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Zika is a vector-borne disease caused by an arbovirus (ZIKV) and overwhelmingly
transmitted by Ae. aegypti. This disease is linked to adverse fetal outcomes, mostly
microcephaly in newborns, and other clinical aspects such as acute febrile illness and
neurologic complications, for example, Guillain-Barré syndrome. One of the most
promising strategies to mitigate arbovirus transmission involves releasing Ae. aegypti
mosquitoes carrying the maternally inherited endosymbiont bacteria Wolbachia pipientis.
The presence ofWolbachia is associated with a reduced susceptibility to arboviruses and
a fitness cost in mosquito life-history traits such as fecundity and fertility. However, the
mechanisms by which Wolbachia influences metabolic pathways leading to differences in
egg production remains poorly known. To investigate the impact of coinfections on the
reproductive tract of the mosquito, we applied an isobaric labeling-based quantitative
proteomic strategy to investigate the influence of Wolbachia wMel and ZIKV infection in
Ae. aegypti ovaries. To the best of our knowledge, this is the most complete proteome of
Ae. aegypti ovaries reported so far, with a total of 3913 proteins identified, were also able
to quantify 1044 Wolbachia proteins in complex sample tissue of Ae. aegypti ovary.
Furthermore, from a total of 480 mosquito proteins modulated in our study, we discuss
proteins and pathways altered in Ae. aegypti during ZIKV infections,Wolbachia infections,
coinfection Wolbachia/ZIKV, and compared with no infection, focusing on immune and
reproductive aspects of Ae. aegypti. The modified aspects mainly were related to the
immune priming enhancement byWolbachia presence and the modulation of the Juvenile
Hormone pathway caused by both microorganism’s infection.
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HIGHLIGHTS

● Proteome changes in Ae. aegypti, Wolbachia, and
ZIKV interactions

● A great diversity of Wolbachia proteins were quantified in
Ae. aegypti ovary

● Mosquito cytoplasmic incompatibility increases during
Wolbachia and ZIKV infection

● Juveni le Hormone pathway is modulated by
both infections

●Wolbachia enhancesAe. aegypti immune primingmechanism
● ZIKV unsettles the host immune response by reducing

antimicrobial peptides production
● Coinfection triggers oxidative stress and a lack of

vitellogenin precursors
1 INTRODUCTION

Zika virus (ZIKV) is a mosquito-borne arbovirus from the family
Flaviviridae and is related to other arboviruses such as dengue
(DENV), yellow fever (YFV), West Nile (WNV), and Japanese
encephalitis (JEV) (Zimler et al., 2021). It was originally reported
in a primate from the Zika forest in Uganda in 1947 (Dick et al.,
1952). However, the first large outbreak of ZIKV in humans
occurred on the Pacific Island of Yap, in the Federated States of
Micronesia in 2007 (Cao-Lormeau et al., 2014). In 2014, ZIKV
emerged in the Pacific islands and a few years later invaded the
Americas, being firstly identified in 2015 in Bahia state, Brazil
(Campos et al., 2015). It became the first major infectious disease
linked to adverse fetal outcomes, mostly microcephaly in
newborns, and other clinical aspects such as acute febrile
illness and neurologic complications, for example, Guillain-
Barré syndrome. Such outcomes led the World Health
Organization to claim a global public health emergency (Cao-
Lormeau et al., 2014). Unfortunately, there are no antivirus
therapies or vaccines available to mitigate ZIKV transmission,
i.e., the development of effective control methods targeting the
mosquito vector must be encouraged.

The mosquito Aedes aegypti is the main vector of ZIKV
worldwide (Chouin-Carneiro et al., 2016; Ferreira-de-Brito
et al., 2016). During infection in female mosquitoes, the
virus can be located in different tissues, but mainly in the
gut, salivary glands, and ovaries (Sá-Guimarães et al., 2021).
Ovaries infection is of paramount importance to maintain the
vertical transmission of arboviruses, even if at low rates
(Thangamani et al., 2016; Manuel et al., 2020; Nag et al.,
2021). Therefore, evaluating physiological and molecular
changes in mosquito ovaries due to arbovirus infection,
especially those affecting life-history traits related to vertical
transmission, might provide new insights to design innovative
vector control approaches.

Among the strategies to control arbovirus infection in Ae.
aegypti, the use of the maternally-inherited endosymbiont
Wolbachia pipientis is proving to be efficient due to a unique
combination of phenotypes such as cytoplasmic incompatibility
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
(CI), maternal transmission (MT), and viral-blocking (Moreira
et al., 2009; Aliota et al., 2016; Dutra et al., 2016; Ant et al., 2018;
Nazni et al., 2019; Indriani et al., 2020; Mancini et al., 2020; Ryan
et al., 2020; Gesto et al., 2021; Utarini et al., 2021). Although the
bacterium Wolbachia is naturally found in >60% of arthropod
species, no natural infection is observed in Ae. aegypti (Gloria-
Soria et al., 2018), which led to experimental transinfection by
microinjection of differentWolbachia strains into mosquito eggs
(McMeniman and O’Neil, 2010). After transinfection,Wolbachia
is currently located in several tissues and organs of Ae. aegypti
mosquitoes and the mechanisms resulting in viral blocking are
under investigation. Most likely, it involves the activation of the
immune system by oxidative stress and downregulation of host
proteins involved in pathways that would help to produce
resources essential to the virus life cycle (Ford et al., 2020;
Martins et al., 2021; Ogunlade et al., 2021; Pimentel et al., 2021).

Besides its effects on arbovirus blocking, many studies showed
that Wolbachia presence can present multifold effects on Ae.
aegypti fitness that could later be an additional hurdle for
Wolbachia establishment. For instance, Wolbachia-infected
larvae have more rapid development and higher survivorship
(Dutra et al., 2016; de Oliveira et al., 2017) but reduced adult size
(Ross et al., 2014), delayed embryogenic maturation, and
Wolbachia-infected Ae. aegypti females have lower fecundity,
fertility rates, quiescent eggs viability, and vector competence,
affecting local invasion patterns (McMeniman and O’Neil, 2010;
Dutra et al., 2015; King et al., 2018; Farnesi et al., 2019; Garcia
et al., 2019; Allman et al., 2020; Garcia et al., 2020; Lau et al.,
2021). Therefore, investigating the interaction network involving
mosquito vectors, arboviruses, and Wolbachia could help
maintain a long-term stable blocking phenotype in endemic
regions (Edenbourough et al., 2021).

