

INSTITUTO OSWALDO CRUZ

Pós-Graduação em Biologia Celular e Molecular

Análise do papel do inflamassoma na imunopatogênese do Eritema Nodoso Hanseniano

Thabatta Leal Silveira Andrezo Rosa

RIO DE JANEIRO

Outubro/2021

Leal Silveira Andrezo Rosa, Thabatta.

Análise do papel do inflamassoma na imunopatogênese do Eritema Nodoso Hanseniano / Thabatta Leal Silveira Andrezo Rosa. - Rio de Janeiro, 2021.

xviii, 298 f.; il.

Tese (Doutorado) - Instituto Oswaldo Cruz, Pós-Graduação em Biologia Celular e Molecular, 2021.

Orientadora: Maria Cristina Vidal Pessolani.

Bibliografia: f. 157-202

1. Inflamassoma. 2. Eritema Nodoso Hanseniano. 3. Talidomida. 4. Hanseníase. 5. RNAseq. I. Título.

Elaborado pelo Sistema de Geração Automática de Ficha Catalográfica da Biblioteca de Manguinhos/Icict/Fiocruz com os dados fornecidos pelo(a) autor(a), sob a responsabilidade de Igor Falce Dias de Lima - CRB-7/6930.

INSTITUTO OSWALDO CRUZ

Pós-Graduação em Biologia Celular e Molecular

Thabatta Leal Silveira Andrezo Rosa

Análise do papel do inflamassoma na imunopatogênese do Eritema Nodoso Hanseniano

Tese apresentada ao Instituto Oswaldo Cruz como parte dos requisitos para obtenção do título de Doutor em Ciências

Orientadora: Dra. Maria Cristina Vidal Pessolani

RIO DE JANEIRO

Outubro/2021

Ministério da Saúde

FIOCRUZ Fundação Oswaldo Cruz

INSTITUTO OSWALDO CRUZ

Pós-Graduação em Biologia Celular e Molecular

AUTORA: Thabatta Leal Silveira Andrezo Rosa

Análise do papel do inflamassoma na imunopatogênese do Eritema Nodoso Hanseniano

ORIENTADORA: Dra. Maria Cristina Vidal Pessolani

Aprovada em: 14 / 10 / 21

EXAMINADORES:

- Prof. Dra. Roberta Olmo Pinheiro (IOC/Fiocruz)
- Prof. Dra. Patrícia Torres Bozza Viola (IOC/Fiocruz)
- Prof. Dr. Dario Simões Zamboni (FRMP/USP)
- Prof. Dra. Luciana Silva Rodrigues (UERJ)
- Prof. Dra. Verônica Schmitz Pereira (IOC/Fiocruz)

Rio de Janeiro 14, de Outubro de 2021

Dedico a tese à minha mãe e meu pai, que sempre me apoiaram e torceram por mim nessa longa caminhada.

Agradecimentos

Agradeço à meus pais, Elisangela e Rogério, que sempre me apoiaram, sempre torceram pelo meu sucesso e sempre fizeram tudo que estiveram ao seu alcance para me dar as melhores oportunidades. Agradeço por todo amor e carinho, pelos valores que me ensinaram, pela dedicação e por sempre estarem do meu lado e me apoiarem mesmo nas decisões mais difíceis. Obrigada pela infância maravilhosa que tive e por me ajudarem a fazer a transição para a vida adulta da forma mais tranquila, porque é muito mais fácil quando se sabe que tem uma rede de apoio e vocês sempre foram minha rede de apoio. Amo muito vocês e essa conquista também é de vocês.

À minha avó Lea, que eu amo muito e reservou tantos momentos da sua vida para cuidar de mim e me ajudar a crescer. Uma das minhas primeiras memórias é com minha avó me ajudando a aprender a ler. E olha esse longo caminho desde aquele momento até onde estamos agora. Nem sempre nos entendemos direito ao longo desses anos, com certeza tivemos momentos difíceis, mas uma certeza que sempre tive era de seu amor e sua torcida. Obrigada por tudo.

À minha família, de modo geral, que sempre foi muito amorosa, respeitadora e sempre acompanharam todo meu caminho. Às minha tias Denize, Valéria e Jaqueline que foram sempre como segundas mães, que nunca mediram esforços para ver a felicidade de todos, que também sempre tiveram em todos os momentos da minha infância e sempre torceram a cada passo que eu dava. Que me inspiram a um dia ter essa mesma proximidade e ligação com aqueles quem amo.

À minha prima-irmã Anne, que não tenho palavras para descrever o quanto significa para mim, minha psicóloga favorita. Mesmo sendo filha única posso dizer que tive o privilégio de nunca me sentir sozinha, porque você sempre esteve ao meu lado. Crescemos juntas por sermos primas, mas acima de tudo escolhemos continuar caminhando juntas e estar sempre apoiando uma à outra, pois somos não só amigas, mas irmãs de alma. Obrigada por me ouvir quando estou desesperada e por me dar conselhos, mas também por dividir comigo as risadas e discussões ideológicas. Te amo irmã.

Ao meu melhor amigo Fabrício. Nossa, que jornada hein. O laboratório me presenteou com um irmão, meu pisciano favorito. Aquele que dividiu comigo todos os passos dessa jornada científica, desde o início. Aquela parceria que acontece uma vez na vida, a parceria Lennon-McCartney da hanseníase. Te amo demais amigo, obrigada pelo apoio, tanto emocional, como pelas ajudas nos experimentos, obrigada pela sua amizade, pela sua torcida. Sua determinação me inspira todos os dias e sua alegria, sua dedicação, sua paixão por dividir com os outros seu conhecimento. Tenho certeza do seu enorme sucesso e vou estar sempre na sua torcida.

Á minha grande amiga Débora, outro grande presente da Fiocruz. Que preciso

agradecer individualmente por ser aquela amiga de todas as horas, até nas madrugadas para desabafar sobre os medos e ansiedades, mas principalmente das risadas, de compartilhar os memes, parceira de todos as aventuras, do maior hobby da vida adulta que é sair para comer, rs, a melhor boleira e cozinheira de todos, com o maior coração do mundo. Obrigada por tudo minha amiga, estamos juntas sempre.

Ao meu amigo Thyago Leal que me ajudou tanto nas análises de dados do RNA-seq, sempre muito gentil, paciente e solícito. Desculpe por ter te dado tanto trabalho, mas nunca posso deixar de agradecer você por toda sua ajuda.

