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Abstract: Visceral leishmaniasis (VL) is a neglected disease caused by Leishmania parasites. Although
significant morbidity and mortality in tropical and subtropical regions of the world are associated
with VL, the low investment for developing new treatment measures is chronic. Moreover, resistance
and treatment failure are increasing for the main medications, but the emergence of resistance
phenotypes is poorly understood at the protein level. Here, we analyzed the development of resistance
to miltefosine upon experimental selection in a L. infantum strain. Time to miltefosine resistance
emergence was ~six months and label-free quantitative mass-spectrometry-based proteomics analyses
revealed that this process involves a remodeling of components of the membrane and mitochondrion,
with significant increase in oxidative phosphorylation complexes, particularly on complex IV and
ATP synthase, accompanied by increased energy metabolism mainly dependent on β-oxidation of
fatty acids. Proteins canonically involved in ROS detoxification did not contribute to the resistant
process whereas sterol biosynthesis enzymes could have a role in this development. Furthermore,
changes in the abundance of proteins known to be involved in miltefosine resistance such as ABC
transporters and phospholipid transport ATPase were detected. Together, our data show a more
complete picture of the elements that make up the miltefosine resistance phenotype in L. infantum.

Keywords: Leishmania infantum; miltefosine resistance; quantitative proteomics; FASP; mass spec-
trometry; oxidative phosphorylation; fatty acid β-oxidation; cytochrome c oxidase; ATP synthase

1. Introduction

Visceral leishmaniasis (VL) is a neglected disease that frequently afflicts the most
vulnerable populations living in tropical and subtropical regions of the world. The disease
is caused by protozoan parasites of the Leishmania genus, mainly Leishmania donovani in Asia
and Africa and L. infantum in the Mediterranean Basin, central Asia, Middle East and Latin
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America [1,2]. In both the Mediterranean Basin and Latin America, dogs are the main host,
playing an important role in parasite’ transmission cycle. Although the incidence of VL has
reduced considerably over the last decade, 90,000 new cases were reported in 2017 with
more than 90% of the cases occurring in 10 countries: Brazil, China, Ethiopia, Eritrea, India,
Kenya, Somalia, South Sudan, Sudan and Yemen [1,3,4]. In Latin America, Brazil reports
more than 97% of the cases in the region per year [5]. The systemic disease caused by
those parasites is characterized by persistent fever, splenomegaly, weight loss and anemia,
and is fatal if not properly treated. It mainly affects children under five years of age,
undernourished people and individuals with other conditions of immunosuppression [6,7].

Depending on the clinical conditions of the patients, treatment of VL is made with a
reduced chart of medications limited to pentavalent antimonials, paromomycin, miltefosine
and amphotericin B (in free deoxycholate form and lipid formulations). For more than six
decades, pentavalent antimonial monotherapy has been the first-line treatment for VL, but,
due to the emergence of resistance to this medication, its use is no longer recommended
in various regions of the world [8,9]. New treatments include injectable paromomycin, a
single dose of liposomal amphotericin B and oral miltefosine or combined regimes of those
medicines [7,9].

Miltefosine (Hexadecylphosphocholine) is an alkyl phospholipid originally developed
for the treatment of cutaneous metastasis of breast carcinomas and is currently the only
oral medication for the treatment of human VL [9]. As of 2002, the drug was approved and
registered for the treatment of human VL in India, with a cure rate of 98% [10]. Furthermore,
in 2014, miltefosine was approved by the US FDA as the first oral medicine for the treatment
of cutaneous and mucocutaneous leishmaniasis caused by New World Leishmania species
based, among others, on studies of efficacy conducted in Brazil against L. braziliensis and
L. guyanensis [11–13]. Although its mechanism of action is not fully understood, it has been
observed that miltefosine is incorporated into the lipid bilayer of the parasites’ plasma
membrane changing its permeability, causes alterations in lipid metabolism and induces
cell death by an apoptosis-like process [14,15]. Since 2007, miltefosine was registered for
the oral treatment of canine VL in several European countries, and the same formulation
was recently authorized by the Brazilian government for the treatment of dogs with VL [16].
This approval causes concern given that, despite the improvement in clinical symptoms,
treated dogs continue with detectable levels of parasites in the blood and skin, and therefore
could continue to be a source of transmission of L. infantum [17]. In addition, there is a
real possibility of resistance emergence that might result in cross-resistance to pentavalent
antimoniate and amphotericin B, which are still the first-line treatment options for human
VL in Brazil [18,19].

After a decade of adoption of miltefosine as the first-line regimen for human VL in
Asia, reduced effectiveness was reported as well as increased tolerance and treatment
failure [20–23]. In Brazil, although there are few studies on this drug, the observed cure
rate of human VL was between 43% to 67% in 28 day or 42 day long regimes, respectively,
suggesting intrinsic resistance of the L. infantum to miltefosine [24]. Comparison of genome
sequences of pretreatment parasites isolated from VL patients either cured or relapsing after
miltefosine treatment revealed the absence of a region on chromosome 31 encoding four
genes (two 3′-nucleotidase/putative nucleases, one helicase-like and a 3,2-trans-enoyl-CoA
isomerase) in the isolates from patients with relapse, whereas it was present in the isolates
from cured patients [25]. In further studies, it was suggested that this genomic region,
named miltefosine sensitivity locus (MSL), confers natural resistance to the drug [26].
Although many Brazilian L. infantum isolates do not carry the MSL [27], its association with
miltefosine resistance in vitro is not clear [28].

The mechanisms underlying miltefosine resistance are not yet well understood. Ge-
nomic characterization of Old World L. infantum strains with either natural or selected
miltefosine resistance revealed mutations in the MT and Ros3 genes, which encode pro-
teins involved in the transport of the drug. Such mutations result in the inactivation of
the MT/Ros3 transporter complex and are considered as the main mechanism for milte-
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fosine resistance both in promastigotes and amastigotes [29]. However, such mutations
were not observed in natural miltefosine-resistant L. donovani isolates from VL relapse
cases [30]. Interestingly, miltefosine-resistant L. infantum parasites exhibit important fitness
loss mediated by incomplete metacyclogenesis, decreased intracellular proliferation and
diminished stress response, all of which are rescued by the treatment with the drug [31,32].
Those observations suggest that mechanisms triggering miltefosine resistance are much
more complex.

