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Abstract: Patients with chromoblastomycosis (CBM) suffer chronic tissue lesions that are hard to treat.
Considering that biofilm is the main growth lifestyle of several pathogens and it is involved with both
virulence and resistance to antimicrobial drugs, we have investigated the ability of CBM fungi to pro-
duce this complex, organized and multicellular structure. Fonsecaea pedrosoi and Phialophora verrucosa
conidial cells were able to adhere on a polystyrene abiotic substrate, differentiate into hyphae and
produce a robust viable biomass containing extracellular matrix. Confocal laser scanning microscopy
(CLSM) and scanning electron microscopy (SEM) showed the tridimensional architecture of the
mature biofilms, revealing a dense network of interconnected hyphae, inner channels and amorphous
extracellular polymeric material. Interestingly, the co-culture of each fungus with THP-1 macrophage
cells, used as a biotic substrate, induced the formation of a mycelial trap covering and damaging the
macrophages. In addition, the biofilm-forming cells of F. pedrosoi and P. verrucosa were more resistant
to the conventional antifungal drugs than the planktonic-growing conidial cells. The efflux pump
activities of P. verrucosa and F. pedrosoi biofilms were significantly higher than those measured in
conidia. Taken together, the data pointed out the biofilm formation by CBM fungi and brought up a
discussion of the relevance of studies about their antifungal resistance mechanisms.

Keywords: biofilm; antifungal resistance; dematiaceous fungi; efflux pumps; virulence

1. Introduction

Chromoblastomycosis (CBM) is a neglected tropical disease characterized by the trau-
matic implantation of dematiaceous fungi in the human cutaneous and subcutaneous
tissue [1]. CBM begins with wounds, especially on the upper and lower limbs, causing
plaque, cicatricial, nodular and verrucous lesions, for instance. In addition to these ex-
tensive and long-lasting lesions, this disease can cause fibrotic and lymphatic damage
that can generate chronic lymphedema with an elephantiasis aspect [1,2]. In severe cases,
patients can also have squamous cell carcinoma. These clinical complications may lead to
the amputation of the affected limb. Consequently, CBM is the cause of many morbidity
cases worldwide, being considered an occupational disease that can permanently disable
the infected individual [3,4]. Relevantly, CBM’s chronicity and recurrence combined with
its fungal resistance to available therapies make it hard to treat [1,4]. This mycosis is
ubiquitous, but it shows the highest prevalence rates in Africa, Asia and Latin America,
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particularly affecting people who are in contact with soil, wood and decaying materials,
which are the natural habitats of CBM fungi [3,5]. The fungi belonging to the genus Fonse-
caea and Phialophora are among the CBM etiological agents; however, F. pedrosoi is the most
frequently diagnosed globally [4].

Although the pathogenesis mechanisms involved in CBM are still scarcely understood,
several virulence attributes, such as melanin production, cell-surface and extracellular hy-
drolytic enzymes (e.g., peptidases and ecto-phosphatases), morphological transitions and
adhesion to host cells have already been reported [1,6–13]. It is well-known that the fungal
ability to adhere to the host tissue is one of the first and crucial steps for disease develop-
ment [14,15]. In recent years, different groups have studied the capacity of filamentous
fungi to form biofilms [16–18], an important virulence factor first well documented in yeasts
of the Candida genus [19–22]. Biofilms are complex microbial communities defined by the
presence of cells that may be attached to each other, to a substratum or embedded within
an extracellular matrix containing polymeric substances produced by themselves [23]. The
biofilm-forming ability gives the cells several advantages, such as increased virulence,
immune system protection, tolerance to different environmental stressors, communication
and metabolic cooperation, in addition to resistance to antimicrobials [17,23]. Thus, biofilm
establishment is the predominant growth lifestyle of many pathogens, including filamen-
tous fungi such as species belonging to the Aspergillus, Scedosporium, Trichophyton, Fusarium,
Trichosporon and Coccidioides genera [24–28].

The production of microbial biofilm is a challenge for health professionals since these
structures are formed on biotic surfaces, such as teeth, mucosal surface and chronic wounds,
as well as on abiotic substrates including contact lenses, dental implants, different prosthetic
valves and catheters, and other medical devices [29,30]. According to the U.S. National
Institute of Health (NIH), almost 80% of chronic infections in humans are associated with
biofilm formation [31]. Indeed, biofilm-related infections are resistant to drugs, demanding
high medical care costs and prolonged stay in the hospital environment [23]. Different
mechanisms of fungal resistance under biofilm conditions have been described in the
literature [32–34]. A fundamental characteristic of biofilm resistance is the presence of
extracellular matrix, mainly composed of polysaccharides, (glycol)proteins, (glycol)lipids,
minerals, extracellular deoxyribonucleic acid (eDNA) and water, functioning as a protec-
tion for cells against the surrounding environment [32,35]. Under such conditions, the
biofilm-forming cells secrete molecules known as quorum sensing inhibitors in order to
establish the cell-to-cell communication that plays an important role in fungal resistance
and pathogenicity [36]. Moreover, elevated efflux pump activity contributed to antifungal
drug resistance. One of the most studied is the efflux pump-mediated resistance of Candida
species, especially to azole drugs [37,38].

