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Trypanosoma cruzi-infected
cardiac cells
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Chagas disease (CD), a neglected tropical disease caused by the protozoan

parasite Trypanosoma cruzi, is an important public health problem mainly in

Latin America, leading to approximately 12,000 annual deaths. Current

etiological treatment for CD is limited to two nitro compounds, benznidazole

(Bz) and nifurtimox (Nif), both presenting relevant limitations. Different

approaches have been employed to establish more effective and safer

schemes to treat T. cruzi infection, mostly based on drug repurposing and

combination therapies. Amiodarone (AMD), an antiarrhythmic medicament of

choice for patients with the chronic cardiac form of CD, is also recognized as a

trypanocidal agent. Therefore, our aim is to investigate the combined

treatment Bz + AMD on trypomastigote viability, control of T. cruzi

intracellular form proliferation, and recovery of the infection-induced

cytoskeleton alterations in cardiac cells. The combination of Bz + AMD did

not improve the direct trypanocidal effect of AMD on the infective blood

trypomastigote and replicative intracellular forms of the parasite. Otherwise,

the treatment of T. cruzi-infected cardiac cells with Bz plus AMD attenuated

the infection-triggered cytoskeleton damage of host cells and the cytotoxic

effects of AMD. Thus, the combined treatment Bz + AMD may favor parasite

control and hamper tissue damage.
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Introduction

Chagas disease (CD) is caused by the protozoan

Trypanosoma cruzi, an important public health problem

endemic of Latin America, that affects approximately 6-8

million of people worldwide, causing nearly 12,000 annual

deaths (PAHO, 2018; Lidani et al., 2019). In recent decades,

due to increasing global migration, CD patients have lived in

nonendemic places, such as North America, Europe, Australia

and Japan (Pérez-Molina and Molina, 2018). The transmission

of this protozoan is primarily through contact with feces of

triatomine insects after biting. Furthermore, transmission can

also occur via non-vectorial route, by ingestion of contaminated

food, congenitally and through blood transfusion or organ

transplantation (Antunes et al., 2019).

The natural clinical course of CD comprises two phases:

acute and chronic (Chatelain, 2015). The acute phase of DC,

occurs within the first weeks after parasite infection, is

characterized by high parasitemia and is frequently

asymptomatic. Nonetheless, this phase may present mild flu-

like nonspecific symptoms or signs of portal of entry as:

chagoma (cutaneous lesion), Romaña sign (palpebral oedema)

(Bern, 2011; Pérez-Molina and Molina, 2018). About 2-3

months after infection, untreated patients progress from an

acute to a chronic phase, characterized by immune-mediated

parasite control, leaving approximately 60-70% of the cases in

the indeterminate stage, while the other 30-40%, over the

decades (10-30 years), develop clinical signs characteristic of a

cardiac and/or digestive pathology (Rassi et al., 2010; Echeverria

and Morillo, 2019).

Current etiological treatment for CD is limited to two nitro

compounds, benznidazole (Bz) and nifurtimox (Nif), and both

present relevant limitations including the occurrence of resistant

strains, the lack of efficacy in the later chronic phase, with low

cure rates (8 - 30%) and side effects as: weight loss, nausea,

headache and allergic dermatitis (Bern, 2011; Ribeiro et al.,

2020). Different therapeutic approaches are being used to

identify more effective and safer treatment schemes, mostly

using drug repurposing and combination strategies (Miranda

and Sayé, 2019). Drug combination allows the reduction of

doses, costs and time of treatment. In addition, this strategy

may overcome the natural or acquired resistance of parasites

because the use of molecules with different mechanisms of action

could aim more than one target simultaneously (Mazzeti et al.,

2021). Drug repurposing is particularly relevant for neglected

diseases because this approach reduces the time and budget in

the drug discovery process (Ashburn and Thor, 2004).

Amiodarone (AMD) is the most widely used drug for CD

patients with cardiac arrhythmia (Dias et al., 2016; Brasil.

Ministério da Saúde. Comissão Nacional de Incorporaç ão de

Tecnologias no SUS, 2018). In addition, AMD repurposing has

been proposed because the trypanocidal activity of this drug has
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already been established in both in vitro and in vivo studies,

reducing the parasitemia peak in experimentally infected mice

(Benaim et al., 2006; Benaim and Paniz Mondolfi, 2012). The in

vitro cardioprotective effect of AMD was also described using T.

cruzi-infected cardiomyocytes, which had recovered

spontaneous contractility and the expression of actin filaments

and connexin-43 (Adesse et al., 2011).