Á Família Lamicel, meus amigos tão queridos: Fabrício, Débora, Karina, Robertha, André, Rychelle, Chyntia, Leo, Sabrina, João, Fernanda, Thiago, Thyago,Talyta, Mayara, Victor, Arthur, Camila, Carol e todos aqueles que passaram pela sala 27, seja como integrantes ou aqueles que adotamos como membros honorários. Vocês foram o maior presente de todos esses 11 anos de Fiocruz. Se eu tivesse que escolher algo para guardar pra sempre na memória de todo esse período seria vocês. Vocês são minha segunda família. Eu nunca conheci um grupo de pessoas tão acolhedoras e tão abertas, que abraçam qualquer pesssoa, que recebem e incluem no grupo com o maior prazer, porque quanto mais, melhor, sempre cuidando uns dos outros, sempre torcendo pelo sucesso de cada um. Isso é uma verdadeira família e eu me sinto honrada de ter sido parte dessa família por todos esses anos. Obrigada por tudo.

Ao Dr. John T. Belisle por ter aberto as portas de seu laboratório e ter me oferecido a oportunidade de realizar meu Doutorado Sanduíche na Colorado State University. Foi um período muito enriquecedor para mim, com muitos desafios e agradeço pela oportunidade.

À Dra. Angela Marques que me deu todo o suporte durante o período do sanduíche e que me ajudou bastante com tudo, tanto nos experimentos, como na parte de me sentir acolhida. Muito obrigada.

À minha coorientadora, Dra. Marcia Berredo que é como uma segunda mãe e que sempre me apoiou, sempre me deu todo o suporte e sempre embarcou em todas as aventuras que me propus, sempre me auxiliando.

À minha orientadora, Dra. Maria Cristina Pessolani, que abriu as portas para mim há 11 anos atrás, quando eu tinha só 17 anos e me deu a maior oportunidade da minha vida, de chegar aonde estou agora. Obrigada por toda orientação ao longo desses anos, obrigada por me incentivar a sempre dar o melhor de mim, obrigada por todas as oportunidades, obrigada pela paciência, obrigada por tudo.

"O caminho para o progresso não é rápido e nem fácil."

Marie Curie

Índice

Lista de Abreviaturasxi
Índice de Figuras xiv
Lista de Tabelas xvi
Resumoxvii
Abstractxviii
1. INTRODUÇÃO1
1.1 – A hanseníase1
1.1.1 – Histórico e epidemiologia1
1.1.2 – Diagnóstico e tratamento3
1.1.3 – Formas clínicas e reações5
1.1.4 – O Mycobacterium leprae8
1.2 – A resposta imune inata na hanseníase11
1.3 – O Eritema Nodoso Hanseniano (ENH)14
1.3.1 – Aspectos Gerais14
1.3.2 – Tratamento
1.3.3 – Mecanismo de ação da Talidomida18
1.3.4 – Imunopatologia do ENH22
1.4 – O inflamassoma
1.4.1 – Composição e ativação30
1.4.2 – O papel fisiológico do inflamassoma e das citocinas IL-1β e IL-1839
1.4.3 – O inflamassoma e as micobactérias42
1.4.4 – A integração entre o inflamassoma e as vias de reconhecimento de DNA.
1.4.5 – O inflamassoma e o ENH48
1.6 – Justificativa50

2. OBJETIVOS
2.1 – Objetivo geral51
2.2 – Objetivos específicos51
3. MATERIAIS E MÉTODOS51
3.1 – Amostras clínicas51
3.2 – RNAseq52
3.2.1 – Extração de RNA de PAXgene52
3.2.2 – Dosagem em nanodrop e gel de integridade53
3.2.3 – Preparação da biblioteca de cDNA e reação de sequenciamento54
3.3 – Avaliação da expressão e ativação dos marcadores do inflamassoma56
3.3.1 – Imunofluorescência56
3.3.2 – Western blotting56
3.3.2.1 – Extração de proteínas de lesão cutânea56
3.3.2.2– Corrida de SDS-PAGE e <i>imunoblotting</i> 57
3.3.3 – qRT-PCR
3.3.3.1 – Extração de RNA dos fragmentos de lesão de pele e de células
sanguíneas59
3.3.3.2 – Reação de transcrição reversa60
3.3.3.3 – Reação de qRT-PCR60
3.4 – Detecção de DNA de <i>M. leprae</i> em lesão cutânea62
3.5 – Análise da ativação do inflamassoma por amostras de soro63
3.6 – Avaliação in vitro do inflamassoma por componentes do M. leprae64
3.6.1 – Cultura e manutenção das células64
3.6.2 – Estimulação das células e dosagem de IL-1β64
4. RESULTADOS
4.1 – RNAseq65
4.1.1 – Análise global65

4.1.2 – Comparação do perfil de expressão gênica de células sanguíneas de pacientes ENH e LL
 4.1.3 – Comparação do perfil de expressão gênica de células sanguíneas de pacientes reacionais no diagnóstico de ENH e 7 dias após o início do tratamento com talidomida
4.2 – Análise da ativação do inflamassoma NLRP3 e do efeito da talidomida em células sanguíneas de pacientes ENH94
4.3 – Análise da ativação do inflamassoma NLRP3 e do efeito da talidomida em lesões de pele de pacientes ENH
 4.4 – Ativação do inflamassoma e detecção de DNA micobacteriano em lesões de pele de pacientes ENH que apresentaram reação no mínimo dois anos após conclusão da PQT
4.5 – Determinação da capacidade do soro de pacientes ENH e da participação das vias de TLR-9 e TLR-7 em estimular a produção de IL-1β106
4.6 – Investigação da capacidade de componentes do <i>M. leprae</i> de estimular a ativação do inflamassoma em monócitos THP-1 <i>in vitro</i>
5. DISCUSSÃO
5.1 – Análise da assinatura gênica no ENH112
5.2 – Análise do perfil transcriptômico do paciente ENH após início do tratamento com talidomida
5.3 – Avaliação da ativação do inflamassoma no ENH138
6. CONCLUSÕES156
7. REFERÊNCIAS BIBLIOGRÁFICAS157
ANEXOS