Some reports have shown that environmental dematiaceous fungi, including Phialopora spp.,
Cladosporium spp., Alternaria spp. and Exophiala spp., are able to produce biofilm-like struc-
tures on abiotic surfaces, especially in water distribution systems, contaminating domestic
water taps [39–42]. The ability of dematiaceous pathogenic fungi to produce biofilm was
described for Exophiala dermatitidis, the main agent of phaeohyphomycosis, which can also
cause chronic diseases such as CBM [43–45]. In general, the results obtained for environ-
mental and clinical isolates of E. dermatitidis varied widely; however, the latter showed a
higher percentage of biofilm-forming strains [44,45]. Kirchhoff et al. [45] showed that inva-
sive isolates of E. dermatitidis have a higher biofilm-forming ability than those frequently
isolated from the respiratory tract of cystic fibrosis patients. Additionally, the ability of
dematiaceous fungi to produce biofilm was also reported for Cladosporium sphaerospermum,
which was isolated from patients with keratitis, and for clinical isolates of Scedosporium spp.
and Lomentospora prolificans recovered from mycetoma [46–48]. Studies have shown that
fungal biofilm has great clinical importance for chronic infections [49]. It is well recognized
that chronic tissue lesions are colonized by polymicrobial communities, contributing to per-
sistent inflammation, hindering the tissue regeneration process and significantly reducing
patients’ quality of life as a consequence [50]. The environment of these chronic wounds
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favors polymicrobial biofilm formation and affects clinical treatment [50–52]. Remarkably,
the occurrence of secondary bacterial infection is frequent in severe cases of CBM and
makes its treatment even harder [1,53].

Based on all the above-mentioned premises, the present work initially investigated
the ability of clinical isolates of F. pedrosoi and P. verrucosa to adhere to, differentiate and
produce biofilm on a polystyrene surface. Moreover, the antifungal susceptibility and the
activity of an ABC efflux pump in both conidial- and biofilm-forming cells were evaluated.
Finally, the possible role of fungal efflux pumps on itraconazole resistance was tested by
means of pharmacological inhibition.

2. Materials and Methods
2.1. The Fungi and Growth Conditions

Clinical isolates of F. pedrosoi (ATCC 46428, previously called 5VPL) and P. verrucosa
(ATCC 28182) were provided by the collection of Reference Microorganisms in Sanitary
Surveillance (CMRVS) of the National Institute for Quality Control in Health, Oswaldo
Cruz Foundation (FIOCRUZ). Fungal isolates were maintained at 4 ◦C on Sabouraud
dextrose agar (SDA) using mineral oil for preservation. For all the experiments, both fungi
were grown at 26 ◦C for 6 days in a 100 mL of Czapek-Dox broth medium (BD-Difco, MD,
USA) at pH 5.5 [54]. In order to obtain the conidial cells, the fungal cultures were filtered
through gauze, centrifuged at 2400× g for 10 min and washed three times in 0.9% NaCl.
Then, the number of conidial cells was determined using Neubauer chamber [54].

2.2. Adhesion and Germination Capability of Conidial Cells to Polystyrene Surface

Conidia (1 × 106) were added to flat-bottom 24-well polystyrene plates (catalog
number 92024 from TPP Techno Plastic Products AG, Trasadingen, Switzerland) containing
100 µL of Roswell Park Memorial Institute (RPMI) 1640 medium (Sigma-Aldrich, St. Louis,
MO, USA) and incubated at 37 ◦C for 4 h (adhesion assay) and for 4, 8 and 12 h (germination
assay). After washing three times with sterile phosphate-buffered saline (PBS, pH 7.2)
to remove nonadherent fungi, the cells were observed through an inverted microscope
(Nikon TS100-F, Tokyo, Japan) with a ×40 objective lens. The experiments were performed
in triplicate, and five random fields per well of each system were considered to calculate
the total number of fungi adhered on the polystyrene surface as well as the percentage of
germinated cells arising from the adhesion process [47].

2.3. Biofilm Formation Detection on the Polystyrene Surface

Conidia (1 × 106) were placed into flat-bottom 96-well polystyrene microtiter plates
(catalog number 82.1581.001 from Sarstedt Inc., Nümbrecht, Germany) containing 100 µL
of RPMI medium and incubated for 24, 48 and 72 h at 37 ◦C. For each plate, medium-
only control wells were prepared. After incubations, nonadherent cells were removed,
and the viability/metabolic activity, biomass and extracellular matrix were detected with
colorimetric assays using a microtiter plate reader (SpectraMax M3Molecular Devices,
Molecular Devices, LLC, San Jose, CA, USA). Briefly, the viability was assessed with 2,3-bis
(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide
(XTT; Sigma-Aldrich) assay [24]. A solution containing 100 µL of XTT 0.04 mg and mena-
dione 0.0005 mg was added to the plate wells and then incubated for 4 h in the dark at 37 ◦C.
Then, the plates were subjected to centrifugation at 4000× g for 5 min, the supernatants
transferred to other 96-well plates and the absorbance measured at 490 nm. Meanwhile, for
biomass quantification, cells were fixed for 15 min with 100 µL of methanol, and after it
was discarded, the wells were air-dried for 5 min. Then, they were stained with 100 µL of
0.3% crystal violet solution (Sigma-Aldrich) for 20 min. After that, cells were washed twice
with PBS, incubated for 5 min with 100 µL of 30% acetic acid and then read at 590 nm [55].
For extracellular matrix detection, 100 µL of 0.1% safranin (Sigma-Aldrich) in PBS was
added to the plate wells. Following 5 min at room temperature, the wells were washed
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and decolorized with 100 µL of 30% of acetic acid, and then the absorbance measured at
490 nm [22].

