leu 4 74 96.1

katG 609 G>A 4 74 96.1

katG 87 G>T 4 74 96.1

gyrB 513 G>A 4 73 94.8

gyrB 1,167 C>T 4 74 96.1

gyrB 403 Ala Ser 4 74 96.1

gyrA 21 Glu Gln 4 77 100

gyrA 95 Ser Thr 4 77 100

gyrA 984 C>T 4 73 94.8

gyrA 1,842 T>C 4 76 98.7

gyrA 639 Asp Ala 4 71 92.2

gyrA 668 Gly Asp 4 75 97.4

tlyA 33 A>G 4 71 92.2

embA 988 C>T 4 75 97.4

embB 13 Asn Ser 4 74 96.1

embB 351 C>T 4 74 96.1

embB 378 Glu Ala 4 74 96.1

embC 270 Thr Ile 4 74 96.1

embC 2,781 C>T 4 74 96.1

embC 3,108 C>T 4 74 96.1

fgd1 960 T>C 4 73 94.8

fbiB 315 Asp Ala 3* 42 54.5

fbiC 32 A>G 4 75 97.4

*Except TMT05 strain.

may not represent all the diversity of the M. tuberculosis var.

bovis lineage and identified for the first time in Brazil the Lb1

lineage, and some strains identified in this lineage carry the

Af2 clonal complex marker, frequently found in East Africa,

demonstrating the importance of connections of this lineage

with the African continent (51).

Due to Africa’s proximity to countries such as Portugal and

its colonies, hypothetically, strainsmay have been introduced for

the first time in the Amazon region during the colonization of

Brazil (51) and have been dispersed to other states in the country.

In addition to the presence of M. tuberculosis var. bovis,

other important point is the emergence of drug resistance as

serious threat to the control of human tuberculosis, as strains

that are resistant to multiple drugs severely limit treatment

options (52). With the results obtained in this work, it is

worrisome because strains have the potential for resistance to

many antibiotics, and there are few treatment options left in

cases of zoonotic tuberculosis.

According to Mota et al. (53), there are 16 antibiotics

known to have an effective action on any bacillus capable

of causing tuberculosis in humans, and of these, six are of

preferential use in the treatment of tuberculosis in humans,

namely, streptomycin, rifampicin, ethambutol, pyrazinamide,

ethionamide and isoniazid.

The main genes detected were pncA, katG, inhA, ahpC, glf,

rpoB, rpsL, embA, embB, embC, inhA, ethA, ethR, gyrA, gyrB, eis,

tlyA, thyA, ribD, alr, ddl, cycA, atpE, mmpR5, rplC, ddn, fgd1,

fbiA, fbiB, fbiC, and fbiD, according to Table 2.We detected point

mutations in the genes pncA, rpsA, rpsL, gid, rpoB, katG, gyrB,

gyrA, tlyA, embA, embB, embC, fgd1, fbiB, and fbiC, as described
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TABLE 4 Drug-resistant TBProfiler report.

Strains Host Genome

position

Locus Tag gene Change Estimated

fraction

Drug Drug-

resistance

(TBprofiler)

SRR15649878

(TMT116)

Bovine 2289073 Rv2043c pncA His57Asp 1.000 Pyrazinamide Drug-resistant

SRR15649879

(TMT24)

Bovine 2289073 Rv2043c pncA His57Asp 1.000 Pyrazinamide Drug-resistant

SRR15649877

(TMT123)

Bovine 2289073 Rv2043c pncA His57Asp 1.000 Pyrazinamide Drug-resistant

SRR15649880

(TMT05)