Lista de Abreviaturas

AIM2	Absent in melanoma 2
ASC	Apoptosis-associated speck-like protein containing a CARD
ATP	Adenosina trifosfato (Adenosine triphosphate)
B.A.A.R	Bacilo álcool-ácido resistente
BB	Borderline -Borderline
BCL10	B-cell lymphoma/leukemia 10
BCG	Bacillus Calmette-Guérin
BSA	Albumina sérica bovina (Bovine serum albumin)
BI	Borderline Lepromatoso
BT	Borderline Tuberculóide
CARD	Caspase activation and recruitment domains
Casn1	Caspase-1
CCR	C-C recentor quimiocina
	Cluster of differentiation
CCAS	Cyclic GMP-MMP synthese
COX_2	Ciclo-oxidenase- 2
CnG	ChC aligadaoxinuclaatídao
СРВИ	Coroblon
	Complement recenter 2
CT CT	Curle threshold
	Chamaking (C. X. C. matif) ligand
	CNEMIOKINE (C-X-C MOUII) ligand
	Dedrãos melosulares esseciados o dono
	Al C diamidine 2 familiade
DAPI DC Sim	4,0-01amium0-2-temimuon
DC-Sign	Denuntic Cell-Specific Intercellular adhesion molecule-3-Grapping
	NON-Integrin
	DNA damage-binding protein T
	Pirocarbonato de dietila
DIVISO	
	Acido desoximbonucierco
EDIA	
ELISA	ensalo de imunoabsorção enzimatica
ENH	Eritema nodoso nanseniano
ENLIST	Erytnema Nodosum Leprosum International Study
ESAT-6	6 kDa early secretory antigenic target
ESX-1	ESA I-6 secretion system-1
FAM	6- Carboxifluoresceina
FC	Fragmento cristalizavel
FCYRI	Fc-gamma receptor 1
FOXP3	Forkhead box P3
GAPDH	Gliceraldeido 3-fosfato desidrogenase
GSDMD	Gasdermina D
GTP	Guanosina trifosfato
GTPase	Guanosina trifosfato hidrolase
HCV	Virus da Hepatite C
HEPES	Acido 4-(2-hidroxietil)-1-piperazinaetanosulfonico
HDL	High density lipoprotein
HIV	Vírus da imunodeficiência humana
HLA-DR	Antígeno leucocitário humano isotipo DR (Human leukocyte antigen)

Hlp	Proteína semelhante à histona (Histone-like protein)
HRP	Peroxidase (Horseradish peroxidase)
IB	Índice baciloscópico
ILB	Índice baciloscópico de lesão
IFN	Interferon
laM	Imunoglobulina M
laG	Imunoglobulina G
IK7F1	IKAROS Family Zinc Einger 1 (Ikaros)
	IKAROS Family Zinc Finger 3 (Ajolos)
	Interloucing (Interlouking)
	Pocontor do II -10
	Immunomodulatoru imido drugo
	Interferen regulatory factore
KDa	Quilodaiton
LAM	Lipoalrabinomanana
LDL	Low density lipoprotein
LL	Lepromatoso polar
LPEP	Leprosy post-exposure prophylaxis
LPG	Lipofosfoglicano
LPS	Lipopolissacarídeo
Malt-1	Mucosa-associated lymphoid tissue lymphoma translocation protein 1
Man-LAM	Lipoarabinomanana capeada com manose
MB	Multibacilar
MGB	Ligante de sulco menor (Minor groove binding)
ML	M. leprae
MOI	Multiplicidade de infecção (Multiplicity of infection)
MOPS	Ácido 3- (N-morfolino) propano sulfônico
MP	Membrana plasmática
NAIP	Baculoviral IAP repeat-containing protein 1
NE	Não estimulado
NFK7	NIMA (Never In Mitosis Gene A)-Related Kinase 7
NETs	Neutrophils extracellular traps
NF-ĸB	Fator Nuclear kappa B
NFO	Quencher não fluorescente
NGC	Nigericina
NGS	Normal goat serum
NU	Não Infoctado
	NLP family CAPD domain-containing protoin A
	NOD Like Recenter family pyrin domain containing
	Nucleatide hinding alignmerization demain containing
	Nacieolide-binding oligomenzation domain-containing protein
	Nau Teacional
OASL	59 KDa 2-5-oligoadenyiale synthetase-like protein
	Organização Mundial de Saude
PAMPS	Padroes moleculares associados a patogenos
PB	Paucidaciiar
αq	Pares de bases
PRMC	Celulas mononucleares de sangue periférico
PBS	I ampao tostato – salino (Phosphate buffered saline)
PCA	Analise de componente principal
PCR	Reação em cadeia da polimerase (Polimerase chain reaction)
pDC	Célula dendrítica plasmacitóide

PDIM	Ftiocerol dimicocerosato
PG	Peptidoglicano
PGE ₂	Prostaglandina E 2
PGL-I	Glicolipídio fenólico -I
PMA	Forbol-12-Miristato-13-Acetato
PMN	Polimorfonuclear
PQT	Poliquimioterapia
PRR	Receptores de reconhecimento de padrões
Ptdin4	Fosfatidil inositol 4 fosfato
PYD	Domínio pyrina
P2X7	P2X purinoceptor 7
qPCR	PCR quantitativo
RD-1	Region of deletion 1
RIG-I	Retinoic acid-inducible gene I
RLEP	M. leprae-specific repetitive element
ROS	Espécies reativas de oxigênio
RPMI	Roswell Park Memorial Institute
RNA	Ácido ribonucleico
rRNA	RNA ribossomal
RR	Reação Reversa
Sall4	Sal-like protein 4
SDS	Dodecil sulfato de sódio
SDS-PAGE	Eletroforese em gel de poliacrilamida com SDS
SFB	Soro fetal bovino
SLAN	6-Sulfo LacNAc
SLE	Lupus eritematoso sistêmico
SNP	Polimorfismo de base única (Single nucleotide polymorphism)
STING	Stimulator of interferon genes
SUS	Sistema Unico de Saúde
Syk	Spleen Tyrosine Kinase
Tal	Talidomida
TBS-T	Tampão tris-salina-tween 20
TE	Tampão Tris-EDTA
Th-	T helper
TLR-	Receptor do tipo Toll (<i>Toll like receptor</i>)
TNF	Fator de necrose tumoral (Tumor necrosis factor)
Ireg	Linfócito f regulador
	Luberculoide polar
12R	Reaçao do tipo 2
1388	Sistema de secreção do tipo 3