2.4. Confocal Laser Scanning Microscopy (CLSM) Analysis

Conidia (1 × 106) were grown on polystyrene confocal plates (SPL Life Sciences Co.,
Pocheon, Korea) for 72 h at 37 ◦C and then stained for 1 h at 26 ◦C with Calcofluor white
M2R (5 µg/mL, Sigma-Aldrich), FilmTracer SYPRO® (200 µL, Molecular Probes, Invitrogen)
and TOTO™-1 iodide (1 mM, ThermoFisher Scientific, Waltham, MA, USA). The wells
were washed twice with PBS and covered with n-propyl gallate, and the fungal cells
were observed using the confocal microscope (Leica TCS SP5 AOBS, Wetzlar, Germany).
The three-dimensional (3-D) visualization of the biofilm architecture and thickness was
assessed using Fiji software (ImageJ2, UW-Madison LOCI, Madison, WI, USA). Z-stacks
were collected from five random fields for each biofilm [47,48].

2.5. Scanning Electron Microscopy (SEM) Assay

Conidia (1 × 106) were added to sterile polystyrene coverslips (Agar Scientific, Stansted,
UK) placed in 24-well polystyrene plates and incubated for 72 h at 37 ◦C. Then, cells were
fixed in 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer (pH 7.2) at 4 ◦C overnight.
Subsequently, the systems were washed with PBS, post-fixed in 2% osmium tetroxide for 2 h
and dehydrated in a series of acetone solutions with concentrations varying from 25 to 100%.
Next, cells were critical point-dried in CO2, coated with gold (20–30 nm), and observed
using Zeiss EVO10 scanning electron microscope (Zeiss, Oberkochen, Germany) [47].

2.6. Biofilm Formation on THP-1 Cells

The human monocytic leukemia THP-1 cell line (ATCC TIB-202) was cultivated in
25-cm2 cell culture flasks containing RPMI 1640 medium and 10% heat-inactivated fetal
bovine serum (Sigma-Aldrich) at 37 ◦C in a 5% CO2 atmosphere [13]. For the experiments,
THP-1 cells (4 × 105/mL) were added to 24-well polystyrene plates and grown in the same
conditions as described above, except for the RPMI medium that was supplemented with
80 nM phorbol 12-myristate 13-acetate (PMA; Sigma-Aldrich), in order to induce their
differentiation into macrophages. After 24 h, the THP-1 cells were washed three times with
RPMI and incubated in fresh medium for an additional 24 h. Then, conidia (4 × 106/mL)
were placed to interact with macrophages for 48 h at 37 ◦C in an atmosphere of 5% CO2.
After that, the systems were washed three times to remove nonadherent fungal cells and
incubated at 26 ◦C, in the absence of light, with 5 µg/mL of the following fluorescent
dyes: propidium iodide (Sigma-Aldrich) for 10 min and Calcofluor white (Sigma-Aldrich)
for 60 min. System controls containing only THP-1 cells and THP-1 cells treated with
paraformaldehyde at 4% for 30 min were also observed [47]. The damage to THP-1 cells
provoked by fungal biofilm formation was monitored using a Zeiss LSM 710, AxioObserver
confocal laser microscope with an oil-immersion EC Plan-Neofluar 40×/1.30 objective
(Carl Zeiss Microscopy) and lasers 488 nm (propidium iodide) and 405 nm (calcofluor
white). Images were assessed using ZEN 2.1 (black) software version number 14.0.25.201,
Carl Zeiss Microscopy Company, Jena, Germany.

2.7. Antifungal Susceptibility Testing

This assay was performed according to the document M38-A2 of Clinical and Laboratory
Standards Institute (CLSI) [56], with some modifications. Briefly, planktonic cells (1 × 104)
were placed into 96-well polystyrene microtiter plates containing RPMI 1640 buffered with
3-(N-morpholino) propanesulfonic acid (MOPS, Sigma-Aldrich) 0.165 mM, pH 7.0. Af-
ter that, the antifungal agents amphotericin B, ketoconazole, itraconazole, posaconazole
and terbinafine (Sigma-Aldrich), at concentrations varying from 0.048 to 100 µM, in
0.5% dimethylsulfoxide (DMSO, Sigma-Aldrich) were added. The plates were then in-
cubated at 37 ◦C for 72 h. For the mature biofilm assays, 1 × 104 conidia, initial inoculums,
were added to 96-well plates with the same medium, and just after 72 h of incubation
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at 37 ◦C, it was supplemented with antifungal drugs at concentrations ranging from
0.39 to 800 µM. These plates were then incubated for additional 48 h. For susceptibility
analysis, the minimum inhibitory concentrations (MIC100) of the planktonic cells and the
biofilms (bMIC) were defined visually and confirmed by XTT-reduction assay as described
above [24]. Systems containing RPMI medium and fungal cells supplemented or not with
DMSO (final concentration of 0.5%) as well as having both RPMI and DMSO or only RPMI
were used as controls.

