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Abstract: The role of extracellular vesicles (EVs) in interkingdom communication is widely accepted,
and their role in intraspecies communication has been strengthened by recent research. Based on the
regulation promoted by EV-associated molecules, the interactions between host and pathogens can
reveal different pathways that ultimately affect infection outcomes. As a great part of the regulation
is ascribable to RNA contained in EVs, many studies have focused on profiling RNAs in fungal and
host EVs, tracking their accumulation during infection, and identifying potential target genes. Herein,
we overview the main classes of RNA contained in fungal EVs and the biological processes regulated
by these molecules, portraying a state-of-the-art picture of RNAs loaded in fungal EVs, while also
raising several questions to drive future investigations. Our compiled data show unambiguously
that EVs act as key elements in signaling pathways, and play a crucial role in pathosystems. A
complete understanding of the processes that govern RNA content loading and trafficking, and its
effect on recipient cells, will lead to improved technologies to ward off infectious agents that threaten
human health.
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1. Introduction

Extracellular vesicles (EVs) are cell-derived structures delimited by lipid bilayers
unable to auto-replicate. These are produced by organisms from virtually every kingdom,
reverberating their conserved origin. These structures transport different cargoes, including
polysaccharides, toxins, lipids, proteins, pigments, and nucleic acids [1,2].

According to their origin and size, EVs comprise different entities, such as apoptotic
bodies, exosomes, and microvesicles [3,4]. Exosomes display sizes ranging from 40 to
100 nm in diameter, and have an endosomal origin, which is the consequence of plasmatic
membrane fusion with multivesicular bodies (MVBs) [5]. Microvesicles and apoptotic
bodies are produced by membrane budding, with sizes ranging from 50 nm to 1 µm and
50 nm to 5 µM, respectively [5,6]. Although many aspects of EVs’ biogenesis are not well un-
derstood, efforts to unveil their origins are in progress, hinting that these may be found by
tracking proteins such as Ras-related protein GTPase Rab, sytenin-1, TSG101 (tumor suscep-
tibility gene 101), ALIX (apoptosis-linked gene 2-interacting protein X), syndecan-1, ESCRT
(endosomal sorting complexes required for transport) proteins, phospholipids, tetraspanins,
ceramides, sphingomyelinases, and SNARE (soluble N-ethylmaleimide-sensitive factor
(NSF) attachment protein receptor) complex proteins [6].

The first identification of fungal EVs was reported in 1973, through freeze-etching
of Cryptococcus neoformans [7]. However, it took more than three decades to characterize
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the EV content in this species [8]. This work initiated a new era of investigation, with the
purpose of disclosing the conundrum functions behind EVs in fungi.

Currently, EVs have been isolated from many different cell types and fluids [9], as well
as in a wide range of fungal species, including yeast species such as Histoplasma capsula-
tum, Sporothrix schenckii, Candida parapsilosis, Saccharomyces cerevisiae, Malassezia sympodialis,
Paracoccidioides brasiliensis, Candida albicans, Pichia fermentans, Cryptococcus gattii, Sporothrix
brasiliensis, Paracoccidioides lutzii, Candida glabrata, Candida tropicalis, Talaromyces marneffei,
and Candida auris [10–22], along with a set of filamentous species, including Exophiala der-
matitidis, Alternaria infectoria, Trichophyton interdigitale, Rhizopus delemar, Fusarium oxysporum
f. sp. Vasinfectum, Trichoderma reesei, Aspergillus fumigatus, Aspergillus flavus, and Penicillium
digitatum [23–30].

The discovery that RNAs are contained in EVs, mainly related to microRNA (miRNA)
specimens in the years 2006–2007, paved the way for investigating the role of EVs as
mediators of cell-to-cell communication [31,32]. This finding represents a new paradigm of
the production and release of EVs, which have been considered for many years as “platelet
dust”—i.e., cellular debris of damaged cells [33]—or an export system activated to maintain
cellular homeostasis [34].

