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A B S T R A C T   

Plant oils are sources of metabolites that have enormous potential for industrial applications. Herein, the 
chemical profile and in vitro antimicrobial activity of the essential oil (EO) from the leaves of Guatteria citriodora 
Ducke (Annonaceae) have been investigated for the first time. The composition of the hydrodistilled EO was 
analyzed using gas chromatography-mass spectrometry (GC-MS), which permitted the identification of 
oxygenated monoterpenes as the most highly representative class, and included citronellal (40.99%) and 
citronellol (14.6%) as the main compounds. The antimicrobial activity of G. citriodora EO (GcEO) was evaluated 
against pathogenic bacteria and phytopathogenic fungi. The experimental design was completely randomized 
(CRD), and used doses for each microorganism. Gram-positive strains were the most sensitive with a minimum 
inhibitory concentration (MIC) of 5.0 μL mL− 1, while Gram-negative strains were 10.0 μL mL− 1. The most potent 
antifungal activity was against Alternaria alternata (MIC of 1.25 μL mL− 1). In addition, it fully inhibited A. 
alternata conidia germination at the minimum inhibitory concentration. The nucleic acid and soluble protein 
contents were significantly released from the conidia of A. alternata after treatment with GcEO. Using SEM 
(scanning electron microscopy), morphological alterations were observed in the conidia, which indicates that a 
lesion in the cytoplasmic membrane is one of its mechanisms of action. Overall, these results indicate that GcEO 
is an antimicrobial agent with potential applications in the agriculture, food, and pharmaceutical industries.   

1. Introduction 

The Amazon region has great prominence due to it housing the 
largest area of rainforest in the world. In this ecosystem, about 11% of 
the world’s tree species are found (Cardoso et al., 2017), and it is esti-
mated that there are around 50 000 vascular plant species (Hubbell 
et al., 2008). A recent study on the number of trees on Earth indicates the 
existence of ~73 000 tree species (Gatti et al., 2022), while the survey of 

the number of trees in the Amazon region suggests ~16 000 Amazonian 
tree species (Ter Steege et al., 2016). Given this scenario, the rational 
and sustainable use of tropical forest products (e.g., leaves, nuts, seeds, 
bark, resins, and oils) can potentially contribute to the preservation of 
forests and resources, in addition to promoting a source of income for 
the native population, which is especially important for poor rural 
communities (Nascimento et al., 2019; Mello et al., 2020). Therefore, 
studies have been conducted to evaluate the active ingredients found in 
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Amazon biodiversity, as well as their use in pharmacology, cosmetics, 
and agriculture. Among the forest products, essential oils (EOs) have 
aroused great scientific interest since they encompass volatile mole-
cules, which have aromatic features of biotechnological and industrial 
interest (Ricardo et al., 2017; Silva et al., 2018; Souza et al., 2020). 

EOs are characterized as complex mixtures of volatile substances, 
which are generally lipophilic and water-insoluble, and are mainly 
produced in flowers and leaves, but are also present in stems and bark, 
though to a lesser extent in seeds and roots ( Morone-Fortunato et al., 
2010; Calvo-Irabien, 2018). Molecules of EOs are biosynthesized, 
accumulated and secreted in specialized anatomical structures such as 
secretory idioblasts, canals, cavities/ducts, or glandular trichomes 
(Pickard, 2008; Tiwari, 2016). The majority of compounds normally 
found in Eos, mainly originate from three biosynthetic pathways, (1) the 
plastidal 2-C-methylerythritol-4-phosphate (MEP) pathway, which leads 
to mono- and diterpenes, (2) the mevalonic acid (MVA) pathway, which 
acts in the cytosol producing sesquiterpenes, and (3) the shikimate 
pathway that leads to benzenoid derivatives (Bergman and Phillips, 
2020; Rehman et al., 2016). 

The biological properties of EOs have been known for a long time. 
Previous reports have shown the biotechnological potential of EOs, 
which is due their wide-spectrum of biological activities, and the fact 
that they are eco-friendly (Issa et al., 2020; Xiang et al., 2020; Yilmaz, 
2020). Several biological activities of EOs, such as insecticidal, anti-
parasitic, antiviral, antibacterial and antifungal activity (Battisti et al., 
2021; Sobrinho et al., 2021; Vega Gomez et al., 2021), have been shown 
in the literature. In vitro studies have shown that essential oils are active 
against bacteria and fungi and act mainly by disrupting cell membrane 
integrity by inducing an increase in the permeability of the membrane 
and the leakage of genetic material (Al-Shuneigat et al., 2020; Silva 
et al., 2019; Xu et al., 2018; Zhang et al., 2020). 

Various EOs from plants that are endemic to the Amazon, including 
species of Burseraceae, Lauraceae, Cyperaceae, Piperaceae and Anno-
naceae (Maia and Andrade, 2009) have already been studied. Guatteria 
citriodora (Annonaceae), popularly known as ‘laranjinha’, is distributed 
in the Amazon Rainforest, and is mainly found in Brazil, Bolivia, 
Colombia, Ecuador, Peru, Suriname and Venezuela (GBIF, 2019). There 
are few reports of the popular use of this plant; however, communities in 
the interior of the Amazon often use its leaves to make a relaxing tea. 
Previous phytochemical investigation of this species has described it as 
having a rich isoquinoline alkaloid content with antiplasmodial and 
antibacterial activities (Rabelo et al., 2014) but, despite this, there are 
no published data on the chemical composition of the EO of G. citriodora. 
Nevertheless, the phytochemical composition of EOs of some species 
belonging to the genus Guatteria has revealed certain bioactive proper-
ties. Guatteria EOs have shown a predominance of oxygenated sesqui-
terpenoids with biological activities associated to anticancer (Branches 
et al., 2019; Costa et al., 2020), antileishmanial (Siqueira et al., 2015) 
and antimicrobial (Alcântara et al., 2017) properties. 

