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Abstract: Signal regulatory protein « (SIRP«) is an immunoreceptor expressed in myeloid innate
immune cells that signals for inhibition of both phagocytosis and inflammatory response. Malaria
parasites have evolutionarily selected multiple mechanisms that allow them to evade host immune
defenses, including the modulation of cells belonging to innate immunity. Notwithstanding, little
attention has been given to SIRP« in the context of immunosuppressive states induced by malaria.
The present study attempted to investigate if malaria parasites are endowed with the capacity of
modulating the expression of SIRP« on cells of innate immune system. Human peripheral blood
mononuclear cells (PBMC) from healthy individuals were incubated in the presence of lipopolysac-
charide (LPS) or crude extracts of P. falciparum or P. vivax and then, the expression of SIRPx was
evaluated by flow cytometry. As expected, LPS showed an inhibitory effect on the expression of
SIRPw in the population of monocytes, characterized by cell morphology in flow cytometry analy-
sis, while Plasmodium extracts induced a significant positive modulation. Additional phenotyping
of cells revealed that the modulatory potential of Plasmodium antigens on SIRPo expression was
restricted to the population of monocytes (CD14*CD11c"), as no effect on myeloid dendritic cells
(CD14~CD11c") was observed. We hypothesize that malaria parasites explore inhibitory signaling
of SIRP« to suppress antiparasitic immune responses contributing to the establishment of infection.
Nevertheless, further studies are still required to better understand the role of SIRPx modulation in
malaria immunity and pathogenesis.
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1. Introduction

The innate immune system is the first line of defense against pathogens, acting basi-
cally through the recognition of pathogen-associated molecular patterns (PAMPs) found in
different microorganism classes, including parasitic protozoa [1]. Upon sensing PAMPs
by host pattern recognition receptors (PRRs), innate immune cells, such as macrophages,
monocytes and dendritic cells (DCs), trigger intracellular signaling pathways leading to
antimicrobial and inflammatory responses [2]. This event contributes to the direct elimi-
nation of pathogens, as well as the initiation of adaptive immune response mediated by
lymphocytes. To ensure survival and propagation, pathogens have evolved a variety of
strategies that facilitate their escape from innate immune responses, such as modulation
of host cell activation [3-5]. Indeed, it has been demonstrated that malaria parasite anti-
gens can inhibit maturation of lipopolysaccharide (LPS)-stimulated DCs both in vitro and
in vivo, as well as fail to directly activate DCs in vitro, as shown by the down-regulation of
the human leukocyte antigen (HLA-DR) and co-stimulatory molecules, and by reduced
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cytokine secretion, hampering T-cell responses [6-8]. In the same way, impairment of cell
functions by malaria parasites has also been reported in monocytes and macrophages, in
which suppression of important cellular effector events, such as phagocytosis, oxidative
burst, cytokine release and HLA-DR expression, was observed [9-13].

In the context of suppressive immune responses, an immunoreceptor that has gained
attention is the Signal Regulatory Protein alpha (SIRPx)—a transmembrane glycoprotein
also designated as SHPS-1, CD172a and p84 that is mainly expressed in leukocytes of the
myeloid lineage, including monocytes and DCs [14]. SIRP« belongs to the immunoglobulin
(Ig) superfamily and presents as a key characteristic an immunoreceptor tyrosine-based
inhibition motif (ITIM) in its cytoplasmic tail, which acts negatively in signaling pathways
of cell activation [15]. It has been shown that by binding to its ligands, CD47, a ubiquitous
cell membrane glycoprotein, and lung surfactant proteins A and D, SIRPx mediates in-
hibitory signaling of innate immunity functions, preventing, for instance, phagocytosis,
proinflammatory cytokine production and DCs maturation [16-19]. Comprehensibly, it is
believed that inhibitory signaling mediated by SIRPx can impact effective innate immune
responses against infectious microbes—an issue that has not been widely addressed. To
gain insight into SIRP« in malaria, in the present work, we investigate the modulatory effect
of Plasmodium crude extracts on SIRPx expression in peripheral blood innate immune cells.