Recently, the participation of EVs in environmental signaling has been proposed [35].
Milieu sensing in fungi is a finely tuned mechanism that ensures fungal survival and
the establishment of infection [36]. Based on EV content, these molecules support fungal
pathophysiology with the regulation of intracellular matrix component biosynthesis [37],
capsule formation [38], and cell wall construction [39]. Furthermore, quorum-sensing
molecules within EVs may be involved in regulating the morphology of C. albicans [40].
Another level of regulation mediated by EVs is ensured by their RNA content. It has
been demonstrated that EVs are loaded with different classes of functional RNAs such as
miRNA, messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), small
RNA (sRNA), and long non-coding RNA (lncRNA) [41].

Many aspects of the pathophysiology of fungal infections might be influenced by the
transport of RNA molecules within EVs. The uptake of fungal RNA-EVs by host cells or
even fungal cells is conceivably involved in gene regulation and, consequently, triggers
changes in the responses of the recipient cells. From this perspective, the involvement of EVs
in bidirectional communication has been proposed [42,43] and, currently, in intraspecies
cellular communication, in which the incorporation of EVs by fungal cells has been shown to
be critical for governing aspects of virulence and resistance toward fungal agents [17,39,44].
However, a deeper understanding of the molecular mechanisms underlying this regulation
requires further investigation.

In this review, we describe the current knowledge on RNA content within EVs, along
with the influence of these molecules on two-way systems, such as the fungus–host inter-
actions and intraspecies regulation. We also discuss the challenges in RNA-EV work and
raise hypotheses of the cellular strategies underlying this RNA export system.

2. RNA Content of Fungal EVs

The presence of RNAs within extracellular vesicles was first described in 2007 [32].
The authors demonstrated that RNAs obtained from mammalian EVs were delivered to
another cell in a functionally activated manner—evidence of a new mechanism of inter-
cellular communication mediated by EVs that relies on RNA transference [32,45]. This
RNA-EV trafficking is termed exosomal shuttle RNA (esRNA), and comprises mRNAs
and an enrichment of miRNA content [32]. The predictive combinatory interactions of
the 121 miRNAs identified in this study displayed a putative potential to regulate approx-
imately 24,000 mRNAs, revealing a widespread coordinated regulation. Moreover, the
characterization of RNAs loaded in EVs found an absence or minimal presence of ribosomal
RNAs and an abundance of small RNAs, including the 19–22 nt class of non-coding RNAs.

The first study addressing fungal EV RNA content was reported in 2015 [46]. In this
study, a comparative analysis of RNA specimens from human pathogenic fungi—such as
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C. albicans, C. neoformans, and P. brasiliensis (isolate Pb18)—as well as the yeast model S.
cerevisiae was conducted.

This solid comparative analysis of RNA-containing vesicles in pathogenic and non-
pathogenic fungal species revealed the presence of RNAs with heterogeneous sizes, mostly
shorter than 250 nt, primarily corresponding to small non-coding RNA sequences and
miRNA-like sequences, while also demonstrating the co-purification of a small percentage
of mRNAs (approximately 10%) [46]. Accordingly, the data displayed a high abundance of
miRNAs, with a total of 1242 miRNAs being identified and classified as follows: 145 for
P. brasiliensis, 344 for C. neoformans, 423 for C. albicans, and 532 for S. cerevisiae. In addition,
47 miRNAs exhibited differential distribution, with higher levels of miRNA transcripts
in C. neoformans, followed by P. brasiliensis, C. albicans, and S. cerevisiae. Only 20 miRNAs
were shared among all studied species. Unique miRNA sequences were detected in
P. brasiliensis, including has-mir5685, cre-MIR905, dre-MIR-125-a2, and has-mir-5583-1;
and in S. cerevisiae, with ame-mir-3797 and cin-mir-4104. Of the 114 identified sRNA
sequences, 11 were common among all studied species. Additionally, eight sequences
corresponding to the lncRNAs were identified. Among these, ICR1 and PWR1 are involved
in upstream signaling circuits that regulate yeast transition, whereas short non-coding
RNAs (sncRNAs) play a role in mRNA and rRNA modifications that ultimately affect cell
growth. Moreover, four sncRNAs have been described (LSR1, snR19, snR16, and snR14)
as components of the spliceosome core, with functions in pre-mRNA processing. Indeed,
the spliceosome machinery and pre-mRNA processing are critically involved in fungal
adaptation to different niches, as well as their pathogenic capability [47,48].