Bovine 2289073 Rv2043c pncA His57Asp 1.000 Pyrazinamide Drug-resistant

SRR10997360 BCG

Culture

761110 Rv0667 rpoB Asp435Val 1.000 Rifampicin MDR

2155168 Rv1908c katG Ser315Thr 1.000 Isoniazid

2289073 Rv2043c pncA His57Asp 1.000 Pyrazinamide

SRR10997362 BCG

Culture

761161 Rv0667 rpoB Leu452Pro 0.993 Rifampicin Pre-MDR

2289073 Rv2043c pncA His57Asp 0.985 Pyrazinamide

SRR10997361 BCG

Culture

761110 Rv0667 rpoB Asp435Val 1.000 Rifampicin MDR

2155168 Rv1908c katG Ser315Thr 1.000 Isoniazid

2289073 Rv2043c pncA His57Asp 1.000 Pyrazinamide

ERR3445487 Buffalo

or

1472644 rrs rrs 799c>t 0.683 Streptomycin Other

Bovine 2289073 Rv2043c pncA His57Asp 1.000 Pyrazinamide

All other 69

genomes

- 2289073 Rv2043c pncA His57Asp - Pyrazinamide Other

TABLE 5 Data on strains deposited at the NCBI.

Strains Lineage Spoligotype BioSample

accession no.

SRA accession no. Assembly accession no.

TMT05 M. bovis BOV AFRI BOV 1; BOV 2 SAMN21018175 SRR15649880 JAIOHE000000000

TMT24 M. bovis BOV AFRI BOV 1; BOV 2 SAMN21018176 SRR15649879 JAIOHF000000000

TMT116 M. bovis BOV AFRI BOV 1; BOV 2 SAMN21018177 SRR15649878 JAIOHG000000000

TMT123 M. bovis BOV AFRI BOV 1; BOV 2 SAMN21018178 SRR15649877 JAIOHH000000000

in Table 3. A limitation of the study is that the phenotypic

analysis for comparison with the genotypic results has not yet

been possible, but it is a future project to be done.

To improve successful treatment outcomes in cases of

tuberculosis caused by multidrug resistant strains, 68 countries

started using the drug bedaquiline, and 42 countries started

using the drug delamanid at year-end 2017 (54); however, both

drugs are not available in Brazil (6), and the strains sequenced

presently demonstrated the presence of atpE and ddn genes that

can confer resistance to these two drugs, respectively.

Multidrug-resistant strains of M. tuberculosis var. bovis

hamper TB control and exhaust treatment options in humans

(55–57). Gómez-Gonzales et al. (58) found variants in genes

that can confer resistance to bedaquiline and delamanid in more

than 33,000M. tuberculosis isolates collected from humans even

before the launch of these new drugs, suggesting an intrinsic

resistance of the strains. This fact constitutes new obstacles that

threaten the global control of TB (58).

Acquired resistance to anti-TB drugs occurs due

to spontaneous mutations, including single nucleotide

polymorphisms (SNPs) and insertions and deletions (indels),

in genes encoding drug targets (58). Antibiotic resistance can

occur spontaneously, even without antimicrobial exposure.

As a result, drug sensitivity tests, including rapid molecular

techniques, are needed for the accurate diagnosis and treatment

of TB (59).

Vázquez-Chacón et al. (14) identified drug resistance

mutations among M. tuberculosis var. bovis strains in the
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Americas. Their results showed that M. tuberculosis var. bovis

isolates from animal strains harbor mutations that confer

resistance to first- and second-line antibiotics, resistance to

isoniazid, fluoroquinolones, streptomycin and aminoglycosides.

These results highlight the importance of molecular surveillance

to monitor the emergence of mutations that are associated

with multidrug drug resistance in cattle and other non-

human mammals (14). However, they did not find mutations

in genes related to next-generation drugs such as delamid

and bedaquiline.

According to Miotto et al. (60), there are high

confidence mutations that confer antibiotic resistance in

M. tuberculosis. The frequency of mutations in resistant

and susceptible strains was calculated using statistical

measures to classify mutations as high, moderate, minimal

or indeterminate confidence to predict resistance. They found

resistance-associated mutations for rifampicin, isoniazid,

ofloxacin/levofloxacin, moxifloxacin, amikacin, kanamycin,

capreomycin, streptomycin, ethionamide/prothionamide, and

pyrazinamide (60). With the mutations identified in the M.

tuberculosis var. bovis strains sequenced in this work, only the

gyrA gene was associated with the results of Miotto et al. (60), in

which one of the mutations in the gyrA gene was associated with

not being related to resistance to the antibiotic moxifloxacin;

that is, this mutation does not interfere with resistance, but the

other mutations could not be associated.

