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Abstract: Leishmania tarentolae is a non-pathogenic trypanosomatid isolated from lizards widely
used for heterologous protein expression and extensively studied to understand the pathogenic
mechanisms of leishmaniasis. The repertoire of leishmanolysin genes was reported to be expanded
in L. tarentolae genome, but no proteolytic activity was detected. Here, we analyzed L. tarentolae
leishmanolysin proteins from the genome to the structural levels and evaluated the enzymatic
activity of the wild-type and overexpressing mutants of leishmanolysin. A total of 61 leishmanolysin
sequences were retrieved from the L. tarentolae genome. Five of them were selected for phylogenetic
analysis, and for three of them, we built 3D models based on the crystallographic structure of L. major
ortholog. Molecular dynamics simulations of these models disclosed a less negative electrostatic
potential compared to the template. Subsequently, L. major LmjF.10.0460 and L. tarentolae LtaP10.0650
leishmanolysins were cloned in a pLEXSY expression system into L. tarentolae. Proteins from the wild-
type and the overexpressing parasites were submitted to enzymatic analysis. Our results revealed that
L. tarentolae leishmanolysins harbor a weak enzymatic activity about three times less abundant than
L. major leishmanolysin. Our findings strongly suggest that the less negative electrostatic potential
of L. tarentolae leishmanolysin can be the reason for the reduced proteolytic activity detected in
this parasite.

Keywords: proteolytic activity; leishmaniasis; cloning; comparative modeling; molecular dynamics

1. Introduction

Neglected diseases are a major public health problem in developing countries, in-
cluding Brazil [1]. In the case of leishmaniasis, there are currently 12 million infected
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people worldwide, with an estimation of 700,000 to 1 million new cases occurring per
year and 350 million people living at risk of infection [2]. At least 20 Leishmania species
cause a wide spectrum of clinical manifestations, ranging from self-resolving skin lesions to
life-threatening visceral diseases. In the pathogenic leishmania life cycle, the parasites are
usually transmitted to vertebrates through the bite of a phlebotomine insect. In the mam-
malian host, Leishmania parasites have an obligatory intracellular form inside macrophages
called amastigotes, but promastigotes in invertebrates change from a replicating procyclic
to a non-replicating infective metacyclic form through a metacyclogenesis process [3,4].
The current therapy for leishmaniasis has serious side effects since it is limited to a handful
of available drugs that suffer from administration difficulties, unacceptable toxicity, and in
some cases, are ineffective because of the emergence of resistant strains [5].

Leishmania parasites are unicellular eukaryotes that belong to the Kinetoplastea class,
family Trypanosomatidae [6]. Recent phylogenetic studies divided this protozoan into
four distinct subgenera: Leishmania, Mundinia, Sauroleishmania, and Viannia [7]. Leishmania
(Sauroleishmania) tarentolae was first isolated from the lizard Tarentola mauritanica in 1921,
and it is the most widely studied Sauroleishmania [8]. It is presumed that L. tarentolae lives
predominantly as promastigotes in the bloodstream or the lumen of the cloacae and intestine
of the lizard host, and amastigote forms are rarely observed [9]. Although L. tarentolae
promastigotes can enter human phagocytic cells and differentiate into amastigotes, no
clear evidence for their efficient replication within macrophages was ever reported [10].
Due to its easy handling, fast growth in defined media, low maintenance cost, and lack
of pathogenicity to humans, L. tarentolae has been extensively used as an experimental
model for gene amplification studies [11], RNA editing [12], heterologous production of
eukaryotic proteins [13], and development of vaccines [14]. However, its use to express
virulence factors of pathogenic Leishmania species has been barely explored.

In this context, Raymond and co-workers [15] sequenced and assembled the L. tarentolae
strain Parrot-TarII genome using next-generation high-throughput DNA sequencing tech-
nologies. The authors reported a high synteny of more than 90% gene content shared with
other Leishmania species sequenced up to that time. Furthermore, some genes preferentially
expressed in amastigotes, such as amastins and virulence factor A2, have been reported
absent or present in fewer copies. In contrast, genes predominantly expressed in the pro-
mastigote form, such as the metallopeptidase leishmanolysin, were highly expanded in the
L. tarentolae genome. Although the virtual translation of the leishmanolysin gene could be
done, no enzymatic activity was recorded in cellular extracts of L. tarentolae by using the
classical gelatin zymography assay [15].

Leishmanolysin, also known as a glycoprotein of 63 kDa (GP63), surface acid pepti-
dase, promastigote surface peptidase (PSP), and major surface peptidase (MSP), is the major
protein component of the surface of Leishmania promastigotes [16]. This protein is glyco-
sylphosphatidylinositol (GPI)-anchored to the plasma membrane and has a zinc-dependent
metallopeptidase activity, with a molecular mass ranging from 58 to 65 kDa. Due to the
potentially relevant functions of leishmanolysin during the life cycle of leishmaniae and
its therapeutic potential, since its discovery in the mid-1980s, this peptidase has been
extensively investigated, and a myriad of functions facilitating parasite invasion, survival,
and virulence have been described in parasite interactions with both invertebrate and ver-
tebrate hosts [17–19]. In the genomic context, leishmanolysin exists as a multigene family
sharing high sequence identities among different Leishmania species, which the number of
genes ranges from only two in L. (Leishmania) donovani to a greatly expanded repertoire of
29 genes in L. (Viannia) braziliensis and 49 in L. (Sauroleishmania) tarentolae [15]. However,
since no L. tarentolae proteolytic activity was reported by Raymond and co-workers, an
intriguing question arises: is there an indirect correlation between gene expansion and
enzymatic activity?