This comparative analysis opens new paths for investigating fungal pathophysiology
by tracking differences in EV-associated RNA molecules derived from species of fungi with
different abilities in terms of human association and pathogenicity. These analyses allow the
determination of peculiarities in composition and abundance, which may reflect the levels
of regulation for niche preferences, adaptation, and virulence. Since then, EV RNAs from
other fungal species—including H. capsulatum [49], C. auris [22], and M. sympodialis [50]—
have been identified.

In this context, another comparative study was performed to assess the RNA content
of EVs from different isolates of P. brasiliensis (Pb18 and Pb3) and P. lutzii (Pb01 isolate) [18].
Both are agents of human paracoccidioidomycosis (PMC), and are endemic species in Latin
America—mainly in Brazil. Isolates P18 and Pb3 are phylogenetically distributed in groups
S1 and PS2, respectively. These species have different profiles of virulence and immune
response. The data obtained in this study revealed the presence of the following classes of
RNAs: mRNA, lncRNA, sncRNA, and rRNA. A high number of sncRNA molecules was
observed, with 25 nt extensions, and certain molecules displayed the interesting ability to
align to a particular exonic mRNA region (5′, 3′, or in the middle); hence, these molecules
were named “exonic sRNA”. In this analysis, the greatest abundance of exonic sRNAs was
found in Pb18 (104), followed by Pl01 (27) and Pb3 (19). Moreover, unique exonic sRNAs
were identified in Pb18 (89), Pb01 (21), and Pb3 (4). The assumption is that exonic sRNAs
in EVs provide sRNA interference (ex-siRNA) and regulate the RNA interference (RNAi)
machinery [18]. Herein, we speculate that exonic sRNAs could potentially be a set of mature
miRNAs loaded within the EVs. The reason behind our speculation is that either of these
molecules might interact with the 3′ UTR, 5′ UTR, and/or coding sequence. The interaction
with different binding regions can lead to a repertoire of gene-regulatory activities, such as
repression of translation, activation of translation, or transcription regulation [51].

The listed exonic-sRNA-targeted genes described in P. brasiliensis [18] include α-
amylase (PADG_04422), which is potentially involved in the synthesis of α-glucan—a key
element in the fungal cell wall—and β-glucanase (PADG_04922), which cleaves β-glucan
in the cell wall—a ligand of dectin-1—and is involved in immune recognition. Further-
more, a comparative Pb study assessed the regulation of dendritic cells by indirect contact
with P. brasiliensis (Pb18) and, potentially, its EVs in an elegant model. The data showed
downregulation of transcription factors such as Gabpb2 and Pknox1, which are involved in
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lymphopoiesis [52] and hematopoietic stem and progenitor cell activity [53]. From these
results, Pb EVs were assumed to modulate the immune response in a favorable manner
in the early stages of fungal infection. Herein, to demonstrate the striking regulation
promoted by these exonic sRNAs, we compiled a set of discovered exonic sRNAs and
clustered them with their putative target genes. Then, we classified these regulated genes
within the associated biological processes in accordance with Gene Ontology (GO) terms,
showing that Pb exonic sRNAs contained in EVs potentially regulate the following pro-
cesses in fungal cells: carbohydrate, lipid, fatty acid, and amino acid metabolism; vesicle
trafficking; signal transduction; protein folding; and nucleic and biosynthetic processes
(Supplementary Table S1 and Figure 1). From this projection, the autoregulatory function
of fungal EVs in the cellular metabolism and cell communication, which reinforces the role
of RNA-EVs in interkingdom and intraspecies signaling, is evident. Indeed, a recent study
demonstrated the regulatory function of fungal EVs in fungal gene expression, governing
the pathophysiological attributes of the pathogenic fungi C. albicans, A. fumigatus, and P.
brasiliensis [54]. However, whether exonic sRNAs could be mature miRNAs exported by
fungal EVs to confer faster adaptive responses requires further study and elucidation.