Recently, our group reported, in a well-established murine

model of acute CD, that the combination Bz + AMD was more

effective in reducing the peak parasitemia than each drug

separated. Additionally, such combination led to the

improvement of atrial function, reduction of interleukin-6 and

restoration of gap junction integrity in cardiac tissue (Barbosa

et al., 2022). Previously, the BENEFIT study showed that Bz

treatment did not prevent the progression of chronic chagasic

cardiomyopathy (CCC), but patients treated concomitantly with

Bz and AMD presented a reduction in both hospitalization

incidence and risk of death due to cardiovascular complications

(Bz and AMD versus placebo, p-value: 0.008) (Morillo et al., 2015;

Rassi et al., 2017).

Based on the above-mentioned evidence, we hypothesized

that the improvement in prognosis observed in an experimental

acute model of T. cruzi infection and patients with CCC could be

related to an augmentation of the trypanocidal activity and to the

heart cell cytoskeleton architecture recovery exerted by the

combination Bz + AMD. To study these possible effects, we

established primary cultures of cardiac cells and in vitro

infection protocols, allowing analyses of the combined

treatment against the infective forms of T. cruzi using a fixed-

ratio method and host cell morphological analysis by electron

microscopy and immunofluorescence.
Materials and methods

Compounds

Stock solutions of 100 mM Bz (N-benzyl-2-nitro-1H-

imidazole-1-acetamide; Sigma Aldrich™, St Louis, USA) and

AMD (2-butyl-3-benzofuranyl-4-[2-(diethylamino) ethoxy]-

3,5-diiodophenyl ketone hydrochloride; Sigma™) were

prepared in dimethyl sulfoxide (DMSO; Sigma™), and

aliquots were stored at -20°C. The final concentration of the

solvent in the assay never exceeded 0.6%, which does not exert

any toxicity (Araujo-Lima et al., 2018).
Parasite

Bloodstream trypomastigotes (BT) of the Y strain of T. cruzi

(DTU II) were obtained by cardiac puncture of infected Swiss

Webster mice at the parasitemia peak by differential
frontiersin.org
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centrifugation (500 × g for 30 min at 4°C). The parasites were

resuspended in RPMI-1640 medium (Life Technologies™, São

Paulo, Brazil) supplemented with 10% mycoplasma-free and

inactivated fetal bovine serum (FBS; Cultilab™, São Paulo,

Brazil), 1 mM L-glutamine (Sigma™) and 1% penicillin/

streptomycin solution (Life Technologies™). The Y strain was

previously classified as a partially resistant to treatment with Bz,

exhibit high virulence and may produce cardiac disease and

mega syndromes (Filardi and Brener, 1987; Martinez

et al., 2020).
Activity against bloodstream forms of
T. cruzi

For the monotreatment assays, BT (5×106 cells/mL) were

incubated at 37°C in a 5% CO2 atmosphere in the absence or

presence of Bz or AMD at serial concentrations up to 80 µM.

After incubation for 24 h, cell counts were performed in a

Neubauer chamber by light microscopy (Zeiss™, Oberkochen,

Germany), and the activity of the compounds was expressed as

the IC50/24 h, corresponding to the concentration that led to

50% lysis of the parasites. The combined treatment with Bz and

AMD was analyzed using a fixed-ratio method described by

Fivelman et al. (2004). The IC50 values of Bz and AMD in single

treatment were used to establish the top concentrations,

ensuring that IC50 fell near the midpoint of a six-point

twofold dilution series using fixed-ratio solutions: 5:0, 4:1, 3:2,

2:3 and 1:4 proportions. The nature of the interaction was

measured based on the fractional inhibitory concentrations

(FICs) and on the sum of FICs (SFICs) of each compound.

The FIC of AMD was calculated as follows: IC50 of AMD in

combination/IC50 of AMD in monotreatment. The same

equation was applied to Bz. The SFICs = FIC(AMD) + FIC

(Bz). An overall SFICs was determined and used to classify the

nature of each interaction, with SFICs ≤ 0.5 = synergism, 0.5 <

SFICs ≤ 4.0 = additive (no interaction) and SFICs > 4.0 =

antagonism. Isobolograms were built by plotting the FIC of

AMD against the FIC of Bz (Odds, 2003; Simões-Silva

et al., 2016).
Activity against intracellular forms of T.
cruzi and trypomastigotes release

Evaluation of the activity of AMD and Bz against

intracellular forms was performed using primary cultures of

18-day-old mouse embryo heart cells (HCs) (Meirelles et al.,

1986). The HCs were obtained, as reported by Freitas et al.