Fortunately, there is one available L. major leishmanolysin (LmjF.10.0460) three-dimensional
structure (PDB ID: 1LML) deposited in the Protein Data Bank (PDB) [20]. The crystal
structure revealed three domains (N-terminal, central region, and C-terminal) containing
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several conserved residues of around 60% identity compared to leishmanolysins from
T. brucei, L. major, and Crithidia sp., as well as the zinc-coordination motif HEXXH [21].
The insertion of 62 amino acids in the defining motif HExxHxxGxxH differs, in L. major,
from that commonly found in other metallopeptidases belonging to the metzincin class.
Recently, to better understand the molecular basis of the expanded variety of chromosome
10 leishmanolysins of L. braziliensis, Sutter and co-workers (2017) [22] identified two levels
of structural heterogeneity that affect the electrostatic properties of leishmanolysins and
the geometry of their active sites. The authors assumed that the structural plasticity of L.
braziliensis leishmanolysins might constitute a crucial evolutionary adaptation related to
the ability of promastigotes to interact with a broad range of substrates [22]. In this work, to
understand the lack of detectable proteolytic activity of the highly expanded leishmanolysin
family in L. tarentolae, we analyzed the annotated leishmanolysin sequences and then
created comparative 3D-models of L. tarentolae leishmanolysins to perform molecular
dynamics simulations. Then, one L. tarentolae leishmanolysin and the one from L. major were
overexpressed in an L. tarentolae expression system to improve our enzymatic knowledge
of these molecules.

2. Results and Discussion
2.1. Unveiling the L. tarenrolae Leishmanolysin Annotated Sequences

Since the first isolation of the lizard Sauroleishmania parasite in 1921 [8], a great
improvement in genome sequencing has taken place [10]. In this sense, Raymond and
co-workers [15] used next-generation DNA sequencing technologies (NGS) to obtain a high-
quality genome of L. tarentolae, revealing that more than 90% of the L. tarentolae genes are
shared with all so far sequenced Leishmania species. However, some well-known limitations
of this system were observed in the genome assembly, which results in a collapse of some
repeat-rich regions and a tendency of repetitive expanded genes to be fragmented in the
assembly, such as the leishmanolysin sequences [15]. Therefore, here we analyzed all the
leishmanolysin genes annotated in the L. tarentolae Parrot-TarII genome available in the
TriTrypDB.

We have retrieved a total of 61 sequences annotated as “Leishmanolysin” in the
L. tarentolae reference genome (Table S1), 12 more than previously reported due to the
annotated contig sequences [15]. Interpro Scan predicted that these annotated proteins
contain the metallopeptidase M8 domain in their sequences. However, 34 of these se-
quences carry less than two hundred amino acids, a sign of fragmented assembly. Fur-
thermore, only eight of the remaining twenty-seven protein sequences have all amino
acids recognized without any unknown residues (X), which appear when the annotated
gene lacks an ascribed nucleotide. Therefore, considering the missing information in
some sequences and focusing on the most conserved leishmanolysin sequences in our
subsequent experimental methodologies, we first concentrated our analysis on these eight
L. tarentolae leishmanolysin sequences, as reported in Table 1. Among them, one belonged
to chromosome 31 (LtaP31.2430), one from chromosome 33 (LtaP33.0300), three from chro-
mosome 10 (LtaP10.0450, LtaP10.0480 and LtaP10.0650), and other three were contigs from
unassigned chromosomes (LtaPcontig00585-1, LtaPcontig00616-1, and LtaPcontig03442-1)
(Table 1). Chromosomes 31 and 33 share fewer identities with L. major LmjF.10.0460, 35.6,
and 58.4%, respectively. Such diversity is reasonably expected since the division of leish-
manolysin sequences in different chromosomes probably happens in early steps during
evolution [23]. The sequence identity for the other six sequences ranged from 63.2 to 71.2%,
suggesting that the contigs could also be from L. tarentolae chromosome 10. Leishmanolysins
on chromosome 10 constitute a set of gene arrays in all Leishmania species except L. donovani
from the Leishmania subgenus, where it is absent. Interestingly, there are 42 leishmanolysins
from chromosome 10 in L. tarentolae (Table S1), suggesting that, as it occurs in species from
the Viannia subgenus, it is highly possible that this leishmanolysin expansion took place
after the separation of three subgenera and could be related to an adaptation mechanism of
these species to interact with a broad range of reservoirs and vectors [22,23].
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Table 1. Leishmanolysin sequences from Leishmania tarentolae.