Figure 1. Functional categorization of exonic sRNAs identified in P. brasiliensis according to Gene
Ontology (GO) terms within the biological process subclassification.

Furthermore, another study reported the EV RNA content of two isolates of H. capsulatum
(G186AR and G217B) [49]. H. capsulatum is the causative agent of histoplasmosis, and represents
a global concern, affecting both immunocompetent and immunocompromised patients. The
strains G186AR and G217B show differences in virulence properties and cell wall composition.
In this study, the authors revealed the occurrence of mRNAs and ncRNAs, with differences
in their abundance between the studied isolates. Among ncRNAs, a large set of tRNAs was
identified. Moreover, miRNA-like RNAs with regulatory functions were predicted by analyzing
the putative development of secondary structures within the EV RNA content. Another query
addressed by Alves et al. (2019) [49] was the correlation between yeast-associated and EV-
associated RNAs, and the data showed no or weak correlation between the contents from
different sources, strengthening the hypothesis that a fine-tuned mechanism directs RNAs in
EVs and their regulatory functions.

In another line of investigation, Rayner et al. (2017) [50] assessed the small RNA
content in M. sympodialis under different pH ranges, in an attempt to mimic the pH changes



Cells 2022, 11, 2184 5 of 11

during atopic eczema (AE)—a disease commonly triggered by this fungus. Although the
approach was very interesting, no significant difference in RNA-associated EVs was shown
for the assessed conditions, although more than 300 non-coding features were mapped for
this species [50].

Recently, a study profiled the cellular and EV transcriptomes of C. auris [22]—a fungus
classified as a global public health threat. This species requires special care because it
is characterized by remarkable antifungal resistance against different chemical classes of
compounds, such as polyenes, azoles, and echinocandins. Two strains of C. auris (B8441
and MMC1) were used, and their RNA content was evaluated after fungal exposure to
caspofungin. The authors demonstrated that EV concentration was twofold higher during
caspofungin treatment than that in untreated conditions. Although mRNA molecules were
identified, the bulk comprised sRNAs (<200 nt in length), including ncRNAs, tRNAs, and
fragments of mRNA. The authors also demonstrated a different profile of EV transcripts in
caspofungin treatment versus untreated conditions. Moreover, a 10x higher yield of RNA
was observed for caspofungin treatment.

Herein, we intended to summarize the current information about the RNA contents in
EVs, and with this purpose we carried out a deep survey of the published data about RNAs
loaded in fungal EVs, and our data shed light on the prevalence of regulatory RNAs (about
65.5%) in comparison with mRNAs (about 34.5%), as shown in Figure 2. The distribution of
these regulatory molecules was as follows: miRNAs (about 1480 molecules), ncRNAs (about
400 molecules), tRNAs (about 300 molecules), small nucleolar RNA (about 220 molecules),
sRNA (about 56 molecules), and small nuclear RNA (about 30 molecules). These data were
based on the RNA characterization of the following fungal species: C. albicans, C. neoformans,
S. cerevisiae [46], C. auris [22,55], H. capsulatum [49], M. sympodialis [50], P. brasiliensis, and P.
lutzii [18]. Moreover, we also outlined the distribution of the regulatory RNA molecules
within each analyzed species (Supplementary Figure S1). miRNA was the main regulatory
molecule loaded in fungal EVs, except for C. auris, wherein tRNA was the most abundant
molecule. A proper understanding of the RNA content in EVs, the changes in the signaling
pathways that regulate these transcripts, and the targeted genes may reveal strategies
employed during the interaction between systems, and also shed light on alternatives to
tackle fungal arming during the infection.

