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Abstract: Worldwide, infections by influenza viruses are considered a major public health challenge.
In this study, influenza B vaccine mismatches and clinical aspects of Victoria and Yamagata infections
in Brazil were assessed. Clinical samples were collected from patients suspected of influenza infection.
In addition, sociodemographic, clinical, and epidemiological information were collected by the
epidemiological surveillance teams. Influenza B lineages were determined by real-time RT-PCR
and/or Sanger sequencing. In addition, putative phylogeny–trait associations were assessed by
using the BaTS program after phylogenetic reconstruction by a Bayesian Markov Chain Monte Carlo
method (BEAST software package). Over 2010–2020, B/Victoria and B/Yamagata-like lineages co-
circulated in almost all seasonal epidemics, with B/Victoria predominance in most years. Vaccine
mismatches between circulating viruses and the trivalent vaccine strains occurred in five of the eleven
seasons (45.5%). No significant differences were identified in clinical presentation or disease severity
caused by both strains, but subjects infected by B/Victoria-like viruses were significantly younger
than their B/Yamagata-like counterparts (16.7 vs. 31.4 years, p < 0.001). This study contributes to a
better understanding of the circulation patterns and clinical outcomes of B/Victoria- and B/Yamagata-
like lineages in Brazil and advocate for the inclusion of a quadrivalent vaccine in the scope of the
Brazilian National Immunization Program.

Keywords: influenza B lineages; vaccine mismatch; clinical disease; phylogenetics; phylogeny–trait
association

1. Introduction

Globally, influenza infections are a major public health challenge due to morbidity
and mortality and have a significant annual economic impact [1,2]. Influenza types A or
B are clinically indistinguishable [3,4] and can lead to serious complications and death,
especially among children and adults [5–7]. In Brazil, the burden of influenza-like illness
(ILI) cases was estimated to be over 83 million in 2008 [8].

Annual vaccination plays a key role in influenza control and prevention [9]. Although
several countries have regularly used the quadrivalent influenza vaccine (QIV) for some
years now, the Brazilian Immunization Program freely provides the trivalent influenza
vaccine (TIV), which comprises two strains of influenza A (H1N1 and H3N2) and only
one influenza B lineage component-B/Yamagata or B/Victoria-like [10]. Because of the
high viral variability, especially in hemagglutinin and neuraminidase proteins, the vaccine
composition is annually updated by the World Health Organization (WHO), based on a
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sample of circulating viruses that are characterized by the global influenza surveillance net-
work [11–14]. For the TIV, the B/Victoria or B/Yamagata-like strains are chosen according
to their prevalence in each Hemisphere based on the prior year [14]. Therefore, the success
of the vaccination strategy depends on the concordance between the recommended vaccine
strain and their effective prevalence in the population in a given influenza season.

Since 2000, the co-circulation of influenza B lineages has been observed, imposing
a challenge for TIV adoption [15]. In many countries, mismatches between vaccine and
circulating viruses had been reported in about two-to four year intervals [16]. These events
can contribute to additional disease-related burden due to the limited cross-protection
between antigens [17–19]. Hence, the correct prediction of vaccine strains is pivotal to a
successful immunization policy and the reduction in the annual impact of influenza.

In this study, we investigated the distribution and presumed regional patterns of
influenza B lineages among 11 influenza seasons (2010–2020) in Brazil. In addition, putative
associations between B/Victoria- and B/Yamagata-like viruses and demographic and
clinical-epidemiological variables were also explored. This information is critical to tailor
public health policies for influenza control and prevention.

2. Materials and Methods
2.1. Population

Nasopharyngeal swabs, aspirates, and/or lung tissue fragments of 920 influenza B
laboratory-confirmed cases were investigated. From June 2010 to March 2020, clinical
samples were collected from subjects with respiratory influenza-like illness (ILI) or Severe
Acute Respiratory Infection (SARI), according to the WHO and Brazilian Ministry of Health
(MoH) case definitions [20,21] and sent to our laboratory, a reference laboratory for the
MoH and WHO. In addition, the sociodemographic, clinical, and epidemiological infor-
mation were collected by the local epidemiological surveillance teams using a nationally
standardized questionnaire including information on gender, age, symptoms onset, clinical
signs and symptoms, hospitalization history and comorbidities, and others.