Proteomics studies of drug resistance in Leishmania spp. have identified a set of
proteins potentially involved in this phenotype and suggest the existence of a common
group of proteins involved in the mechanisms of resistance to both miltefosine and an-
timonial [24,33–40]. However, an in-depth quantitative proteomics study of miltefosine
resistance is lacking. To understand the mechanisms involved in the emergence of resis-
tance, here we experimentally selected resistance to miltefosine in a wild-type L. infantum
strain and conducted an unbiased and comprehensive quantitative proteomics analysis
of drug-resistant parasites. Our dataset provides the first comprehensive quantitative
analysis of the miltefosine resistance phenotype in terms of protein concentration and copy
numbers and demonstrates the main differences in protein abundance between wild-type
and resistant parasites. Data are available via ProteomeXchange with identifier PXD031912.

2. Materials and Methods
2.1. Parasite Culture, Growth Curve and Susceptibility Test

We used the L. infantum reference strain MHOM/BR/1974/PP75. Promastigotes were
maintained at 26 ◦C in Schneider’s medium (Sigma-Aldrich, St. Louis, MO, USA) supple-
mented with 10% heat-inactivated fetal bovine serum (FBS) (Sigma-Aldrich,
St. Louis, MO, USA). For analyzing the growth curve, promastigotes (1 × 105 parasites)
were inoculated in Schneider’s medium supplemented as above, and parasite density
was determined every 24 h for two weeks using hemocytometer and light microscopy.
Promastigotes of logarithmic phase were used for all experiments.

To evaluate miltefosine cytotoxicity, 2 × 106 parasites in culture medium were added
to a 96-well tissue culture plate and grown in the presence of medium containing different
miltefosine concentrations (ranging from 240 µM to 1.2 µM, Sigma-Aldrich) or medium
without drug (control). Plates were incubated for 64 h at 26 ◦C and then resazurin reagent
(Invitrogen, Carlsbad, CA, USA) was added and plates were incubated for a further
8 h at 26 ◦C. The optical density of the samples was measured in a spectrophotometer
(SpectraMax—Molecular Devices, San Jose, CA, USA) at wavelengths of 540 nm and
630 nm. The effect of drug treatment on cell viability was expressed as IC50/72 h, which
corresponds to a concentration that led to 50% lysis of the parasites within 72 h. Three
independent experiments were performed in triplicate.

2.2. Selection of Resistance

For the in vitro selection of resistance, promastigotes were cultivated with increasing
concentrations of miltefosine (1.2, 2.4, 4, 8, 16 and 25 µM) added in a stepwise manner,
according to protocols previously described [41], totalizing approximately 6 months and
25 passages. The wild-type (WT) parasites were maintained during the same passage
numbers as the resistant line but without drug pressure. The resistant line (LiR) was
maintained under the continuous presence of the drug. The growth profile and IC50 of LiR
line were determined as described above.

2.3. Sample Preparation and LC-MS/MS Analysis

For proteomic analysis, WT and LiR promastigotes were grown in culture medium
without the drug, collected at logarithmic stage, washed three times with PBS and resus-
pended in lysis buffer. Four independent biological replicates of L. infantum resistant line
(LiR) and three independent biological replicates of L. infantum parent wild-type strain
(WT) were analyzed. Proteomics sample preparation followed protocols previously de-



Proteomes 2022, 10, 10 4 of 21

scribed [42,43]. Briefly, parasites were lysed in a buffer containing 0.05 M Tris-HCl (pH
7.6) (Bio-Rad, Hercules, CA, USA), 0.05 M DTT (Bio-Rad, Hercules, CA, USA) and 2% SDS
(w/v) (Bio-Rad, Hercules, CA, USA) and boiled in a water bath for 5 min. After chilling to
room temperature, the SDS lysates were clarified by centrifugation at 10,000× g for 5 min
and total protein concentration was determined by BCA using a Nanodrop® instrument
(Thermo-Fisher Scientific, Palo Alto, CA, USA ). Protein samples (100 µg total protein) were
processed in 30k filtration units (Millipore, Burlington, MA, USA) by the multi-enzyme
digestion—filter aided sample preparation (MED-FASP) method using consecutively en-
doproteinase LysC and trypsin in a 1/100 enzyme to protein ratio [44,45]. Peptides were
collected, concentrated and desalted on a C18 reversed phase column.

For LC/MS/MS analysis, 2 µg peptide mixtures were fractionated on a reversed
phase column (50 cm × 75 µm inner diameter) packed with 1.8 µm diameter C18 par-
ticles (100 Å pore size; Dr. Maisch, Ammerbuch-Entringen, Germany) using a 105 min
acetonitrile (Tedia®, Fairfield, OH, USA) gradient in 0.1% formic acid (Sigma-Aldrich,
St. Louis, MO, USA) at a flow rate of 250 nL/min. The backpressure varied between
450 and 650 bar. Peptide masses were analyzed using a Q-Exactive HF mass spectrometer
(Thermo-Fisher Scientific, Palo Alto, CA, USA) operated in data-dependent mode with
survey scans acquired at a resolution of 50 000 at m/z 400 (transient time 256 ms). The top
12 most abundant isotope patterns with charge ≥+2 from the survey scan (300–1650 m/z)
were selected with an isolation window of 1.6 m/z and fragmented by HCD with normal-
ized collision energies of 25. The maximum ion injection time for the survey scan was 20 ms
and for the MS/MS scans was 60 ms. The ion target values for MS1 and MS2 scan modes
were set to 3 × 106 and 1 × 105, respectively. The dynamic exclusion was 25 s and 10 ppm.