(2020), cultivated in Dulbecco’s modified Eagle medium

(DMEM; Life Technologies™) containing 10% fetal bovine

serum (FBS; Cultilab™), 2.5 mM CaCl2 (Sigma™), 1 mM L-

glutamine (Sigma™), 2% chicken embryo extract and 1%
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penicillin/streptomycin solution (Life Technologies™), plated

in 24-well plates at a density of 1.5x105 cells/well in glass

coverslips coated with 0.01% gelatin (Sigma™) and

maintained at 37°C in a 5% CO2 atmosphere. HCs were

infected with BT (MOI [multiplicity of infection]: 10:1,

parasites/host cells) in a final volume of 500 mL supplemented

DMEM-FBS. After 24 h, the cultures were washed with

phosphate buffer, 1X (PBS; Sigma™) to remove nonadherent

parasites and maintained in supplemented DMEM-FBS for 72 h

postinfection (hpi) before starting the treatment with the drugs.

For the monotreatment assays (groups BzMT and AMDMT),

infected HCs were incubated for 24, 48 and 72 h at 37°C in a

5% CO2 atmosphere in the absence or presence of the

compounds in serially diluted nontoxic concentrations (up to

20 µM). The culture medium with or without the drugs was

replaced daily, maintaining a total volume of 1 mL in each well.

After 24, 48 and 72 h of treatment, the cultures were rinsed with

saline, fixed and stained with Diff-Quick Staining (Laborclin™,

Paraná, Brazil). The percentage of infection was quantified by

randomly counting at least 200 cells per coverslip and examined

by light microscopy. In addition, supernatants were collected,

and released parasites were counted daily in a Neubauer

chamber. The result was expressed by the infection index (II),

which corresponds to the multiplication of the percentage of

infection by the number of parasites/infected cells (Freitas et al.,

2020). The IC50 values were calculated for the different days of

treatment, corresponding to the concentration that led to 50%

inhibition of this parameter (IC50 II). The combined treatment

of Bz and AMD (Bz:AMDComb) was analyzed after 72 h of

treatment using a fixed-ratio method, as mentioned above

(Fivelman et al., 2004) (Figure 1).
Mammal cytotoxicity evaluation

Non-infected HCs were incubated at 37°C for 72 h with

increasing concentrations of Bz and AMD (2.5 to 20 mM; 1:2

serial dilutions) in monotreatment and combination. After

treatment, PrestoBlue™ (Invitrogen™, Life Technologies,

USA) was added at a ratio of 1:10, the microplates were

incubated for 2 h, and the fluorescence was measured at 560

and 590 nm, as recommended by the manufacturer, using a

Spectra Max™ M3 spectrofluorometer (Molecular Devices™,

Sunnyvale, EUA). The results were expressed as a percentage of

viability using the untreated cells as a reference.
Immunofluorescence

T. cruzi-infected HCs were treated for 72 h with the

compounds at the concentrations corresponding to the IC50/

72 h in single treatment or in combination. Cells were fixed for

20min at 4°C with 4% paraformaldehyde (Sigma™) in PBS. Actin
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filaments (F-actin) were visualized with AlexaFluor 488-labeled

phalloidin™ (Thermo Fisher Scientific™, Waltham, USA), and

DNA was detected with 4’,6-diamidino-2-phenylindole

dihydrochloride (DAPI; Sigma™). Slides were mounted and

analyzed using a Zeiss Axio Imager M2 microscope™ equipped

with the Apotome system (Zeiss™). The percentage of cells

containing myofibrils and actin polygonal configuration was

quantified by randomly counting at least 100 cells per

experimental condition (Silva et al., 2006).
Scanning electron microscopy (SEM)

HCs T. cruzi-infected or non-infected were treated for 72 h

with the compounds at concentrations corresponding to the IC50

in single treatment and in combination (using the ratio 1:4 [Bz:

AMD]). Then, they were fixed with 2.5% glutaraldehyde in 0.1 M

Na-cacodylate buffer (pH 7.2) for 40 min at 25°C and postfixed

with 1% OsO4, 0.8% potassium ferricyanide and 2.5 mM CaCl2
in the same buffer for 20 min at 25°C. The cells were dehydrated

in an ascending ethanol series and dried by the critical point

method with CO2, mounted on aluminum stubs, coated with an

approximately 20 nm thick gold layer in a Sputter Coater 108

(Cressington Scientific Instruments) and examined on a Jeol

JSM6390LV scanning electron microscope™ (Jeol, Tokyo,

Japan) located in the Rudolf Barth Electron Microscopy

Platform (Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, RJ,

Brazil). Alternatively, the monolayer was gently scraped off with

adhesive tape after the critical point method with CO2 as

reported by de Lima et al., 2015.
Transmission electron microscopy (TEM)

BT of T. cruzi and infected HCs were treated for 24 and 72 h,

respectively, with the compounds at concentrations corresponding
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to the IC50 in monotreatment or in combination (using the ratio

1:4 [Bz:AMD]). Then, the cells were fixed and postfixed, as

mentioned for the SEM analysis. The cells were dehydrated in

ascending acetone and embedded in Polybed 812 resin™.