Índice de Figuras

Figure 1.1.1 Distribuição geográfico de banconíceo no mundo no ono do 2010	2
Figura 1.1.1 - Distribuição geografica da hansemase no mundo no ano de 2019.	2
Figura 1.1.2- Espectro cimico da nansemase e suas reações.	~
Figura 1.1.3- Desenno esquematico da parede celular das micobacterias.	9
Figura 1.3.1- Lesoes reacionais do ENH.	15
Figura 1.3.2- Estrutura química das IMiDs e mecanismo de ação.	19
Figura 1.3.3- O tratamento com talidomida alivia os apsectos clínicos e diminui o infiltrado	rico
em neutrófilos nas lesões reacionais.	21
Figura 1.4.1- Diferentes subtipos de inflamassoma.	34
Figura 1.4.2- Ativação do inflamassoma canônico.	36
Figura 4.1.1- Análise de componente principal do RNAseq de amostras de células sanguíne	eas
de pacientes com hanseníase.	66
Figura 4.1.2- Heatmap do perfil de expressão gênica global de células sanguíneas	de
pacientes multibacilares não reacionais e pacientes reacionais antes e durante tratame	nto
com talidomida.	67
Figura 4.1.3- PCA e volcano plot da análise de expressão gênica diferencial de ENH x LL	68
Figura 4.1.4- Heatmap do perfil de expressão gênica diferencial de células sanguíneas er	ntre
pacientes ENH e LL.	70
Figura 4.1.5- Vias reguladas positivamente em pacientes ENH em comparação com LL.	72
Figura 4.1.6- Interação e nível de expressão dos genes associados às vias enriquecidas	em
pacientes ENH na comparação com LL.	73
Figura 4.1.7- Reanálise da expressão gênica diferencial de ENH x LL excluindo pacien	ntes
reacionais com perfis muito distintos.	75
Figura 4.1.8- Vias reguladas positivamente na reanálise da comparação de ENH com LL	76
Figura 4.1.9- Interação e nível de expressão dos genes associados às vias enriquecidas	na
reanálise da comparação de ENH com LL.	78
Figura 4.1.10- Dotplot e heatplot das vias e genes regulados negativamente na reanálise	da
comparação de ENH com LL.	80
Figura 4.1.11- PCA e volcano plot da análise de expressão gênica diferencial de ENH + 1	TAL
x ENH.	81
Figura 4.1.12- Heatmap do perfil de expressão gênica diferencial de células sanguíneas	na
comparação de ENH +TAL com ENH.	82
Figura 4.1.13- Dotplot e emapplot das vias induzidas na comparação do grupo ENH +1	ΓAL
com FNH	84
Figura 4.1.14- Heatplot dos genes induzidos na comparação de ENH+TAL x ENH	85
Figura 4115- PCA e volcano plot da análise de expressão gênica diferencial de ENH +1	ΓΔΙ
	87
Figura 4 1 16- Heatman do perfil de expressão gênica diferencial de células sanguíneas er	otro
α grupo de pacientes ENH + TAL × LL	88
Figura 4 1 17- Dotalet e organalet das vias positivamente reguladas na comparação ENI	<u>оо</u>
Figure 4.1.19. Controlat o bostolat dos gonos induzidos na comparação ENH y TAL X L	90
Figura 4.1.16- Chelpiot e healpiot dos genes induzidos na comparação ENT + TAE X EL.	92 õoo
	04
EINITTIAL & EINIT, EINIT & LL & EINIT + TAL & LL.	94 . d ~
rigura 4.2.1- Analise de score da via do initiamassoma e <i>neatimap</i> de celulas sanguineas	
pacientes dos grupos LL, EINFL e EINFLitatados com tandomida.	90
Figura 4.2.2- A expression genica dos componentes do inflamassoma pro-IL-1β; pro-caspa	156-
4, AIIVIZ E NERCA se encontra aumentada em pacientes ENH.	97

Figura 4.2.3- Avaliação da expressão gênica de componentes do inflamassoma por qPCR em pacientes ENH em tratamento com a talidomida 98

Figura 4.3.1- Associação de NLRP3 e Caspase-1 é maior em lesão de pele de pacientes ENH. 99

Figura 4.3.2- Caspase-1 e IL-1β encontram-se clivadas nas leões cutâneas de pacientes ENH.

Figura 4.3.3- Análise dos níveis de expressão gênica dos componentes do inflamassoma pró-IL-1β, pró-caspase-1, NLRP3, pró-caspase-4, NLRC4, AIM2, ASC e pró-caspase-5 em lesões de pele de pacientes reacionais e não reacionais. 102

Figura 4.3.4-Análise do efeito do tratamento com talidomida na expressão de componentesdo inflamassoma na lesão cutânea de pacientes ENH.103

Figura 4.4.1- O inflamassoma se encontra ativado em lesões de pele de pacientes que desenvolveram reação após 2 anos da conclusão da PQT. 105

Figura 4.4.2- DNA de M. leprae é detectado em lesões de pele de pacientes quedesenvolveram reação pelo menos 2 anos após o termino da PQT.106

Figura 4.5.1- O soro de pacientes ENH estimula a produção de IL-1β e TNF por PBMCs de indivíduos sadios.

Figura 4.5.2- Avaliação da participação da via de TLR-9 na produção de IL-1β e TNF estimulados pelo soro de pacientes ENH. 109

Figura 4.5.3- Avaliação da participação da via de TLR-7 na produção de IL-1β e TNF estimulados pelo soro de pacientes ENH. 110

Figura 4.6.1- Componentes da parede do *M. leprae* são capazes de ativar a produção de IL-1β por monócitos humanos da linhagem THP-1.112

Figura 5.3.1- Modelo hipotético do papel do inflamassoma na imunopatogênese do ENH.