Among the 920 influenza B positive samples used in the mismatch analysis, 514
samples had complete clinical and epidemiological data and were used to explore putative
associations between influenza B lineages and those outcomes. In addition, within the
subsample submitted to viral HA sequencing, good quality and complete sequences were
obtained in 118 samples.

Clinical severity was defined as the presence of dyspnea, indicative of SARI. Samples
were collected in different Brazilian geographical regions. The Northeastern states were
represented by Alagoas, Bahia and Sergipe, whereas Southeastern and Southern states by
Rio de Janeiro, Espírito Santo, and Minas Gerais, and Rio Grande do Sul, Paraná, and Santa
Catarina, respectively. Vaccine mismatch was defined as more than 51% of divergence
between the circulating lineage and influenza B vaccine strain in each influenza season.

2.2. Influenza B Molecular Detection, Lineage Determination and Sequencing

Viral RNA was extracted using the QIAmp Viral RNA Mini Kit. Lung tissue fragments
were macerated using the Tissue Ruptor Kit and RNA was extracted using a RNeasy Mini
Kit (Qiagen, Hilden, Germany). Influenza B detection and lineage determination were per-
formed by real-time RT-PCR using the CDC protocols, as recommended by the WHO [22].
Sanger sequencing of the hemagglutinin gene (HA, 1714bp) was carried out using the CDC
primers and protocol. After purification (QIAquick Extraction Kit, Qiagen), both strands
were sequenced using the ABI PRISM BigDye Terminator v.3.1 Cycle Sequencing Ready
Reaction Kit (Applied Biosystems, Waltham, MA, USA).

2.3. Phylogenetic Analyses

The phylogenetic analyses were composed of 118 complete Brazilian HA sequences
(1714bp), for which information on the presence of dyspnea was available. Sequences were
edited and contigs were set up using the software Sequencher, v.4.10. After alignment
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by Muscle [23], HA phylogenetic trees were reconstructed using a maximum likelihood
algorithm (PhyML v.3.0) and aLRT SH-like as the fast likelihood-based method [24]. The
general time reversible with gamma-distributed rates and invariant sites (GTR + I+G) was
employed as the best fit nucleotide substitution model determined by the J Model test,
version 2.1.7 [25].

The temporal structure of the dataset was verified using TempEst v. 1.5.1 [26]. After-
ward, time–scale phylogenetic trees were reconstructed by a Bayesian Markov Chain Monte
Carlo (MCMC) method, accessible in the BEAST software package, v1.10 [27,28]. Time
calibration was set based on the year of sample collection, available for all sequences. Beast
runs were carried out using the uncorrelated lognormal relaxed molecular clock model and
a time-aware Gaussian Markov Random Field (GMRF) Bayesian skyride coalescent tree
prior [29,30]. The length of the MCMC chains was established as 80 million, sampled every
8000 steps. Trace files generated through Bayesian phylogenetic inference were visualized
and analyzed in Tracer version 1.7.1 [31]. The convergence of parameters was considered
in the presence of effective sample size (ESS) values exceeding 200. The target maximum
clade credibility (MCC) tree was summarized by TreeAnnotator 1.8.4, with a burn-in corre-
sponding to 10% of states. PhyML and MCC trees were visualized and edited in FigTree,
version 1.4.3. (http://tree.bio.ed.ac.uk/software/figtree/ accessed on 31 July 2021).

In order to infer putative phylogeny–trait associations (viral lineages and disease
severity), we used 100 replicates for two discrete states (ILI and SARI). Analyses were
performed with BaTS program, release 0.9 [32]. Parsimony score statistics (PS), association
index (AI), and monophyletic clade (MC) statistics were calculated.

2.4. Statistical Analyses

Descriptive and bivariate analysis (chi-square/Fisher’s exact test for categorical vari-
ables and the independent-samples Kruskal–Wallis test for means) were employed to assess
the putative associations between the variables of interest and outcomes. Significance was
considered when the p value < 0.05. Analyses were performed using SPSS for windows,
version 19 (SPSS Inc., Chicago, IL, USA).

2.5. Ethical Statement

This study was approved by the Fiocruz-IOC Ethics Committee (68118417.6.0000.5248).
As a National Reference Laboratory for Influenza for the MoH and as a National Influenza
Center (NIC) for the WHO, our laboratory continuously receives samples from influenza
cases for antigenic and genetic characterization as part of the WHO Influenza Surveil-
lance Network. Clinical samples were collected in the scope of the National Influenza
Epidemiological Surveillance Program/MoH, dispensing a formal patient consent.