The most common target genes associated with

streptomycin resistance are rrs, rpsL, and gidB (11). The

rpsL and gid genes were detected, and mutations were found in

all isolates sequenced in this study as well as in most Brazilian

strains of M. tuberculosis var. bovis. Studies carried out by

Djeman et al. (11) also detected a streptomycin-resistant M.

tuberculosis var. bovis isolate; according to the authors, their

study was the first to describe a streptomycin-resistant M.

tuberculosis var. bovis isolate of animal origin. Strains capable

of causing multidrug resistance tuberculosis are a threat to

human medicine, as they cause treatment failures and, in cases

where it is not possible to treat the infection, lead to the death of

the patient.

With studies in which good results were obtained, that is,

cure of treated animals (53, 61), on the action of isoniazid in the

treatment of bTB intermittently, using high doses for prolonged

periods, the use of this drug in the treatment of bTB in herds

infected with M. tuberculosis var. bovis has become routine,

mainly in the dairy basins of Minas Gerais and São Paulo. The

use of isoniazid in the routine treatment of bTB has become

common, andmilk cooperativesmake this drug available in large

quantities without any control, characterizing its indiscriminate

use (53). This fact may be one of the reasons whyM. tuberculosis

var. bovis becomes resistant to isoniazid.

Antibiotics from the quinolone group are increasingly used

in the treatment of respiratory infectious diseases in humans,

which has led the strains ofM. tuberculosis to be resistant to this

drug (62). Mutations in the gyrA and gyrB genes are associated

with quinolone resistance in M. tuberculosis, and these residues

are thought to play a role in drug binding and quinolone

resistance (62). Mutations in gyrA confer high-level resistance,

while mutations in gyrB confer low-level resistance (52, 63).

In addition, there is an aggravating factor, and cases of

patients with M. tuberculosis var. bovis and M. tuberculosis

coinfection have been reported in urban areas (64). National

studies have been restricted to urban areas, but rural areas

should be investigated, since the occupational character of the

disease mainly affects individuals who deal directly with live

animals, handlers, breeders, veterinarians, and workers in meat,

dairy and laboratories (6).

The strains currently show the same patterns in the detection

of genes and mutations that can confer resistance to antibiotics;

they are part of the same geographic area, which is the state of

Mato Grosso, but they belong to very different livestock circuits.

We also verified that the same conditions in more than 92%

of the Brazilian strains of M. tuberculosis var. bovis presented

similar patterns to those of Mato Grosso.

With the phylogenetic tree, we can verify two clades using

a bootstrap above 77.7% and that the genomes sequenced

in this work are distributed in both clades. The genomes

ERR3445501, ERR3445502, ERR3445503, ERR3445504 were

external to the clades, with ERR3445502 and ERR3445504

probably belonging to another species of the MTC complex

that was inserted in the NCBI as M. tuberculosis var. bovis,

so we removed these four genomes when generating the

phylogenetic tree because they distort the branches of the tree.

The explanation of these four genomes being external to the

clades can be explained by the results of the RDscan, which did

not identify the deletion regions preserved in M. tuberculosis

var. bovis (RD4-RD10; RD12; RD13) in the ERR3445502

and ERR3445504 genomes and in the ERR3445503 genome

RD9 deletion region identified (Supplementary material 4).

The strains external to the clades ERR3445502, ERR3445503

and ERR3445504 were classified as MRD or pre-MDR and

showed resistance to the drugs ciprofloxacin, fluoroquinolones,

levofloxacin, moxifloxacin, ofloxacin (mutation in gyrB) and

streptomycin (mutation in rrs), with the strains ERR3445504;

pyrazinamide (pncA), isoniazid (kasA), and ethambutol (embB)

strains ERR3445501 and ERR3445503; and isoniazid (kasA)

strain (ERR3445502; Supplementary material 3).