Ultrathin sections were stained with uranyl acetate and lead

citrate and examined with a JEOL 1200 EX transmission

electron microscope™ (Jeol, Tokyo, Japan) located at the Centro

Nacional de Biologia Estrutural e Bioimagem (CENABIO) at the

Universidade Federal do Rio de Janeiro (UFRJ, Rio de

Janeiro, Brazil).
Statistical analysis

The obtained results are expressed as the mean ± SEM for

each group from at least three independent experiments. The

normality of the distribution of the variables was tested with

Shapiro–Wilk test. Between-group comparisons were made

using one-way ANOVA followed by Tukey’s post-hoc test,

Kruskal-Wallis test followed by Dunn’s post hoc test

or Student ’s t-test (GraphPad InStat 8.0, GraphPad

Software Inc. ™, La Jolla, USA). Values of p<0.05 were

considered significant
Ethics

All experimental protocols using animals to settle primary

cardiac cell culture and to maintain and obtain T. cruzi blood

forms were performed in accordance with Brazilian Law 11.794/

2008 and regulations of the National Council of Animal

Experimentation Control under license L038/2018 from the

Ethics Committee for Animal Use of the Oswaldo Cruz

Institute (CEUA/IOC).
FIGURE 1

Experimental design of the treatment with Bz, AMD or their combination of T. cruzi-infected mouse embryo heart cells (HCs). Cell cultures
were exposed to BT of T. cruzi for 24 h and then washed to remove noninternalized parasites. Treatment started at 72 hpi and was performed
for 24, 48 and 72 h (gray line). Treatment for 72 h was defined for the combined therapy assays. At this time (144 hpi), HCs T. cruzi-infected (Tc)
or non-infected (NI) were treated with the compounds at concentrations corresponding to the IC50/72 h in monotreatment (BzMT and AMDMT)
and in combination at a ratio of 1:4 (Bz:AMDComb). The illustration is created with Biorender.com.
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Results

The additive interaction of Bz and AMD
against the BT of T. cruzi and the
ultrastructural analysis of the parasite
phenotypic alterations caused
by treatment

The trypanocidal activity of BzMT was significantly higher

than that of AMDMT against the BT of T. cruzi, as assessed by

IC50/24 h values (8.82 ± 1.08 mM vs. 13.40 ± 1.26 mM, p=0.02).

From these results, the concentrations of Bz and AMD were

defined for the combined treatment assays (5:0, 4:1, 3:2, 2:3 and

1:4) using the fixed-ratio method (Fivelman et al., 2004). The

pharmacological interaction of Bz and AMD on BT was

classified as additive (no interaction) because the mean ƩFIC
value was 1.43. All proportions tested were also classified as

additive, with the best ratio of 1:4 (one part of Bz to four parts of

AMD) with ƩFIC = 1.24 (Bz:AMDComb [Bz: IC50/24 h= 3.94;

AMD: IC50/24 h= 15.00]) (Figure 2).

TEM was used to evaluate the ultrastructural phenotype of

treated BT (Figure 3). Parasites treated with the three treatment

regimens exhibited similar morphological changes, including

vacuolization and disorganization of the cytoplasm

(Figures 3D–I). However, in AMDMT (Figures 3F, G) and Bz:

AMDComb(Figures 3H, I), the presence of lipid bodies was

extensively observed.
The cytotoxic effect of Bz and AMD on
HCs and its additive trypanocidal effect
on the intracellular forms of T. cruzi

To evaluate the trypanocidal effect of the combination Bz +

AMD on the intracellular amastigote form of T. cruzi as well as a

possible reversal of damage to the cytoskeleton of infected cells,

primary cultures of HCs were used. To validate the

concentrations of Bz and AMD tested, the viability of

uninfected and treated HCs was evaluated using the
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PrestoBlue reagent. The viability of HCs in the BzMT group

ranged from 97.2 to 102.3%, while for AMDMT, the variation was

80.1-93.0%. However, all concentrations tested were considered

nontoxic according to ISO 10993-5 (2009) (Figure 4).

First, the IC50 of the infection index (II) for each drug in

monotreatment was calculated after 24, 48 and 72 h of treatment

(Table 1). After 24 and 48 h of treatment, no significant

difference was observed in the trypanocidal activity between

BzMT and AMDMT (p>0.05). However, after 72 h of treatment,

AMDMT was more effective than BzMT in reducing the infection

index (p=0.002) (Figure 5). The trypanocidal effect of each

isolated compound was time-dependent, with the treatment of

72 h presenting the lowest IC50 values. Therefore, 72 h of

treatment was set for the subsequent assays of combination.