Sequence ID Molecular
Mass (kDa) Domains Transmembrane

Helices
Zinc-Binding

Motif GPI-Anchored Identity with
LmjF.10.0460

LtaP10.0450 24.0 Peptidase_M8 (46-571 aa) 1 helix (287-308
aa) No hit YES 63.2%

LtaP10.0480 59.2
Peptidase_M8 (1-194 aa)

LSHMANOLISYN
(99-360 aa)

1 helix (9-28 aa) 1 hit
(206-215 aa) No 67.1%

LtaP10.0650 54.6
Peptidase_M8 (4-475 aa)

LSHMANOLISYN
(59-320 aa)

No helix 1 hit
(166-175 aa) YES 71.2%

LtaP31.2430 66.1 Peptidase_M8 (2-254 aa) 2 helices (13-30,
606-623 aa)

1 hit
(268-277 aa) YES 35.6%

LtaP33.0300 26.3 Peptidase_M8 (1-178 aa) 2 helices (67-91,
218-242 aa) No hit YES 58.4%

LtaPcontig00585-1 30.4
Peptidase_M8 (2-275 aa)

LSHMANOLISYN
(83-275 aa)

No helix 1 hit
(190-199 aa) No 68.7%

LtaPcontig00616-1 50.5
Peptidase_M8 (2-434 aa)

LSHMANOLISYN
(21-282 aa)

No helix No hit No 64.6%

LtaPcontig03442-1 42.1
Peptidase_M8 (3-381 aa)

LSHMANOLISYN
(59-321 aa)

No helix 1 hit
(166-175 aa) No 69.3%

The sequence ID of L. tarentolae leishmanolysin was obtained from TriTrypDB. The predicted molecular mass of
each sequence was calculated in http://www.bioinformatics.org/sms/prot_mw.html, (accessed on 31 March 2016)
and the presence of transmembrane helices was searched in http://www.cbs.dtu.dk/services/TMHMM, (accessed
on 31 March 2016). Interproscan v5.51-85.0 was used to identify the presence of the classical leishmanolysin
domains. PROSITE (http://prosite.expasy.org, (accessed on 31 March 2016) was used to identify the zinc-
binding motifs, and PredGPI (http://gpcr2.biocomp.unibo.it/cgi-bin/predictors/gpi/gpipe_1.4.cgi, (accessed on
31 March 2016) predicted the GPI-anchor. The identity with LmjF.10.0460 was calculated in CLUSTAL Omega
(https://www.ebi.ac.uk/Tools/msa/clustalo/, (accessed on 22 March 2022).

Considering the protein features from L. tarentolae leishmanolysin sequences predicted
by bioinformatic tools, the molecular mass ranged from 24.0 to 66.1 kDa, and the disparity
can be ascribed to the shorter or even lacking N-terminal domain in most of the sequences.
Two leishmanolysins in chromosome 10 (LtaP10.0450 and LtaP10.0480) presented one pre-
dicted transmembrane helix, while LtaP31.2430 and LtaP33.0300 displayed two helices.
Moreover, four sequences (LtaP10.0450, LtaP10.0650, LtaP31.2430, and LtaP33.0300) had
GPI anchor motifs predicted in their C-terminal domain. The presence of leishmanolysin
molecules in the plasma membrane is critical to parasite adhesion and host cell interaction,
as previously reported in several Leishmania species [18,19]. Only five sequences reported
the presence of zinc-biding motifs (LtaP10.0480, LtaP10.0650, LtaP31.2430, LtaPcontig00585-1,
and LtaPcontig03442-1), but the other sequences kept the conserved histidine and methion-
ine residues, essential to the zinc-binding aligned with LmjF.10.0460 at positions 334 and
345, respectively [21]. Finally, among the eight L. tarentolae leishmanolysins under analysis,
the five most conserved sequences reported the presence of two associated domains by
Interpro Scan, the Peptidase_M8 (PF01457) and LSHMANOLYSIN (PR00782).

To better understand the phylogenetic relationship of the leishmanolysins from
L. tarentolae with the pathogenic Leishmania spp., we performed a phylogenetic reconstruc-
tion based on the Maximum Likelihood, Jones–Taylor–Thornton (JTT) model (Figure 1).
Our results revealed that the five most conserved L. tarentolae sequences are closely related,
supporting our hypothesis that the contig leishmanolysin sequences may have originated
from chromosome 10. Moreover, L. tarentolae leishmanolysin protein sequences are phy-
logenetically more related to L. major than L. braziliensis and L. martiniquensis sequences.
This was expected since molecular phylogenetic analysis suggests that Sauroleishmania
is a sister group of the Leishmania subgenus [24]. In order to deepen the analyses, we
selected the protein sequence most closely related to the L. major LmjF.10.0460, which has
its three-dimensional structure revealed by crystallization and X-ray diffraction, to perform
further studies.

http://www.bioinformatics.org/sms/prot_mw.html
http://www.cbs.dtu.dk/services/TMHMM
http://prosite.expasy.org
http://gpcr2.biocomp.unibo.it/cgi-bin/predictors/gpi/gpipe_1.4.cgi
https://www.ebi.ac.uk/Tools/msa/clustalo/
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Maximum Likelihood, Jones-Taylor-Thornton (JTT) was performed and visualized in Dendroscope 
v3.5.7. Numbers shown at branch nodes are bootstrap values based on 1000 replicates. The closed 

Figure 1. Unrooted maximum likelihood phylogenetic tree using leishmanolysin protein se-
quences. L. major, L. braziliensis, L. martiniquensis, and L. tarentolae protein sequences annotated
as “leishmanolysin” were obtained from TriTrypDB and were analyzed by Interproscan v5.16-55
to confirm the presence of LSHMANOLYSIN(PR00782) and Peptidase_M8(PF01457) domains. The
sequences containing more than 200 residues were aligned and a phylogeny reconstruction based
on Maximum Likelihood, Jones-Taylor-Thornton (JTT) was performed and visualized in Dendro-
scope v3.5.7. Numbers shown at branch nodes are bootstrap values based on 1000 replicates. The
closed relation of L. tarentolae and L. major leishmanolysins are indicated, as well as the underlined
leishmanolysins selected to be overexpressed.