In accordance with our confidentiality policy, determined in the scope of Quality Sys-
tem (ISO 15189), personal information is confidential, and all analyses remain anonymous
as the samples and formularies are coded.

3. Results

The demographic and clinical features of the studied population, according to in-
fluenza B viral lineage strata are shown in Table 1. Most of the subjects of the male gender
(54.2%), with a median age of 20.5 years (0–99 years), and residents in Southern Brazil
(70.2%). About a third of the sample reported any comorbidity (28.5%) and a low frequency
of fatal outcomes was observed (3.4%). With concern to clinical symptoms, about 40.0% of
cases reported dyspnea, in line with the SARI case classification. The majority of patients
presented fever and cough (about 93.0%), sore throat (48.0%), myalgia (26.6%), coryza
(21.4%), and arthralgia (4.3%). Individuals infected by B/Victoria-like viruses were signif-
icantly younger than their B/Yamagata-like counterparts (16.7 vs. 31.4 years, p < 0.001).
No other significant divergence in the demographic or clinical variables could be noted,
suggesting a similarity in clinical disease caused by B/Victoria- and B/Yamagata-like
infections. These 514 samples were also subtyped and 51.6% of infections were associated
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with Victoria-like viruses (n = 265), while the remaining 48.4% had Yamagata-like infections
(n = 249).

Table 1. Demographic and clinical features among the 514 Influenza B infected individuals, according
to viral lineage in Brazil, 2010–2020.

Influenza B Lineages

Variables All (n = 514) Victoria (n = 265) Yamagata (n = 249) p-Value

Brazilian geographical region (%) 51.6 (265) 48.4 (249) 0.157
Northeast 6.2 (32/514) 7.9 (21) 4.4 (11)
Southeast 23.5 (121/514) 24.9 (66) 22.1 (55)

South 67.2 (178/514) 73.5 (178) 73.5 (183)
Gender (masc %) 54.2 (278/514) 57.4 (152) 50.8 (126) 0.081

Comorbidities (%) 28.5 (103/361) 29.9(49) 27.4 (54) 0.344
Hospitalization 90.4 (255/282) 92.6 (138) 88.0 (117) 0.131

Fatal outcome (%) 3.4 (14/409) 3.4 (6) 3.4 (8) 0.599
Reported clinical symptoms (%)

Dyspnea 39.7 (204/514) 39.6 (105) 39.8 (99) 0.523
Fever 93.6 (480/513) 94.3 (249) 92.8 (231) 0.297

Cough 93.8 (480/512) 93.6 (247) 94.0 (233) 0.501
Sore throat 48.0 (243/506) 45.4 (118) 50.8 (125) 0.129

Myalgia 26.6 (136/511) 24.7 (65) 28.6 (71) 0.184
Coryza 21.4 (109/510) 24.1 (63) 18.5 (46) 0.073

Arthralgia 4.3 (22/512) 3.8 (10) 4.8 (12) 0.363

Age (median, range in years) 20.5 (0–99) 16.7 (0–99) 31.4 (0–88) <0.001

Full HA sequences and clinical information was available for a subsample of 118 posi-
tives (66 sequences of B/Victoria and 52 sequences of B/Yamagata-like), which were further
classified as ILI or SARI-associated cases (Table S1). The maximum clade credibility (MCC)
phylogenetic tree of the influenza B hemagglutinin gene (1714 bp) from B/Victoria- and
B/Yamagata-like lineages circulating in Brazil and the outcomes of the phylogeny–trait anal-
ysis are shown in Figure 1. In order to effectively describe the putative correlations between
traits (clinical severity, ILI or SARI) and phylogeny, we used a Bayesian tip-association
significance test (Table 2). In these assessments, low PS scores and AI values represent
strong phylogeny–trait association. In addition, MC values will be correlated with the
strength of the phylogeny–trait association [32]. The comparison between the AI and PS
values obtained in our subsample and the null mean values corresponded to 6.4 (95%
CI 5.5–7.2) vs. 6.3 (95% CI 5.1–7.4), p = 0.550 and 37.8 (95% CI 36.0–40.0) vs. 38.9 (95%
CI 34.9–43.1), p = 0.370), respectively. These outcomes revealed a weak phylogeny–trait
association. In addition, the monophyletic clade statistics (MC) for SARI was 2.9 (95% CI
2.0–5.0) vs. 3.4 (95% CI 2.6–4.5), p = 0.810) and for ILI, it was 3.7 (95% CI 3.0–5.0) vs 4.4 (95%
CI 3.1–6.2, p = 0.569), showing that the SARI and ILI traits were randomly distributed
among the B/Victoria and B/Yamagata groups. Altogether, these results support the view
that infections caused by B/Victoria-like and B/Yamagata-like viruses have similar clinical
severity, independent of the hypothesis testing approach.