Another important aspect, highlighted here, is how the selected 
molecule acts on a membrane-active mechanism to strengthen its effects 
against microorganisms. In this study, the results obtained are discussed 
following the current context of our knowledge regarding the effects of 
essential oils in relation to morphological alterations to fungal cell 
structures, as published in Pimentel et al. (2018) and Souza et al. (2020). 
Herein, it was hypothesized that GcEO induces the leakage of cellular 
components of microorganisms (fungi), which may lead to structural 
and/or functional alterations. As such, the aim of this study was to 
investigate the chemical composition and the antimicrobial potential of 
essential oil from leaves of G. citriodora, as well as identify the possible 
antifungal mechanism associated with the morphophysiological 
alterations. 

2. Materials and methods 

2.1. Information on the origin of the material 

The leaves from thirty matrices of G. citriodora were randomly 
collected in 2019 and 2020 from the Adolpho Ducke Forest Reserve (2◦

48′ 72′′ S, 59◦ 53′ 32′′ W), Manaus, Amazonas, Brazil. Authentication of 
the plant species was carried out by INPA taxonomists via comparison 
with the original voucher (No. 14 570) deposited in the INPA Herbari-
um, in Manaus. The collection was performed during the morning (8 
am), in the month of March (mean rainfall ≅300 mm month− 1). The 
climate of Manaus is classified as type Af, hot and humid according to 
Köppen, with an annual average rainfall of 2420 mm and an annual 
mean temperature of 26.7 ◦C (Alvares et al., 2013). 

2.2. Extraction of the essential oil 

Leaves were air-dried (300 g) at room temperature (25 ± 2 ◦C) for 7 
days and then finely ground and subjected to hydrodistillation during 3 
h using a Clevenger-type apparatus. Water was removed from the EO by 
drying over anhydrous sodium sulfate, then kept in sealed amber vials 
and stored at 4 ◦C (Farahbakhsh et al., 2021) until GC− MS analysis (24 h 
later) and biological assays (72 h later). The essential oil yield was 
estimated on a dry weight basis as 1.74% (v/w). 

2.3. Essential oil analysis 

The analysis of the GcEO was performed on a gas chromatograph- 
mass spectrometer (Shimadzu QP2010 Ultra GC–MS, Kyoto, Japan) 
equipped with a HP-5MS capillary column (30 m x 0.25 mm; 0.25-μm 
film thickness). The GC–MS parameters were set as follows: injector 
temperature, 220 ◦C; column temperature, 60–240 ◦C at a rate of 3 ◦C 
min− 1; detector temperature, 250 ◦C; helium used as the carrier gas at a 
constant flow rate of 1 mL min− 1; ionization energy 70 eV; mass scan 
range of m/z 30–500. The injection was performed with an aliquot of 
1.0 μL of GcEO (0.5 mg mL− 1 in ethyl acetate) and was injected in the 
splitless mode. For the relative amount of each constituent of the EO, the 
normalized peak area was used to express the relative percentage of the 
oil constituents. Identification of chemical compounds was achieved by 
matching their mass spectra data to the NIST17 mass spectral library, 
with matches above 98% similarity together with the manual annotation 
of the fragments present in the mass spectra. Furthermore, the confir-
mation of the identification was performed via the calculation of the 
retention indexes (RI) according to the Van den Dool and Kratz equation 
(Van den Dool and Kratz, 1963) in comparison with a homologous series 
of linear hydrocarbons (C7-C30), and those reported in the literature 
(Adams, 2007; Babushok et al., 2011). 

2.4. Microorganisms 

The following microorganisms were used in the assays: Bacillus 
subtilis (ATCC 6633), Staphylococcus aureus (ATCC 25 923), Klebsiella 
pneumoniae (ATCC 10 031), and Salmonella enterica (ATCC 10 708). 
These strains were donated by the laboratory of plant toxins at the 
Department of Biochemistry and Molecular Biology of the Federal Uni-
versity of Ceará (UFC), where the original cultures are maintained. 

The plant pathogenic fungi, Alternaria alternata (INPA 2617), 
Aspergillus flavus (INPA 3687), Fusarium oxysporum (INPA 2752) and 
Colletotrichum guaranicola (INPA 1343), came from the Microbiological 
Collection at the National Institute for Amazonian Research (MCTI- 
INPA), Amazonas, Brazil. 

Both sets of species were cultivated following the instructions of the 
suppliers. 
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2.5. Antibacterial and antifungal assays 

The antibacterial tests on B. subtilis, S. aureus, K. pneumoniae and S. 
enterica were performed in 96-well microtiter plates. Aliquots of 100 μL 
of Mueller Hinton broth containing the bacterial cells (approximately 5 
×105 CFU/mL) were incubated in the dark, at 37 ◦C, with serially 
diluted GcEO (dissolved in 0.1% (v/v) Tween-80) at final concentrations 
of 0.312–40 μL mL− 1, equivalent to 296 – 38 000 ppm. Negative and 
positive controls for growth inhibition were composed of 0.1% (v/v) 
Tween-80 and stock solutions of 1 mg mL− 1 norfloxacin, respectively. 
Bacterial growth was investigated by means of spectrophotometric 
readings with absorbance at 630 nm (A630) in an automated microplate 
reader (Epoch, BioTek Instruments, Inc., USA). 