The pharmacological interaction of Bz and AMD on

intracellular forms of T. cruzi was classified as additive (ƩFIC =

1.13). All tested proportions were also classified as additive, with the

best ratio of 1:4 (one part of Bz to four parts of AMD) with ƩFIC =

0.68 (Bz:AMDComb [Bz: IC50/24 h= 1.3 mM; AMD: IC50/24 h= 2.5

mM]) (Figure 6).
The ultrastructural analysis of
intracellular parasites in HCs and the
phenotypical alterations caused by Bz
and AMD treatment

TEM was also employed to evaluate the ultrastructural

phenotype of intracellular parasites in HCs (Figure 7).

Parasites treated with the three treatment regimens exhibited

similar morphological changes, including the accumulation of

lipid bodies and the formation of vacuoles in the cytoplasm

(Figures 7B–F). Nonetheless, only in AMDMT (Figure 7D) and

Bz:AMDComb (Figure 7F) was the presence of vesicles in the

flagellum and flagellar pocket detected.

To visualize intracellular parasites by SEM, some of the

samples of T. cruzi-infected HCs had their plasma membrane

mechanically removed. No morphological differences were

observed between untreated parasites (Figure 8A) and the
BA

FIGURE 2

Effect of the combination Bz + AMD on BT forms of T. cruzi (Y strain) after 24 h of treatment, demonstrating the addictive interaction (0.5 <
SFICs ≤ 4.0). (A) Table showing the mean SFICs of the interaction at the drug ratios tested; (B) Isobologram plotted with the FIC of AMD and Bz
on the abscissa and the ordinate, respectively.
frontiersin.org

https://doi.org/10.3389/fcimb.2022.975931
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Barbosa et al. 10.3389/fcimb.2022.975931
FIGURE 4

Viability of uninfected and treated HCs after 72 h of treatment with Bz, AMD or their combination, demonstrating the non-cytotoxicity of all
treatment regimens. The black bar corresponds to the control condition (untreated); dark gray bars correspond to Bz and light gray bars to
AMD, and the dotted bars correspond to the combined treatments. The red dotted line highlights 80% viability. (One-way ANOVA followed by
Tukey’s post-hoc test).
FIGURE 3

Transmission electron microscopy of T. cruzi bloodstream trypomastigotes treated for 24 h with Bz, AMD or their combination, showing the
predominance of the phenotype generated by AMD in the combination Bz + AMD. (A–C) Untreated parasites exhibiting organelles with typical
morphology; (D, E) BzMT (IC50/24 h = 8.82 mM); (F, G) AMDMT (IC50/24 h = 13.40 mM) and (H, I) Bz:AMDComb (Bz: IC50/24 h = 3.94 mM; AMD:
IC50/24 h = 15.0 mM). Black arrows indicate vacuolization and disorganization of the cytoplasm; arrowhead indicates disorganization of the
kinetoplast. N, nucleus; K, kinetoplast; F, flagellum; LB, lipid bodies.
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BzMT group (Figure 8B). However, in AMDMT- (Figure 8C) and

Bz:AMDComb-treated T. cruzi-infected HCs, dilatation of the

flagellar pocket was detected (Figures 8D, E).
The reversal of damage to the
cytoskeleton caused by T. cruzi infection
generated by Bz and AMD treatment

Morphological analysis of T. cruzi-infected and treated HCs

was also performed by SEM. Uninfected cells showed numerous

projections, similar to filopodia, stretching out over the cell

surface (Figures 9A, B). On the other hand, HCs infected with T.

cruzi (144 hpi) showed numerous apoptotic body-like vesicles

and areas with the absence of cytoplasmic projections

(Figures 9C, D). After 72 h, in both groups, AMDMT

(Figures 9E, F) and BzMT (Figures 9G, H), the integrity of

filopodia was partially reversed, especially in areas with a

reduced number of intracellular forms. However, AMDMT was

less effective than BzMT in reversing the deterioration of the

cytoarchitecture of infected HCs. Treatment with AMD

maintained the presence of apoptotic body-like vesicles and

pronounced cytoplasmic retraction (Figures 9E, F). In Bz:

AMDComb(Figures 9I, J) the predominance of the phenotype

generated by BzMT was evidenced, with no structural changes.

To investigate the effect of the combination Bz + AMD on

the recovery of the cytoskeleton of T. cruzi-infected HCs, F-actin

immunostaining was performed 72 h after the treatment

(Figure 10). Disruption of myofibrils was observed after 144

hpi, while remodeling of the cytoskeleton was observed in all

infected and treated groups (BzMT, AMDMT and Bz:AMDComb),

as shown by the myofibril architecture with an actin polygonal

configuration interconnected by actin filaments such as an actin

belt and an actin belt around the cell’s nucleus (Figure 10).