Lista de Tabelas

Tabela 1.3.1 - Resumo dos principais mecanismos da imunopatogênese no ENH. 27
Tabela 3.3.1 - Anticorpos utilizados no western blotting 599
Tabela 3.3.2 - Sequências dos oligonucleotídeos iniciadores utilizados nas reações de qRT-
PCR
Tabela 3.4.1 - Sequências dos oligonucleotídeos iniciadores e sondas utilizados nas
reações de qPCR63
Tabela 4.1.1 – Genes regulados negativamente na reanálise da comparação de ENH com LL 79
Tabela 4.1.2 - Genes regulados negativamente na análise pareada ENH + TAL x ENH 86 Tabela 4.1.3 - Lista com os 30 genes mais reprimidos na comparação ENH + TAL x LL 93

RESUMO

A hanseníase, causada pelo Mycobacterium leprae, pode ter seu curso crônico interrompido em 30-50% dos pacientes multibacilares por episódios agudos de uma reação inflamatória sistêmica denominada eritema nodoso hanseniano (ENH), que acelera o dano nos nervos periféricos e aumenta as incapacidades físicas. Embora a presenca de um infiltrado inflamatório rico em neutrófilos seja uma das característica das novas lesões cutâneas que surgem no ENH, os exatos mecanismos que disparam a reação ainda são desconhecidos. Algumas evidências apontam a importância da imunidade inata durante o ENH, como a observação de maior expressão de TLR-9, receptor de reconhecimento de DNA, em biopsias de pele e leucócitos sanguíneos de pacientes com ENH, bem como a detecção de níveis elevados no soro das citocinas pró-inflamatórias TNF e IL-18. A citocina IL-18 é produzida pelo inflamassoma, que é ativado por receptores citosólicos, como o NLRP3, culminando na ativação de caspase-1 e clivagem da pró-IL-1β. Acredita-se que a massiva morte de bacilos em resposta à poliquimioterapia (PQT), com a subsequente liberação de componentes bacterianos, seja um evento importante na ativação da resposta inflamatória observada no ENH. Dessa forma, o trabalho buscou investigar a participação de vias da imunidade inata na patogênese do ENH, por mejo do estudo da participação do inflamassoma. Nosso estudo buscou identificar assinaturas genéticas discriminatórias de ENH em células sanguíneas de pacientes e também investigou o transcriptoma após 7 dias do início da administração de talidomida, a droga de escolha utilizada para o tratamento do ENH no Brasil. A análise dos dados obtidos pelo RNAseg demonstrou um transcriptoma mais pró-inflamatório durante o episódio reacional quando comparado aos pacientes multibacilares não reacionais, com maior expressão de genes relacionados à imunidade inata, com destague para vias associadas à ativação e degranulação neutrofílica. Já o perfil transcricional observado após 7 dias de início de tratamento com talidomida manteve a característica de enriquecimento das vias de ativação e degranulação neutrofílica, embora, em sua maioria, novos genes pertencentes a estas vias foram detectados, acrescida de uma assinatura transcricional de genes associados a vias de resposta imune humoral. As análises de RNAseg apontaram a via do inflamassoma como enriquecida nos pacientes ENH e análises por gRT-PCR confirmaram essa observação, visto que há uma maior expressão de pró-IL1β; pró-caspase 1; pró-caspase 4; AIM2 e NLRC4 em células sanguíneas dos pacientes ENH guando comparado aos pacientes multibacilares não reacionais, sugerindo, com isso, a ativação do inflamassoma sistemicamente. Também pudemos observar a ativação do inflamassoma nas lesões cutâneas do ENH ao detectar clivagem de IL-1β, bem como co-localização de NLRP3 e caspase-1 nestas lesões. O tratamento com talidomida diminuiu os níveis de IL-1β e caspase-1 maduras nas lesões ENH. Também observamos que o soro de pacientes reacionais induz uma maior produção de IL-18 por leucócitos sanguíneas de indivíduos sadios em um processo dependente de TLR-9. quando comparado a soro de pacientes multibacilares não reacionais. Estendendo nossas análises, DNA de *M. leprae* foi detectado em lesões de pele de pacientes que desenvolveram ENH mais de dois anos após o termino da PQT, que por sua vez também apresentaram sinais de ativação do inflamassoma. Finalmente, verificamos que componentes do envoltório celular do M. leprae, como os glicolipídios PIMs e PGL-I, são capazes de ativar in vitro o inflamassoma em combinação com estímulos de primeiro ou segundo sinal. Dessa forma, nossos resultados sugerem uma importância das vias de ativação e resposta neutrofílica na resposta sistêmica durante o episódio reacional, bem como sugerem a participação do inflamassoma no ENH tanto localmente, nas lesões cutâneas, como sistemicamente, em leucócitos periféricos, em um processo que envolve o reconhecimento de DNA de *M. leprae*, via de TLR-9, além do reconhecimento de outros componentes bacterianos. No grupo de pacientes tratados com talidomida também se observou diminuição da ativação do inflamassoma, o que poderia estar associado à sua eficácia no tratamento do ENH. Com isso, nossos dados contribuem para uma melhor compreensão dos mecanismos de imunopatogênese do ENH, apontando possíveis novos alvos para sua intervenção terapêutica.

ABSTRACT

Leprosy, caused by Mycobacterium leprae, may have its chronic course interrupted in 30-50% of multibacillary patients by acute systemic inflammatory episodes known as Erythema Nodosum Leprosum (ENL), which accelerates peripheral nerve damage and increases physical disabilities. Although a neutrophilic inflammatory infiltrate is a hallmark of the new skin lesions that appear during ENL, the exact mechanisms that trigger the reaction are still unknown. Some evidences point to an importance of the innate immunity during ENL, such as the observation of increased expression of TLR-9, which recognizes DNA, in skin biopsies and leukocytes from ENL patients, as well as, the detection of increased levels on ENL patients sera of the pro-inflammatory cytokines TNF and IL-18. IL-18 cytokine is produced by the inflammasome, which is activated by cytosolic receptors, such as NLRP3, culminating in caspase-1 activation and pro-IL-1 β cleavage. It is believed that massive bacilli death due to response to multidrug therapy (MDT) treatment with subsequent release of bacterial components may be an important event responsible for activating the inflammatory response in ENH. Thus, this work investigate the participation of innate immunity pathways in ENL pathogenesis, through the study of the inflammasome involvement. The idea was to identify discriminatory gene signatures in blood cells from ENL patients and also to investigate the transcriptome after 7 days from the start of thalidomide administration, the drug of choice for ENL treatment in Brazil. Analysis of RNAseq data demonstrated a more pro-inflammatory transcriptome during the reactional episode when compared to non-reactional LL patients, with increased expression of genes related to innate immunity, mainly of pathways associated to neutrophils activation and degranulation. The transcriptomic profile observed 7 days after the start of thalidomide treatment maintained the characteristic of enriched neutrophil activation and degranulation pathways, although, mostly, new genes were detected for these pathways, together with a transcriptional signature of genes related to humoral immune response. RNAseq analysis also indicated that inflammasome pathway is enriched in ENL patients and gRT-PCR analysis confirmed this observation, since there is an increased expression of pro-IL18: pro-caspase 1: pro-caspase 4: AIM2 and NLRC4 in blood cells from ENL patients in comparison to multibacillary non reactional patients, suggesting that the inflammasome is active systemically. We also observed inflammasome activation in the skin lesions by detecting IL-1β cleavage, as well as co-localization of NLRP3 and caspase-1 in ENL in these lesions. Thalidomide treatment decreased the levels of mature IL-1ß and caspase-1 in ENL skin lesions. We also showed that sera from ENL patients induce an increased production of IL-1ß by blood leukocytes from healthy donors in a process dependent of TLR-9 when compared to sera from non-reactional multibacillary patients. Expanding our analysis, M. leprae DNA was detected in skin lesions of patients that developed ENL more than two years after conclusion of MDT, which, in turn, also displayed signs of inflammasome activation. Lastly, we verified that ML cell wall components, such as the glycolipids PIMs and PGL-I, are able to activate the inflammasome in vitro in combination with first or second signals stimuli. Thus, our results suggest the importance of neutrophil activation and response pathways in the systemic response during ENL, as well as they suggest the involvement of the inflammasome in ENL both locally, in skin lesions, and systemically, in peripheral leukocytes, in a process that may involve the recognition of *M. leprae* DNA, though TLR-9, together with the recognition of other mycobacterial components. In the group of thalidomide treated patients it was also observed the decrease of inflammasome activation, which might be associated to its effectiveness in ENL treatment. Therefore, our data contribute to a better understand the mechanisms underlying ENL immunopathogenesis, revealing possible new targets for its therapeutic intervention.