Fungi cultivated for 14 days were the source of the conidia. The 
suspensions were obtained and adjusted to 2 × 105 conidia mL− 1. 
Subsequently, 10 μL of conidial suspension was incubated with 90 μL of 
yeast potato dextrose broth in the microtiter plate, for 16 h at 26 ± 2 ◦C. 
GcEO (100 μL) was added in serial dilution (0.312–40 μL mL− 1 final 
concentrations, equivalent to 296 – 38 000 ppm) to each well and the 
plate was incubated at 26 ± 2 ◦C for 48 h. Negative and positive assays 
for growth inhibition consisted of 0.1% (v/v) Tween-80 and stock so-
lutions of 2 mg mL− 1 mancozeb, respectively. The A630 was measured on 
an automated microplate reader (Elx800, Biotek) to observe antifungal 
activity. 

2.6. Determination of minimal inhibitory concentration (MIC) and 
minimal bactericidal or fungicidal concentration (MBC/MFC) 

2,3–5-triphenyl tetrazolium chloride (TTC, 1%) solution (10 μL), 
which indicates the activity of dehydrogenase enzymes involved in the 
process of cellular respiration, was added to each well of the microtiter 
plate, which was then incubated at 37 ◦C for 1 h. The MIC was defined as 
the lowest concentration showing no color change (clear). The MBC/ 
MFC were determined by subculturing of 5 μL cultures on Mueller 
Hinton or potato dextrose agar at 26 ◦C for up to 48 h. The plates without 
any visible growth were marked as MBC/MFC. 

2.7. Determination of the 50% inhibitory concentration (IC50) and curve 
fitting 

The bacterial and fungi inhibition percentage was calculated using 
Eq. 1:   

The modeling of the percentage of inhibition and IC50 was fitted 
using the model of nonlinear regression proposed by Rautenbach et al. 
(2006) using Eq. 2: 

Y =
bottom + (top − bottom)

1 + 10[log(IC50 − x) × hill slope ] (2)  

where top is the Y-value at the top plateau (inhibition at high GcEO 
concentrations); bottom is the Y-value at the bottom plateau (response 
when GcEO is absent); hill slope is the slope of the curve, x represents the 
logarithm (10-base) of [GcEO]. The inhibition parameters were calcu-
lated using the GraphPad Prism 8.0 software (GraphPad Software, Inc., 
San Diego, CA). 

2.8. Conidial cultivation assay 

Conidia from Alternaria alternata were used to determine the effect of 
GcEO on conidial germination and antifungal mechanisms. In sterile 
glass depression slides, 5 μL of A. alternata conidia suspension (2 × 105 

conidia mL− 1) were incubated with 5 μL of GcEO at 0.625, 1.25 and 
2.5 μL mL− 1 final concentration, corresponding to 1/2 ×MIC, MIC and 
2 ×MIC values. The depression slides were placed in Petri dishes con-
taining wet filter paper at 26 ◦C ± 2 ◦C and maintained in the dark for 
16 h. Afterwards, the slides from each set were studied under a micro-
scope (Zeiss AxioLab A1). In the reference control, equal amounts of 
0.1% Tween-80 (v/v) were used as the negative reference, and the 
conidia were scored as germinated if the germ tube length was equal or 
superior to the length of the conidia. At least 50 conidia within each 
replicate were observed. The germination inhibition percentage was 
calculated according to the following formula: 

%germination inhibition =

[
(Gc − Gt)

Gc

]

× 100 

where Gc is the number of germinated conidia in negative control 
slides; Gt represents the number of germinated conidia in GcEO-treated 
slides. Three independent experiments were performed. 

2.9. Determination of release of cell constituents 

The leakage of cytoplasmic contents from Alternaria alternata was 
determined according to the method of Ma et al. (2018) with minor 
modifications. An aliquot of GcEO at 0.625, 1.25 and 2.5 μL mL− 1 final 
concentrations (in 0.1% Tween-80) was mixed with 2 mL of conidial 
suspensions (5 × 107 conidia mL− 1) prepared in 10 mM phosphate 
buffered saline (pH 7.4). The assays were conserved at 26 ◦C ± 2 ◦C for 
16 h. After incubation, the samples were centrifuged at 4000g for 
10 min at 4 ◦C. Aqueous phases were used for determining nucleic acid 
and protein contents after 0.22 µm filtration. Aliquots of 0.1% Tween-80 
(v/v) was used as the negative control. Leakage of nucleic acids was 
measured by detecting absorbance at 260 nm (A260). Bradford reagent 
with bovine serum albumin was used as the standard to quantify the 
release of protein (Bradford, 1976). Each experiment was performed in 
triplicate. 

2.10. Analysis of cellular morphology using scanning electron microscopy 
(SEM) 

An aliquot of 100 μL of A. alternata conidia suspension (2.5 × 105 

conidia mL− 1) was incubated with 100 μL of GcEO (1.25 μL mL− 1 final 
concentration, corresponding to MIC value) at 26 ◦C ± 2 ◦C for 16 h. 
Then, the conidia were recovered by centrifugation (5000g, 22 ◦C) for 
10 min and washed twice with PBS buffer. The conidia were fixed in 
glutaraldehyde at 2.5% in 0.05 M phosphate buffer, pH 7.4 for 24 h. 
Next, they were washed in the same buffer, post-fixed in 2% osmium 
tetroxide and dehydrated by immersing the material in an increasing 
stepwise series of ethyl alcohol (30% up to 100%). Next, the samples 
were critical-point-dried with CO2 and coated with gold for examination 
using SEM (LEO, 435 VP) operating at 20 kV at 1000 × magnification. 