The distribution of viral lineages according to the year of sample collection and the
presence of vaccine mismatches is shown in Figure 2. Both influenza B lineages co-circulated
through the studied decade, with a higher prevalence of B/Victoria-like viruses in most
years. Mismatches between vaccine strains (Table 3) and circulating lineages (B/Victoria
and B/Yamagata) were observed in 45.4% (5/11) of the investigated seasons (2010, 2013,
2014, 2017, and 2019).
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Figure 1. The phylogeny–trait analysis based on the maximum clade credibility (MCC) phylogenetic
tree of 118 complete sequences of the influenza B hemagglutinin gene (1714 bp) from B/Victoria-like
(66 sequences) and B/Yamagata-like (52 sequences) antigenic lineages circulating in Brazil, 2010–2020.

Table 2. Results of phylogeny trait association tests for viral lineages (B/Victoria and B/Yamagata)
and disease severity (SARI and ILI).

Statistic Observed Mean (95%CI) Null Mean (95%CI) Significance (p-Value)

AI 6.4 (5.5–7.2) 6.3 (5.1–7.4) 0.550
PS 37.8 (36.0–40.0) 38.9 (34.9–43.1) 0.370

MC SARI 2.9 (2.0–5.0) 3.4 (2.6–4.5) 0.810
MC ILI 3.7 (3.0–5.0) 4.4(3.1–6.2) 0.569

AI, association index; PS, parsimony score; MC, monophyletic clade; CI, confidence interval; SARI, severe acute
respiratory infection; ILI, influenza-like illness. The sequences obtained from SARI and ILI cases and represented
in red and green, respectively. Results were regarded as statistically significant when p < 0.05.
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Table 3. WHO recommended influenza vaccine composition in the respective influenza seasons.

Influenza Season
Northern Hemisphere (NH)

Influenza Season
Southern Hemisphere (SH)

Lineage Strain Lineage Strain

2019/20 Yamagata B/Phuket/3072/2013 2020 Victoria B/Washington/02/2019
2018/19 Yamagata B/Phuket/3072/20131 2019 Yamagata B/Phuket/3072/20132
2017/18 Victoria B/Brisbane/60/2008 2018 Yamagata B/Phuket/3072/2013
2016/17 Victoria B/Brisbane/60/2008 2017 Victoria B/Brisbane/60/2008
2015/16 Yamagata B/Phuket/3072/2013 2016 Victoria B/Brisbane/60/2008
2014/15 Yamagata B/Massachusetts/2/2012 2015 Yamagata B/Phuket/3072/2013
2013/14 Yamagata B/Massachusetts/2/2012 2014 Yamagata B/Massachusetts/2/2012
2012/13 Yamagata B/Wisconsin/1/2010 2013 Yamagata B/Wisconsin/1/2010
2011/12 Victoria B/Brisbane/60/2008 2012 Victoria B/Brisbane/60/2008
2010/11 Victoria B/Brisbane/60/2008 2011 Victoria B/Brisbane/60/2008
2009/10 Victoria B/Brisbane/60/2008 2010 Victoria B/Brisbane/60/2008

4. Discussion

In this study, the demographic and clinical aspects of influenza B/Victoria and B/Yamagata
infections, and vaccine mismatches over a decade of influenza seasons were explored.

Independent of the adopted hypothesis testing approach—if based on statistical analy-
ses on the main influenza signs and symptoms or on phylogeny–trait analyses—our results
revealed that infections caused by B/Victoria-like and B/Yamagata-like viruses presented
similar clinical outcomes/severity. These findings are in line with previous reports [33–36].
Nonetheless, observations from Tan et al. suggest that the B/Victoria Guangzhou clade
2 lineage infected patients showed fewer upper respiratory tract infections than their
B/Victoria Guangzhou clade 1 counterparts [37].