1. Introdução

1.1 - A hanseníase

1.1.1 – Histórico e epidemiologia

A hanseníase, causada pelo *Mycobacterium leprae*, é uma doença infecciosa crônica e seus sinais mais evidentes são o aparecimento de lesões hipocromadas na pele e perda da sensibilidade neural. Seu período de incubação é longo, em torno de 5 anos, mas com casos reportados de até 20 anos de incubação. Embora ainda não completamente elucidada, sua transmissão ocorre primariamente pelas vias aéreas superiores, através do contato constante e prolongado com bacilos expelidos por aerossóis por pacientes multibacilares não tratados (Shepard, 1960a), embora outras formas de transmissão do bacilo sejam atualmente investigadas, como através de vetores animais (Ferreira et al., 2018). Um dos grandes desafios ainda atuais são os quadros de lesões neurais resultantes da hanseníase, que muitas vezes são irreversíveis mesmo após o tratamento e alta, reforçando a necessidade de continuar investigando os mecanismos de patogenicidade do *M. leprae*.

A hanseníase é uma doença ancestral, com os primeiros relatos de uma doença com características similares datados desde 600 anos A.C. (Browne, 1970). O medo em torno da hanseníase, conhecida como Lepra, levou a medidas de isolamento social daqueles afetados pela doença, marcando um estigma social. A existência da hanseníase desde a antiguidade vem sendo sustentada por dados de paleomicrobiologia, que observaram alterações ósseas indicativas de hanseníase em achados ósseos datados de 2000 anos A.C. na Índia (Robbins et al., 2009) e dados moleculares que demonstraram a presença de DNA de *M. leprae* em achados arqueológicos ósseos do primeiro século D.C. em uma tumba em Jerusalém (Matheson et al., 2009).

O aspecto histórico da hanseníase não está só associado aos inúmeros relatos ao longo da história, mas também pelo *M. leprae* ser o primeiro agente causador de uma doença em humanos a ser isolado pelo fisiologista G. H. A. Hansen em 1873 (Hansen, 1874). E quanto ao aspecto do estigma social, mesmo desde os primeiros esforços de tratamento com as sulfonamidas por volta da década de 40 até o estabelecimento da poliquimioterapia (PQT) em 1981 pela Organização Mundial de Saúde (OMS) (Noordeen, 2016), grande parte da história da hanseníase na atualidade ainda foi marcada por políticas de isolamento compulsório. No Brasil, a lei que determinava o afastamento das pessoas afetadas pela hanseníase para as colônias e leprosários vigorou até 1986, mesmo após o estabelecimento de um tratamento

eficaz, com muitas pessoas afastadas de suas famílias desde 1949, quando a lei entrou em vigor.

Mesmo com a existência de um tratamento desde a década de 80, ainda nos dias atuais a hanseníase é um problema de saúde pública em muitos lugares no mundo, incluindo o Brasil. O Brasil é o segundo país com a maior incidência de novos casos de hanseníase no mundo (Figura 1.1.1), ficando apenas atrás da Índia (WHO, 2020). Os maiores números de casos estão concentrados na região Nordeste, com 11.725 casos reportados em 2018, mas com uma presença bem marcante também nas regiões Norte e Centro-Oeste (Saúde, 2019). E apesar da tendência de queda nos números de novos casos nos últimos anos (Souza et al., 2019; WHO, 2020), desde 2017 se observa uma tendência inversa, com um aumento no número de novos casos sendo reportados, bem como no número de novos casos relacionados com incapacidades de nível 2 (WHO, 2020). Contudo, com um vasto território e regiões de difícil acesso, a subnotificação é uma realidade, e com isso, o aumento do número de casos pode estar diretamente associado a um esforço recente de diagnóstico em novas áreas.

Estudos recentes detectaram anticorpos anti-PGL-I, um marcador para hanseníase, no soro de crianças em idade escolar em uma região hiperendêmica na região amazônica (Barreto et al., 2011), sugerindo com isso a ocorrência de uma transmissão ativa da doença, principalmente em áreas hiperendêmicas (Barreto et al., 2014). Além disso, também foram identificados casos de hanseníase em uma região do interior de São Paulo, antes considerada pouco endêmica (Bernardes et al., 2017) e evidências de subnotificação no Ceará (Façanha et al., 2006).

Figura 1.1.1 - Distribuição geográfica da hanseníase no mundo no ano de 2019. Adaptado de (WHO, 2020)

1.1.2 - Diagnóstico e tratamento

O diagnóstico da hanseníase até os dias atuais é primariamente baseado na avaliação clínica através do exame dermatológico e observação de sinais característicos da doença, como as lesões de pele, acompanhadas ou não de alteração da sensibilidade no local da lesão (Reibel et al., 2015). É extremamente importante que o diagnóstico seja feito da forma mais precoce possível para evitar que as lesões neurais evoluam a ponto de um quadro irreversível.