2.4. Data Analysis

Data were analyzed using the Andromeda search engine included in the MaxQuant
Software (Ver. 1.2.6.20). The mass spectra were searched against a database containing
L. infantum sequences available at UniProtKB/Swiss-Prot (downloaded in November 2021)
plus reversed proteins used as decoys. The option “matching between runs” was used for
searching; the fragment ion mass tolerance was set at 0.5 Da and parent ion tolerance at
20 ppm. The maximum false peptide and protein discovery rate was set as 1%. Cysteine
carbamidomethylation was set as fixed modification, methionine oxidation as variable
modification, and up to two missed cleavages were allowed. Protein absolute abundances
were calculated based on the spectral protein intensity (raw intensities) using the ‘total
protein approach’ (TPA), and absolute protein copy numbers per cell were estimated using
the ‘proteomic ruler’ approach [46]. Calculations of total protein, protein concentration and
copy number were performed in Microsoft Excel. Perseus software (Ver. 1.6.5.0) [47] was
used for data validation and statistical analysis of differences in protein abundances. The
minimal number of valid values was set to 3 per protein in at least one group, and missing
values were imputed from a normal distribution. Significances were calculated using
the t-test with a threshold of false discovery rate (FDR) of 3%. Data are presented as the
mean ± SD. Mass spectrometry proteomics data were deposited to the ProteomeXchange
Consortium via the PRIDE [48] partner repository with the dataset identifier PXD031912.

2.5. Enrichment Analysis Based on Gene Ontology and Metabolic Pathway Annotations

In order to analyze if there were particular groups of proteins that contributed the most
for the resistant phenotype selected in vitro, only the proteins that presented significant
differences in concentration between the WT and LiR parasites were used for enrichment
analysis of gene ontology and metabolic pathway annotations using the enrichment tool at
Tritrypdb (http://tritrypdb.org, v55, accessed on 5 February 2022). Parameters were set as
follows: organism, L. infantum JPCM5, evidence computed and curated and p-value cutoff,
0.05. The search was performed for the ontology of Biological Process, Cellular Component
and Molecular Function. In addition, differential proteins were mapped for L. infantum
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JPCM5 (T number: T01112) in the Kyoto Encyclopedia of Genes and Genomes (KEGG)
PATHWAY database [49].

2.6. Statistical Analysis

Analyses were performed with GraphPad Prism version 8.0 for Windows (GraphPad
Software, San Diego, CA, USA). Asterisks indicate significant differences with the threshold
for significance set at p≤ 0.05. Student’s t test was used to analyze the statistical significance
between the WT strain and LiR line.

3. Results and Discussion
3.1. In Vitro-Selected Miltefosine-Resistant L. infantum Line LiR Exhibits Reduced Drug
Sensitivity and Has a Lower Rate of Growth Than the WT Strain

Experimental resistance to miltefosine was selected by consecutive passages of pro-
mastigotes under drug pressure. It takes approximately six months and 25 passages to
reach the highest 50% inhibitory concentration, IC50, 25.27 ± 1.40 µM, and resistance was
stable in the absence of the drug after five passages as well as after cryopreservation. In
comparison, the IC50 of miltefosine for the parental L. infantum strain was 7.4 ± 1.56 µM
and this value was not altered in the WT line maintained without drug pressure for the
same time of culture than the LiR line. Thus, the IC50 increase corresponded to a resis-
tance index of 3.4. In addition, we looked at the in vitro growth profile of the WT and
LiR promastigotes. Although the growth curves of both WT strain and LiR line exhibit
logarithmic and stationary phases, the LiR line showed significant lower growth rate than
the WT strain (Figure 1). These results agree with the decrease in the growth rate observed
in promastigotes of L. infantum strains selected for miltefosine resistance as well as in other
Leishmania species selected for resistance to different drugs [31,32,50]. This phenotype has
been associated with a decreased fitness of the resistant parasites. Besides the decrease
in proliferation, such loss of fitness has been related to incomplete in vitro metacyclogen-
esis, reduced intracellular proliferation and decreased stress response, as well as in vivo
decreased parasite infectivity and dissemination [31,32,51].
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Figure 1. In vitro promastigote growth curves of L. infantum wild-type (WT) line and miltefosine-
resistant (LiR) line. LiR parasites show decreased growth compared with WT line. Results are
expressed as mean ± SD of three independent experiments each one made in triplicate. Significant
differences between parasite WT and LiR lines, by day, were determined by two-way ANOVA
followed by Sidak’s multiple comparisons test (* p < 0.0001).
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3.2. Miltefosine-Resistant Line and Wild-Type Strain Are Clearly Separated by Differences in Their
Protein Abundances

To shed light on the molecular processes involved in the emergence of resistance to
miltefosine, we conducted an in-depth quantitative comparison between the proteome
of the miltefosine-resistant line and the parental wild-type L. infantum strain. Whole cell
lysates of four and three independent biological replicates, respectively, were processed
by MED-FASP and analyzed by LC-MS/MS. A total of ~57,000 peptides corresponding
to 5699 protein groups were identified, encompassing ~70% of the L. infantum predicted
proteome (~8500 protein-coding genes predicted, considering one protein per gene, JPCM5
reference strain) [52,53]. Approximately 85% (4874) of protein groups were identified with
at least three peptides and ~70% (3853) with at least five peptides (Figure S1, Table S1).
Pearson’s correlation analysis revealed high reproducibility of proteomics data among
biological replicates (coefficient ≥ 97% for WT and ≥ 85% for LiR) (Figure S1). Functional
annotations of Leishmania proteins are still scarce, barely 25%, 32% and 43% identified pro-
tein groups have any annotation for the categories of biological process, cellular component
and molecular function, respectively (Table S1). For quantitative analyses, 324 proteins
identified with a single peptide, even though it was unique, were removed (Table S1).

Total protein contents, protein concentrations and protein copy numbers were cal-
culated for 5375 proteins using the total protein approach (TPA) and the histone ruler
methods as previously described [42,46]. Estimation of total protein contents were based
on the genome content (32.8 Mb) reported for L. infantum reference strain JPCM5 [53]. First,
we calculated the total DNA content in pg, which corresponds to 0.036 pg per haploid
genome. From this value, we assume a diploid state for both the wild-type and the LiR
line. We observed that parental L. infantum WT strain contains 3.74 ± 0.03 pg of protein
per cell, which agrees with the total protein values previously reported for other Leish-
mania species [42,43,54] (Table S1). Remarkably, miltefosine-resistant line LiR contains
2.81 ± 0.38 pg protein representing a significant 25% decrease in the total protein per par-
asite (Figure 2A). A summary of general information about the proteomes of WT strain
and LiR line is showed in Table S2. It has been reported that changes in the homeostatic
protein content of cells may be due to changes in cell volume as well as alteration in protein
synthesis [55]. In addition, it was shown that promastigotes of a miltefosine-resistant
L. infantum line have a longer and more slender morphology under drug pressure [32].
Consistently, we observed that LiR parasites had a leaner and smaller body when compared
to the wild-type strain (data not shown), so the parasite body volume could be also different.
Thus, the decrease in total protein content observed in miltefosine-resistant LiR parasites
could be associated with the reduction in their body cell volume. Although the total protein
calculations presented here could vary according to the parasites’ ploidy state, as we are
unaware of this information, we assumed a diploid state in both populations. This assump-
tion was based on a recent publication that analyzed a large number of L. donovani and
L. infantum isolates and showed that they are disomic in general, with occasional trisomy
for chromosomes 23, 8 and 9 and tetraploidy, already expected, for chromosome 31 [56].