2.8. Activity of ABC Efflux Pumps on Conidial- and Biofilm-Forming Cells

Both conidial and 72 h-old-biofilm-forming cells (1 × 107/mL, initial inoculums)
were incubated with 10 µM rhodamine 6G (R6G, Sigma-Aldrich) for 1 h at 37 ◦C, as
described by Silva et al. [57]. Then, the supernatants were discarded, and the systems were
washed with PBS and incubated for additional 1 h at 37 ◦C in PBS containing 2% glucose.
The supernatants were then collected, and fluorescence was measured on a fluorimeter
(excitation, 529 nm; emission, 553 nm). R6G non-stained fungal cells were used as a control.
In addition, F. pedrosoi and P. verrucosa were treated with MIC (both 0.19 µM) determined
for planktonic cells and with the highest concentration (800 µM) tested before for biofilm-
forming cells. The efflux pump inhibitor phenylalanine-arginine beta-naphthylamide
(PAβN, Sigma-Aldrich) was used to evaluate the possible role of efflux pumps in antifungal
resistance. The bMIC for itraconazole in the presence of PAβN (64 µg/mL) was determined
after 48 h of incubation according to CLSI [56], with modifications.

2.9. Statistical Analysis

All experiments were performed in three independent experimental sets. All graphics
and statistical analyses were performed with GraphPad Prism 5.0 software (GraphPad
Software, Inc., La Jolla, CA, USA). Data were expressed as mean ± standard deviation.

3. Results and Discussion
3.1. Adhesion and Germination of Fungi on Polystyrene Substrate

It is well-known that at an early stage of biofilm formation, fungal cells adhere to
non-living (abiotic) or living (biotic) substrates through the interactions of electrostatic
forces with their cell wall-associated adhesion molecules [58,59]. Several aspects such as
contact surface nature, environmental factors and fungal morphology can influence the
formation and structure of biofilm [23]. Different types of inert substrates have been used
for testing biofilm formation [60]. In this study, we selected polystyrene since it is the
classical substrate used to demonstrate this multicellular structure produced by microbial
cells, including fungi in vitro [24,25,47], which permits the comparison of biofilm formation
capability among different strains, species and genera. Moreover, the analytical methods
for studying biofilm using polystyrene as substrate are easy, low-cost and reproducible [60].

Therefore, we first investigated the ability of F. pedrosoi and P. verrucosa conidial cells
to adhere on an abiotic surface that is chemically composed of polystyrene. Our results
showed that after 4 h of fungi-polystyrene contact, the total adhered cell numbers per field
for F. pedrosoi and P. verrucosa were 34.2 ± 4.4 and 86.3 ± 25.0, respectively (Figure 1). In
addition to adhesion, the capability to germinate is an important characteristic of biofilm
establishment. Studies have highlighted that filamentation is directly related to biofilm
development and fungal pathogenicity [61,62]. Both fungi germinated in contact with
polystyrene in a typically time-dependent manner (Figure 1). Although P. verrucosa showed
higher adhesion to polystyrene, its germination process was less efficient than that observed
in F. pedrosoi at all time points studied (Figure 1). For instance, F. pedrosoi presented a higher
percentage of conidial germination (87.9 ± 0.9%) after 12 h of interaction with polystyrene
compared with P. verrucosa (36.6 ± 7.7%) (Figure 1). A similar lag phase was reported
for A. fumigatus biofilm formation, which just germinated on a polystyrene plate after
approximately 10 h of incubation [24,63]. After abiotic surface contact, the ability of conidial
cells for adhesion, germination and differentiation into mycelia was also reported for other
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clinically relevant filamentous fungi, including Scedosporium apiospermum, S. aurantiacum
and L. prolificans [47,64].
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Figure 1. Fungal adhesion and germination on a polystyrene substrate. Fungal cells (1 × 106) were
incubated at 37 ◦C in a 24-well polystyrene plate containing RPMI medium. The wells were washed,
and then the total adhered cell numbers per field after 4 h of incubation and the percentage of conidial
germination at 4, 8 and 12 h were determined using the inverted microscope. Asterisks represent
statistical significance (p < 0.05). Images show fungal cells adhered to polystyrene after 12 h of
germination. Inset: conidial cells before the adhesion process.