Aliado ao diagnóstico clínico, sempre que possível, é importante a realização da baciloscopia para determinação do índice baciloscópico (IB) através de esfregaços intradérmicos (Cochrane, 1952; Ridley, 1955), geralmente das regiões dos lobos auriculares direito e esquerdo, cotovelos direito e esquerdo e lesão de pele (Kaur et al., 1981), seguido da coloração das lâminas pelo método de Ziehl-Neelsen (Neelsen, 1883; Ziehl, 1883) e observação ao microscópio. Alguns outros recursos são empregados para confirmação do diagnóstico, como a observação do aspecto histopatológico da lesão através da retirada de fragmentos de cerca de 4mm através da metodologia de biópsia em *punch* (Reibel et al., 2015).

Apesar de não ser um método padrão de diagnóstico, estudos têm apontado a sorologia em busca de anticorpos para o antígeno específico de *M. leprae* PGL-I como uma alternativa, embora apresente eficiências e sensibilidades variadas entre os estudos (Gurung et al., 2019; Moura et al., 2008). Em alguns casos, a detecção de anticorpos anti-PGL-I tem sido utilizada para fins epidemiológicos (Barreto et al., 2011; Carvalho et al., 2017; Frade et al., 2017).

A técnica de análise molecular por PCR tem se tornado uma ferramenta importante para auxiliar no diagnóstico da hanseníase, principalmente em casos mais difíceis, com uma série de genes alvos candidatos como *rlep, ml16s* rRNA, Ag85b (Martinez et al., 2006, 2014; Turankar et al., 2015). Neste contexto, um kit de diagnóstico baseado em detecção molecular desenvolvido pela Fiocruz foi recentemente aprovado pela ANVISA, o Kit NAT Hanseníase. Esta metodologia auxilia no diagnóstico de casos paucibacilares, com poucas ou ausência de lesões cutâneas, como a forma neural pura da hanseníase, cujo diagnóstico se torna mais difícil, inclusive pela dificuldade de encontrar bacilos nos exames histopatológicos (Barbieri et al., 2014).

O diagnóstico da hanseníase também é desafiador devido à diferença de quadros clínicos em que a enfermidade se manifesta, dependendo da resposta imunológica do indivíduo. Ao longo dos anos, diferentes classificações foram adotadas

de forma a melhor direcionar o tratamento. Em 1998, a OMS determinou uma orientação para diagnóstico da hanseníase baseado no número de lesões cutâneas, com o intuito de padronizar a prescrição terapêutica. De acordo com a recomendação da OMS, os casos paucibacilares seriam aqueles em que o indivíduo apresentam até 5 lesões, enquanto os casos multibacilares são aqueles em que o indivíduo apresenta mais de 5 lesões (WHO, 1998). A determinação da forma clínica da doença é crucial para o tratamento prescrito.

Atualmente o tratamento recomendado pela organização consiste de um esquema poliquimioterápico, conhecido como PQT, com um esquema terapêutico associando rifampicina, dapsona e clofazimina, mas que difere na duração entre as formas paucibacilares e multibacilares, que recebem o tratamento, respectivamente, por 6 e 12 meses (WHO, 2018). Esse esquema terapêutico passou a ser chamado de PQT única (PQT-U) e foi adotado no Brasil a partir de 1° de Julho de 2021, segundo a portaria SVS/SCTIE Nº16 de 31/05/21 (Ministério da Saúde, 2021). De modo geral, o esquema terapêutico da PQT-U consiste de doses mensais de 600mg de rifampicina e 300mg de clofazimina combinadas a doses diárias de 100mg de dapsona e 50mg de clofazimina (WHO, 2018). A PQT tem uma elevada taxa de eficiência, com poucos casos de falha terapêutica (Noordeen, 2016). Contudo, um grande desafio em torno do tratamento da hanseníase são as altas taxas de evasão por conta do longo período de tratamento, o que pode levar a uma ineficiência do mesmo e a seleção de cepas resistentes. O tratamento é disponível mundialmente de forma gratuita através de doações da Novartis e, no Brasil, é disponibilizado através do Sistema Único de Saúde (SUS), com a orientação que as doses mensais sejam supervisionadas, enquanto as doses diárias são autoadministradas, como tentativa de diminuir a evasão do tratamento.

Além do diagnóstico nos estágios iniciais da doença e do tratamento, outro aspecto importante nas diretrizes da OMS é a diminuição da transmissão (WHO, 2018). Nesse esforço, muitos estudos têm sido direcionados aos contatos dos pacientes hansênicos, que apresentam uma alta probabilidade de desenvolver a doença futuramente (Smith and Aerts, 2014). Mais recentemente tendo sido proposto a utilização de técnicas moleculares para acompanhamento dos contatos (Manta et al., 2019). Atualmente, tem sido proposto a utilização de um tratamento profilático pósexposição (LPEP) para os contatos dos pacientes com a utilização de uma dose de rifampicina (Barth-Jaeggi et al., 2016), posteriormente sendo sugerido aumentar para três doses de rifampicina (Mieras et al., 2018).

1.1.3 – Formas clínicas e reações

Um desafio da hanseníase é sua manifestação em um espectro clínico que está intimamente associado com a eficiência da resposta imune do individuo, assim resultando nas diferentes formas clínicas da doença. Em linhas gerais, quando o indivíduo é capaz de gerar uma resposta imune celular capaz em conter a disseminação do bacilo, a hanseníase se apresenta na forma paucibacilar. Contudo, quando a resposta imune mediada por células é deficitária, o indivíduo manifesta as formas multibacilares (Misch et al., 2010).