Figure 2. A compilation of data on the abundance of RNAs (%) loaded in extracellular vesicles in
a set of fungal species, including C. albicans, C. neoformans, S. cerevisiae, C. auris, H. capsulatum, M.
sympodialis, P. brasiliensis, and P. lutzii.
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3. The Signaling Role of Fungal RNA-EVs during Host–Pathogen Interaction

The role of EVs in cross-kingdom communication is unambiguously accepted, and it
is conceivable that this mechanism is mainly achieved because EVs work as vehicles for
hijacking sRNAs in a two-way manner; therefore, EVs are also termed “Trojan horses” [56].
The function of sRNAs in the regulation of gene expression is based on the RNAi principle,
which comprises the interplay of a commander RNAi and an Argonaute (AGO) protein that
selectively silences targeted genes. Notably, EVs from H. capsulatum contain RNA-binding
proteins, one of which belongs to the RNAi machinery [49]. Thus, there are two possible
ways in which these sRNAs regulate targeted genes: either by association with their own
sources of RNAi machinery, or by association with AGO proteins in recipient cells.

Previously, it was demonstrated that the secretion of exosome-containing miRNA and
AGO protein by the gastrointestinal parasite Heligmosomoides polygyrus neutralizes host re-
sponses and favors infection [57]. However, many questions have arisen since then, mainly
concerning how this transfer between cell-walled organisms could be possible. This motivated
an elegant study carried out by Cai et al. (2018) [58] using a co-culture of Arabidopsis and
Botrytis cinerea. In this study, the authors tracked the accumulation of plant EVs in fungal cells,
profiled the sRNAs produced during infection, and showed that the target silenced genes
were related to fungal virulence traits. Moreover, other studies have shown the enhancement
of sRNAs in cotton plants after fungal infection, reinforcing their role in regulating the ex-
pression of opponents and warding off infection [59]. Similarly, sunflower EVs incubated
with S. sclerotiorum spores were taken up by fungal cells and, as a result, these EVs had a
significant impact on fungal morphology and hyphal development. EV-treated cells presented
a strong reduction in hyphal growth, abnormalities in hyphal shape with a decrease in length
followed by curly/wave hyphae, and the presence of non-germinated spores [60]. Conversely,
fungal RNA-EVs can also suppress host defense. In pathosystem infection models, such as
Botrytis cinerea co-cultured with Arabidopsis and tomato, the hijacking of Bc-sRNAs promoted
the suppression of host genes, including mitogen-activated protein kinase (MPK), oxidative
stress responsive gene, peroxiredoxin (PRXIIF), and cell-wall-related kinase (WAK), leading
to an enhancement in plant susceptibility, ascribed to a tight involvement of host immunity
against fungal infection [61]. Taking advantage of this information, another study carried
out by Wang et al. (2016) [62] showed that the double mutation of Bc dicer1/2 genes in
Botrytis cinerea attenuates its virulence in different recipient cells, including fruits, vegetables,
and flower petals. Moreover, the authors developed a Bc-DCL1/2–RNAi Arabidopsis plant
system, and the RNAi plants displayed lower susceptibility to B. cinerea. These results provide
insights into the development of strategies to control plant diseases using RNAi effectors and
delivery systems.

In addition, the entomopathogenic fungus Beauveria bassiana secretes a miRNA-like
RNA (bba-miR1) loaded into its vesicles, targeting the Anopheles stephensi mosquito to
suppress the expression of Toll receptor ligand Spätzle 4 (Spz4), attenuates the immune
response, and favors fungal infection [63]. Once again, understanding the mechanisms
underlying miRNA delivery is crucial to control threats to human health and crops, and
could be exploited as an alternative to develop new therapies.