The proteome can be considered more than a simple
translation of the protein-coding regions of a genome, as some
post-transcriptional and post-translation modifications generate
even millions of proteoforms (Smith et al., 2013). Over the last
decades, mass spectrometry-based proteomics has emerged as a
powerful tool for identifying and quantifying the proteins
contained in a biological sample. It has significantly
contributed to unraveling many cellular and organism aspects
(Schubert et al., 2017), and highlights features and emergent
properties of complex systems under different conditions (Cox
and Mann, 2011). To overcome the large overall experimental
time, sample consumption, and quantitative variations of
proteomics analysis, the isobaric labeling quantitative methods
have allowed the examination of multiple samples all at once.
Moreover, it increases the throughput of quantification by
having a higher multiplex capability, which makes it possible
to handle several biological replicates, offering statistical
robustness (Chen et al., 2021). A diversity of quantitative
methods have already been successfully applied in insects to
analyze differentially regulated proteins (De Mandal et al., 2020;
Garcıá-Robles et al., 2020; Serteyn et al., 2020), including a
previous study from our group, where it was able to elucidate
different mechanism responses to ZIKV andWolbachia infection
in Ae. aegypti head and salivary glands (Martins et al., 2021).
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This study applies isobaric labeling quantitative mass
spectrometry-based proteomics to quantify proteins and
identify pathways altered during either ZIKV or Wolbachia
single infection and coinfection with Wolbachia/ZIKV in the
Ae. aegypti ovaries. We show that it was possible to identify
ZIKV peptides and more than 1000 proteins from Wolbachia in
mosquitoes’ ovaries. The present study offers a rich resource of
data that helps elucidate mechanisms by which Wolbachia and
ZIKV infection in Ae. aegypti can interfere in immune and
reproductive aspects.
2 MATERIAL AND METHODS

2.1 Insects
To analyze the Wolbachia and ZIKV infection repercussions on
Ae. aegypti proteome, mosquitoes were used from two different
sites in Rio de Janeiro (Rio de Janeiro State, Brazil), with a 13 km
distance isolated from each other: Porto (22°53′43″ S, 43°11′03″
W) and Tubiacanga (22˚47’06 “S; 43˚13’32 “W). Porto is an area
populated by mosquitoes without Wolbachia infection, i.e., wild
type. On the other hand, Tubiacanga is the first site in Latin
America where a Wolbachia (wMel strain) invasion in Ae.
aegypti was established, with more than 90% frequency (Garcia
et al., 2019). Eighty ovitraps were used for egg collection (Codeço
et al., 2015) with a net distance of 25-50 m apart. Ovitraps were
placed over an extensive geographic area to ensure we captured
the local Ae. aegypti genetic variability, collecting at least 1500
eggs per site. The eggs were hatched, and the mosquitoes were
maintained at the insectary under a relative humidity of 80 ± 5%
and a temperature of 25 ± 3°C, with ad libitum access to a 10%
sucrose solution. Mosquitoes from the F1 generation were
selected for experimental infection.

2.2 ZIKV Strain and Mosquito
Viral Infection
Aedes aegypti females were orally infected with the ZIKV strain
Asian genotype isolated from a patient in Rio de Janeiro
(GenBank accession number KU926309). Local wild Ae.
aegypti populations have high vector competence to this ZIKV
strain (Fernandes et al., 2016; da Silveira et al., 2018; Petersen
et al., 2018). The vector competence of the Porto population was
assessed in individuals belonging to the same batch as those used
herein. We observed that 100% of ZIKV-infected mosquitoes
have a disseminated infection on their bodies i.e., the ZIKV
infection rate in ovaries was not directly estimated but the whole
body (da Silveira et al., 2018). All the assays were performed with
samples containing 3.55 × 106 PFU/ml (Martins et al., 2021). The
experimental infection followed the protocol described in detail
elsewhere (Martins et al., 2021). Briefly, 6-7 days old Ae. aegypti
females from each of the two populations (Tubiacanga and
Porto) were orally infected through a membrane feeding
system (Hemotek, Great Harwood, UK), adapted with a pig-
gut covering, which gives access to human blood. The infective
blood meals consisted of 1 ml of the supernatant of infected cell
culture, 2 ml of washed rabbit erythrocytes, and 0.5 mM of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
adenosine triphosphate (ATP) as phagostimulant. The same
procedure and membrane feeding apparatus were used to feed
control mosquitoes, but they received a noninfectious blood
meal, with 1 ml of cell culture medium replacing the viral
supernatant. After the experimental infection, we had a total of
152 Ae. aegypti females. Infected mosquitoes were maintained in
incubators with a 27 ± 1°C temperature.

2.3 Ethical Approval
Ae. aegypti colonies with Wolbachia are maintained in the lab by
blood-feeding of anonymous donors acquired from the Rio de
Janeiro State University blood bank. The blood bags were rejected
from the bank due to small blood volume. No information on the
donors (including sex, age, and clinical condition) was disclosed.
The blood was screened for Dengue virus (DENV) using the
Dengue NS1 Ag STRIP (Bio-Rad) before use in the mosquito
feeding process. The use of human blood was approved by the
Fiocruz Ethical Committee (CAAE 53419815.9.0000.5248).