2.11. Statistical analyses 

The experimental design was a completely randomized (CRD), and 

% inhibition = 100 −
[

100 × (A630 of treated well − Average of background A630)

(A630 of growth well − Average of background A630)

]

(1)   
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used the EO doses (independent variable) shown in Fig. 3 for each 
microorganism (% germination inhibitor, dependent variable) and Fig. 4 
(effects of GcEO on leakages of specific cell molecules, dependent var-
iable). All analyses of the samples were carried out in triplicate (with 
n = 3 or 4) and all results are expressed as mean estimative ± standard 
deviation and compared using an analysis of variance (ANOVA) fol-
lowed by Tukey’s post hoc tests using Graphpad Prism 8.0 software 

(Graphpad Software, Inc.). 

3. Results and discussion 

3.1. Chemical analysis 

Untargeted metabolomic investigation is the description of the 

Table 1 
Chemical composition of essential oil from Guatteria citriodora leaves extracted using the hydrodistillation method.  

Componentsa RI HP-5MS RI Lit. Molecular formula CAS number Relative area (%) Identification 

α-Pinene  936  939 C10H16 80–56–8 0.36 ± 0.02 RI, MS, BI 
β-Pinene  980  979 C10H16 127–91–3 0.97 ± 0.06 RI, MS, BI 
Sulcatone  990  985 C8H14O 110–93–0 0.05 ± 0.00 RI, MS, BI 
Myrcene  993  990 C10H16 123–35–3 0.36 ± 0.02 RI, MS, BI 
α-Phellandrene  1007  1002 C10H16 99–83–2 0.16 ± 0.01 RI, MS, BI 
ο-Cymene  1026  1026 C10H14 527–84–4 0.31 ± 0.02 RI, MS, BI 
Limonene  1030  1029 C10H16 138–86–3 0.41 ± 0.02 RI, MS, BI 
Bergamal  1054  1056 C9H16O 106–72–9 0.51 ± 0.02 RI, MS 
γ-Terpinene  1059  1059 C10H16 99–85–4 0.27 ± 0.01 RI, MS, BI 
Linalool  1103  1096 C10H18O 78–70–6 0.74 ± 0.06 RI, MS, BI 
cis-Rose oxide  1110  1108 C10H18O 4610–11–1 0.15 ± 0.01 RI, MS, BI 
trans-Rose oxide  1129  1125 C10H18O 5258–11–7 0.14 ± 0.01 RI, MS, BI 
Dihydrolinalool  1136  1135 C10H20O 18 479–51–1 0.47 ± 0.03 RI, MS, BI 
Isopulegol  1148  1149 C10H18O 121 468–66–4 2.91 ± 0.16 RI, MS, BI 
Citronellal  1153  1153 C10H18O 106–23–0 40.99 ± 2.60 RI, MS, BI 
Neoiso-isopulegol  1174  1171 C10H18O 21 290–09–5 0.13 ± 0.01 RI, MS, BI 
Myrtenal  1179  1195 C10H14O 564–94–3 0.06 ± 0.01 RI, MS, BI 
Terpinen-4-ol  1181  1177 C10H18O 562–74–3 0.05 ± 0.00 RI, MS, BI 
α-Terpineol  1194  1188 C10H18O 98–55–5 0.07 ± 0.01 RI, MS, BI 
Citronellol  1227  1225 C10H20O 106–22–9 14.61 ± 0.68 RI, MS, BI 
Neral  1241  1238 C10H16O 106–26–3 0.33 ± 0.01 RI, MS, BI 
Geraniol  1259  1252 C10H18O 106–24–1 0.81 ± 0.04 RI, MS, BI 
Methyl citronellate  1264  1261 C11H20O2 2270–60–2 0.22 ± 0.01 RI, MS 
Geranial  1274  1267 C10H16O 141–27–5 0.37 ± 0.00 RI, MS, BI 
Citronellyl formate  1278  1273 C11H20O2 105–85–1 0.06 ± 0.00 RI, MS, BI 
Bornyl acetate  1288  1285 C12H20O2 76–49–3 0.07 ± 0.01 RI, MS, BI 
Menthanyl acetate  1300  1300 C12H20O2 20 777–41–7 0.09 ± 0.01 RI, MS, BI 
γ-Pyronene  1338  1345 C10H16 514–95–4 0.09 ± 0.00 RI, MS 
α-Cubebene  1351  1351 C15H24 17 699–14–8 0.69 ± 0.03 RI, MS, BI 
Citronellyl acetate  1358  1352 C12H22O2 150–84–5 3.33 ± 0.16 RI, MS, BI 
Cyclosativene  1368  1371 C15H24 22 469–52–9 0.13 ± 0.03 RI, MS, BI 
α-Copaene  1378  1374 C15H24 3856–25–5 3.42 ± 0.16 RI, MS, BI 
Geranyl acetate  1387  1381 C12H20O2 105–87–3 0.11 ± 0.01 RI, MS, BI 
β-Cubebene  1391  1388 C15H24 13 744–15–5 0.35 ± 0.02 RI, MS, BI 
β-Elemene  1393  1390 C15H24 515–13–9 0.35 ± 0.01 RI, MS, BI 
β-Caryophyllene  1421  1419 C15H24 87–44–5 2.73 ± 0.12 RI, MS, BI 
γ-Elemeno  1438  1436 C15H24 29 873–99–2 1.34 ± 0.06 RI, MS, BI 
α-Guaiene  1440  1439 C15H24 3691–12–1 0.06 ± 0.01 RI, MS, BI 
α-Humulene  1454  1454 C15H24 6753–98–6 0.36 ± 0.01 RI, MS, BI 
Germacrene D  1482  1481 C15H24 23 986–74–5 0.73 ± 0.03 RI, MS, BI 
Cubebol  1517  1515 C15H26O 23 445–02–5 0.13 ± 0.01 RI, MS, BI 
δ-Cadinene  1525  1523 C15H24 483–76–1 0.29 ± 0.01 RI, MS, BI 
Elemol  1552  1549 C15H26O2 639–99–6 0.13 ± 0.01 RI, MS, BI 
Germacrene B  1558  1561 C15H24 15 423–57–1 0.46 ± 0.01 RI, MS, BI 
Spathulenol  1580  1578 C15H24O2 6750–60–3 0.84 ± 0.03 RI, MS, BI 
Caryophyllene oxide  1585  1583 C15H24O 1139–30–6 0.50 ± 0.02 RI, MS, BI 
Guaiol  1600  1600 C15H26O 489–86–1 0.26 ± 0.01 RI, MS, BI 
Rosifoliol  1610  1600 C15H26O 63 891–61–2 0.09 ± 0.01 RI, MS, BI 
Vulgarone B  1652  1651 C15H22O 64 180–68–3 0.07 ± 0.00 RI, MS, BI 
Bulnesol  1671  1671 C15H26O 22 451–73–6 0.38 ± 0.02 RI, MS, BI 
cis,cis-Farnesol  1698  1698 C15H26O 16 106–95–9 11.95 ± 0,55 RI, MS, BI 
2,3-Dihydrofarnesol  1699  1689 C15H28O 27 745–36–4 3.67 ± 0.19 RI, MS, BI 
Class composition         
Monoterpene hydrocarbons      2.84   
Oxygenated monoterpenes      66.36   
Sesquiterpene hydrocarbons      10.91   
Oxygenated sesquiterpenes      18.02   
Total identification %      98.13   