2. Material and Methods
2.1. P. falciparum and P. vivax Antigens

Asexual blood stages of P. falciparum (W2 strain) were maintained in continuous
in vitro culture according to the method described by Trager and Jensen [20]. Parasites
were cultured using O™ human red blood cells (RBCs) in RPMI-1640 medium (Sigma,
St. Louis, MO, USA) supplemented with 25 mM Hepes (Sigma), 0.2% glucose (Sigma),
23 mM sodium bicarbonate (Sigma), 40 mg/mL gentamycin (Gibco Industries, Big Cabin,
OK, USA) and 10% heat inactivated AB* human serum (complete medium). Cultures
were maintained at 5% hematocrit at 37 °C under an atmosphere of 5% O, 5% CO, and
90% N, (White Martins Praxair Inc., Rio de Janeiro, Brazil). Parasites were synchronized by
repeated sorbitol treatments and parasitized RBCs (pRBCs) were enriched by 60% Percoll
density gradient using predominantly mature stage cultures, as described elsewhere [21].
P. vivax parasites were obtained from a peripheral blood sample of a patient presenting
with non-complicated malaria and the enrichment of mature stages was performed using
Percoll 45%, as described by Carvalho et al. [22]. Finally, the pRBCs were suspended in
phosphate saline buffer (PBS), sonicated in an ice bath. Protein concentration was then
determined using the Qubit Protein Assay Kit (Molecular Probes, Eugene, OR, USA).

2.2. PBMC Isolation and Antigenic Stimulation

Heparinized venous blood samples were collected from five clinically healthy in-
dividuals, as approved by the Human Research and Ethic Committee of the Oswaldo
Cruz Foundation (CAAE 46084015.1.0000.5248). The same individuals were recruited for
all experiments and peripheral blood mononuclear cells (PBMCs) were isolated through
density gradient centrifugation using Histopaque-1077 (Sigma). Cells were washed twice
in RPMI-1640 medium (Sigma) containing 2.05 mM I-glutamine, 25 mM Hepes, and 2.0 g/L
sodium bicarbonate and then resuspended in RPMI medium supplemented with 200 U/mL
penicillin (Gibco), 200 mg/mL streptomycin (Gibco), and 10% inactivated fetal calf serum
(Gibco). Cells (2.5 x 10°) were incubated for 24 and 48 h in the absence or presence of
Plasmodium extracts (0.1-10 ug/mL) or Escherichia coli lipopolysaccharides (LPS, 5 ug/mL,
Sigma) in 96-well culture plates ( Corning Incorporated, Durham, NC, USA) at 37 °C in
5% CO,. PBMCs from the same individuals were used for all experiments.

2.3. Flow Cytometry Assay

Expression of SIRPox on PBMC was assayed by flow cytometry using an APC-conjugated
anti-SIRPac monoclonal antibody (eBioscience, San Diego, CA, USA). Additionally, PerCP-
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Cyb.5-conjugated anti-CD11c (BD Pharmingen, San Diego, CA, USA) and PE-conjugated
anti-CD14 (eBioscience) antibodies were used to identify monocyte and dendritic cell
populations. Briefly, cells (2.5 x 10°) were washed in PBS and, subsequently, incubated
at 4 °C for 30 min in PBS containing 10% fetal bovine serum (FBS) to block non-specific
staining. After incubation, cells were stained with monoclonal antibodies for 40 min at
4 °Cin 100 pL PBS containing 1% FBS. Cells were washed twice and finally analyzed by a
FACSVerse flow cytometer (Becton Dickinson, Franklin Lakes, NJ, USA). Analysis of flow
cytometry data was performed using BD FACSuite software (Becton Dickinson).

2.4. Statistical Analysis

Statistical analyses were performed using GraphPad Prism 5.0 software (San Diego,
CA, USA) and differences were tested by one-way ANOVA and Tukey’s post-test. A p-value
of <0.05 was considered statistically significant. Results presented (MFI: mean fluorescence
intensity) were normalized to percentage of non-stimulated cells (Control—100%).