Of note, subjects infected by B/Victoria-like viruses were significantly younger than
those infected by B/Yamagata-like viruses, corroborating data from epidemiological stud-
ies conducted in Brazil and elsewhere (Slovenia, Australia, New Zealand, and South
Africa) [34,38–41]. In addition, previous analyses on demographic data (2008 to 2019) had
shown a younger profile among B/Victoria (median age of 13 y) when compared to the
B/Yamagata cases (median age of 32.5 y)—the latter showing a bimodal age distribution
with peaks within pediatric and adult age groups, respectively [42,43]. According to Vi-
jaykrishna et al., this outcome could be partially explained by subtle differences in the
prevalence of α-2,3 and α-2,6 linked glycans on respiratory tract cells from young children,
in contrast to those found among adults [39], in addition to pre-exposure to infection or
immunization combined with pre-existing population immunity. Moreover, the existence
of an immunological impression induced by a first B/Yamagata infection could act on
more conserved epitopes than those neutralized by antibodies induced by B/Victoria-like
viruses [39,44,45]—a phenomenon already described for influenza A viruses [46,47].

In our analysis, no special geographical patterns in the distribution of viral lineages
were found. Despite a profound imbalance in the demographic density between Brazilian
regions [48], the reduced number of available sequences from the Northeastern states
is noteworthy (Table 1), reinforcing the need to improve epidemiological and genomic
surveillance, in order to have a representative sample of all regions. This is pivotal informa-
tion to effectively evaluate the putative geographical patterns of viral distribution and to
better guide vaccination strategies. It is important to emphasize that all of these findings
should be interpreted in light of a small and non-representative sample, which could have
introduced biases in the present analyses.

The presence of mismatches between the circulating influenza B lineages and vaccine
strains in the 2010–2020 influenza seasons was also explored. The re-emergence of B/Victoria-
like viruses and the cocirculation of both influenza B strains since 2000–2002 [49–51] including
the sample assessed in this study imposed a challenge to a correct prediction of the TIV
influenza B component. Our figures pointed to a vaccine mismatch in 45.5% of the studied sea-
sons (2010, 2013, 2014, 2017, and 2019), in line with the previous Brazilian information [52–55].
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Luna et al. described similar findings (46.0%) over seven influenza seasons (2010–2016) [38,55],
and Barros et al. found a significant vaccine mismatch in 2013, both for Brazil (Vic 91.4%)
and for South America (Vic 52%) [54]. A study carried out in Europe and in the United
States showed vaccine mismatches in about half of the 2001 to 2011 influenza seasons [16].
It is relevant to mention that global sampling on the influenza surveillance program is not
representative at all, and is based on the sample collection of sentinel health services [14,21].
Moreover, the effective impact of this event on influenza morbidity and mortality need to be
further addressed.

Altogether, these results highlight the difficulty to accurately predict the influenza B
component of the annual trivalent vaccines, despite the WHO global efforts to monitor and
characterize circulating viruses in the Northern and Southern Hemispheres. In addition,
influenza vaccine effectiveness may be suboptimal in mismatched seasons, potentially
increasing the disease burden [56]. In order to reduce the impact of influenza B vaccine
mismatch, the WHO has recommended the inclusion of both influenza B lineages in
the vaccine composition since 2013 [57]. However, the TIV is under current use by the
MoH Immunization Program to vaccinate influenza target groups [10]. The impact of
replacing the TIV by QIV in a pediatric group has been estimated. When the dynamic
epidemiological model was applied to the Brazilian context, QIV adoption would be able
to avoid 406,600 symptomatic cases, 11,300 hospitalizations, and almost 400 deaths per
influenza season, reinforcing the cost-effectiveness of QIV and its respective public health
benefits [58–61].

5. Conclusions

Despite annual vaccination campaigns, seasonal influenza remains responsible for a
relevant morbidity and mortality and economic burden in Brazil and worldwide. Overall,
our findings advocate for the inclusion of the QIV in the context of the Brazilian National
Immunization Program, in order to improve the health promotion and economic benefits
of influenza vaccination.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/v14071477/s1, Table S1: Sequences from GISAID’s EpiFlu™ Database,
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The number of tested samples for each year and lineages are detailed.
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