3.2. Measurement of Classical Biofilm Parameters

Structural characteristics of microbial biofilms, such as biomass, viability and extra-
cellular matrix, were assessed in F. pedrosoi and P. verrucosa using classical colorimetric
assays [50]. Firstly, the cellular viability determined on XTT assay (Figure 2A) revealed
that biofilm-forming F. pedrosoi and P. verrucosa cells were capable of efficiently reduc-
ing the tetrazolium salt. Both fungi reached the highest metabolic activity after 72 h of
contact with the polystyrene surface. These viable fungal cells were able to produce a
robust biomass, as judged by the incorporation of crystal violet in the methanol-fixed
biofilm (Figure 2B), as well as extracellular matrix through the absorption of safranin in
non-fixed biofilm (Figure 2C). The biomass of F. pedrosoi and P. verrucosa as well as the
amount of extracellular matrix for F. pedrosoi reached their maximum at 48 h of incubation
under the employed experimental conditions, while the P. verrucosa extracellular matrix
remained constant for all the analyzed periods. Studies have shown that the quantity
of extracellular matrix as well as biomass can be strain- and/or species-specific [45,65].
Kirchhoff et al. [45] investigated the ability of 58 clinical strains of E. dermatitidis to form
biofilm. Those authors reported that the invasive isolates recovered from non-cystic fibrosis
patients exhibited significantly more biomass than did the isolates recovered from cystic
fibrosis patients. Interestingly, the clinical isolates of C. albicans recovered from bloodstream
and vaginal mucosa produce distinct biomass that determine if they are high or low biofilm
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producers, affecting their antifungal susceptibility [66]. Mello et al. [47] studied biofilm
formed by Scedosporium spp. and L. prolificans and showed that the biomass and extracel-
lular matrix produced by S. aurantiacum and S. minutisporum were significantly higher
than those detected for S. apiospermum and L. prolificans, directly impacting the antifungal
resistance pattern.
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Figure 2. Biofilm formation by F. pedrosoi and P. verrucosa on a polystyrene surface. Fungal cells
(1 × 106) were incubated for 24, 48 and 72 h at 37 ◦C in 96-well polystyrene plates containing RPMI
medium. After incubations, the following parameters were assessed: (A) cell viability using XTT
reduction assay (490 nm), (B) biomass after the incorporation of crystal violet in methanol-fixed
biofilm (590 nm), and (C) extracellular matrix after the incorporation of safranin in non-fixed biofilm
(590 nm). The data were expressed as means ± SDs. Asterisks represent statistical significance
(p < 0.05).

3.3. Fungal Biofilm Structural Distribution and 3-D Organization

Several imaging methodologies have been applied in biofilm studies, including CLSM,
a nondestructive technique used in combination with different fluorescent dyes [67] that
was also used here to analyze the 3D biofilm architecture of CBM fungi (Figures 3 and 4).
In this context, the extracellular matrix was observed using the FilmTracer SYPRO®, which
stains glycoproteins, highlighting this crucial structural component of the biofilms formed
by both F. pedrosoi (Figure 3A) and P. verrucosa (Figure 4A). The results herein corroborated
the data demonstrated on colorimetric assays and were similar to those obtained from
CLSM for the qualitative observation of other fungal biofilms [48,68]. Several groups
have described the relevance of extracellular matrix in the biofilm of different fungi. This
structure acts as a protective barrier; holds the cells together; and contributes to biofilm
architecture, integrity and mechanical stability [35,69] Subsequently, the presence of eDNA,
an important component of biofilm extracellular matrix in CBM fungi, was checked after
staining with TOTOTM 1-iodide. The results revealed the presence of eDNA spread in
the extracellular matrix trap that forms the biofilm structure of F. pedrosoi (Figure 3B) and
P. verrucosa (Figure 4B). Studies showed that the eDNA released by C. albicans clinical
isolates is variable and can be involved with differential biofilm formation [70]. In fact,
the authors demonstrated that the greater eDNA levels in C. albicans and A. fumigatus
isolates were able to form more robust biofilms than the other isolates that formed thin
biofilms [70,71]. Overall, the functions proposed to be attributable to the presence of eDNA
in the biofilm architecture include maintaining the biofilm structural integrity and being
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directly involved with antifungal resistance, since some antifungals covalently bind to the
eDNA [71,72].
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Moreover, our data showed that calcofluor white M2R, which binds to chitin in the fun-
gal cell walls, exhibited the outlines of F. pedrosoi and P. verrucosa hyphae, the main structure
that composes their biofilm biomass (Figures 3C and 4C). Studies with biofilm-producing
Candida species revealed differences in cellular morphologies and in the extracellular matrix
production [69]. Overall, mature C. albicans biofilm has a complex structure formed by
blastophores, yeasts and hyphae embedded in a dense extracellular matrix [73]. In contrast,
the biofilm produced by C. glabrata is especially formed of yeast cells [74], similar to the
C. parapsilosis biofilm, which is composed of a small amount of extracellular matrix [20].
These differences in the biofilm structural composition determine its shape and architec-
ture [75]. Our data revealed that the thicknesses of the 3-D biofilm architecture formed by
F. pedrosoi and P. verrucosa cells were 35 and 45 µm, respectively (Figures 3E,F and 4E,F).
Kirchhoff et al. [45] demonstrated with CLSM that E. dermatitidis biofilm thickness was
strain-dependent. Those authors showed that the biofilm formed by invasive isolates had
more hyphae and were thicker than those formed by isolated recovered from cystic fibrosis
patients. The thickness of the mature biofilm of F. pedrosoi and P. verrucosa was lower than
that measured for P. brasiliensis (100 µm) and C. neoformans (76 µm), but it was greater than
that observed for the invasive isolate of E. dermatitidis (~10 µm). While P. verrucosa had
a higher thickness rate than the clinical isolates of Candida haemulonii complexes, which
ranged from 21.6 to 39.1 µm [22,76–78]. It is known that biofilm thickness can change
according to some physicochemical conditions including substrate composition, nutritional
conditions and environmental influences. For instance, Martinez et al. [79] showed that
in vivo C. albicans mature biofilms can be thicker than those obtained in in vitro (laborato-
rial) conditions.
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3.4. Ultrastructure of Biofilm-Growing Cells