Statistical validation of protein identifications was made with Perseus software. A
total of 5223 proteins were validated and these were used for subsequent statistical analyses.
Principal component analysis (PCA) of protein concentrations showed a very compact
cluster for the set of biological replicates of the wild-type strain and revealed a clear
separation of them from those of the resistant LiR line, despite these replicates being more
dispersed among each other (Figure 2B). It has been reported that drug pressure is an
important source of variability for L. donovani [57,58], thus, the variation observed among
LiR replicates could be explained by the selection process under miltefosine pressure.
However, the replicates of this resistant line form a clearly separate group from the wild-
type strain, confirming the existence of significant differences in protein abundance between
the groups.
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Consistent with previous reports [42], protein concentration values span six orders of
magnitude, and tubulins, histones, elongation factor 1-alpha, heat shock proteins, kineto-
plastid membrane protein-11, calmodulin and some ribosomal proteins are among the top
20 most abundant proteins (Table S1).

3.3. The Overall Abundance of Mitochondrial Proteins, Flagellum/Cytoskeleton Proteins and
Membrane Proteins Were Increased in Miltefosine-Resistant Parasites

Using the total protein values, we calculated the copy number of each protein in both
WT and LiR and estimated the total number of proteins per parasite to be: 6.01 ± 0.02 × 107

molecules for WT and 4.3 ± 0.62 × 107 molecules for LiR. Statistical analysis shows that
this difference is significant (p < 0.01). This difference is consistent with the smaller size of
the resistant parasites and is also reflected in the total protein fraction (%) and number of
copies of the proteins that make up some of the main cellular components of the parasites
(Figure 3). This analysis also allowed us to provide an overview of the abundance of
the different components of the L. infantum architecture and to compare them between
WT and LiR parasites. Based on available gene ontology annotations, nuclear proteins,
ribosomal subunits and Golgi/endoplasmic reticulum proteins make up 4.9%, 6.6% and
~2.1%, respectively, of the total protein mass of the parasites in both groups (Figure 3A).
In contrast, membrane (integral membrane components), flagellum/cytoskeleton and mi-
tochondrion showed significant differences between wild-type and resistant parasites,
making up 9.7%, 8.1% and 7.3% of the total protein mass, respectively, of WT, and 13%,
10.5% and 9.4%, respectively, of LiR parasites (Figure 3A). Thus, miltefosine-resistant para-
sites have a significantly higher percentage (in relation to total protein) of mitochondrial,
flagellum/cytoskeleton and membrane proteins than WT parasites, which is also in agree-
ment with the size reduction in LiR parasites. However, it is important to mention that due
to the lack of functional annotation of a large part of the L. infantum proteome, this analysis
may have a bias, underestimating the percentages that represent each cellular component.
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Figure 3. Major cellular components in terms of total protein fraction per cell and total number
of copies per cell. (A) The percentage of total protein of each cellular component was calculated
from the sum of the total protein fraction of each protein that had annotation for that component.
(B) Percentage protein copies number (from the total protein molecules) with annotation for the
cellular component. WT: wild-type strain, n = 3; LiR: resistant strain, n = 4. Significant differences
between WT and LiR parasites were determined by two-way ANOVA followed by Sidak’s multiple
comparisons test (** p < 0.01; **** p < 0.0001).

Interestingly, resistant parasites also have a higher percentage of copy number of pro-
teins annotated as membrane components: we observed ~5 million molecules equivalent
to 8.4% in the wild-type strain and 12% in the resistant line (Figure 3B), reinforcing the
relevance that these organelles have for the adaptation of the parasites to the drug chal-
lenge. While still considering the number of copies, we observed that both strains showed
~5 million copies of nuclear proteins, equivalent to ~10% of the total protein molecules per
parasite; 3.5 million mitochondrial proteins (~6–8% of total protein molecules), ~4 million
flagellum/cytoskeleton-associated molecules (~7% of total molecules), ~5–7 million copies
of ribosomal proteins (~12% of the total molecules) and ~700 thousand molecules (~1.4% of
the total molecules) attributed to the Golgi apparatus/endoplasmic reticulum (Figure 3B).

3.4. There Are Significant Differences in Protein Abundance between the Wild-Type Strain and the
Miltefosine-Resistant Line

The statistical significant differences in protein abundance between the WT and
LiR parasites were determined by Student’s t test at FDR of 3%. The concentrations
of 327 proteins were significantly different between the wild-type strain and the resistant
line (Figure 4, Table S3). Among these proteins, 123 were more abundant in the resistant
line compared to WT parasites whereas 204 proteins had lower concentrations. It is also
worth noting that 81 differential proteins are uncharacterized or hypothetical and several
of them showed concentration differences of more than 10-fold (Table S3).
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Figure 4. Volcano plot representation of the significant differences in protein concentration values
between the wild-type L. infantum strain and the miltefosine-resistant line. In green, proteins with
higher concentration in the resistant parasites (LiR); in orange, proteins with higher concentration in
wild-type parasites (WT). The plotted values represent the average concentration of replicates from
each strain. WT: wild-type strain, n = 3; LiR: resistant strain, n = 4. Significance was determined by
t-test with 3% FDR.