2.4 Sample Preparation and LC-MS/MS
A total of 152 Ae. aegypti mosquitoes were processed, in which
35 females were Wolbachia-infected (W), 42 infected exclusively
with ZIKV (Z), 39 were coinfected with both Wolbachia and
ZIKV (WZ), and 36 were non-infected with those
microorganisms (A). At 14 days post-infection (dpi), each
mosquito ovary was extracted from the body according to the
previous method (Charlwood et al., 2018). Protein extraction,
digestion, iTRAQ labeling, and LC-MS/MS protocol were
performed as previously described (Martins et al., 2021).
Proteins were extracted by lysis with buffer (7 M urea, 2 M
thiourea, 50 mM HEPES pH 8, 75 mM NaCl, 1 mM EDTA, 1
mM PMSF) with the addition of a protease/phosphatase
inhibitor cocktail (Roche). Lysates were centrifuged, and the
supernatants were transferred to new tubes for protein
quantification using the Qubit Protein Assay Kit® fluorometric
(Invitrogen), following the manufacturer’s instructions. A total
of 100 mg of proteins from each condition were processed.
Reduction and alkylation steps were performed using 10 mM
dithiothreitol (DTT -GE Healthcare) and 40mM iodoacetamide
solution (GE Healthcare). Samples were diluted 10x with 50 mM
HEPES buffer, reducing the concentration of urea/thiourea, and
incubated with trypsin (Promega) in a 1:50 (w/w, enzyme/
protein) ratio at 37°C for 18 hours. The resulting peptides were
desalted with a C-18 macro spin column (Harvard Apparatus)
and then vacuumed dried.

Peptides were labeled with isobaric tags for relative and
absolute quantitation (iTRAQ) 4-plex (ABSciex), performed as
described in Martins et al. (2021), mixing the tag solutions with
sample peptides at room temperature for one hour. Each
condition was labeled as follows i) Tag 114 corresponded to
sample W (Wolbachia infected); ii) Tag 115 to sample A (none
infection); iii) Tag 116 to sample WZ (Wolbachia and ZIKV
coinfection); and iv) Tag 117 to sample Z (ZIKV infection). After
the labeling, samples were combined and vacuum dried for
offline fractionation by HILIC (hydrophilic interaction liquid
chromatography) prior to LC-MS/MS analysis. The dried
samples were resuspended in acetonitrile (ACN) 90%/
July 2022 | Volume 12 | Article 900608
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trifluoroacetic acid (TFA) 0.1% and injected into Shimadzu
UFLC chromatography using a TSKGel Amide-80 column
(15 cm x 2 mm i.d. x 3 mm - Supelco), which was equilibrated
using ACN 85%/TFA 0.1% (phase A). The peptides were eluted
in TFA 0.1% (phase B), and every eight fractions were collected
and combined according to the separation and intensity of the
peaks. The pools of fractions were dried in a speed vac and
resuspended in 0.1% formic acid (FA). LC-MS/MS analysis was
performed in an Easy-nLC 1000 coupled to a Q-Exactive Plus
mass spectrometer (Thermo Scientific, Waltham, MA, USA).
Ionization was performed in an electrospray source with the
acquisition of spectra in positive polarity by data-dependent
acquisition (DDA) mode, spray voltage of 2.5 kV, and
temperature of 200°C in the heated capillary. The acquisition
was set as follows: full scan or MS1 in the range of 375 - 1800 m/
z, resolution of 70,000 (m/z 200), fragmentation of the 10 most
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
intense ions in the HCD collision cell, with standardized collision
energy (NCE) of 30, resolution of 17,000 in the acquisition of
MS/MS spectra, the first mass of 110 m/z, isolation window of 2.0
m/z and dynamic exclusion of 45 s. A description of the
workflow is presented in Figure 1.

2.5 Data Analysis and Gene Enrichment
The spectra obtained after the LC-MS/MS analyses were processed
in the Proteome Discoverer 2.4 Software (Thermo Scientific), with
the Sequest HT search engine against the Ae. aegypti (genome
version/assembly ID: INSDC: GCA_002204515.1), ZIKV and
Wolbachia provided by VectorBase (Giraldo-Calderón et al.,
2014), ViPR (Pickett et al., 2012), and UniProt (The UniProt
Consortium, 2015). 2019), respectively. For the search, the
following parameters were used: precursor tolerance of 10 ppm,
fragment tolerance of 0.1 Da, tryptic cleavage specificity, two
B C D

E

F

A

FIGURE 1 | Workflow method and main protein identification results. (A) Mosquitoes infection protocol in which mosquitoes infected and non-infected with
Wolbachia were captured and half were infected with ZIKV in vitro; ovaries were extracted after 14 days. (B) Sample preparation for proteomics, using trypsin
enzyme for digestion step and peptides labeling was performed with iTRAQ-4plex and mixed in a 1:1:1:1 ratio; labeled peptides were fractionated offline using
HILIC chromatography; samples were named depending on its infection condition: A - non-infected mosquitoes; W - Wolbachia infected; Z - ZIKV infected.
(C, D) The pool of fractions was analyzed by nLC–MS/MS in Q-Exactive Plus mass spectrometer and the fragmentation scheme shows reporter ions at the low
m/z region used for relative quantification of the peptides/proteins. (E) Data analysis was first performed with Proteome Discoverer 2.4 software using Ae.
aegypti, Wolbachia and ZIKV peptides database and after statistical and bioinformatics analysis was done in software Perseus using VectorBase to enrich
proteins differentially regulated for GO and KEGG. (F) Summary proteins identification result, where a total of 4931 proteins and 33,529 peptides were identified,
including the three organisms.
July 2022 | Volume 12 | Article 900608
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maximum missed cleavage sites allowed, fixed modification of
carbamidomethyl (Cys), variable modification of iTRAQ 4-plex
(Tyr, Lys, and peptide N-terminus), phosphate, (Ser, Thr, and Tyr)
and oxidation (Met). Peptides with high confidence were selected,
and only identifications with q values equal to or less than 0.01
FDR were considered. Target Decoy PSM obtained these values.

Quantitative analysis was performed in Perseus software,
version 1.6.12.0 (Tyanova et al., 2016), based on the intensity
of the reporter ions extracted from the MS/MS spectra. All data
were transformed into log2 and normalized by subtracting the
column median. As a criterion to define the differential proteins,
statistical Anova tests were performed between the groups, with a
significance level of 0.05 of the p-value. Proteins with p < 0.05
were considered significant with a fold change threshold of 0.5.
Enrichment of biological process by gene ontology and metabolic
pathways by KEGG for differentially expressed proteins was
performed using Fisher ’s Exact Test (p<0.05) on the
VectorBase website (bit.ly/38OmEX0) (Ashburner et al., 2000;
Giraldo-Calderón et al., 2014).
3. RESULTS AND DISCUSSION

3.1 Proteome Identification and
Quantification
Isobaric-labeled quantitative proteomics was applied to increase
proteomics analysis’s depth coverage and efficiency. By labeling
mosquitoes from each of the four experimental groups with
iTRAQ 4-plex, samples were multiplexed before offline
fractionation and LC-MS/MS analysis (Figure 1). We
identified 4931 protein groups (Supplementary Table S2),
36,403 peptides, 110,733 PSMs, and 987,698 MS/MS spectra.
The protein search was performed using Ae. aegypti, ZIKV, and
Wolbachia databases, simultaneously. Considering all identified
proteins, 3913 belong to Ae. aegypti, 1015 to Wolbachia, and
three unique peptides with a total of three PSMs to the
ZIKV polyprotein.