Furthermore, the percentage of cells containing myofibrils

and actin polygonal configuration was calculated and is shown

in Table 2. Our data demonstrated that in both BzMT and Bz:

AMDComb, there was an increase in the percentage of cells

containing myofibrils; however, this increase was not

significant compared to infected and untreated HCs (cells

containing myofibrils [%] =Tc: 0.89; BzMT: 4.16 and Bz:
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AMDComb: 2.67; p>0.05). Accordingly, all three treatments

increased the percentage of cells containing the actin

polygonal configuration. However, this was only significant in

BzMT and Bz:AMDComb (cells containing myofibrils [%] =Tc:

0.89; BzMT: 29.33 and Bz:AMDComb: 27.25; p <0.05).
Discussion

AMD is recognized by the US Food and Drug

Administration (FDA) as a type III antiarrhythmic drug,

according to the Vaughan Williams classification (Benaim

et al., 2021). The repurposing of AMD was first thought to be

an antifungal drug alternative (Courchesne, 2002). Then, the

efficacy of AMD and its derivatives against the pathogenic

trypanosomatids Trypanosoma brucei, T. cruzi and Leishmania

spp. was demonstrated (Benaim et al., 2006; Serrano-Martıń

et al., 2009). In this study, we analyze the effects of the

combination Bz + AMD, drugs with different mechanisms of

action and pharmacokinetic profiles (Benaim et al., 2006;

Wilkinson et al., 2011).

The activity of AMD on amastigotes of T. cruzi is related to

the homeostatic disruption of Ca2+ and blockage of

oxidosqualene cyclase activity, with this drug classified as an

ergosterol biosynthesis inhibitor (EBI) (Benaim et al., 2006). On

the other hand, Bz is a prodrug that requires activation to exert

cytotoxic action. In trypanosomatids, this process involves

reduction of the nitro group catalyzed by nitroreductases,

which generate metabolites that interact with a wide range of

biomolecules, especially DNA and thiols (Polak and Richle,

1978; Dıáz de Toranzo et al., 1988; Wilkinson et al., 2011). In

trypanosomatids , the nitro reduction mediated by

nitroreductases does not involve oxygen and does not generate

a significant level of oxygen consumption and free radical

production. In contrast, in mammalian systems, Bz induces

the production of reactive oxygen species (Wilkinson et al.,

2011). Therefore, we hypothesized that the combination Bz +

AMD could improve the efficacy of the etiologic treatment,

especially in the chronic phase of CD, since these drugs are

already approved for use in chronic patients (PCDT

Chagas, 2018).

The combination of Bz and EBIs has been extensively

investigated to improve their effectiveness for CD treatment.

The combination of Bz with itraconazole, posaconazole,

ketoconazole or fosravuconazole leads to a decrease in

parasitemia and an increase in survival in T. cruzi-infected

mice (Assıŕia Fontes Martins et al., 2015; Echeverrıá et al.,

2020; da Araújo et al., 2000; Diniz et al., 2018). Moreover, the

carvedilol, a beta-blocker widely used to treat cardiovascular

diseases, such as AMD, also showed trypanocidal activity in both

in vitro and in vivo, impairing the survival of trypomastigotes

and reducing the whole-body parasite burden peak in infected

mice (Rivero et al., 2021). In addition, the in vitro combination
TABLE 1 Trypanocidal effect of Bz and AMD in monotreatment on
the intracellular forms of T. cruzi-infected HCs.

IC50 II (µM)

Treatment 24 h 48 h 72 h

BzMT >20 15.32a ± 6.86b 5.37 ± 0.30

AMDMT >10 7.36 ± 2.35 2.48 ± 0.23*
*: different from BzMT; p range: *: p<0.05; a: mean; b: standard deviation
The obtained results are expressed as the IC50 of the infection index (II), calculated after
24, 48 and 72 h of treatment.
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FIGURE 5

Trypanocidal effect of Bz and AMD in monotreatment on intracellular forms of T. cruzi-infected HCs, after 72 h of treatment, evidencing that
AMD was more effective in eliminating intracellular parasites than Bz. Representative photomicrograph of infected HCs fixed and stained with
Diff-Quick Staining: (A, B) Untreated cells (Tc); Cells treated with (C) 5 µM Bz; (E) 10 µM Bz; (G) 20 µM Bz; (D) 2.5 µM AMD; (F) 5 µM AMD; (H)
10 µM AMD; (I) infection index and (J) number of trypomastigotes in the supernatants. The black bar corresponds to the control condition
(infected and untreated; dark and light gray bars correspond to Bz and AMD, respectively). Black arrows indicate intracellular parasites. All
concentrations were compared to the control. p range: * #: p < 0.05; ##: p < 0.01; ***: p < 0.001; ****: p < 0.0001. (One-way ANOVA followed
by Tukey’s post-hoc test).
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of AMD with itraconazole and posaconazole also cooperatively

reduced infection rates and the multiplication of intracellular

parasites (Benaim et al., 2006; Sass et al., 2019). However,

Lourenço et al. (2018) failed to show improvements in the

trypanocidal effect of Bz combined with AMD against

epimastigotes of T. cruzi in comparison with Bz single treatment.