RI HP-5MS, retention index on the HP-5MS column relative to C8 - C24 n-alkanes. 
RI lit., Adams mass spectral-retention index library (Adams, 2007). 
RI, identification by comparison with RI HP-5MS with those described by Adams (2007). 
MS, identification by comparison with NIST 17 MS databases. 
BI, identification by comparison with Babushok’ s retention index (Babushok et al., 2011). 

a Compounds are listed in order of their elution from an HP-5MS column. 
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quantitation or/and detection of a large number of metabolites from one 
or more samples. This strategy, known as top-down or metabolite profile 
strategy, avoids the need for a preceding detailed hypothesis on a 
particular set of metabolites and, instead, analyzes the total metab-
olomic profile in a specific complex sample. This is of paramount 
importance, since phytochemical approaches need to address complex 
chemical matrices, and are a key tool to understanding the numerous 
biological activities observed for substances such as EOs. Untargeted 
GC− MS analysis of the GcEO allowed us to identify 52 compounds 
(Table 1). The GcEO contains a complex mixture mainly consisting of 
oxygenated monoterpenes (66.36%), along with oxygenated sesquiter-
penes (18.02%) and sesquiterpene hydrocarbons (10.91%) (Fig. 1). 

All identified compounds represent 98.13% of the total oil, with 
citronellal (40.99%), citronellol (14.61%) and farnesol (11.95%) as the 
major constituents. Other components, present in minor quantities, were 
2,3-dihydrofarnesol (3.67%), α-copaene (3.42%), citronellyl acetate 
(3.33%), isopulegol (2.91%), β-caryophyllene (2.73%). To the best of 
our knowledge, the metabolic profile of GcEO is new to the literature 
and the major constituents identified in this study are not commonly 
found in other species of Guatteria. 

On the other hand, spathulenol, germacrene D, germacrene B, car-
yophyllene oxide and β-pinene have been reported as being predomi-
nant in essential oils of the leaves of Guatteria (Costa et al., 2020; 
Siqueira et al., 2015; Palazzo et al., 2008). However, these metabolites, 
including β-pinene, germacrene D and B, spathulenol and caryophyllene 
oxide, are present in the GcEO, but in minor quantities. The metab-
olomic content in a plant’s essential oil reflects the genetic background 
of the species, and is affected by biotic and abiotic components of 
environment (Silva et al., 2021). 

3.2. Antibacterial properties of the GcEO 

In this study, the investigation of the GcEO demonstrated its capacity 
to inhibit Gram-positive (Bacillus subtilis and Staphylococcus aureus) and 
Gram-negative (Klebsiella pneumoniae and Salmonella enterica) bacteria. 
The GcEO inhibited the growth of each pathogen assayed with minimum 
inhibitory concentration (MIC) and minimal bactericidal concentration 
(MBC) values ranging from 5.0 to 20.0 μL mL− 1 (Table 2). The lowest 
MIC value was against B. subtilis and S. aureus (both 5.0 μL mL− 1), fol-
lowed by K. pneumoniae and Sa. enterica (both 10.0 μL mL− 1). Estimated 
IC50 values of the dose-response curve showed robust antibacterial ac-
tivities of GcEO against S. aureus (IC50 = 2.94 μL mL− 1) and B. subtilis 
(IC50 = 3.2 μL mL− 1), while the IC50 values were 5.74 and 7.15 μL mL− 1 

for Sa. enterica and K. pneumoniae, respectively (Fig. 2A and Table 2). 
However, the positive control reference (norfloxacin) was more efficient 
than the GcEO in all assayed bacteria. Antibacterial properties have been 
reported previously in other Guatteria EOs. The EO of G. punctata was 
shown to be active against Streptococcus mutans and Streptococcus pyo-
genes with an MIC of 4.68 μg mL− 1 (Bay et al., 2019). The EO from the 
leaves of G. australis exhibited a slight effect against Staphylococcus 
aureus and Escherichia coli (MIC 250 μg mL− 1). Alcântara et al. (2017) 
demonstrated that the G. blepharophylla EO exhibited activity against 