4. Advancements in Fungal RNA-EV Research

Undoubtedly, the investigations of sRNAs within EVs break paradigms and challenge
researchers in many respects regarding RNA quality inspection and the strategies employed
to validate that these molecules are not loosely aggregated with EV membranes, but are
loaded within these vesicles. In this respect, controls employing EVs undergoing RNAse
treatment before sRNA extraction, or the rupture of EVs with Triton X-100 followed by
nuclease digestion, were used to track some features of these molecules, and to prove
that they were packaged within EVs [32,57]. Notably, the migration analysis of these
molecules in microfluidic electrophoresis displays another striking feature that might lead
to a misconception of RNA degradation. Usually, the profile obtained in electropherograms
depicts peaks that appear mainly in the range of 25–200 nt, which are correlated with
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fragments of sRNA content, as schematically represented in Figure 3. Moreover, a common
issue in the fungal RNA-EV work process is the low yield during extraction procedures,
which impairs the downstream steps of analysis and library construction. To address
these issues, an alternative is to create a pool of concentrated EVs before RNA extraction.
Choosing a suitable library is critical when investigating RNA-EVs; in this regard, it is
noteworthy to consider the proportions of each RNA type while not restricting the library
to mRNAs. However, constructing a library and working on different fragment sizes would
be a promising approach. Further methodological publications addressing these points and
offering new possibilities are required to counteract the issues associated with EV RNAs
in fungi.

Figure 3. Scheme of RNA-EV visualization by electrophoretic profiling: (A) RNAs loaded in EVs
from C. haemulonii. (B) RNAse-treated samples to illustrate EV RNA degradation.

5. Conclusions and Future Perspectives

Although RNA-containing EVs are protagonists during signaling and communication
between cells, the precise regulation promoted by these molecules is not clearly understood.
It is possible to speculate on some points when examining the content of these molecules
loaded in EVs. First, packing and transferring rRNA is not the goal, since the recipient
cells might be responsible for the translation task in a more efficient and energetically
favorable manner. Second, although the presence of functional mRNAs was identified
in EVs from P. brasiliensis and P. lutzii, a higher abundance was observed for regulatory
RNAs, such as sRNAs, miRNAs, and tRNAs, and it is highly conceivable that these
molecules interact with the owner and/or host AGO proteins coordinating the host RNAi
machinery. Understanding these tightly regulated processes that underlie EV content and
trafficking opens new paths for investigation. Tracking of EV RNA can shed light on the
plasticity, virulence, and niche preferences of some fungal species or strains. By exploiting
this knowledge, researchers might be able to “edit” the framework mechanism in RNA
production and transference that ultimately alters the circuit of information to disarm
and ward off pathogens. A great improvement in systems such as host-induced gene
silencing (HIGS) technology might be achieved for safer use in the biological pest control
of crops, as well as an enhancement in therapeutic strategies to control infectious agents
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that threaten human health. However, the mechanistic framework for the regulation of
fungal EV-containing sRNAs requires further investigation. Several questions arise from
the current data: What determines RNA sorting in EVs? Which signaling pathways may
cross to activate EV production and sorting? Which molecular mechanism underlies the
EV RNA regulation of target genes in recipient cells? A schematic overview of EV RNA
transference knowledge and the queries that await for further investigation is shown in
Figure 4.

Figure 4. Extracellular vesicles’ (EVs) RNA transference between host and fungal cells via bidi-
rectional communication events and intraspecies RNA transference mediated by fungal EVs. The
sRNAs/miRNAs’ transference leads to target mRNA silence and, concomitantly, suggests paths
able to regulate the gene expression, and affects cellular behavior in recipient cells. The question
marks represent gaps that require further investigation, such as the signaling mechanisms by cells
to sort molecules within EVs in response to extracellular stimuli, paths that might coordinate gene
modulation after EVs uptake, and the conceivable use of RNAi machinery from recipient cells to
trigger gene silencing and other regulatory functions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells11142184/s1, Table S1: An overview of RNA-containing fungal
EVs; Figure S1: Distribution of regulatory EV RNA molecules between the following fungal species:
C. albicans, C. neoformans, S. cerevisiae, C. auris, H. capsulatum, M. sympodialis, and Paracoccidioides spp.

https://www.mdpi.com/article/10.3390/cells11142184/s1
https://www.mdpi.com/article/10.3390/cells11142184/s1
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