3. Results and Discussion

It is well known that Plasmodium infections suppress lymphoproliferative responses,
which negatively impacts the development of an effective antimalarial immunity [23-25].
Some immunological mechanisms involved in such immune suppression states have
been described and the modulation of innate immune cells by parasites plays a central
role [7,26,27]. Thus, in order to study the immunomodulatory potential of malaria parasites
on the expression of the innate immune receptor SIRP«, we incubated PBMC from healthy
individuals in the presence of crude P. falciparum and P. vivax extracts, using LPS as a
control stimulus.

As expected, stimulation of PBMCs with LPS by 24 and 48 h resulted in a decreased
expression of SIRP« in the population of monocyte-like cells characterized by morphology
criteria in flow cytometry analysis (Figure 1). This is in agreement with previous studies
in which Saimiri monkey PBMCs [28], mouse macrophages [29] and DCs derived from
human peripheral blood or mouse bone marrow [30] were stimulated with LPS. Similar
downregulation of SIRP« has also been described after viral double-stranded RNA (polyl:C)
stimulation of mouse macrophages, in which SIRP« signaling was shown to negatively
regulate TLR3-dependent antiviral pathways [31]. Indeed, SIRP« is believed to be a
negative modulator of TLR signaling in immune innate cells, as overexpression of SIRPo
decreases pro-inflammatory cytokine response, while disruption of SIRP« signaling allows
the activation of NF-kf3 and an increase in pro-inflammatory cytokine production [29,32].
In this line, it has already been demonstrated, using human monocytic cell line THP-1, that
LPS acts as a pro-inflammatory stimulus by triggering SIRP« proteolysis [33].

In marked contrast to LPS, P. falciparum crude extract modulated positively SIRP«
expression in monocyte-like cells after 24 h incubation (Figure 1), an effect that was shown
to be dose-dependent (Figure 2). Similar results were observed when P. vivax antigens were
used to stimulate PBMC (Figure 3). Thus, although P. vivax and P. falciparum can cause
different clinical and immunological outcomes during acute infection [34,35], the early in-
duction of SIRPo expression might be a common feature avoiding initial parasite clearance
and, consequently, allowing the establishment of blood stage. Indeed, besides promoting
the engulfment of tumor cells by macrophages in vitro and in vivo [36], disruption of SIRPo
signaling can attenuate parasite burden in the course of P. berghei ANKA infection in mice,
as well as enhance in vitro phagocytosis of P. falciparum-pRBCs, which implicates SIRPx as
an important component controlling malaria blood-stage [37]. Moreover, such involvement
of SIRPe in the control of pathogen growth was also demonstrated in two other models,
i.e., pneumonia and melioidosis. In the first model, the impaired phagocytic activity of
alveolar macrophages against Escherichia coli and Staphylococcus aureus, imposed by primary
pneumonia, was related to augmented SIRP« expression, which increased the susceptibility
of mice to secondary pneumonia [38]. In contrast, the intracellular killing of the causative
agent of melioidosis, Burkholderia pseudomallei, was associated with deflagration of TLR
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signaling and subsequent inducible nitric oxide synthase response, triggered as a result of
downregulation of SIRPx expression in infected macrophages [32]. Nevertheless, both the
stimuli and pathways regulating SIRPx expression remain largely unknown.
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Figure 1. Modulation of SIRPx expression by P. falciparum crude extract. PBMCs from healthy
individuals were stimulated for 24 and 48 h with P. falciparum extract (10 pg/mL) or LPS (5 ug/mL)
and SIRP« expression on cell surface of monocyte-like cells was evaluated by flow cytometry using
APC-conjugated anti-SIRP«x monoclonal antibody. (A,B) Representative cytometric analysis of SIRP«x
expression (B) in gated monocyte-like cells (A; P1) after stimulation with P. falciparum antigens (Pf) or
LPS. (C) Levels of SIRPa expression on monocyte-like cells population (P1), as measured by mean
fluorescence intensity (MFI). Non-stimulated PBMCs were used as control (Control). Data are shown
as mean =+ standard error (SEM) and represent one of two independent experiments performed with
PBMC samples from five individuals. **: p < 0.01; ***: p < 0.001.
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Figure 2. Dose-dependent effect of P. falciparum extract on SIRPoc expression. PBMCs from healthy in-
dividuals were stimulated for 24 h with crescent concentrations of P. falciparum extract (Pf; 0.1, 1.0 and
10 pg/mL) or 5 ug/mL LPS and, the levels of SIRP« expression (MFI) on cell surface of monocyte-like
cells was evaluated by flow cytometry, as in Figure 1. Data are shown as mean =+ standard error
(SEM) and represent one of two independent experiments performed with PBMC samples from five
individuals. **: p < 0.01; ***: p < 0.001, as compared with non-stimulated cells (Control).
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Figure 3. Modulation of SIRPa expression by P. vivax crude extract. PBMCs from healthy individuals
were stimulated for 24 h with P. vivax extract (10 ug/mL) or LPS (5 ug/mL) and SIRP«x expression
on cell surface of monocyte-like cells was evaluated by flow cytometry using APC-conjugated anti-
SIRPa monoclonal antibody. (A) Representative histogram analysis of SIRPx expression in gated
monocyte-like cells after stimulation with P. vivax antigens or LPS. (B) Levels of SIRP«x expression on
monocyte-like cells population, as measured by mean fluorescence intensity (MFI). Non-stimulated
PBMCs were used as control (Control). Data are shown as mean =+ standard error (SEM) and represent
one of two independent experiments performed with PBMC samples from five individuals. *: p < 0.05;
**: p <0.01.