Another microscopy technique for fungal biofilm investigation is the SEM, which has
been used to detail its morphology and architecture [80]. Here, SEM images of biofilms
formed by F. pedrosoi and P. verrucosa revealed a compacted and dense mycelial trap char-
acterized by the presence of entangled and interconnected cells (Figure 5). Inner water
channels and extracellular matrix interlaced with the hyphae of both fungi were also ob-
served (Figure 5). Studies have shown that these channels favor nutrient and water passage
as well as cell dispersion [16]. The extracellular matrix detection corroborated the data
found in CLSM analysis and showed that F. pedrosoi and P. verrucosa have common biofilm
structural characteristics, following the pattern of other already described fungal pathogens
including P. brasiliensis, A. fumigatus, Scedosporium spp., L. prolificans, T. mentagrophytes and
T. rubrum [25,47,76,81]. The high-magnification SEM images (Figure 6) showed that the
extracellular matrix morphology was in general distinct and presented a structure like a
veil for F. pedrosoi and a fluffy aspect for P. verrucosa. Regarding the biofilm extracellular
matrix, SEM revealed that it was arranged around the F. pedrosoi and P. verrucosa hyphae
or bound to them (Figure 6). The matrix can promote adherence, nutrient capture and
protection against surrounding stresses, including UV radiation and desiccation as well as
antimicrobial agents’ action [82].
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Figure 5. Low-magnification SEM images of fungal biofilm on a polystyrene surface. Fungal cells
(1 × 106) were added to polystyrene cover slips and incubated for 72 h at 37 ◦C. Then, the cells were
processed for SEM, as detailed in Material and Methods. Representative images of F. pedrosoi and
P. verrucosa showed biofilm features as dense masses of mycelia containing inner water channels
(asterisks) and extracellular matrix (white arrows).
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3.5. Biofilm Formation on Animal Cells

The ability of fungi to adhere and form biofilm on a biotic substrate was also in-
vestigated using macrophages derived from human monocytic lineage THP-1 cells. We
demonstrated that F. pedrosoi and P. verrucosa conidia were able to adhere to THP-1 and
differentiate into mycelia, yielding a multicellular structure resembling a biofilm, as de-
tected with calcofluor white, which stains chitin and highlights the hyphal cells forming the
biofilm biomass (Figure 7). Our results are in agreement with those of Katragkou et al. [83],
who also used THP-1 cells as an in vitro biofilm model and showed that C. albicans adhered
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to the macrophage monolayer and formed a biofilm. In fact, during invasive infections,
many biofilm-producing pathogens can proliferate on the surface of epithelial, endothelial
and immune host cells [84,85]. Thus, authors concluded that Candida biofilms were more
resistant against the action of monocytes, changing their cytokine profile as well as reducing
the migratory capacity of macrophages [42,83]. In addition, macrophages are not efficient
against mature Candida biofilm and might even boost biofilm formation [86]. The ability
to produce biofilm on human and cystic fibrosis bronchial epithelial cells was reported
for A. fumigatus [84]. Mello et al. [47] demonstrated that the conidia of Scedosporium spp.
and L. prolificans adhered and produced a typical biofilm structure with a dense mycelial
mass covering the adenocarcinome human alveolar basal epithelial cells (A549). After this
interaction, L. prolificans in particular was able to destroy the epithelial cells. Similarly, the
interaction of F. pedrosoi and P. verrucosa with THP-1 cells revealed that these CBM fungi
affected the viability of macrophages in comparison with the uninfected macrophage cells,
as detected by propidium iodide staining (Figure 7).
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Figure 7. Confocal microscopy of fungal biofilm formation on THP-1 cells. The human mono-
cytic leukemia cell line (4 × 105/mL) was added in 24-well cell culture plates containing RPMI
medium supplemented with 80 nM PMA to differentiate macrophage cells, as detailed in Material
and Methods. Representative images of THP-1 cells non-treated (control of viable cells), treated
with paraformaldehyde (PFA, control of non-viable cells) or incubated for 48 h with (4 × 106/mL)
of F. pedrosoi and P. verrucosa. After co-culturing, the systems were washed with RPMI and incu-
bated with propidium iodide (PI) and calcofluor white (CW). THP-1 cells damage by fungal biofilm
formation was monitored using confocal differential interference contrast (DIC) and fluorescence
microscopy. Bars, 50 µm.