2.2. Structural Heterogeneity on Charge Distributions in L. tarentolae Leishmanolysins

Comparative modeling resolved the L. tarentolae leishmanolysin three-dimensional
shape to verify whether their differences affected the structural properties. The three-
dimensional models were built based on the crystallographic structure of L. major LmjF.10.0460
leishmanolysin, displaying 72, 68 and 65% identity and 93, 90 and 96% coverage with
LtaP10.0650, LtaP10.0480, and LtaPcontig00616-1, respectively (Figure S1). All models
were refined, and their structural quality was assessed before and after the optimization
procedure (Table S2). Moreover, we obtained MolProbity scores ranging from 0.71 to
1.8 among the models, indicating no stereochemical clashes. In addition, all the obtained
QMEAN values were higher than −4.23, which is the low-quality model threshold, making
it appropriate for further study.
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Like the L. major leishmanolysin three-dimensional structure, the L. tarentolae mod-
els are composed of three domains: N-terminal, central region, and C-terminal. These
structures contain a zinc peptidase motif HExxHxxGxxH, such as Metzincin class zinc
peptidases. However, an unexpected 62 amino acid insertion between the glycine and last
histidine residue (Gly271–His334) of the metzincin motif represents most of the central
domain [21]. The comparison between the template and the models revealed that the
obtained structures displayed a root-mean-square deviation (RMSD) below 0.4 Å, mean-
ing that the structures share a characteristic folding and are highly conserved (Figure 2).
Leishmanolysins are rich in disulfide bonds. All structures presented nine conserved pairs,
except for LtaPcontig00616-1, which presented eight pairs. The absence of the first disulfide
bond pair is explained by the truncated N-terminal region, with 33 residues less than
LmjF.10.0460 (Figure 2).

The L. major template and L. tarentolae modeled 3D structures were submitted to molec-
ular dynamics simulations to disclose the influence of pH on the net charge and stability of
leishmanolysin. The pKa values of ionizable groups of Leishmania proteins were assessed
for pH values 5.5 and 7.4. The RMSD values were computed to evaluate the influence of
pH on leishmanolysin stability, resulting in an irrelevant difference below 0.3 Å (Figure S2).
The template showed the highest variability when compared to the systems, oscillating at
about 1.5 Å throughout the run. The models had an increasing mean of RMSD according to
the lowest sequential identity with the template, displaying 2.3 ± 0.39 Å, 2.5 ± 0.47 Å, and
3.7 ± 0.75 Å for LtaP10.0650, LtaP10.0480, and LtaPcontig00616-1, respectively.

The pH influenced the net charge of L. tarentolae proteins, with more positive values
for pH 5.5 and negative for pH 7.4 (Table S3). The three active-site histidine residues that
coordinate the zinc ion were assigned Nd neutral tautomers for all pH values. Non-catalytic
histidine residues were positively charged at pH 5.5 and neutral at pH 7.4. (Figure S3). We
also evaluated the electrostatic potential distribution on the surface of leishmanolysins.
The L. major leishmanolysin showed an extensive region of negative electrostatic poten-
tial surrounding the active site (Figure 3). At less intensity, we find a similar pattern in
LtaP10.0650, while LtaP10.0480 and LtaPcontig00616-1 showed a predominantly positive
pattern of charge density. This difference between the electrostatic potential of L. major and
L. tarentolae leshmanolysins could affect the protein orientation, as demonstrated for other
proteins using experimental and theoretical approaches [25,26], as well as the impact on
their affinities for substrates with distinct charge distributions [27]. Therefore, the prote-
olytic activity of L. tarentolae leishmanolysins, or at least the measurement protocols, might
be affected by these less negative charge distributions. To confirm the charge distribution
influence, L. braziliensis and L. martiniquensis leishmanolysin had their electrostatic potential
analyzed. Similar to L. major, both leishmanolysins displayed a predominantly negative
pattern of charge density (Figure S4).

Finally, to get a deeper understanding, we computed the residue solvent accessi-
bility. Positively charged residues (lysine and arginine) presented higher SASA values
(>1.5 nm/S2/N), with 6, 11, 11, and 13 residues for LmjF.10.0460, LtaP10.0650, LtaP10.0480,
and LtaPcontig00616-1, respectively. We discovered that these residues led to the largest
variance in charge density patterns compared to the electrostatic potential (Figure S5). As
a result, changes in the electrostatic potential of amino acids occurred, particularly at the
active site of leishmanolysins, changing their affinities for molecules.
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Figure 2. Three-dimensional structures of L. major (PDB ID: 1LML) and L. tarentolae leish-
manolysin 3D-models. The PDB ID of the template and resolution are given in the upper left
corner of the upper left quadrant, while the RMSD, coverage degree, and identity between models
and the template appear in the upper left corner of the other three. The N-terminal, central region,
and C-terminal domains are identified in pink, light blue, and green, respectively. The disulfide
bonds are represented by sticks in yellow, the insertion region is identified in dark blue, and the zinc
ion appears as a sphere in dark grey.
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2.3. L. tarentolae Leishmanolysin Has a Low Proteolytic Activity