The three BCG strains (SRR10997360, SRR10997362, and

SRR10997361) were grouped together in a branch and were

classified as MDR (Table 4). In addition to being resistant to

pyrazinamide, they were resistant to other drugs. The BCG

strains (SRR10997360 and SRR10997361) showed mutations in

the rpoB (rifampicin), katG (isoniazid) and pncA (pyrazinamide)

genes; the BCG strain (SRR10997362) showedmutations in rpoB

and pncA; strain SRR13046675 showed mutation only in pncA.

The other Brazilian strains showed only drug resistance to pncA.

These results were reported by TB profiler, who compares the
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results of mutations already recognized in the literature with

the confirmation that that particular mutation is truly linked

to drug resistance. Strain ERR3445487 showed mutations in rrs

(streptomycin) and pncA, also classified as MDR.

Although we selected four genomes from four different

municipalities in the state of Mato Grosso, coming from

different properties, a limitation of our study is the small

sample size, which makes it difficult to interpret the reality of

bTB in the state. A small number of animal carcasses with

lesions suggestive of bTB were included in the genomic study.

However, they are the first lineages sequenced in the state of

Mato Grosso and, therefore, the first data on the genomics ofM.

tuberculosis var. bovis in this region, with the potential to help

the epidemiological surveillance system in the state.

Regarding livestock circuits (CP), the genomes did not

remain in the same clade, and there was no association of

livestock circuits in this sample, with samples TMT05 and

TMT123 representing the livestock circuit (CP4) and the

livestock circuits TMT24 and TMT116.

In this study, we provide the first sequencing-based

description of the population structure of M. tuberculosis var.

bovis in the state of Mato Grosso, central-west region of Brazil.

Other studies in the future may sequence a greater number of

isolates from more herds, focusing on different livestock circuits

and relating them to genetic diversity within the state, with the

obtainment of available bovine movement data.

According to Carneiro et al. (51), in the Amazonas region,

no significant difference was observed in the distribution of

genetic diversity between the hosts (bovine and buffalo). In the

study carried out by Conceição et al. (42) from Ilha de Marajó, it

was not possible to verify these data because the information on

the hosts is not available in the database.

Because the genomes of Ilha de Marajó are strongly related

and form part of a clade and were probably introduced in the

region during a single event still unknown (51), in contrast,

the genomes of the Amazonas region were determined in three

different events, not knowing the order of these events, which

may have originated from neighboring cities, originated from

Ilha de Marajó and even imported from other states (51).

There are still many answers to be answered regarding the

true epidemiological picture of bTB both in the state of Mato

Grosso and other states in Brazil. It is necessary to know the

genetic profile and understand the transmission routes of M.

tuberculosis var. bovis, as it is essential to assist in the control

and eradication of bTB.

The genetic profile of the genomes generated in this study

should be further explored, including verification of possible

specific genetic regions to strains fromMato Grosso, developing

specific primers and probes to be used in the epidemiological

investigation of the region.

Additionally, cultural aspects, such as consuming products

derived from unpasteurized raw milk and consuming raw or

undercooked meat, can pose a threat to human health (65).

Mato Grosso is a large state and is strongly linked with livestock,

and many rural workers have contact with animals and can be

infected withM. tuberculosis var. bovis.

It needs to be investigated whether this zoonotic disease

underestimates the risk of bTB for humans in the state of

Mato Grosso. We believe that the information generated in

this work is essential and that it can contribute to strategies

for the control and eradication of bTB in the center-west of

Brazil, reducing the risk to human health and ensuring food

safety. These results indicate that epidemiological surveillance

in Mato Grosso should invest in controlling import of cattle

and/or buffaloes from neighboring states, such as Pará and

Amazonas, which tested negative for bTB. Additionally, bTB

control programs should invest in encouraging disease control,

especially in the milk production region, which is represented

by livestock circuit 2 (CP2), where there is a greater number

of bTB outbreaks. In addition to having stricter public policies

regarding the indiscriminate use of antimicrobials used in cattle,

it can cause resistance to drugs used in the treatment of TB

in humans.