3.6. Susceptibility of Planktonic and Biofilm Cells to Antifungal Agents

Biofilm is considered a resistant structure against antimicrobial drugs. In the present
study, we assessed the resistant properties of biofilm formed by F. pedrosoi and P. verrucosa to
distinct antifungal classes, including azoles (ketoconazole, itraconazole and posaconazole),
polyene (amphotericin B) and allylamine (terbinafine) (Table 1). The results highlighted
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that the MIC values for all tested antifungals were higher in biofilm-forming cells than
in the planktonic counterparts in both F. pedrosoi or P. verrucosa. These data corroborate
previously published results that showed greater biofilm antifungal resistance of yeasts like
Candida spp. [87] and filamentous fungi such as E. dermatitidis, A. fumigatus, Fusarium solani
and Scedosporium spp. than of their planktonic counterparts [45,47,88,89]. In general,
most biofilm-forming cells have been up to 1000-fold more resistant to antifungal agents
than planktonic cells [32]. We observed this profile (bMIC > 1000× compared with MIC)
when F. pedrosoi and P. verrucosa were treated with itraconazole, in which bMIC was higher
than the maximum concentration (800 µM) tested. Itraconazole was 1000 times less effi-
cient against the mature biofilm compared with the planktonic cells of A. fumigatus [24].
E. dermatitidis biofilm resistance against azoles, like itraconazole and voriconazole, was also
previously reported [43–45,90]. Similar results were observed for the biofilm of F. pedrosoi
after treatment with either terbinafine or posaconazole (bMIC > 800 µM) (Table 1). Addi-
tionally, for P. verrucosa, we observed bMIC > 800 µM to terbinafine, while posaconazole
had a bMIC (400 µM) 40,000-fold higher than MIC. In parallel, bMIC to ketoconazole
for F. pedrosoi (800 µM) and P. verrucosa (400 µM) increased 2051- and 8-fold, respectively,
compared with their planktonic MIC values. Likewise, azoles’ ineffectiveness against
the biofilms of Candida spp., Cryptococcus neoformans and A. fumigatus was demonstrated
by different research groups [77,88,91]. In addition, our results showed a lesser effect of
amphotericin B on the bMIC of both fungi, increasing 8-fold for P. verrucosa and 32-fold for
F. pedrosoi (Table 1).

Table 1. The susceptibility of planktonic- and biofilm-forming cells of F. pedrosoi and P. verrucosa to
antifungal agents.

F. pedrosoi
MIC (µM/mg/L)

P. verrucosa
MIC (µM/mg/L)

Antifungal Agents Planktonic Biofilm bMIC/MIC Planktonic Biofilm bMIC/MIC

Amphotericin B 6.25/5.78 200/185 ↑ 32× 3.12/2.88 25/23 ↑ 8×
Ketoconazole 0.39/0.21 800/425 ↑ 2051× 50/27 400/213 ↑ 8×
Itraconazole 0.19/0.13 >800/>560 ↑ >4200× 0.19/0.13 >800/>560 ↑ >4200×
Posaconazole 0.04/0.03 >800/>600 ↑ >20.000× 0.01/0.007 400/280 ↑ 40.000×
Terbinafine 0.78/0.23 >800/>230 ↑ >1000× 0.04/0.01 >800/>230 ↑ >20.000×

Planktonic cells (1 × 104) and mature biofilm (initial inoculum of 1 × 104) were treated with different antifun-
gal agents. The minimum inhibitory concentration (MIC) was defined as 100% growth inhibition using visual
inspection as recommended by CLSI [56] and confirmed with XTT colorimetric assay [24]. The calculation consid-
ered the minimum drug concentration not able to promote the XTT reduction, representing cells metabolically
inactivate and/or nonviable. The MIC was expressed in both micromolars (µM) and milligrams per liter (mg/L).
(↑) Represents the order of magnitude, in which biofilm MIC (bMIC) was higher than the MIC of planktonic cells.
Biofilm-forming cells of F. pedrosoi and P. verrucosa showed significantly higher MICs (p < 0.05) than planktonic
cells for all tested antifungal agents.

It is important to mention that our findings corroborate the relevance of searching
for new drugs to treat fungal infections such as CBM and to standardize drug suscep-
tibility assays against biofilm instead of conventional assays that used only planktonic
cells. Recently, we evaluated the effects of metal-based drugs on P. verrucosa under biofilm
conditions [92]. The data showed that 1,10-phenanthroline-5,6-dione (phendione) and its
metal-based complexes, [Ag(phendione)2]ClO4 and [Cu(phendione)3](ClO4)2.4H2O, were
able to disturb the mature biofilm formed by P. verrucosa, presenting bMIC with concen-
trations (96, 128 and 20 µM, respectively) lower than itraconazole (>800 µM). Likewise,
metal-based nanoparticles showed C. albicans antibiofilm activity. For instance, both silver
and copper nanoparticles were able to inhibit C. albicans biofilm formation [93,94]. In fact,
studies have proposed strategies to treat biofilm-associated infections, especially those
caused by C. albicans, such as new biomaterials with anti-adhesive properties and small
molecule-based chemical approaches [95]. In addition, the drug repositioning represents
one of the strategies against fungal biofilms [96].
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3.7. Activity of Efflux Pumps on Conidia and Biofilm-Forming Cells