Aiming to experimentally evaluate the molecular dynamics results of L. tarentolae
leishmanolysins and to compare their proteolytic activity with L. major leishmanolysin
(LmjF.10.0460), we cloned the most closely related leishmanolysin (LtaP10.0650) and the L.
major one in pLEXSY expression systems to overexpress these peptidases (Figure S6). A
hemagglutinin tag (HA tag) was added at the C-terminal of the cloned leishmanolysins,
and two overexpressed clones were generated, as confirmed by the detection of the HA-tag
(Figure S7). This expression system has been widely used for a broad range of biotechno-
logical and biomedical applications due to the advantages of L. tarentolae. Its relatively easy
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and cost-effective cultivation, the mammalian-like post-translational protein modifications
capable of producing substantial recombinant protein yields, as well as the potential to be
extended to an industrial production scale are the main benefits that have attracted the
attention of many researchers and make the L. tarentolae expression system such a good
platform of heterologous protein production [28].

The metallopeptidase activity of wild-type L. tarentolae and L. major were first evaluated
by gelatin-SDS-PAGE zymography. By incubating the soluble extracts in the gelatin gels for
72 h in phosphate buffer pH 5.5, we could observe a weak halo of degradation by the wild-
type L. tarentolae extracts migrating in the 63 kDa range, which is remarkably close to the
wild-type L. major polypeptides (Figure 4). These 63 kDa degradations were inhibited by the
metallopeptidase inhibitor 1,10-phenanthroline and partially inhibited by the ion chelator
EDTA, strongly suggesting the metallopeptidase activity (Figure 4). Although previous
reports failed to detect proteolytic activity in L. tarentolae, this result is not surprising. Our
research group has reported proteolytic activity in all monoxenic trypanosomatids and
the phytomonads examined up to now, as well as all Leishmania spp. assessed so far [16].
Nevertheless, the activity is minimal compared to L. major (Figure 4) or to any other studied
trypanosomatid. No difference was observed in gels incubated at pH 7.4 or even by the
addition of DTT (data not shown). As expected, the metallopeptidase activity was higher
in the two overexpressed L. tarentolae leishmanolysin strains and much higher in the two
strains overexpressing L. major metallopeptidase, being incapable of complete inhibition
by the metallopeptidase inhibitor at the concentration of 10 mM, probably due to the high
amount of enzyme produced (Figure 4). This huge difference between the leishmanolysin
activity from L. tarentolae and L. major might be attributable to the higher negative potential
observed in the molecular dynamic simulations. Moreover, considering that several factors
influence peptidase detection through gelatin-SDS-PAGE zymography [29], additional
parameters were evaluated in our enzymatic assays, such as the buffer pH and the time of
incubation, which could explain the differences between these results and those reported
previously [15]. However, few details on the methodological approach were described, and
it was assumed that the high sequence variability of the L. tarentolae leishmanolysin genes
might have affected the peptidase activity. Accordingly, our research group previously
observed no metallopeptidase activity incubating the gelatin gels with L. tarentolae extracts
in an acidic buffer (pH 5.5) supplemented with 2 mM DTT for 24 h [30].

To better evaluate the differences between the proteolytic activity of L. tarenrolae and
L. major leishmanolysins, we performed solution assays with the extracts of one clone of
each overexpressed peptidase employing a specific matrix metallopeptidase substrate.
After 40 min, the substrate was fully hydrolyzed by the soluble extract of the L. major
leishmanolysin clone, and this proteolytic activity was almost completely inhibited in the
presence of 1,10-phenanthroline, corroborating our previous findings in gelatin zymogra-
phy (Figure 5). However, the overexpressing L. tarentolae leishmanolysin degraded about
three times less substrate than the L. major enzyme. Furthermore, the presence of the serine
peptidase inhibitor PMSF and the cysteine peptidase inhibitor E-64 had a slight effect
on the activity of both leishmanolysin clones, while the ion chelators EDTA and EGTA
partially affected the L. major peptidase (Table 2). Similar results were observed in the
supernatant extracts from the spent culture medium (Figure S8). These results corroborate
our hypothesis of reduced proteolytic activity of L. tarentolae leishmanolysin and raise a
question about an indirect correlation between gene expansion and proteolytic activity. For
instance, similarly to L. tarentolae, T. cruzi leishmanolysin suffer an extensive expansion
to more than 420 predicted genes and pseudogenes, but the metallopeptidase activity of
T. cruzi extracts is rather weak, only detected when the parasites have their soluble extracts
obtained in the presence of proteolytic inhibitors from the other peptidase classes, such as
PMSF, E-64, and the aspartyl inhibitor pepstatin A [31]. In contrast, pathogenic Leishmania
spp. usually presents abundant detectable leishmanolysin activity and a lower number of
leishmanolysin genes.
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Figure 4. Proteolytic activity of leishmanolysins from L. tarentolae, L. major and their mutants
by Gelatin-SDS-PAGE zymography. The soluble extracts of wild-type L. tarentolae (WT), L. major,
and two isolates from each cloned leishmanolysins (LmjF.10.0460 and LtaP10.0650) were submitted to
Gelatin-SDS-PAGE electrophoresis. The gels were incubated in 50 mM phosphate buffer pH 5.5 for
72 h at 37 ◦C. To confirm the enzymatic class, zymograms were incubated in the absence (control) or
presence of the ion chelators 1-10-phenanthroline and EDTA at 10 mM and E-64 at 10 µM to exclude
cysteine peptidases activity around 63 kDa. The numbers on the left indicate apparent molecular
masses of the active bands expressed in kDa.