Further, we analyzed whether there was any group of proteins particularly enriched
among those proteins with differential abundance. For this, we used the Tritrypdb enrich-
ment tool (http://tritrypdb.org, v55, accessed on 5 February 2022) evaluating which terms
of gene ontology and annotations of metabolic pathways were enriched. First, we observed
significant enrichment of several categories of molecular function: oxidoreductase activity
(2.34-fold), proton transmembrane transporter activity (4.04-fold) and proton-transporting ATP
synthase activity (6.92-fold). In addition, we observed that biological processes such as gener-
ation of precursor metabolites and energy (3.64-fold), proton transmembrane transport (3.77-fold),
ATP biosynthetic process (4.79-fold), transmembrane ion transport (3.63-fold), cellular respiration
(4.61-fold), respiratory electron transport chain (5.93-fold) and fatty acid derivative catabolic
process (13.84-fold), among others, are significantly overrepresented among differentially
abundant proteins. Furthermore, we observed that annotations of cellular components
such as membrane protein complex (2.52-fold), cytochrome complex (11.86-fold), respirasome
(5.54-fold) as well as respiratory chain complex (5.54-fold) and proton-transporting ATP synthase
complex (5.1–7.8-fold) were significantly enriched in our dataset (Table S4). Interestingly,
these proteins are increased in the resistant line (Table S4). These results suggest that mito-
chondrial respiration, energy metabolism and membrane transport are distinct between
WT and LiR parasites. These results also corroborate our findings of significant differ-
ences between WT and LiR parasites in the total protein abundance of integral membrane
molecules and mitochondrial proteins shown in Figure 3.

3.5. Proteins Involved in Oxidative Phosphorylation Are Significantly Increased in
Resistant Parasites

The results of GO enrichment led us to focus on the comparative analysis of the main
pathways of energy metabolism in WT and LiR parasites. Quantitative analysis of the
proteomes allowed us to determine the abundance of proteins involved in these pathways
in terms of absolute concentration (Table S3). First, we analyzed the total contribution of
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proteins involved in glycolysis, oxidative phosphorylation and the TCA cycle (Figure 5).
Miltefosine-resistant parasites show a significant increase in the absolute concentration
of proteins involved in oxidative phosphorylation (OxPHOS)/mitochondrial respiration,
whereas no difference was observed in the cumulative concentration of proteins involved
in glycolysis or the TCA cycle between groups (Figure 5A). Then, we took a closer look at
the abundance changes in the proteins that make up the respiratory complexes, to identify
whether any particular complex is more or less modulated by the drug. We observed that
the cumulative concentration of proteins involved in complexes III, IV and V of oxidative
phosphorylation are significantly higher in the resistant LiR line than in the WT strain
(Figure 5B). These results show that the proteins of L. infantum involved in OxPHOS are
modulated in response to the selection pressure for miltefosine resistance.
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It is important to highlight that our proteomics approach allowed the identification 
and quantification of a significant number of components of the OxPHOS complexes in L. 
infantum that had not been detected in previous proteomic studies of this species, includ-
ing, but not limited to, more than 11 components/subunits of complex IV and six subunits 
of complex V (Table S3). Proteins such as succinate dehydrogenase (complex II) had a 2-fold 
increase in LiR parasites (WT: ~8 pmol/mg—LiR: ~15.5 pmol/mg), cytochrome c1, reiske iron-
sulfur protein and ubiquinol-cytochrome_C_reductase_complex_14kD_subunit (complex III), 
almost tripled their concentration in resistant parasites in relation to wild-type ones, going 

Figure 5. Oxidative phosphorylation metabolic pathway is significantly increased in miltefosine-
resistant L. infantum parasites. (A) Sum of the abundance of proteins involved in the main pathways
of energy production. (B) The dot plot shows the sum of the concentrations of the proteins involved
in each oxidative phosphorylation complex. WT: wild-type strain, n = 3; LiR: resistant strain, n = 4.
Significant differences observed between WT and LiR parasites were determined by two-way ANOVA
followed by Sidak’s multiple comparisons test (* p < 0.05; ** p < 0.01; **** p < 0.0001). OXPHOS:
oxidative phosphorylation; TCA: tricarboxylic acid. Complex I: NADH-ubiquinone oxidoreductase;
complex II: succinate ubiquinone oxidoreductase; complex III: ubiquinol:cytochrome c oxidoreduc-
tase; complex IV: cytochrome c oxidase; complex V: FoF1-ATP synthase. Each dot represents the
total sum of the concentration values of proteins involved in those processes or complexes in each
biological replicate.

It is important to highlight that our proteomics approach allowed the identification
and quantification of a significant number of components of the OxPHOS complexes
in L. infantum that had not been detected in previous proteomic studies of this species,
including, but not limited to, more than 11 components/subunits of complex IV and six
subunits of complex V (Table S3). Proteins such as succinate dehydrogenase (complex II) had
a 2-fold increase in LiR parasites (WT: ~8 pmol/mg—LiR: ~15.5 pmol/mg), cytochrome
c1, reiske iron-sulfur protein and ubiquinol-cytochrome_C_reductase_complex_14kD_subunit
(complex III), almost tripled their concentration in resistant parasites in relation to wild-
type ones, going from ~6, ~11 and ~9 pmol/mg, respectively, in WT to ~16, 31 and
~25 pmol/mg, respectively, in LiR parasites (Figure 6, Table S3). Interestingly, we also
observed that several subunits of the cytochrome c oxidase complex (complex IV) tripled or
quintupled their concentration in the resistant parasites. For example, subunit VI went from
~3 pmol/mg in wild-type parasites to ~14 pmol/mg in the resistant ones, and subunits
V and I went from ~8 pmol/mg to 25 pmol/mg and from 1.7 pmol/mg to 7.4 pmol/mg,
respectively. Finally, several ATP synthase subunits (complex V) practically doubled their
concentration in resistant parasites, as in the case of alpha and beta subunits that increased
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from ~70 pmol/mg in wild parasites to ~130 pmol/mg in resistant parasites (Figure 6,
Table S3). Thus, these results suggest that miltefosine-resistant parasites have a highly
active oxidative phosphorylation.
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Figure 6. Miltefosine-resistant parasites exhibit increased concentration of enzymes involved mi-
tochondrial respiration complexes. The dot plot shows absolute concentration values for some of
the enzymes of each respiratory complex with greater abundance in resistant parasites. Significant
differences observed between WT and LiR parasites were determined by t-test at FDR 0.03 using
Perseus software and confirmed in GraphPad using the Holm–Sidak method. (* p < 0.05; ** p < 0.01;
*** p < 0.001). WT: wild-type strain, n = 3; LiR: resistant strain, n = 4.