We finally investigated if Plasmodium antigens differentially modulate the innate
immune cells by performing basic phenotyping for classical monocytes (CD14*CD11c")
and myeloid dendritic cells (CD14~CD11c"), as classified previously [39]. As shown in
Figure 4, P. falciparum extract positively modulated the expression of SIRP« in monocytes,
but had no effect on dendritic cells population, whose susceptibility to negative modulation
by LPS was similar to monocytes (Figure 4). It is not surprising, however, that subsets of
innate immune cells, upon stimulation with certain pathogens, can respond through distinct
signaling pathways, thus contributing in opposite ways to the immune response against the
infection [40—43]. Under this premise, it is possible that the initial and transient upregulation
of SIRP« induced by malaria parasites solely in monocytes (Figure 1) could favor the
establishment of blood infection at the very early phase, in which the parasite load is still
limited, while preserving the role of dendritic cells in priming T cell response. Consistent
with this possibility, it was already demonstrated that the activity of dendritic cells and
macrophages suffers temporal alterations in the course of experimental malaria [44,45] and
that, for instance, the impairment of dendritic cells to stimulate T cells was restricted to
late, but not early, phases of blood-stage infection with P. chabaudi or P. yoelii [46,47].

In conclusion, our work shows that Plasmodium crude extracts can positively stimulate
the expression of SIRP«x in cells of the innate immune system, representing a putative
mechanism of parasite evasion contributing to the early establishment of blood-stage
infection. Nevertheless, further studies, exploring the dynamic of SIRPx expression in the
course of infection and its relation to both immune responses and parasite elimination, are
still required for a better understanding of the role of SIRP« in malaria. In this regard, a
study with malaria patients from the Brazilian Amazon, where P. falciparum and P. vivax are
endemic, is currently in progress.
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Figure 4. Cell type-specific modulation of SIRP« expression by P. falciparum crude extract. PBMCs
from healthy individuals were stimulated for 24 h with P. falciparum extract (10 pg/mL) or LPS
(5 ng/mL) and SIRPo expression on cell surface of monocytes and dencritic cells was evaluated by
flow cytometry. (A) Representative phenotyping analysis of classical monocytes (P2; CD14*CD11*)
and myeloid dendritic cells (P3; CD14~CD11%) populations. (B,C) Levels of SIRPx expression in
gated monocytes (B) and dendritic cells (C), as measured by mean fluorescence intensity (MFI).
Non-stimulated PBMCs were used as control (Control). Data are shown as mean =+ standard error
(SEM) and represent one of two independent experiments performed with PBMC samples from five
individuals. *: p < 0.05; **: p < 0.01; ***: p < 0.001.
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