Table 2. Effects of inhibitors on the proteolytic activity of overexpressed Leishmania tarentolae leishmanolysins.

Overexpressed
Leishmanolysin Inhibitor Class of Inhibition

or Concentration
Residual Activity

(%)

LtaP10.0650

1,10-phenantroline Metallo 2 ± 0.3
EDTA Metallo/Thiol 94 ± 1.2
EGTA Metallo/Thiol 101 ± 2.2
E-64 Thiol 72 ± 3.1

PMSF Serine 101 ± 3.4

LmjF.10.0460

1,10-phenantroline Metallo 3 ± 0.4
EDTA Metallo/Thiol 66 ± 1.6
EGTA Metallo/Thiol 66 ± 1.4
E-64 Thiol 73 ± 2.9

PMSF Serine 73 ± 3.1
In solution assays were performed using the fluorogenic substrate MCA-Pro-Cha-Gly-Nva-His-Ala-Dpa-NH2 at
37 ◦C for 1 h. Activity of the cloned leishmanolysin from L. tarentolae (LtaP10.0650) and from L. major (LmjF.10.0460)
in 100 mM glycine-NaOH buffer pH 10.0 buffer alone was taken as 100%. The effects of proteolytic inhibitors
described below were measured according to the Materials and Methods.
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Figure 5. In solution proteolytic activity of overexpressed L. major LmjF.10.0460 and L. tarentolae
LtaP10.0650 mutants. The enzymatic activity was assessed by measuring the hydrolysis of the flu-
orogenic substrate MCA-Pro-Cha-Gly-Nva-His-Ala-Dpa-NH2 at 37 ◦C for 40 min. Activity of the
cloned leishmanolysin from L. tarentolae (Lta + LtaP10.0650) and from L. major (Lta + LmjF.10.0460)
were measured in 100 mM glycine-NaOH buffer pH 10.0 buffer the presence or absence of
1 µM1,10-phenantroline (Lta + LtaP10.0650 + phe and Lta + LmjF.10.0460 + phe). Results are ex-
pressed as relative fluorescence units (RFU) and the values represent the mean ± standard deviation
of three independent experiments performed in triplicate.

3. Methods and Materials
3.1. Sequence Analysis and Phylogenetic Reconstruction

Protein sequences of Leishmania major, L. braziliensis, L. martiniquensis, and L. tarentolae
Parrot-TarII reference strain annotated as leishmanolysin (or GP63 or PSP or MSP) were
retrieved from the TriTryp database (DB) [32]. These proteins were analyzed for In-
terPro families and domains databases by Interproscan v5.51-85.0 to confirm the pres-
ence of LSHMANOLYSIN (PR00782) and peptidase_M8 (PF01457) domains. The pro-
teins containing both domains and more than 200 residues were aligned using MUS-
CLE v3.8.31. The predicted molecular mass of each sequence was calculated in http:
//www.bioinformatics.org/sms/prot_mw.html (accessed on 31 March 2016) and trans-
membrane helices were searched with http://www.cbs.dtu.dk/services/TMHMM (ac-
cessed on 31 March 2016). PROSITE (http://prosite.expasy.org, (accessed on 31 March
2016) was used to identify the zinc-binding motifs, and PredGPI (http://gpcr2.biocomp.
unibo.it/cgi-bin/predictors/gpi/gpipe_1.4.cgi, (accessed on 22 March 2022) was used to
predict the GPI-anchor. A phylogenetic reconstruction based on Maximum Likelihood,
Jones-Taylor-Thornton (JTT) model with 1000 bootstrap replications, was performed using
MEGA-CC v11 (NIH, Bethesda, MD, USA) and visualized in Dendroscope v3.5.7 (Tübingen,
Germany).

3.2. Comparative Modeling and Molecular Dynamics Simulations

The structure of three L. tarentolae leishmanolysin proteins (LtaP10.0650, LtaP10.0480,
and LtaPcontig00616-1), L. braziliensis LbrM.10.0600, and L. martiniquensis LMARLEM2494_
000016500 were modeled. Initially, BLASTP was used to search the PDB database and select
the 1.86 Å resolution crystal structure of L. major leishmanolysin (PDB ID: 1LML) [21] as a
template. Then, the leishmanolysin sequences were aligned using the PSI-Coffee mode of
the T-Coffee program, and five hundred homology models were created using the “standard
auto model” routine of the Modeller v. 9.23 [33]. All modeled structures were optimized via

http://www.bioinformatics.org/sms/prot_mw.html
http://www.bioinformatics.org/sms/prot_mw.html
http://www.cbs.dtu.dk/services/TMHMM
http://prosite.expasy.org
http://gpcr2.biocomp.unibo.it/cgi-bin/predictors/gpi/gpipe_1.4.cgi
http://gpcr2.biocomp.unibo.it/cgi-bin/predictors/gpi/gpipe_1.4.cgi
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the variable target function method (VTFM) with up to 300 iterations. Molecular dynamic
(MD) optimization was conducted in the slow level mode, repeating the whole cycle twice
to produce optimized conformations of the model. Finally, the modeled structures were
filtered according to their discrete optimized protein energy (DOPE) score and refined using
the locPREFMD server [34]. Original and optimized models were evaluated by the QMean
server, while the ERRAT and Ramachandran plots were calculated on the SAVES server of
UCLA-DOE Lab for stereochemistry analysis. Sequence alignment and three-dimensional
structure figures were generated using ALINE and UCSF ChimeraX.