We contrasted our proteomic dataset of A. aegypti ovary with
the ovary proteome obtained by Geiser et al., 2022. For the
analysis, we initially performed conversion of the identifiers
because the database used by the authors is from a different
origin and version (Supplementary Table S1). We found that
the database used comprised more than one genome deposited in
VectorBase. Therefore, we compared the gene IDs also by
orthology and identified 1291 genes in common between both
works (Supplementary Figure S1). It is essential to highlight
that Winzerling’s paper used a distinct sample and MS analysis
method compared to this work.

After checking the quantification using the report ion signals’
abundance (Figure 2A), it is possible to observe that in samples
A and Z, the signals’ abundance is very low (due mostly to
isotopic contamination in tags) and shows the intensities that
account for overlapping isotopic contributions of the reagent
purity values, showing the signal-to-noise (S/N) behavior of
iTRAQ reporter ions for the channels where Wolbachia
protein signals are not expected. This control is critical to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
show that Wolbachia protein identifications were not random
matches. Instead, they followed the expected quantification
trend: only relevant signals within Wolbachia infection
channels. Since in W and WZ, where we have Wolbachia
infected samples, there are higher intensity and relevant signals
of bacterium proteins revealing the match between identification
and quantification pattern of Wolbachia proteins.

3.1.1 Wolbachia Localization in Insect Ovary and Its
Protein Identification
The accumulation of Wolbachia in ovaries improves its vertical
transmission efficiency through the female germline suggesting
that a balance between vertical transmission and optimum
densities is critical for a long-term, stable endosymbiosis (Kaur
et al., 2021). Since only 1205 protein-coding genes were reported
in the Wolbachia pipientis genome (Sinha et al., 2019), we
applied an identification strategy using a combined database
containing Uniprot proteins addressed to Wolbachia species in
general. Using this strategy, we were able to identify 1015 unique
protein groups from Wolbachia. As an additional analysis, we
compared W and WZ to observe possible Wolbachia proteins
that might be modulated during ZIKV infection (Figure 2B).
Proteins with p < 0.05 were considered significant with a fold
change threshold of 0.5. A total of 38 proteins were upregulated
in response to virus infection (Table 1), mostly related to
catalytic activity, structure-activity, metal ion binding,
nucleotide binding, and RNA and DNA binding. Similar
findings were noted after evaluating that the transcriptional
response of Wolbachia to DENV involves the regulation of
Wolbachia DNA production and energetic metabolic genes
(Leitner et al., 2021).

One of the positively modulated proteins in WZ compared to
W was the Cytoplasmic incompatibility factor (CifA). LePage
et al. (2017) concluded that the cytoplasmic incompatibility
factor genes enhanced the cytoplasmic incompatibility leading
to embryonic lethality in D. melanogaster. The gene additively,
through transgenic mechanisms, augments embryonic lethality
in crosses between infected males and uninfected females after
pioneering genetic studies. The discovery of cifA pioneers genetic
studies of prophage WO-induced reproductive manipulations
and informs the continuing use of Wolbachia to control dengue
and Zika virus transmission to humans.

3.1.2 ZIKV Polyprotein Peptides Were Identified in
Mosquito Ovaries
A total of three ZIKV peptides were identified in mosquito ovaries
using the Isobaric-labeled quantitative proteomics approach:
VPAETLHGTVTVEVQYAGNDGPCKIPVQMAVDMQTL
TPVGR, NGGYVSAITQGRREEETPVECFEPSMLK, and
DGDIGAVALDYPAGTSGSPILDR (Supplementary Figure S2).
However, no protein quantification data were obtained despite its
borderline identification in ovary tissue. This result leads to two
different hypotheses: ZIKVwas not located in mosquito ovaries, or
a low amount of ZIKV polyprotein peptides was detected in LC-
MS/MS analysis leading to a poor quantification in this tissue by
the method used.
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Vector competence is a crucial feature in determining the
likelihood of pathogen transmission in a given area and has
hitherto shown heterogeneous results among field populations
(Epelboin et al., 2017; Kauffmann and Kramer, 2017; Boyer et al.,
2018). ZIKV disseminates through several organs and tissues of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
mosquitoes, including the ovaries, to support further vertical
transmission (Campos et al., 2017; Li et al., 2017; González et al.,
2019; Lai et al., 2020; Sá-Guimarães et al., 2021). The infection of
ovaries by ZIKV is dependent primarily on mosquito genetics,
temperature, viral load, and the availability of blood meals but
B

C D

E

A

FIGURE 2 | Quantitative proteomics data. (A) Abundance chart of the three replicates of identified Wolbachia pipientis proteins. High expression is observed in the
W and ZW samples, showing that it is possible to compare the expression of proteins by the relative quantification of the iTRAQ; (B) Volcano plot of Wolbachia
proteins comparing WZ/W. The red dots represent upregulated proteins; (C) Heatmap of all Ae aegypti identified proteins that were upregulated (red) or
downregulated (blue) during the comparison between control, monoinfected, and coinfected samples; (D) Mainly upregulated pathways statistically relevant in each
condition comparison. (E) Mainly downregulated pathways statistically relevant in each condition comparison.
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TABLE 1 | Wolbachia proteins with significant differences in abundance between W and WZ.