The leishmanicidal mechanism of miltefosine involves a mitochondrial dysfunc-
tion [59] together with deleterious effect on the OxPHOS pathway due mainly to the
inhibition of cytochrome c oxidase [60]. Inhibition of this complex results in a reduction
in the oxygen consumption rate as well as a significant decrease in the intracellular ATP
levels of the parasites [60]. As cytochrome c oxidase is a main target of miltefosine, the
emergence of resistance could involve, among other possibilities, the selection of parasites
capable of overcoming the inhibition of this complex by increasing the abundance of its
subunits, as showed here. Thus, our findings are consistent with previous reports of gene
expression data showing that miltefosine-unresponsive L. donovani has more efficient oxida-
tive phosphorylation [61]. It is important to note that this phenotype was selected in vitro
during ~6 months of continuous passages in the presence of increasing amounts of the
drug. In addition, the increase in other complexes, including ATP synthase, suggests that
parasites selected for resistance to miltefosine need and/or produce/consume more ATP
than wild-type parasites; however, further studies need to be conducted to prove this hy-
pothesis. Remarkably, it is worth noting that L. infantum isolates that are naturally resistant
to miltefosine also exhibited increased abundance of ATP synthase [24], reinforcing the
idea of a very active oxidative phosphorylation pathway and ATP production.

Additionally, based on the increased abundance of OxPHOS complexes described
above, it is reasonable to suggest that the electron transport chain in resistant parasites is
also very active and that the availability of reducing equivalents produced during mito-
chondrial catabolic pathways should also be increased in the resistant line. To have indirect
evidence of this, we analyzed the abundance levels of citrate synthase and other enzymes
of the TCA cycle, as well as pyruvate dehydrogenase and fatty acid β-oxidation enzymes,
which are important sources of reducing molecules for fueling the electron transport chain.
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We also analyzed the concentration levels of glycerol-3-phosphate dehydrogenase, which
could also serve as an electron entering point to the respiratory chain [62].

Whereas the differences in concentration levels of pyruvate dehydrogenase com-
plex and glycerol-3-phosphate dehydrogenase were not significant between WT and LiR
parasites, we observed that cumulative concentration of citrate synthase is significantly
increased in LiR parasites exhibiting ~70 pmol/mg, whereas WT strain had ~46 pmol/mg
(Figure 7). According to our proteomics dataset, although concentration values of isocitrate
dehydrogenase and oxoglutarate dehydrogenase are lower in LiR parasites compared
to WT ones, the differences were not significant (Table S3). In addition, both the cumu-
lative concentration of the fatty acid β-oxidation pathway and the abundance of some
of its key enzymes are higher in resistant parasites than wild-type ones (Figure 7). It is
worth noting that the concentration of thiolase, the enzyme that catalyzes the final step
of the pathway, producing acetyl-CoA and NADH, has a ~2-fold increase in resistant
parasites: from 38 pmol/mg in WT to 87 pmol/mg in LiR parasites. Thus, our results
suggest that miltefosine-resistant parasites maintain the integrity of the electron transport
chain and higher ATP production through complex V via an increased NADH/FADH2
generation mediated by a functional TCA cycle and an enhanced activity of the fatty acid
β-oxidation pathway.
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may be contributing with acetyl-CoA to fuel TCA. In addition, we also observed that con-
centration of acetyl-CoA synthase was maintained in LiR parasites at similar levels than 
that observed in the WT strain (Figure S2). Remarkably, we also observed a significant 
increase in the concentration of a D-lactate dehydrogenase (D-LDH) in miltefosine-re-
sistant parasites (Figure S2). This enzyme converts D-lactate produced via methylglyoxal 
to pyruvate, which could also fuel the TCA cycle [63,64]. Interestingly, the increased abun-
dance of D-LDH observed here agrees with recent reports showing that transcript levels 
of D-Ldh are increased in L. donovani parasites selected for paromomycin resistance as well 
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Figure 7. Miltefosine-resistant parasites exhibit an increased concentration of citrate synthase and
fatty acid β-oxidation pathway. (A) Cumulative concentration of citrate synthase, significance was
determined by t-test using the Holm–Sidak method (* p < 0.05); (B) Cumulative concentration of
pyruvate dehydrogenase complex; (C) Absolute concentration glycerol-3-phosphate dehydrogenase;
(D) Cumulative concentration of proteins involved in fatty acid β-oxidation pathway, significance was
determined by t-test using the Holm–Sidak method (** p < 0.01); (E) Some of the enzymes involved
in the fatty acid β-oxidation pathway with greater abundance in resistant parasites, significant
differences observed between WT and LiR parasites were determined by t-test at FDR 0.03 using
Perseus software and confirmed in GraphPad using the Holm–Sidak method (* p < 0.05; ** p < 0.01;
**** p < 0.0001). WT: wild-type strain, n = 3; LiR: resistant strain, n = 4.

Previous proteomics studies showed that miltefosine-resistant parasites exhibited
decreased abundance of pyruvate dehydrogenase complex and TCA cycle, suggesting that
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acetyl-CoA must come from routes other than pyruvate oxidation including the fatty acid
β-oxidation pathway, the breakdown of ketogenic amino acids and from acetate by an
acetyl-CoA synthase [36]. Thus, based on the increased abundance described above, our
results agree with this proposition, showing that the fatty acid β-oxidation pathway may be
contributing with acetyl-CoA to fuel TCA. In addition, we also observed that concentration
of acetyl-CoA synthase was maintained in LiR parasites at similar levels than that observed
in the WT strain (Figure S2). Remarkably, we also observed a significant increase in the
concentration of a D-lactate dehydrogenase (D-LDH) in miltefosine-resistant parasites
(Figure S2). This enzyme converts D-lactate produced via methylglyoxal to pyruvate,
which could also fuel the TCA cycle [63,64]. Interestingly, the increased abundance of
D-LDH observed here agrees with recent reports showing that transcript levels of D-Ldh
are increased in L. donovani parasites selected for paromomycin resistance as well as the
concentration levels of this protein are increased in a L. braziliensis strain resistant to nitric
oxide [43,65]. Thus, here we showed that in addition to the pyruvate dehydrogenase
complex and β-oxidation pathway concurring for acetyl-CoA production for fueling TCA
cycle, this metabolite could also be supplied by acetyl-CoA synthase and by increased
production of pyruvate from D-lactate mediated by a D-LDH (Figure 8).