Streptococcus sanguinis, Staphylococcus aureus and Enterococcus faecalis, 
with MIC values of 0.02, 0.05 and 0.05 mg mL− 1, respectively. 
Regarding the GcEO, the antibacterial effect can be attributed to the 
dominant oxygenated monoterpenes, citronellal (40.99%) and citro-
nellol (14.61%), which have been reported to cause disruption in the 
permeability of cell membranes (Abril- Sánchez et al., 2019; Guimarães 
et al., 2019; Singh et al., 2016) In this study, Gram-negative bacteria 
were less sensitive to GcEO than Gram-positive bacteria. The presence of 
the lipopolysaccharide outer membrane of Gram-negative bacteria can 
hinder the interaction of antibacterial substances, and the cytoplasmic 
membrane offers more resistance to the pathogenic cell (Zhang et al., 
2021). 

3.3. Antifungal properties of the GcEO 

The inhibitory effect of the GcEO was evaluated against the plant 
pathogenic fungi A. alternata, As. flavus, F. oxysporum and C. guaranicola. 
The GcEO exhibited antifungal activity against four phytopathogens, 
with MIC and MFC values ranging from 1.25 to 10.0 μL mL− 1. The 
highest inhibitory activity was against A. alternaria with MIC and MFC 
values of 1.25 μL mL− 1, followed by As. flavus and F. oxysporum (both 
5.0 μL mL− 1), and C. guaranicola (10.0 μL mL− 1). IC50 values estimated 
by using a nonlinear function (Fig. 2B and Table 3) revealed the highest 
inhibitory effect against A. alternaria, with a value of 0.67 μL mL− 1, 
while the IC50 value of C. guaranicola was 5.1 μL mL− 1, which is a 7.6- 
fold difference between these IC50. 

There is no previous description of the effect of the GcEO on the 
vegetative growth of phytopathogenic fungi. Furthermore, Guatteria EOs 
remain unexplored in terms of their ability to inhibit these pathogens. 
However, Annonaceae EOs have already been explored from this point 
of view. Tegang et al. (2018) found promising antifungal activity against 
As. niger and F. oxysporium using Xylopia aethiopica EO and reported 
β-pinene as the main compound. Duguetia lanceolata EO showed a 
fungicidal effect against As. flavus in a dose-dependent manner (Ribeiro 
et al., 2020). 

In general, EOs are exceptional sources of biomolecules against 
phytopathogenic fungi, and have great potential in control strategies for 
fungal damage. A number of studies have reported the antifungal ac-
tivity of EOs, which include encapsulated EOs and purified molecules 
from EOs (Razola-Díaz et al., 2021). Recently, Al-Ansari et al. (2021) 
reported that EO extracted from Lavandula latifolia exhibited marked 
antifungal activity against Trichophyton mentagrophytes, F. oxysporum, 
Rhizoctonia solani and As. nidulans. The antifungal mechanism of EOs 
seems to involve the disturbance of cell membrane integrity, which leads 
to irreversible damage of the membrane and leakage of cell contents 
(Perumal et al., 2021; Souza et al., 2020). Since, among the fungi tested, 
A. Alternaria was the most sensitive to the GcEO, it was selected to 
evaluate the mode of action of the GcEO. 

3.4. Mode of action of the GcEO on A. Alternaria conidia 

Conidia are vital vehicles for reproduction, dispersal and survival of 

Table 2 
Antimicrobial activity of the GcEO against pathogenic bacteria.   

GcEO Norfloxacin* 

Strain MIC MBC IC50 (95% CI) R2 RMSE MIC MBC IC50 (95% CI) R2 RMSE 

B. subtilis  5.0  5.0 3.55 (3.20–4.01)  0.97  1.83  0.62  0.62 0.07 (0.06–0.08)  0.97  6.05 
S. aureus  5.0  10.0 2.94 (2.44–3.52)  0.95  7.79  0.62  0.62 0.11(0.09–0.13)  0.91  6.23 
K. pneumoniae  10.0  20.0 7.15 (6.04–8.48)  0.95  6.83  0.62  0.62 0.10 (0.09–0.11)  0.99  1.85 
S. enterica  10.0  20.0 5.74 (5.16–6.37)  0.98  4.78  0.62  0.62 0.06 (0.05–0.05)  0.93  3.82 

MIC (minimal inhibitory concentration) and MBC (minimal bactericidal concentration) were expressed in μL mL- 1. *Norfloxacin (1 mg mL- 1) was used as the positive 
control. 
IC50, concentration (μL mL− 1) that causes 50% inhibition of fungal growth. 95% CI, 95% confidence intervals, the values are considered significantly different when 
the 95% CI fails to overlap. R2, coefficient of determination. RMSE, root mean square error. 
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Fig. 1. Radial treemap of the chemical constituents of GcEO analyzed using GC–MS. The compound names are followed by the relative peak areas (%).  

Fig. 2. Representative dose-response curves of the antimicrobial activity of GcEO against pathogenic bacteria (A) and phytopathogenic fungi (B). Extra-long ticks 
(black for GcEO; green for norfloxacim and blue for mancozeb) on the x-axis represent the LogIC50 valor. Data are presented as the mean ± standard devia-
tion (n = 3). 
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fungi, and can cause substantial economic losses. There is a great de-
mand from the agro-food industry for the discovery of bioagents capable 
of preventing, mitigating or controlling the contamination of food and 
plants (Matrose et al., 2021; Polozsányi et al., 2021). In this study, the 
mechanism of action of the GcEO was evaluated based on the integrity of 
cell membranes and structural alterations in A. alternata conidia. 