The three models of L. tarentolae and the template of L. major were simulated in the
pH values of 5.5 and 7.4. MD simulations were carried out using AMBER 20.0; protein
interactions were represented using amber ff14SB force field [35]. Protonation states of
titratable residues were assigned using the PDB2PQR server. The disulfide bonds were
specified. Electrostatic interactions were treated using the particle mesh Ewald (PME)
algorithm with a cutoff of 12 Å. Each system was simulated under periodic boundary con-
ditions in a triclinic box considering 12 Å from the outermost protein atoms in all cartesian
directions. The simulation box was filled with TIP3P water molecules [36]. An appropriate
number of Na+ and Cl− counter ions were added to neutralize the systems. Subsequently,
a two-step energy minimization procedure was performed: (i) 2000 steps (1000 steep-
est descent + 1000 conjugate-gradient) with all heavy atoms harmonically restrained with
force constant of 5 kcal mol−1 Å−2; (ii) 5000 steps (2500 steepest descent + 2500 conjugate-
gradient) without position restraints. All systems were further equilibrated during nine
successive 500 ps equilibration simulations and simulated with no restraints at 300 K in
the Gibbs ensemble with a 1 atm pressure using isotropic coupling. All chemical bonds
containing hydrogen atoms were restricted using the SHAKE algorithm [37]. Three inde-
pendent MD runs of 300 ns for each system were simulated using different initial velocities,
achieving 7.2 µs simulation time. Trajectories were analyzed with GROMACS package tools.
Root-mean-square deviation (RMSD) values were calculated separately for each system
fitting their backbone atoms. Conformational clusterization for protein was performed
using the GROMOS method with a cutoff of 2.0 Å, considering the backbone from the whole
trajectory of each MD simulation. The central structure of the largest cluster was taken
for the electrostatic potential analysis conducted with the Adaptive Poisson-Boltzmann
Solver (APBS) program. Root-mean-square fluctuation (RMSF) and solvent accessible
surface areas (SASA) were calculated for each system’s concatenated three independent
MD simulations.

3.3. Leishmanolysin Cloning and Expression in L. tarentolae

L. tarentolae Parrot-TarII strain ATCC PRA-229 was maintained in M199 medium
(Biowest, Nuaillé, France) supplemented with 2 µg/mL biopterin (Sigma-Aldrich, St. Louis,
MI, USA), 2 µg/mL hemin (Sigma-Aldrich), 50 units/mL of penicillin, 50 µg/mL of
streptomycin and 10% fetal bovine serum (FBS; Thermo Scientific, Waltham, MA, USA) at
26 ◦C with regular passages. For leishmanolysin overexpression, the pLEXSY system was
used following the manufacturer’s instructions: genes for leishmanolysin from L. tarentolae
(gene ID: LtaP10.0650) and L. major (LmjF.10.0460) were cloned into a vector pLEXSY-hyg2
(Jena Biosciences Inc., Jena, Germany) and tagged at the C-terminal with a hemagglutinin
tag (HA3). The construct with L. tarentolae leishmanolysin (9 µg) and 7.7 µg of the L. major
construct were taken and cut off with Swa I before transfection. Both PCR products were
afterward purified with a PCR purification kit and used directly for transfection. Finally,
108 cells were taken for transfection by electroporation (2 pulses, 25 µF, 1500 V, 10 s break
between pulses) using BTX ECM 630 electroporator (Harvard Apparatus Inc., Holliston,
MA, USA). Mutants were selected in an M199 medium supplemented with Hygromycin B
(100 µg/mL) (Sigma-Aldrich).

As previously described, crude extracts of L. tarentolae mutants were analyzed by
Western blotting to confirm the overexpression [31]. Briefly, proteins were separated in
10% SDS-PAGE, and the polypeptides were electrophoretically transferred to nitrocellulose
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membranes and blocked in 10% low-fat dried milk dissolved in PBS containing 2% Tween
20 (Sigma-Aldrich). The membranes were washed and incubated with an anti-HA antibody
(Thermo Scientific) (1:1000 dilution) for 1 h. The secondary peroxidase-conjugated goat
anti-rabbit immunoglobulin G (1:1500 dilution) (Thermo Scientific) was used, followed
by chemiluminescence immunodetection. An anti-α-tubulin polyclonal antibody (Sigma-
Aldrich) produced in rabbit (1:5000 dilution) was used as a loading control.

3.4. Parasite Cultivation for Protein Extraction

L. tarentolae Parrot-TarII strain wild-type strain (WT) and L. major (MHOM/SU/73/5-
ASKH) promastigotes were routinely maintained in Schneider’s medium supplemented
with 10% FBS at 26 ◦C. In addition, L. tarentolae mutants overexpressing leishmanolysin
(Lta + LtaP10.0650 and Lta + LmjF.10.0460) were maintained with 100 µg/mL hygromycin
up to 20 passages, according to manufacturer’s instructions. To obtain the protein crude ex-
tracts, 109 promastigotes from each strain were resuspended in 2% CHAPS (Sigma-Aldrich)
diluted in 50 mM Tris-HCl, pH 7.2, and broken in a vortex by alternating 30 s shaking and
30 s cooling intervals [29]. The crude extract was centrifuged at 4 ◦C, and the soluble and
insoluble fractions were separated by centrifugation (14,000× g). For the supernatant ex-
traction, the spent culture medium was concentrated 50-fold in a 10,000-molecular-weight
cutoff Amicon micropartition system (Amicon®, Sigma-Aldrich). The protein concentration
was determined following the manufacturer’s instructions of Pierce™ BCA Protein Assay
Kit (Thermo Scientific), using bovine serum albumin (BSA) as standard, and the samples
were stored at −80 ◦C.