Proteomes 2022, 10, x FOR PEER REVIEW 14 of 23 
 

 

to nitric oxide [43,65]. Thus, here we showed that in addition to the pyruvate dehydro-
genase complex and β-oxidation pathway concurring for acetyl-CoA production for fuel-
ing TCA cycle, this metabolite could also be supplied by acetyl-CoA synthase and by in-
creased production of pyruvate from D-lactate mediated by a D-LDH (Figure 8).  

 
Figure 8. Increased oxidative phosphorylation and associated energy metabolism remodeling in 
miltefosine-resistant parasites. In green, enzymes that are statistically more abundant in miltefosine-
resistant parasites—LiR; in orange, enzymes statistically more abundant in wild-type parasites—
WT; in blue, enzymes with similar abundance in WT and LiR. Arrows are colored when the enzyme 
involved in that step exhibited significant change. Enzymes are represented by E.C. number. WT: 
wild-type strain, n = 3; LiR: resistant strain, n = 4. 

3.6. Miltefosine-Resistant Parasites Have a Lower Concentration of Proteins Canonically In-
volved in Oxidative Stress Response while Exhibiting Elevated Abundance of Sterol Biosynthesis 
Enzymes 

In drug-susceptible parasites, miltefosine can lead to an increase in the production of 
reactive oxygen species (ROS) resulting in cell death. In resistant parasites, this increase 
in ROS has not been observed, suggesting that they are more efficient in managing these 
species, blocking or compensating for the effects of the drug on ROS production 
[23,36,61,66]. Overexpression of mitochondrial iron superoxide dismutase-A (FeSODA) in 
L. donovani has been associated with protection against programmed cell death induced 
by the deleterious effects of miltefosine on the mitochondrion [67]. Furthermore, an L. 
donovani strain, naturally resistant to miltefosine, shows increased FeSODA [66]. This re-
port contrasts with a recent study showing that L. infantum mutant clones with lower ex-
pression of FeSODA are ~2.5-fold more resistant to miltefosine [68]. In this context, we 

Figure 8. Increased oxidative phosphorylation and associated energy metabolism remodeling in
miltefosine-resistant parasites. In green, enzymes that are statistically more abundant in miltefosine-
resistant parasites—LiR; in orange, enzymes statistically more abundant in wild-type parasites—WT;
in blue, enzymes with similar abundance in WT and LiR. Arrows are colored when the enzyme
involved in that step exhibited significant change. Enzymes are represented by E.C. number. WT:
wild-type strain, n = 3; LiR: resistant strain, n = 4.
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3.6. Miltefosine-Resistant Parasites Have a Lower Concentration of Proteins Canonically Involved
in Oxidative Stress Response While Exhibiting Elevated Abundance of Sterol Biosynthesis Enzymes

In drug-susceptible parasites, miltefosine can lead to an increase in the production
of reactive oxygen species (ROS) resulting in cell death. In resistant parasites, this in-
crease in ROS has not been observed, suggesting that they are more efficient in manag-
ing these species, blocking or compensating for the effects of the drug on ROS produc-
tion [23,36,61,66]. Overexpression of mitochondrial iron superoxide dismutase-A (FeSODA)
in L. donovani has been associated with protection against programmed cell death induced
by the deleterious effects of miltefosine on the mitochondrion [67]. Furthermore, an
L. donovani strain, naturally resistant to miltefosine, shows increased FeSODA [66]. This
report contrasts with a recent study showing that L. infantum mutant clones with lower
expression of FeSODA are ~2.5-fold more resistant to miltefosine [68]. In this context, we
analyzed the concentration values of the proteins involved in the detoxification of ROS and
cell redox homeostasis in WT and LiR parasites.

In agreement with the inverse relation between FeSODA expression and miltefosine
resistance, our in-depth proteomics dataset revealed no significant difference in FeSODA
abundance and even a decrease in its concentration in LiR parasites (Figure 9). In ad-
dition, other proteins involved in the oxidative stress response/cell redox homeostasis
were more abundant in WT parasites than in miltefosine-resistant ones (Figure 9). In fact,
we observed that wild-type parasites have a higher cumulative concentration of proteins
involved in these processes and a significantly higher individual concentration of try-
panothione reductase (TRYR), glutathione peroxidase (GPx), tryparedoxin (TXN1) and
mitochondrial tryparedoxin (TXN2) (Figure 9), among others. These results suggest that
miltefosine-resistant L. infantum parasites must have other mechanisms to deal with the
production of ROS.
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Figure 9. Miltefosine-resistant parasites exhibit lower cumulative concentration of proteins involved
in oxidative stress response/cell redox homeostasis and increased abundance of sterol biosynthesis
enzymes. (A) Cumulative concentration of proteins canonically involved in oxidative stress re-
sponse/cell redox homeostasis; significance was determined by t-test using the Holm–Sidak method
(** p < 0.01). Absolute concentration values of (B) mitochondrial iron superoxide dismutase-A, FeS-
ODA; (C) Trypanothione reductase TRYR; (D) Mitochondrial tryparedoxin TXN2; (E) Tryparedoxin
TXN1; (F) Glutathione peroxidase GPx; (G) Lanosterol 14-α-demethylase CYP51; (H) Sterol methyl-
transferase SMT. Significant differences observed between WT and LiR parasites were determined by
t-test at FDR 0.03 using Perseus software and confirmed in GraphPad using the Holm–Sidak method
(* p < 0.05; ** p < 0.01; **** p < 0.0001). WT: wild-type strain, n = 3; LiR: resistant strain, n = 4.