Uniprot Proteins p-value Fold
changes W/

WZ

Biological Process Cellular
Component

Molecular Function

Q73IW9 Bifunctional DNA-directed RNA
polymerasesubunitbeta-beta'

0,000444461 0,411035542 metabolic process catalytic activity;DNA binding

Q73H30 Porin 4 domain-containing protein 0,012058539 0,595912427
A0A5R9MDU9 ATP-dependentchaperoneClpB 0,002478004
A0A5R9MBZ5 Insulinase family protein 0,04901528 0,579255197
Q73G77 Outer membrane protein assembly

factor BamA
0,018472215 0,527555786 cell organization and

biogenesis
membrane

Q73HD5 Cytoplasmic incompatibility factor
CifA

779842E-05 0,560087056

Q73H52 Hypothetical protein 0,024988487 0,51835011 membrane
AQA098ASI2 Pyruvate, phosphatedikinase 1,05157E-05 0,579445156 metabolic process catalyticactivity;metal ion binding;

nucleotide binding
A0AO98ASBS Ribosome-recycling factor 0,021748863 0,503098093 cell organization and

biogenesis;metabolicprocess
cytoplasm RNA binding

Q73HB3 TranscriptionelongationfactorGreA 0,034470463 0,440927891 metabolic process;regulation
of biological process

DNAbinding;proteinbinding;
RNAbinding

Q4ECB1 OmpA family protein 0,001739336 0,485774855 membrane
Q73HQ7 Surface antigen, Wspparalog 0,011469895 0,62249352
A0A09SAS15 MgtEintracelularN domain 0,000908949 0,704846358
M9WUJ8 SOS ribosomal protein L3 0,026263219 0,67093336 metabolic process ribosome RNAbinding;structural molecule

activity
C0F8V0 Phosphatidylserine decarboxylase

proenzyme
0,045093524 0,427720959 metabolic process membrane catalytic activity

Q4EAL9 50SribosomalproteinL1 0,034407904 0,666474541 metabolic process;regulation
of biological process

ribosome RNAbinding;structural molecule
activity

Q73HX6 Aspartate-tRNA(Asp/Asn) ligase 0,005344562 0,52587834 metabolic process cytoplasm catalytic activity;nucleotide
binding

Q73FS0 ATP-dependent zinc
metalloprotease FtsH

0,010445494 0,585365863 cell division; metabolic
process;response to

stimulus

membrane catalyticactivity;rnetal ion binding;
nucleotide binding

A0A5B9K3B3 SOS ribosomal protein L5 0,039504806 0,505903393
A0AQ98ATK8 Citrate synthase 0,011127846 0,515264518 metabolic process cytoplasm catalytic activity
C0F9Z9 Protein HfIC 0,031868241 0,403411331 regulation of biological

process
membrane

A0A2A4IJ89 Inositol monophosphatase 0,005206978 0,597804797
Q73HW7 Isoleucine-tRNA ligase 0,00713402 0,427841423 metabolic process;regulation

of biological process
cytoplasm catalytic activity;metal ion binding;

nucleotidebinding;RNA
binding

AOA060Q1B9 Iron(lll) transportsystem substrate-
binding protein

0,023415784 0,589204769 transport metal ion blnding;transporter
activity

Q73GT7 Hypothetical protein 0,01601564 0,452984557
A0A1V2N3U3 Leucine-tRNA ligase 1.26546E-05 0,529255411 metabolic process;regulation

of biological process
cytoplasm catalytic activity;nucleotide

binding
Q73GS5 Type IV secretion system protein

VirB6
0,00857789 0,61741491 transport membrane

A0A2A4IGS0 ATPsynthaseganmachain 0,042213912 0,574342268
A0AQ98ARZ7 Fido domain-containing protein 0,011555349
A0A5R9MDS2 Folate-bindingproteinYgfZ 0,042029907 0,7052091
C0F8P8 MalonylCoA-

acylcarrierproteintransacylase
0,005819131 0,598572843 metabolic process catalytic activity

A0A225X8G2 DNA mismatch repair protein MutS 0,012269948 0,422355559
Q4ECU7 NADH-

quinoneoxidoreductasesubunitC
0,025713881 0,631272563 metabolic process;transport membrane catalytic activity

M9WVR3 ReplicativeDNA helicase 0,015991817 0,575902317 metabolic process catalyticactivity;DNAbinding;
nucleotide binding

A0A2A4IK13 Magnesium transporter MgtE 0,049013747 0,435309293
B7TW57 RmlD_sub_bind domain-containing

protein (Fragment)
0,034994832 0,592799831

I7IU09 Putative pyruvate, phosphate
dikinase regulator/ protein

0,004012121 0,545064889 metabolic process catalytic activity;nucleotide
binding

B5Y8B7 Ankyrinrepeatdomainprotein 0,012561568 0,38957124 nucleotide binding;protein binding
A0AO98AU34 Peptidyl-prolyl cis-trans isomerase 0,019230457 0,562841529 metabolic process membrane catalytic activity
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peaks around 18 dpi (Thangamani et al., 2016; Nag et al., 2021).
Sá-Guimarães et al. (2021) identified ZIKV in Ae. aegypti ovaries
at 3 dpi after orally challenging insects with a 2.5×109 PFU/ml
viral load, whereas our ZIKV isolate was 3.55×106 PFU/ml.
Intuitively, the higher viral load used by Sá-Guimarães et al.
(2021) and the long incubation period before ovaries dissection
by Nag et al. (2021) together might explain the lack of ZIKV
peptides quantification in Ae. aegypti ovaries in our study.
Nevertheless, we achieved ZIKV identification in ovaries and
revealed that ZIKV mono-infection modulated several proteins
in Ae. aegypti ovaries that will be further discussed.

3.2 Modulated Proteins and Pathways
by Infections
A total of 480 proteins from Ae. aegypti with significant
differences were statistically determined by the ANOVA test.
Using the Tukey post-test ANOVA, we defined pairs of proteins
with significant differences between the groups (Supplementary
Table S2) (Figure 2C). Pathways were enriched using
VectorBase software and the Gene Ontology/KEGG list is
represented in Supplementary Table S3. Pathways related to
reproductive and immune aspects were the main interest in this
data and were the focus of discussion (Figures 2D, E).