3.5. Enzymatic Activity Assays

The leishmanolysin activity of L. tarentolae mutants was assayed simultaneously by gel
zymography and fluorimetry. First, approximately 40 µg of the soluble extracts from the su-
pernatant were submitted to 12% polyacrylamide-SDS gel electrophoresis (SDS-PAGE) con-
taining 0.1% gelatin from porcine skin (Sigma-Aldrich) in an ice-bath. Samples were diluted
(v/v) in SDS-PAGE sample buffer 4× without reducing agent and loaded onto gels. Elec-
trophoresis was carried out under constant current (25 mA). After running, the gels were
washed 4 times in 2.5% Triton X-100 (Sigma-Aldrich) under agitation for 1 h at room tem-
perature for SDS removal and enzyme renaturation. Subsequently, the proteolytic activity
was determined by incubating the gels at 37 ◦C for 72 h in 50 mM phosphate buffer, pH 5.5
and pH 7.4, containing or not 2 mM dithiothreitol (DTT) (Sigma-Aldrich). To determine the
peptidase class, the lysates were incubated with the inhibitors: (i) 1,10-phenanthroline (Phe,
10 mM), ethylene-bis(oxyethylenenitrilo)tetraacetic acid (EGTA, 10 mM) and ethylenedi-
aminetetraacetic acid (EDTA, 10 mM) for metallopeptidases; (ii) Nα-tosyl-Lys chloromethyl
ketone (TLCK, 100 µM) and phenylmethanesulfonyl fluoride (PMSF, 1 mM) for serine
peptidases, (iii) and trans-epoxysuccinyl-L-leucylamido(4-guanidino)butane (E-64, 10 µM)
for cysteine peptidases. The gels were stained with 0.2% Coomassie Brilliant Blue R-250
(Sigma-Aldrich) in methanol–acetic acid–water (40:10:50) and destained in the same so-
lution without the dye. The gels were scanned and analyzed with Image Scanner III (GE
HealthCare, Chicago, IL, USA). The molecular masses of the peptidases were estimated by
comparison with the mobility of low molecular mass standards [29].

Alternatively, the enzymatic activity was measured continuously using the fluoro-
genic peptide substrate MCA-Pro-Cha-Gly-Nva-His-Ala-Dpa-NH2 (Sigma-Aldrich) at
37 ◦C in 0.1 M glycine-NaOH buffer pH 10.0 containing 1 mM CaCl2 [31]. The assays
were performed in black round bottom 96-microwell plates in the Spectra Max Gemini
spectrofluorometer (Molecular Devices, San Jose, CA, USA), with excitation wavelength at
328 nm and emission at 393 nm. The reaction started with the addition of 10 µM substrate
to 10 µg of the parasite cellular extract, or the supernatant extract, in a total volume of
100 µL. The inhibition studies were performed by incubation with the following inhibitors:
10 mM Phe, 10 mM EDTA, 10 mM EGTA, 1 mM PMSF, or 10 µM E-64. In parallel, the
addition of divalent ions ZnCl2, ZnSO4, CaCl2, and MnCl2 at 5 mM was also evaluated.
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The assays were controlled for self-liberation of the fluorophore over the same time interval.
All results were performed three times in triplicate and are expressed as mean ± standard
deviation. In both zymography and in-solution assays, L. tarentolae WT and L. major cellular
extracts were used as controls.

4. Conclusions

We performed a deep analysis of L. tarentolae leishmanolysins from the genome to
the functional enzymatic studies. Our results unveil that the variations in the electrostatic
potential between L. major and L. tarentolae leishmanolysins could be the main responsible
for the reduced proteolytic activity of these peptidases. Nevertheless, the great expan-
sion of L. tarentolae leishmanolysins genes and differences in the total charge distribution
might modify the parasite–host interface, allowing evolutionary adaptation to different
genus that serves as vector (Sergentomya) and the lizard host [23]. In addition, previous
L. major results suggested that different substrate specificities displayed by these pepti-
dases were a valuable characteristic to explain the importance of distinct leishmanolysin
genes at Leishmania spp. surfaces [38]. Consequently, the evaluation of the rules played by
L. tarentolae leishmanolysins in the interaction process with its hosts should be investigated.

In addition, we overexpressed one L. major and one L. tarentolae leishmanolysin in
a pLEXSY system. The overexpressed parasites facilitated our understanding of the low
metallopeptidase activity of L. tarentolae leishmanolysin. Trypanosomatids non-pathogenic
to humans, such as L. tarentolae, could be used as important models for understanding
the biological behavior, biochemistry, and molecular biology of pathogenic trypanoso-
matids [39]. Therefore, further studies on leishmanolysin in these species are warranted to
better understand the function of these enzymes during the parasite life cycle and relate it
to the lack of pathogenicity in vertebrates for these species.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23147660/s1.
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