First, the capacity of different concentrations (0.625, 1.25 and 
2.5 μL mL− 1) matching to 1/2 ×MIC, MIC and 2 ×MIC values of the 
GcEO to inhibit the germination of conidia was investigated. The 
germination of A. alternata conidia treated with the GcEO for 24 h was 
noticeably inhibited (> 99%) at 1.25 and 2.5 μL mL− 1, while at 
0.625 μL mL− 1 the reduction of germination was around 85% (Fig. 3). 
The treatments with 1.25 and 2.5 μL mL− 1 were more effective than the 
treatment with 0.625 μL mL− 1 (p > 0.0001). The use of EOs as an 
antifungal agent has been widely reported in the literature, and studies 

report that these substances are effective in inhibiting germination 
(Black-Solis et al., 2019; Peralta-Ruiz et al., 2020). Inhibition of conidia 
germination is a promising strategy to prevent fungal infection and, 
thus, reduce disease severity (Gorai et al., 2021). 

Many reports show that the content of nucleic acid and protein in a 
fungal suspension is a significant indicator of the loss of integrity of cell 
membranes (Li et al., 2021). The results showed that GcEO induced 
significant leakage of nucleic acids from A. alternata conidia (Fig. 4A). 
The absorbance values for nucleic acids (A260 nm) of GcEO-treated 
conidia were superior to those of the control group (p < 0.001). The 
A260 nm values at 0.625, 1.25 and 2.5 μL mL− 1 concentrations ranged 
from 0.54 ± 0.02–0.64 ± 0.01, while the negative control was 0.15 
± 0.02. At 1.25 and 2.5 μL mL− 1 concentrations, A260 nm values were 
higher than 0.625 μL mL− 1, thus indicating a notably dose-dependent 
leakage. 

Similarly, in evaluating the release of soluble proteins, there was a 
difference between the GcEO-treated conidia and the control group 
(p < 0.001) (Fig. 4B). The soluble protein values in suspension of the 
treatments with 1.25 μL mL− 1 (191.2 ± 20.34 μgP mL− 1) and 
2.5 μL mL− 1 of GcEO (206.6 ± 11.84 μgP mL− 1) were approximately 9.5 
and 10.3 times that of the control group (20.1 ± 4.37 μgP mL− 1), 
respectively. At the 0.625 μL mL− 1 concentration of GcEO, the increase 
in protein release was lower when compared to the 1.25 μL mL− 1 

(p < 0.05) and 2.5 μL mL− 1 (p < 0.001). The effects of the GcEO on the 
release of soluble proteins were consistent with those on the release of 
nucleic acids. These results indicated that the integrity of the A. alternata 
conidia membrane was indeed affected by the GcEO. The proposed 
antifungal mechanisms for EOs implicate in the capacity of their com-
ponents to pass through the cell wall and cause damage to the integrity 
of the cytoplasmic membrane, which results in the leakage of cell ma-
terial, cellular collapse and cell death (Hu et al., 2021; Kong et al., 
2021). 

In an additional strategy for studying the antifungal mechanism of 
the GcEO, the morphological alterations of A. alternata conidia were 
evaluated using microscopy. Under light microscopy, untreated conidia 
presented a normal germination with the development of hyphae, while 
GcEO-treated A. alternata conidia were completely inhibited (Fig. 5A 
and B). However, alterations in the morphology of the conidia were not 
perceptible when using this technique. SEM analysis of the morphology 
of A. alternata showed differences between GcEO-treated and non- 

Fig. 3. Inhibition of conidial germination of Alternaria alternata by GcEO. Data 
are presented as the mean ± standard deviation (n = 4) of three experiments. 
ns = nonsignificant. * ** * p < 0.0001 indicates statistical difference using 
ANOVA and Tukey’s post hoc test. 

Fig. 4. Effects of GcEO on leakages of nucleic acids (A) and soluble protein (B) in Alternaria alternata conidia. Data are presented as the mean ± standard deviation 
(n = 4) of three experiments. ns = nonsignificant. # p < 0.0001 compared with control (0.1% Tween-80), * p < 0.05 and * ** p < 0.001 indicate statistical difference 
by ANOVA and Tukey’s post hoc test. 
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treated conidia (Fig. 5C and D). The treatment with 1.25 μL mL− 1 

caused severe damage, and the cell surface became deformed, wrinkled 
and sunken. Some authors have suggested that the deformed and 
wrinkled surface of conidia occurs through the rupture of membrane 
integrity and loss of the cytoplasmic contents and the blockage of cell 
growth (Behbahani et al., 2019; Guo et al., 2020). In this context, spe-
cific cell markers (proteins and nucleic acids) were released at multi-fold 
levels that were higher than in the control. Furthermore, evident 
structural changes were observed in GcEO-treated conidia. 