3.2.1 ZIKV Mono-Infection Controls Mosquito
Machinery to Favor Its Replication and Transmission
3.2.1.1 ZIKV Infection Downregulates Antimicrobial
Peptides and Mannose-Binding C-Type Lectin
During the investigation of modulated proteins in ZIKV mono-
infection samples compared to control, it was possible to identify
attacin (AAEL003389), included in the antimicrobial humoral
response (GO:0019730), humoral immune response
(GO:0006959), and antibacteria l humoral response
(GO:0019731) pathways, and gambicin (AAEL004522)
downregulation. Both molecules are classified as antimicrobial
peptides (AMPs), crucial effectors of the insect’s innate immune
system that can provide the first line of defense against various
pathogens (Wu et al., 2018). It is widely known that AMPs are
normally produced by the Toll/IMD signaling pathway, which is
the case of attacins (Buonocore et al., 2021), or can also be
produced by JAK-STAT pathway, as gambicin (Zhang et al.,
2017). The probable reason for its downregulation is the
influence of AMPs in virus infection and the difficult DENV
and ZIKV establishment in Ae aegypti (Xi et al., 2008; Martins
et al., 2021). In addition to attacin and gambicin, RpS23: 40S
ribosomal protein S23 (AAEL012686) was also downregulated,
and it was recently discovered that new AMP functioning as they
are capable of recognizing microorganisms molecules, and an
effector, capable of killing the potential pathogens (Ma
et al., 2020).

Besides AMPs, a mannose-binding C-type lectin
(AAEL000563) was also downregulated. C-type lectins (CTLs)
are a family of proteins that contain characteristic modules of
carbohydrate recognition domains and play important roles in
insect immune responses, such as opsonization, nodule
formation, agglutination, encapsulation, melanization, and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
prophenoloxidase activation (Xia et al., 2018). A more specific
function related to mannose-binding lectins is a pattern
recognition component of the complement system that binds
carbohydrate groups on the surface of microbial pathogens
triggering the lectin activation pathway of complement
(Takahashi et al., 2006). It is described that this pathway can
neutralize DENV and West Nile Virus (WNV) infection
(Avirutnan et al., 2011; Fuchs et al., 2011). Moreover, it was
recently described that CTLs can act as a recognition receptor for
JAK-STAT immune pathway (Geng et al., 2021), which
downregulation may interfere in AMPs production, as
gambicin peptide. Those downregulations combined can
facilitate ZIKV infection.

3.2.1.2 ZIKV Enhance Juvenile Hormone Production and
Pro-Viral Host Factors for Establishing Infection
Juvenile Hormone (JH), a representant from a family of
sesquiterpenoid hormones in insects, was originally described
in Rhodnius prolixus as a molecule capable of maintaining the
juvenile character of insect larvae to ensure proper
metamorphosis timing (Wigglesworth, 1934). However, JHs
govern many insects’ essential aspects of development,
metamorphosis, and reproduction (Tsang et al., 2020). Its
absence in vertebrates may qualify this hormone as a target to
control insect pests and disease vectors (Jindra et al., 2015). Its
signaling and production pathways comprehend the interaction
between insects’ neuronal and fat body organs, and the main
effect in female ovaries is the vitellogenin production activation
(Santos et al., 2019). Besides, Chang et al. (2021) recently
described that JH acts in AMP negative regulation, especially
after the post-eclosion phase of the Ae. aegypti female
gonadotrophic reproductive cycle. In regard to Ae. aegypti, it
was described that JH analogs enhance ZIKV infection (Alomar
et al., 2021). On the other hand, the silencing of ribosomal
protein (Rp) genes, responsive to JH, increased ZIKV blocking
once the virus increased global ribosomal activity in the insect
(Shi et al, 2021). Taking all of that information into account, it is
vital to understand JH modulation during ZIKV infection and if
Wolbachia infection plays any changes as well.

Evaluating our data, the first aspect that will be discussed is ZIKV
upregulation in the JH production pathway, as a farnesol
dehydrogenase (AAEL017302) was upregulated (Figure 3).
Farnesol dehydrogenase was found in Ae. Aegypti (Mayoral et al.,
2009), and its activity is observed on the second JH branch, oxidizing
farnesol to farnesal (Nouzova et al., 2011). It is considered a rate-
limiting enzyme and critical in regulating the production of JH in
adult mosquitoes (Zifruddin et al., 2021), so its enhancement
in ZIKV infection can lead to JH production, as previously
described in the literature and exposed in the last paragraph,
favoring mosquito reproduction aspects and maybe helping ZIKV
vertical and horizontal transmission. Experiments involving farnesol
dehydrogenase inhibition showed larvicidal activity and inhibited the
ovary growth of female Ae. albopictus (Park et al., 2020). Farnesol
dehydrogenase modulated several pathways in our analysis: juvenile
hormone metabolic process (GO:0006716), cellular hormone
metabolic process (GO:0034754), juvenile hormone biosynthetic
process (GO:0006718), sesquiterpenoid biosynthetic process
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(GO:0016106), terpenoid biosynthetic process (GO:0016114),
terpenoid metabolic process (GO:0006721), sesquiterpenoid
metabolic process (GO:0006714), hormone metabolic process
(GO:0042445), hormone biosynthetic process (GO:0042446),
regulation of hormone levels (GO:0010817), oxidation-reduction
process (GO:0055114), cellular biosynthetic process (GO:0044249),
and organic substance biosynthetic process (GO:1901576).