Recently, it was reported that L. major null mutants for sterol 14-α-demethylase (CYP51)
or sterol methyltransferase (SMT), enzymes of the biosynthesis of sterols, present altered
mitochondrial membrane potential, impaired respiration and significant mitochondrial ROS
accumulation [69,70]. In addition, it has been demonstrated that CYP51 is indispensable
in L. donovani growth [71]. Remarkably, we observed significantly higher abundance of
CYP51 and SMT in miltefosine-resistant parasites (Figure 9). Concentration of CYP51
increased from 8 pmol/mg in WT parasites to 19.4 pmol/mg in LiR ones, whereas the
protein concentration of SMT augmented from 11.3 pmol/mg in WT to 25.6 pmol/mg in
LiR (Figure 9). Then, it is plausible to suggest that CYP51 and SMT could play important
roles in ROS detoxification in the miltefosine-resistant L. infantum line. However, further
studies should be conducted to demonstrate this hypothesis.

3.7. Concentration Levels of ABC Transporters and a Phospholipid Transporting ATPase Involved
in Miltefosine Resistance Are Significantly Different between WT and LiR Parasites

The ATP-binding cassette (ABC) transporters comprise a superfamily of transmem-
brane proteins that are involved in the transport of different molecules, from ions to
large polypeptides, which have been largely recognized by their activity as drug efflux
pumps [72]. In Leishmania spp., ABC transporters present high diversity and several of



Proteomes 2022, 10, 10 16 of 21

them have been mainly implicated in drug resistance [73]. Indeed, overexpression of ABC
transporters is involved with miltefosine extrusion in resistant parasites [74,75]. Although
quantification of ABC transporters has being challenging because they are low-abundant
transmembrane proteins, the sample processing and quantitative methods used here al-
lowed us to identify and quantify 34 (out of 42) ABC transporters in our L. infantum samples
(Table S3). We observed that transporters ABCB1, ABCG2 and ABCG4 have a significantly
higher concentration in resistant parasites, being 2- to 2.5-fold more abundant compared
to the wild-type (Figure 10). The ABCB1 transporter from L. tropica conferred resistance
to alkyl phospholipids and reduced the accumulation of a fluorescent lipid analogue of
phosphatidylcholine [74,76]. In L. major, the ABCG2 transporter plays a role in the transport
of non-protein thiols and phosphatidylserine, as well as in parasite virulence, resistance to
antimonials and redox metabolism [77,78]. In turn, the ABCG4 transporter of L. infantum
has been reported to participate in the active outward transport of phosphatidylcholine,
alkyl-glycerophosphocholine and phosphocholine derivatives, therefore, contributing to
the miltefosine resistance phenotype [75]. The increased abundance of those transporters
would reduce the intracellular accumulation of miltefosine due to active drug efflux in
LiR parasites.
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Figure 10. Membrane transporters involved in the reduction in drug accumulation into the parasites
are significantly different between wild-type and miltefosine-resistant parasites. Absolute concentra-
tion of ABC transporters involved in drug efflux: (A) ABCG2; (B) ABCG4; (C) ABCB1, or in lower
drug influx; (D) Phospholipid-transporting ATPase. Significant differences observed between WT
and LiR parasites were determined by t-test at FDR 0.03 using Perseus software and confirmed in
GraphPad using the Holm–Sidak method (* p < 0.05; ** p < 0.01). WT: wild-type strain, n = 3; LiR:
resistant strain, n = 4.

In addition, it has been well described that drug-resistant parasites have mutations in
the gene encoding a P-type ATPase of the phospholipid translocase subfamily, which result
in decreased expression of this ATPase and, consequently, in a lower influx of miltefosine
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in resistant parasites [79]. In line with this information, we observed a significant decrease
in that phospholipid transporting ATPase in resistant parasites (Figure 10), which could
result in a diminished miltefosine influx in these parasites. This finding is interesting,
as it would indicate that drug pressure leads to a decrease in the concentration of this
translocase; however, we cannot say that a decrease was due to mutations in the coding
sequence and further experiments would be necessary to answer that question. Together,
these findings show that miltefosine-resistant parasites can modulate the abundance of
different membrane transporters in order to reduce drug accumulation into the cell interior
through active efflux and lower influx of the drug.

4. Conclusions

Our study provides for the first time large-scale quantitative proteomics data on
miltefosine resistance in L. infantum promastigotes. More than 5600 protein groups were
identified and quantified, allowing for an unbiased and deeper analysis of the molecular
changes that contribute to the resistance phenotype. We describe the changes in protein
abundance between the wild-type strain and the resistant line derived by in vitro selection.
These differences were described both in number of protein copies per cell and in absolute
concentration of proteins. We observed that resistance is selected through a complex
adaptation response of the parasites that involves a remodeling of integral components of
the membrane, flagellum/cytoskeleton and mitochondria, as well as a significant increase
in oxidative phosphorylation complexes, with particular emphasis on complex IV and ATP
synthase accompanied by a potential increase in energy metabolism mainly dependent
on the β-oxidation of fatty acids. We observed that proteins canonically involved in ROS
detoxification were not modulated or were even decreased in resistant parasites, indicating
that other pathways participate in this process. We also detected a potential contribution of
sterol biosynthesis enzymes to this resistance phenotype and changes in the abundance
of proteins known to be involved in miltefosine resistance such as ABC transporters and
phospholipid transport ATPase. Together, our data show a more complete picture of
the elements that make up the phenotype of in vitro selected resistance to miltefosine
in L. infantum.
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abundance correlation among replicates. (A) 85% proteins were identified with at least three peptides.
Multiscatter plots with Pearson’s correlation coefficient of protein abundance among (B) Wild-type
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values of D-lactate dehydrogenase. Significant differences observed between WT and LiR parasites
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the Holm–Sidak method (* p < 0.05). WT: wild-type strain, n = 3; LiR: resistant strain, n = 4;
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43. Pinho, N.; Bombaça, A.; Wiśniewski, J.; Dias-Lopes, G.; Saboia-Vahia, L.; Cupolillo, E.; de Jesus, J.; de Almeida, R.; Padrón, G.;
Menna-Barreto, R.; et al. Nitric Oxide Resistance in Leishmania (Viannia) braziliensis Involves Regulation of Glucose Consumption,
Glutathione Metabolism and Abundance of Pentose Phosphate Pathway Enzymes. Antioxidants 2022, 11, 277. [CrossRef]
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