To our knowledge, this is the first study investigating the

pharmacological interaction between Bz and AMD on the

infective forms of T. cruzi blood trypomastigotes and

intracellular forms. Our results reveal that the combination
Frontiers in Cellular and Infection Microbiology 09
Bz/AMD is classified as an additive, indicating that there is no

loss of the trypanocidal action of each compound when they are

combined. Besides, even though the combination was not

synergistic it was observed a reduction in the inhibitory

concentration values of substances when combined. In

addition, it was also noted that in both infective forms of T.

cruzi, the ratio 1:4 for Bz:AMDComb was the closest to the

synergistic effect (∑FIC ≤ 0.5) (Odds, 2003).

Furthermore, the AMDMT was more effective in eliminating

intracellular parasites than BzMT. This result could be explained
BA

FIGURE 6

Effect of the combination Bz + AMD on intracellular forms of T. cruzi, after 72 h of treatment, demonstrating the addictive interaction (0.5 <
SFICs ≤ 4.0). (A) Table showing the mean SFICs of the interaction at the drug ratios tested; (B) Isobologram plotted with the FIC of AMD and Bz
on the abscissa and the ordinate, respectively.
FIGURE 7

Transmission electron microscopy of T. cruzi intracellular forms treated for 72 h with Bz, AMD or their combination, showing the predominance
of the phenotype generated by AMD in the combination Bz + AMD. (A) Untreated parasites exhibiting organelles with typical morphology; (B) Bz
(IC50/72 h = 5.4 mM); (C, D) AMD (IC50/72 h = 2.5 mM) and (E, F) Bz:AMD (Bz: IC50/72 h = 1.3 mM; AMD: IC50/72 h = 2.5 mM). Black thin arrows
indicate the presence of vesicles in the flagellum and flagellar pocket; black arrows indicate accumulation of lipid bodies; arrow heads indicate
vacuolization and disorganization of the cytoplasm. N, nucleus; K, kinetoplast; F, flagellum.
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by the high susceptibility of the amastigotes to EBIs, which does

not seem to be related to a higher sensitivity of the target

enzymes but to a smaller pool of sterols in this intracellular

stage of T. cruzi (Liendo et al., 1999; Urbina, 2001). In addition,

the high lipophilicity of AMD can also favor the elimination of

intracellular forms (Debbas et al., 1983; Madigan et al., 2019). Bz

is more hydrophilic, and this chemical property is considered

one of the reasons for its decreased curative effectiveness for

chronic CD (Urbina, 2010; Molina et al., 2014).

We also investigated the impact of the combined treatment

on the cytoarchitectural recovery of infected HCs. It has been

widely reported that in HCs, T. cruzi (Y strain) infection induces

a decrease in the expression and structural disorganization of

cytoskeleton proteins, such as F-actin, a-actinin, vinculin, talin
and paxillin, after 72 hpi (Melo et al., 2004; Melo et al., 2006;

Melo et al., 2019). Furthermore, the microfilament destruction

caused by the infection is one of the major factors contributing

to cardiac arrhythmias due to the loss of transmission of the

contractility force between cardiomyocytes (Pereira et al., 1993;

Silva et al., 2006; Adesse et al., 2011). Analyzing the F-actin

labeling of infected HCs, we found that Bz:AMDCombled to a

phenotype similar to the BzMT, such as (i) formation of actin

polygons, (ii) partial maintenance of the integrity of the striatum
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characteristic of the sarcomeric organization and (iii)

perinuclear marking of F-actin. The formation of polygonal

structures formed by short actin filaments connected to

nucleation centers has been extensively documented as

characteristic of the reorganization process of this protein,

being a crucial step in myofibril structure recovery and the

contractile capacity of cardiomyocytes (Lin et al., 1989; Silva

et al., 2006; Adesse et al., 2011). The polymerization of F-actin

begins with the nucleation of protein monomers, which is

mainly regulated by the actin-related protein complex (ARP).