Some researchers have attributed the antifungal effect to the key 
compounds present in EOs, usually the most abundant compounds 
(Pimentel et al., 2018; Rguez et al., 2018; Wang et al., 2018). In the 
GcEO, citronellal and citronellol are the most abundant substances, and 
have already been described as having strong antifungal properties 
(Aguiar et al., 2014; Barbosa et al., 2016; Kaur et al., 2021; Lee et al., 
2008; Tolba et al., 2015). Citronellal is a monoterpenoid found in more 
than 50 aromatic plants; however, it is mainly extracted from the leaves 
of Corymbia citriodora (Myrtaceae). It is an unsaturated aldehyde with a 

chiral center, which renders it a chemically reactive molecule (Araú-
jo-Filho et al., 2018; Goodine and Oelgemöller, 2020). Studies with 
citronellal-rich EOs have shown that these EOs have deleterious effects 
against multiple fungi (Dhakad et al., 2018). Morcia et al. (2017), re-
ported potent antifungal activity of citronellal against F. sporotrichioides, 
F. graminearum and F. langsethiae. A recent study by Ouyang et al. (2021) 
concluded that the citronellal effectively reduced Penicillium digitatum 
infection in citrus fruits. Furthermore, the exposure of P. digitatum to 
citronellal led to convincing cell membrane damage. Wu et al. (2016) 
reported that citronellal can lead to increased release of cellular con-
stituents due to plasma membrane damage. 

Citronellol, the second most abundant substance found in GcEO, is an 
acyclic chiral primary alcohol that contains a double bond, and which 
confers stability to the molecule. This monoterpene occurs naturally in 
various aromatic plant species (Santos et al., 2019). Antifungal activity 
of citronellol has been reported against Trichophyton rubrum, and ap-
pears to involve damage and loss of integrity of the cytoplasm mem-
brane (Pereira et al., 2015). This compound exhibits a strong antifungal 

Table 3 
Antimicrobial activity of the GcEO against phytopathogenic fungi.   

GcEO Mancozeb* 

Strain MIC MFC IC50 (95% CI) R2 RMSE MIC MFC IC50 (95% CI) R2 RMSE 

A. alternata  1.25  
1.25 

0.67 (0.63–0.73) 0.99  3.69  1.25  1.25 0.27 (0.24–0.3) 0.97  5.17 

As. flavus  5.0  
5.0 

2.06 (1.74–2.47) 0.96  6.77  1.25  1.25 0.18 (0.16–0.2) 0.96  5.09 

F. oxysporum  5.0  
5.0 

1.41 (1.2–1.67) 0.96  6.82  1.25  1.25 0.26 (0.21–0.33) 0.91  8.1 

C. guaranicola  10.0  
10.0 

5.1 (4.71–5.51) 0.95  5.57  1.25  1.25 0.19 (0.16–0.22) 0.95  5.78 

MIC (minimal inhibitory concentration) and MFC (minimal fungicidal concentration) expressed in μL mL- 1. *Mancozeb (2 mg mL- 1) was used as the positive control. 
IC50, concentration (μL mL− 1) that causes 50% inhibition of fungal growth. 95% CI, 95% confidence interval, the values are considered significantly different when the 
95% CI fails to overlap. R2, coefficient of determination. RMSE, root mean square error. 

Fig. 5. Micrographs of Alternaria alternata 
conidia after treatment with GcEO. (A) Light 
micrographs of non-treated conidia. (B) Light 
micrographs of GcEO-treated conidia at MIC 
level. (C) Scanning electron micrograph of non- 
treated conidia. (D) Scanning electron micro-
graph of GcEO-treated conidia at 1.25 μL mL− 1 

concentration (MIC level). Green arrows indi-
cate the germination of conidia. Red arrows 
indicate conidia shrinkage and wrinkling. A and 
B, bar represents 20 µm. C and D, bar represents 
2 µm.   
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effect against Botryosphaeria dothidea (Zhang et al., 2018). Citronellol 
can inhibit both mycelial growth and conidial germination of C. fructi-
cola and C. acutatum in a dose-dependent manner, and its mechanism 
can be related to disturbance of membrane fluidity and permeability 
(Scariot et al., 2020). These reports afford evidence that corroborates 
with data obtained in our study, i.e., that essential oils and their con-
stituents act on membrane integrity and permeability of fungi. 

In addition to citronellal and citronellol, the GcEO is composed of 
multiple molecules in minor concentrations (including farnesol, cit-
ronellyl acetate, β-caryophyllene, caryophyllene oxide and α-pinene). In 
general, the antimicrobial effect of EOs containing these molecules is 
well documented (Allenspach and Steuer, 2021; Liu et al., 2018; Lopes 
et al., 2021; Santos et al., 2021), and it is reasonable to hypothesize that 
this myriad of active molecules results in a synergistic action among its 
components, which enhances the protective effect of the EO. Therefore, 
the EO can act in different plant defense mechanisms against several 
stress situations (Langat et al., 2021; Zengin and Baysal, 2014). As such, 
further in-depth studies are needed to examine the complex mechanisms 
and the synergistic effects of the compounds, and their use as in vivo 
bioactive agents. 

4. Conclusions 

This study shows that the EO isolated from the leaves of G. citriodora 
has a complex and differentiated metabolomic profile and demonstrated 
the presence of the most important classes of compounds, highlighting 
the oxygenated monoterpenes citronellal and citronellol. In addition, in 
dose-dependent manner, this study demonstrated antibacterial and 
antifungal activity of the EO against all the pathogens analyzed. The 
results obtained herein revealed that GcEO treatment was able to sup-
press the germination of A. alternata conidia, induce the release of 
specific cell markers (e.g., nucleic acids and protein) and alter the 
morphology of conidia, which was associated with the damage to 
cellular membranes system. The GcEO appears to be membrane-active 
on A. alternata conidia, which results in the modification of the mem-
brane’s properties and function. Therefore, GcEO is potential candidate 
as a biodegradable, ecofriendly antifungal agent, and stands out due to 
the biologic potential of the results presented here. 
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