The four strains sequenced in this study as well as 71

other genomes analyzed, except for two genomes (ERR3445502;

ERR3445503), showed the deleted regions RD4, RD5, RD6, RD7,

RD8, RD9, RD10, RD12, and RD13, which are highly conserved

inM. tuberculosis var. bovis (30).

The genome that observed more deletion regions of Mato

Grosso strains was SRR15649878 (TMT116). Three regions with

deletions (RD) (Table 4), different from the reference strain, in

the TMT116 strain in the milk region in the state of Mato

Grosso, meaning a strain that had a greater number of mutations

and more evolved in a region that has a greater number of

bovine tuberculosis cases. TheMato Grosso strain SRR15649880

(TMT05) showed the absence of the Rv3508 gene that may

be correlated with the response to the inhibition of aerobic

respiration in mycobacteria (66).

The Rv0095c gene is present in the reference strain but

deleted in the four strains sequenced in this study as well as in

most Brazilian strains, except (SRR12511761; SRR9850830). The

Rv0095c gene, a conserved protein of unknown function, has

been associated with the successful transmission of a clade ofM.

tuberculosis in Peru (67).

The Rv0867c gene was not deleted in the four strains

sequenced in this work or in another 60 Brazilian strains,

different from the reference strain. This gene represents one of

five Rpf (secreted growth factor)-like genes that are expressed

in actively growing cells, stimulate bacterial growth at low

concentrations and are related to dormant cell resuscitation (68).

The four strains sequenced in this work do not have the Rv1563c

gene deletion, as well as the other 72 Brazilian strains, which

were deleted in the reference strain.

The Rv3798 gene is deleted in the four sequenced strains and

in another 59 Brazilian strains and is preserved in the reference

strain. It was not possible to identify a distinct regional genomic
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characteristic in the Mato Grosso strains compared to other

Brazilian strains.

Through genome sequencing, it was possible to characterize

M. tuberculosis var. bovis in samples of caseous lesions

suggestive of bovine tuberculosis obtained during slaughter in

slaughterhouses in the state of Mato Grosso, Brazil. The size

of the genomes ranged from 4,306,423 to 4,332,964 bp; there

was a number of CDs that ranged from 3,981 to 4,010 and

identified that the sequenced strains ofM. tuberculosis var. bovis

are part of the BOV-AFRI strain. Comparing theM. tuberculosis

var. bovis strains sequenced in this work with other strains

sequenced in Brazil, it was possible to verify that the genomes

were divided into the two clades (bootstrap above 77.7%) and

that they are in different branches within these clades. The M.

tuberculosis var. bovis strains from Mato Grosso sequenced in

this work were determined to be drug-resistant strains. Future

phenotypic analyses are needed to determine their real potential

for resistance to other drugs, in addition to pyrazinamide

resistance, as other mutations (rpsA, rpsL, gid, rpoB, katG, gyrB,

gyrA, tlyA, embA, embB, embC, fgd, fbiB, and fbiC) were found in

genes responsible for resistance to several antibiotics used in the

treatment of tuberculosis in humans, similar to most brazilian

M. tuberculosis var. bovis strains.

With these results, being the first sequencing of the genome

of M. tuberculosis variant bovis in the State of Mato Grosso,

we believe that these results are essential for the control and

eradication of bTB in the State, reducing the risk to human

health and ensuring food security. We emphasize the need to

expand the use of the WGS in the Bovine Tuberculosis Control

and Eradication Programs, with the objective of effectively

achieving the eradication of the disease, not only in the State

of Mato Grosso, which is the largest producer of cattle in the

country, but also in other countries. brazilian states, in order to

obtain bovine tuberculosis-free health status.
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