ZIKV-capsid interaction with cell host was newly investigated
through quantitative label-free proteomics and showed an
important contribution to the 26S protease regulatory subunit
(Gestuveo et al., 2021), a component of the ubiquitin-proteasome
system. We were able to identify two 26S protease regulatory
subunit (AAEL002508 and AAEL012943) upregulated, related to
protein catabolic process (GO:0030163), regulation of proteolysis
(GO:0030162), positive regulation of catabolic process
(GO:0009896), positive regulation of cellular protein catabolic
process (GO:1903364), positive regulation of proteolysis
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
involved in cellular protein catabolic process (GO:1903052),
positive regulation of protein catabolic process (GO:0045732),
positive regulation of proteasomal protein catabolic process
(GO:1901800), positive regulation of cellular catabolic process
(GO:0031331), regulation of proteolysis involved in cellular
protein catabolic process (GO:1903050), regulation of cellular
protein catabolic process (GO:1903362), regulation of
proteasomal protein catabolic process (GO:0061136), positive
regulation of proteolysis (GO:0045862), regulation of protein
catabolic process (GO:0042176), and macromolecule catabolic
process (GO:0009057). It is already described 26S protease
regulatory subunit importance in ZIKV infection but the
mechanism is currently unknown, but there is a strong relation
with ubiquitination processes in other viruses and can help in
viral capsid transport to the nucleus, for example (Schneider
et al., 2021). Moreover, this ribosomal activity increases the
proteolytic activity of the proteasome, which is required for
FIGURE 3 | Identification and modulation of proteins that participate in the JH pathway, composed of the mevalonate pathway (early step), represented in gray, and
juvenile hormone branch (last step), represented in blue, and juvenile hormone branch (last step), represented in red (pathway adapted from Nouzova et al., 2011).
Enzymes colored in green were identified in Ae. aegypti proteome in this work, and enzymes colored in purple were identified and quantified as modulated during
ZIKV or Wolbachia infection. Mevalonate kinase and farnesol dehydrogenase were downregulated in Wolbachia infection and farnesol dehydrogenase was
upregulated in ZIKV infection, as represented in graphs containing each condition and the respective fold change of each modulated protein.
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female insect reproduction (Wang et al., 2021), it is sensible to JH
and enhances viral replication in Ae. aegypti as observed by Shi
et al. (2021). Two ribosomal proteins, RpL27a (AAEL013272)
and RpL17 (AAEL000180), were also upregulated, related to the
organonitrogen compound biosynthetic process (GO:1901566),
cellular biosynthetic process (GO:0044249), and organic
substance biosynthetic process (GO:1901576).

3.2.2 Wolbachia Harms Mosquito Reproductive
Characteristics But Helps Its Immune System
3.2.2.1 Juvenile Hormone Pathway Is Negatively Affected
by Wolbachia Mono-Infection
While ZIKV infection induces JH, Wolbachia infection
downregulates two proteins related to its pathway (Figure 3).
One of them is in the same farnesol dehydrogenase
(AAEL017302) discussed before, which will affect the second
part of JH output cascade. The other protein identified as
downregulated is mevalonate kinase (AAEL006435).
Mevalonate kinase belongs to the fourth reaction step of the
mevalonate pathway, which is responsible for the biosynthesis of
many essential molecules important in insect development,
reproduction, chemical communication, and defense (Li et al.,
2016). Concerning JH, the mevalonate pathway is classified as
the early step that forms farnesyl pyrophosphate used on the late
step, known as JH branch (Noriega, 2014). Both mevalonate
kinase and farnesol dehydrogenase downregulation in
Wolbachia presence may infer that JH production is negatively
affected. This can impact the germline lifecycle from meiosis to
gametogenesis, once it was found that JHs influence embryonic
reproductive development (Barton et al., 2021). Both farnesol
dehydrogenase and mevalonate kinase have modulated pathways
that interact with themselves and are related to hormone
synthesis (Figure 4).

Allied to this event, a yellow protein was also downregulated.
Yellow protein (dopachrome conversion enzyme) is involved in
the melanin biosynthetic pathway that significantly accelerates
pigmentation reactions in insects and belongs to a rapidly
evolving gene family generating functionally diverse paralogs
with physiological functions still not understood (Noh et al.,
2015). Noh et al. (2020) discovered that two yellow proteins are
required for egg desiccation resistance, so maybe Wolbachia
downregulation may decrease egg resistance leading to a lower
reproduction success, which was described before (McMeniman
et al., 2011).

3.2.2.2 Host Immune Defense Is Activated by Wolbachia
Mono-Infection as a Protection Barrier to Other
Microorganisms
Microorganisms are important modulators of host phenotype,
providing heritable variation upon which natural selection acts
(Brinker et al., 2019). Host-parasite interactions represent one of
the strongest selection pressures in nature, with a considerable
impact on the ecology and evolution of parasites and thus on
disease epidemiology (Bose and Schulte, 2014). The
endosymbiotic bacteria Wolbachia has shown an increase in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
host protection range against pathogens, including bacteria,
viruses, nematodes, and the malaria parasite (Wong et al.,
2011). A single mechanism called immune priming might
explain this broad-based pathogen protection. Wolbachia
presence upregulates the basal immune response, preparing the
insect to defend against subsequent pathogen infection (Ye
et al., 2013).

Our results showed that macroglobulin complement protein
(AAEL001794) was upregulated during Wolbachia infection
compared to control. Macroglobulin complement-related factor
(MCR) is known for being a thioester-containing proteins (TEP)
family component in insects, presenting a protease inhibitor
activity (Blandin, 2004). TEPs were previously described in
Anopheles gambiae and Drosophila melanogaster models, and
act in the innate immune response by promoting recruitment of
immune cells, phagocytosis, and direct lysis of microbial invaders
(Shokal & Eleftherianos, 2017), usually in insects hemolymph
(Cheng et al., 2016; Mukherjee et al., 2019). Xiao et al. (2014)
performed molecular biology assays evolving MCR in Ae. aegypti
containing Wolbachia during DENV infection, describing that
MCR does not directly interact with the flavivirus, requiring a
mosquito homolog of scavenger receptor-C (SR-C), which
interacts with DENV and MCR simultaneously (in vitro and in
vivo) and this SR-C/MCR axis regulates the expression of
antimicrobial peptides (AMPs) consequently increasing anti-
DENV immune response.

In addition toMCR, three leucine-rich repeat immune proteins
(LRRIM) were upregulated during Wolbachia infection: LRRIM1,
LRRIM8, and LRRIM10A (AAEL012086, AAEL001420,
AAEL001401, respectively). LRRIM is evolutionarily conserved
amongmany proteins correlated with innate immunity in an array
of organisms, including invertebrates, and it usually forms a
disulfide-bridged complex that interacts with the third factor,
TEP, more specifically TEP1, revealing its antimicrobial activity
in insect immune response (Waterhouse et al., 2010). More
importantly, it was noticed that LRRIM responded to ZIKV
infection in Ae. aegypti female adults in a transcriptional
analysis approach (Zhao et al., 2019; Shi et al., 2021), therefore
corroborating the idea that LRRIM enhancement mediated by
Wolbachia presence can help in ZIKV block.