In order to understand the key factors involved with the inefficiency of antifungal
drugs against biofilms, we studied the efflux pump activity since it is also associated
with the resistance of biofilm-forming cells, as described previously for Candida spp. and
A. fumigatus [57,97]. In fungal cells, biofilm resistance is multifactorial and can also be
attributed to drug sequestration and its limited diffusion by extracellular matrix, which
functions as a molecular trap, as well as to the reduction of drug access to their target by
efflux pump action [33,35]. The efflux pumps that mediate the antifungal resistance are
frequently related to the transmembrane transporter, especially the ATP-binding cassette
(ABC) transporter family [37,38]. In this set of experiments, the ABC efflux pump activity
was assessed using the glucose-induced efflux of R6G method (Figure 8). This fluorescent
dye is first taken up by fungal cells, and then, after adding glucose, the cells that have
efflux pump activity throw R6G out, which is detected in the supernatant. Thus, the
levels of intracellular R6G accumulation indirectly indicate the pump efflux activity. Our
data showed that the efflux pump activity of P. verrucosa and F. pedrosoi biofilms was
significantly higher than that of their conidia (Figure 8A). Itraconazole was chosen since
it is the most commonly used antifungal drug in CBM therapy. The pretreatment with
itraconazole and PAβN, an efflux pump inhibitor, did not affect the efflux pump activity
of conidia (Figure 8B). Rangel et al. [98] showed the presence of an ABC transporter in
the plasma membrane of F. pedrosoi using Western blot analysis with anti-Pdr5p antibody.
The authors also demonstrated, by reverse transcription polymerase chain reaction (RT-
PCR), that F. pedrosoi grown for ~15 days with sublethal concentrations (1 and 4 µg/mL)
of itraconazole had the expression of its ABC transport gene stimulated. In contrast, our
data revealed that under the conditions tested, itraconazole only induced a significant
increase in the efflux pump activity of P. verrucosa biofilm (Figure 8C). Several studies
showed that antifungal drugs like azoles may be substrates for efflux pumps, inducing their
overexpression and culminating in fungal resistance [17,37]. Indeed, clinical isolates of
A. fumigatus, C. albicans and C. neoformans, which are azole-resistant, exhibit transcriptional
activation of efflux pump encoding genes that can reduce intracellular drugs accumulation
to lethal levels and lead their extrusion and tolerance [37].
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(A) Conidial cells and 72 h-old-biofilm (1 × 107/mL, initial inoculums) were first incubated with
rhodamine 6G (R6G, 10 µM) and then with glucose 2% in order to evaluate the glucose-induced efflux
of R6G. (B) Conidia and (C) mature biofilm pretreated for 1 h with MICs of itraconazole or with
phenylalanine-arginine beta-naphthylamide (PAβN, 64 µg/mL), before the addition of R6G and glu-
cose. (D) Susceptibility assay of biofilm-forming cells treated for 48 h with itraconazole in the absence
or the presence of PAβN determined with CLSI [56]. Data were expressed as fluorescence arbitrary
unit (FAU) after a fluorimeter reading (excitation, 529 nm; emission, 553 nm). Symbol (*) represents
p values ≤ 0.05 compared with control.

Furthermore, our data revealed that PAβN did not change the bMIC values of
P. verrucosa and F. pedrosoi (Figure 8D). Thus, this efflux pump inhibitor was not able
to reverse the itraconazole resistance phenotype of biofilm-growing cells. Additional ex-
periments need to be conducted to clarify the resistance mechanisms involved with this
antifungal drug. Overall, the data of the present study indicated that neither the inhibitor
PAβN nor itraconazole may have reached the fungal cells in a concentration capable of
affecting the ABC efflux pump. In addition to ABC, another drug transporter belongs to
this superfamily of proteins, called major facilitator superfamily (MFS) may be responsible
for F. pedrosoi and P. verrucosa resistance to itraconazole like reported for C. albicans [61,99].
We also cannot rule out that the efflux pumps do not take part in the itraconazole resistance
presented by biofilm-producing CBM fungi. Ramage et al. [61] showed that the major
mechanism of C. albicans azole resistance is mediated by ABC and MFS transporters. How-
ever, for this, yeast efflux pumps are not important in amphotericin B’s and echinocandins’
resistance [91]. In fact, studies have highlighted that antifungal biofilm resistance requires
distinct molecular mechanisms from those already established for planktonic cells [61,91].

4. Conclusions

In the present work, both F. pedrosoi and P. verrucosa were able to produce networks
of filamentous forms with entangled and interconnected cells on a polystyrene surface, as
found in the classic microbial biofilm formed by other pathogenic filamentous fungi. These
special features, including the ability to adhere, produce extracellular matrix and increase
the antifungal drug resistance, corroborated the potential biofilm formation by these CBM
fungi. The ABC efflux pump activity of P. verrucosa and F. pedrosoi biofilms was significantly
higher than that of their conidia. Future studies are necessary to clarify the resistance
mechanism of the biofilm formed by these fungi and show its impact on CBM chronicity,
which may contribute to achieving more effective treatment of this debilitating infection.
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