This ARP also allows lateral binding between actin filaments,

generating a branched network with a polygonal aspect. The

formation of this microfilament network allows the association

of the cytoskeleton with the plasma membrane, forming

filopodia and lamellipodia on the cell surface (Alberts et al.,

2002). Thus, our results suggest that the structural

disorganization of F-actin may be related to the absence of

filopodia in infected and untreated HCs (144 hpi). Therefore, as

observed with the F-actin labeling assays, the SEM analysis

revealed that Bz:AMDComb led to a predominance of the

phenotype generated by BzMT with partial maintenance of the

integrity of long and numerous filopodia and of cytoplasmatic

projections. We suggest through both analyses that
FIGURE 8

Scanning electron microscopy of T. cruzi intracellular forms treated for 72 h with Bz, AMD or their combination, showing the predominance of
the phenotype generated by AMD in the combination Bz + AMD. (A) Untreated; (B) BzMT (IC50/72 h = 5.4 mM); AMDMT (IC50/72 h = 2.5 mM) and
(D, E) Bz:AMDComb (Bz: IC50/72 h = 1.3 mM; AMD: IC50/72 h = 2.5 mM). Parasites were digitally colored in red. Black thin arrows indicate dilatation
of the flagellar pocket.
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FIGURE 9

Scanning electron microscopy of T. cruzi-infected HCs treated for 72 h with Bz, AMD or their combination, demonstrating the predominance of the
phenotype generated by Bz in the combination Bz + AMD. (A, B) Uninfected cells (NI); (C, D) Infected and untreated cells (Tc); (E, F) AMDMT (IC50/72 h
= 2.5 mM); (G, H) BzMT (IC50/72 h = 5.4 mM); (I, J) Bz:AMDComb (Bz: IC50/72 h = 1.3 mM; AMD: IC50/72 h = 2.5 mM). Parasites were digitally colored in red.
Black thin arrows indicate cytoplasmic projections, similar to filopodia; arrow heads indicate cytoplasmic retraction; black arrows indicate apoptotic
body-like vesicles, and asterisk shows surface protrusions compatible in size with the presence of intracellular forms.
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TABLE 2 Quantification of cytoskeletal remodeling in T. cruzi-infected HCs treated for 72 h with Bz and AMD in monotreatment or in combination.

(%) Cell containing NI Tc BzMT AMDMT Bz:AMDComb

Myofibrils 70.60 ± 14.81a 0.89 ± 2.52**** 4.16 ± 12.50**** 1.41 ± 4.23**** 2.67 ± 5.71****

Actin polygons 0.00 ± 0.00 0.89 ± 2.52 29.33 ± 25.52** ## 14.11 ± 17.08 27.25 ± 26.93** ##
Frontiers in Cellular and Infection
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HCs: uninfected (NI); infected and untreated (Tc); infected and treated with Bz (IC50/72 h = 5.4 mM); infected and treated with AMD (IC50/72 h = 2.5 mM) and infected and treated with Bz
plus AMD (Bz: IC50/72 h = 1.3 mM; AMD: IC50/72 h = 2.5 mM). a: mean ± standard deviation. #: different from Tc; *: different from NI; p range: ** ##: p < 0.01; ****: p < 0.0001.
FIGURE 10

Cytoskeletal remodeling in T. cruzi-infected HCs treated for 72 h with Bz, AMD or their combination, demonstrating the predominance of the
phenotype generated by Bz in the combination Bz + AMD. Actin filaments and DNA were detected by phalloidin–FITC and DAPI, respectively.
(A) Myofibrils in uninfected cells (NI); (B) Myofibril disruption in untreated infected cells (Tc); (C, D) AMDMT (IC50/72 h = 2.5 mM); (E, F) BzMT (IC50/
72 h = 5.4 mM); (G–I) Bz:AMDComb (Bz: IC50/72 h = 1.3 mM; AMD: IC50/72 h = 2.5 mM). Of note, the rearrangement of actin structure in HCs is
related to the reduction in intracellular parasite infection. Arrow heads indicate myofibrils; arrows indicate an actin polygonal configuration, and
a thin arrow indicates an actin belt around the cell nucleus.
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the morphological recovery of the infected HCs treated

with Bz:AMDCombis associated with the elimination of

intracellular parasitism.

Assessing the morphology of BT and intracellular parasites

by electron microscopy, we also observed the predominance of

the phenotype generated in AMDMT in the Bz:AMDComb group,

such as the formation of cytoplasmic lipid bodies and dilation in

the flagellar pocket. These morphological changes have already

been described in amastigotes and epimastigotes treated with

AMD (Adesse et al., 2011; Veiga-Santos et al., 2012). Taken

together, these results suggest that in the Bz:AMDCombmode of

action of AMD, it was not disturbed by the presence of Bz.

In conclusion, this study demonstrated that the combination

of Bz and AMD did not interfere with the trypanocidal efficacy

of each drug alone against the relevant parasite forms for

mammalian host infection. Moreover, although the

combination with Bz did not increase the trypanocidal effect

of AMD, the combined treatment of T. cruzi-infected HCs seems

to exert a cardioprotective effect because it was more effective in

recovering the damage to the host cell cytoskeleton. Further

studies are under way to investigate the effect of the Bz/AMD

combination in experimental CCC.
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