A DEAD box ATP-dependent RNA helicase (AAEL008738)
was also upregulated during bacterial infection. DEAD-box
helicases are a large family of conserved RNA-binding proteins
that belong to the broader group of cellular DExD/H helicases,
with emerging evidence that it plays a role in the recognition of
foreign nucleic acids and the modulation of viral infection
(Taschuk & Cherry, 2020). DEAD-box helicases can play an
essential role in sensing viral infection and directly affecting virus
RNA by participating in the RNAi pathway and Toll-like and
retinoic acid-inducible gene-I-like receptors signaling pathway,
for example (Ahmad & Hur, 2015; Baldaccini & Pfeffer, 2021; Su
et al., 2022). However, there is evidence that noncoding
subgenomic flavivirus RNA from ZIKV can bind to DEAD/H-
box helicase ME31B in Ae. aegypti as a way of overcoming this
defense (Göertz et al., 2019).
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3.4 Microorganisms Coinfection
Generate Oxidative Stress and Affect
Yolk Component
3.4.1 Immune Response Mediated by Reactive
Oxygen Species and DExD/H Helicases
Martins et al. (2021) earlier described that Wolbachia and ZIKV
coinfection increased host cellular aerobic metabolism to
accumulate reactive oxygen species (ROS) in Ae. aegypti head
and salivary glands quantitative proteomics. Several pathways
related to aerobic metabolism were upregulated in mosquito
ovaries analysis, thus corroborating previous data. The increase
in aerobic respiration metabolism has already stimulated ROS
production in insect cells as part of the host immune response,
but it is counterbalanced by the activation of antioxidant
pathways (Zug & Hammerstein, 2015; Martins et al., 2021).
ROS accumulation activates the mosquito Toll immune pathway,
resulting in the production of AMPs (Pan et al., 2012). Possibly
as a result of this ROS amount, Cu-Zn superoxide dismutase
(SOD) proteins (AAEL019937 and AAEL025388) were
upregulated comparing WZ with W, Z, and A. SODs are
important antioxidant enzymes that convert superoxide into
oxygen and hydrogen peroxide (Park et al., 2012; Lomate et al.,
2015) and it is also related to protecting insects’ ovaries during
diapauses (Sim and Denlinger, 2011). Besides ROS-mediated
immune response, a DEAD box ATP-dependent RNA helicase
(AAEL004978) was upregulated in coinfection. DExD box RNA
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
helicase was already discussed in Wolbachia mono-infection
upregulations and leads us to believe that it is a Wolbachia-
mediated attempt to overcome ZIKV infection, even though this
virus has a way of overcoming this immune mechanism (Göertz
et al., 2019).

3.4.2 Vitellogenin A1 Downregulation
During Coinfection
During WZ comparison with Z, W, and A, it was noticed that
vitellogenin A1 (AAEL010434) was downregulated in all
analyses, related to macromolecule localization (GO:0033036),
organic substance transport (GO:0071702), biological process
(GO:0008150), transport (GO:0006810), the establishment of
localization (GO:0051234), localization (GO:0051179), lipid
transport (GO:0006869), and lipid localization (GO:0010876).
Vitellogenins are the predominant yolk protein precursors
produced extra ovarian and taken up by the growing oocytes
against a concentration gradient (Engelmann, 1979). By having
this important role, it is relevant to understand how it behaves
during microorganisms’ infection. Depending on which
Wolbachia is allocated in the host, the ovary protein level can
change, resulting in different protein content in embryos
(Christensen et al., 2016), nonetheless, there is a report that
establishes a link between the vitellogenin-related mode of
transovarial transmission and efficient maternal transmission
of Wolbachia, assuming that the bacteria utilized vitellogenin
FIGURE 4 | Ontology network of summarized enriched biological processes related to mevalonate kinase and farnesol dehydrogenase. The size of the bubble
corresponds to the LogSize value for the GO Term. The overview and the interaction network were obtained in software revigo and cytoscape 3.8.0, respectively.
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transportation system to enter the insect ovaries (Guo et al.,
2018). Vitellogenesis can be directly regulated by insect
hormones, including JH (Shapiro and Taylor, 1982; Wu et al.,
2021). As was discussed before, Wolbachia decreases enzyme
levels of the JH pathway, and it might interfere in vitellogenesis,
together with the yellow protein downregulation.

On the other hand, female mosquitoes with regular blood-
feeding presented high oviposition, probably mediated by
nutrition influence in hormones, and it enhanced ZIKV
infection (Rocha-Santos et al., 2021). This may lead to
comprehension of reproduction–immunity trade-offs in insects.
Immune defense and reproduction are physiologically and
energetically demanding processes. They have been observed to
trade off in a diversity of female insects: increased reproductive
effort results in reduced immunity, and reciprocally, infection
and activation of the immune system reduce reproductive output
(Schwenke et al., 2016). Moreover, endocrine regulation of
immunity in insects involving some hormones was already
described, including JH, which is characterized as an immune
suppressor (Nunes et al., 2021). Our result corroborates this
influence shown in literature, once coinfected mosquitoes have
to deal with a major microorganism invasion.
4 CONCLUSIONS

Proteomics analysis of Ae. aegypti ovaries mono-infected with
ZIKV or Wolbachia highlighted how those microorganisms
interplay almost antagonistic responses considering insect
reproducibility and immune response particularities. Our data
support that ZIKV induces JH production, probably enhancing
insect reproduction capability, while Wolbachia seems to harm
the same hormone pathway and also egg survival. As for innate
insect immunity, Wolbachia helps to reinforce Ae. aegypti basal
features, while ZIKV block it to facilitate infection. During
coinfection, Wolbachia helps Ae. aegypti to prevent virus
infection by stimulating ROS production, leading to a Toll-
pathway humoral immune response and SOD production to
control cell homeostasis. Besides, coinfection showed a potential
role between the immune system and reproduction features.
Finally, this work should be an important resource for
understanding how microorganism infection can influence Ae.
aegypti immune response and reproducibility, exposing those
findings to the insect research community.
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