Em 1966 Ridley e Jopling propuseram uma classificação considerando os diferentes aspectos histopatológicos das lesões e a sua correlação com a imunidade (Ridley and Jopling, 1966), que ainda é utilizada nos dias atuais, principalmente para fins de pesquisa. Segundo essa classificação, a hanseníase poderia ser divida em 5 formas clínicas principais, com dois polos extremos: O polo tuberculóide (TT), onde a carga bacilar é baixa, o paciente apresenta poucas lesões com bordas bem demarcadas, granuloma bem demarcado na lesão, presença de células de Langerhans e raramente se observam bacilos na lesão. Já no polo lepromatoso (LL), a carga bacilar é alta, o paciente apresenta muitas lesões, imunidade incapaz de conter a disseminação do bacilo, presença abundante de bacilos nas lesões e macrófagos espumosos, ricos em corpúsculos lipídicos (Figura 1.1.2). Entre os extremos, encontram-se as formas Borderline: borderline tuberculóide (BT); borderline-borderline (BB) e borderline-lepromatosa (BL), que apresentam uma gradação de sinais e sintomas entre os dois polos da doença (Ridley and Jopling, 1966) (Figura 1.1.2). Ainda existe a forma indeterminada, normalmente associada ao início da manifestação clínica da doença, mas sem características histopatológicas definidas, porém, com resultado positivo de presença de bacilo nas lesões cutâneas (Scollard et al., 2006). Finalmente, em alguns casos a infecção pode comprometer os nervos sem apresentar alterações na pele. Esses casos são classificados como a forma neural pura da hanseníase (Kaur et al., 1991), sendo um desafio seu diagnóstico, devido à ausência das lesões de pele, que são um marco para o diagnóstico, normalmente necessitando de um exame histopatológico do nervo (Wilder-smith, 2002).

Classicamente a resposta imune do polo tuberculóide é associada a uma resposta celular eficiente com um perfil Th1 (*T helper* 1), com uma presença maior de linfócitos T CD4⁺ no local das lesões (Salgame et al., 1992) elevada produção citocinas pró-inflamatórias como Interferon gama (IFN-γ); fator de necrose tumoral

(TNF) e interleucina-2 (IL-2) (Yamamura et al., 1991) (Figura 1.1.2), o que estaria relacionado com um perfil de resposta mais granulomatoso, que seria eficiente em conter a proliferação e disseminação do bacilo e por isso resultando em poucas lesões (Misch et al., 2010). Já a resposta do polo lepromatoso foi inicialmente proposta como tendo um perfil Th2, juntamente com uma maior infiltração de linfócitos T CD8⁺ nas lesões (Salgame et al., 1992) e de macrófagos espumosos, ricos em corpúsculos lipídicos, além de citocinas anti-inflamatórias como IL-4 e IL-10 (Yamamura et al., 1991) (Figura 1.1.2). Esse perfil de resposta imunológica seria menos capaz em conter o estabelecimento da infecção e estaria mais relacionado a um perfil de tolerância imunológica, em que, por exemplo, a presença de IL-10 nas lesões lepromatosas estaria associada a diferenciação dos macrófagos para um perfil mais fagocítico e menos microbicida (Montoya et al., 2009).

Contudo, nos últimos anos, a dicotomia do perfil da resposta Th1/Th2 entre os diferentes polos vem sendo questionada. Estudos têm demonstrado a relação de linfócitos Th17 com o polo tuberculóide, uma vez que foi observado um aumento de IL-17 nas lesões de pacientes paucibacilares (Saini et al., 2013), assim como de linfócitos Th9, devido a maior expressão de IL-9 no polo tuberculóide (De Sousa et al., 2017), enquanto nas lesões LL, os relatos apontam para uma maior expressão de IL-22, associado com o perfil Th22 (De Lima Silveira et al., 2015). Adicionalmente, com a descoberta das células T reguladoras (Tregs), estudos têm observado um aumento de linfócitos Treg (T CD4⁺ CD25⁺ FoxP3⁺) nas biópsias dos pacientes lepromatosos, sendo crucial para modular negativamente a resposta imune Th1 no polo lepromatoso (Bobosha et al., 2014).

Figura 1.1.2 - Espectro clínico da hanseníase e suas reações. Um pequeno percentual dos indivíduos que são expostos ao *M. leprae* evolui para um quadro com sintomatologia clínica, enquanto grande parte é resistente e não desenvolve a doença. A classificação de Ridley e Jopling (1966) divide a hanseníase em cinco formas clínicas, dois polos extremos, os polos tuberculóide (TT) e lepromatoso (LL) e as formas intermediárias *Borderline* (BT; BB e BL). No polo TT, a resposta imunológica é mediada por células com um perfil Th1 e altamente pró-inflamatória. Já o polo LL não apresenta uma resposta imune celular eficaz com predomínio de IL-10, resultando em uma alta carga bacilar. Duas possíveis reações inflamatórias, que são complicações da hanseníase, podem ocorrer durante ou após o tratamento. Elas são conhecidas como reação reversa (RR), que afeta mais as formas *borderline*, em que ocorre um aumento da imunidade celular, e o outro tipo é conhecida como eritema nodoso hanseniano (ENH), que afeta as formas multibacilares BL/LL e é caracterizado por um infiltrado neutrofílico nas lesões. Adaptado de (Misch et al., 2010).

A hanseníase ainda pode apresentar complicações, conhecidas como reações, que agravam os sintomas e em grande parte são responsáveis por agravar os quadros de dano neural. Esses quadros reacionais são quadros inflamatórios que podem ocorrer antes, durante ou após o tratamento (Scollard et al., 2006). Existem dois principais tipos de episódios reacionais associados à hanseníase, a reação reversa (RR) e o eritema nodoso hanseniano (ENH) (Figura 1.1.2), que acometem cerca de 30-50% dos pacientes (Kumar et al., 2004; Scollard et al., 1994). A reação reversa normalmente acomete pacientes *borderline* (BT; BB e BL) e normalmente está acompanhada de uma exacerbação da reação inflamatória em lesões pré-existentes ou aparecimento de novas lesões associada a uma resposta imune mediada por células e alta expressão de CXCL-10 (Andrade et al., 2015; Stefani et al., 2009). O eritema nodoso hanseniano ocorre nos pacientes multibacilares BL e LL e é caracterizado pelo aparecimento de nódulos subcutâneos e sintomas sistêmicos (Kahawita and Lockwood, 2008). O comprometimento neural em diferentes níveis de gravidade acomete todas as formas clínicas. Os mecanismos que levam à lesão neural ainda não são completamente compreendidos, mas possivelmente vários fatores participam. Principalmente no contexto das formas multibacilares, acredita-se que os efeitos diretos do *M. leprae* na fisiologia da célula de Schwann desempenhem um papel relevante (Lockwood and Saunderson, 2012; Scollard et al., 2015). Foi reportado, por exemplo, que a interação do *M. leprae* com a célula de Schwann induz o processo de desmelienização (Rambukkana et al., 2002) e que alterações metabólicas nas células de Schwann infectadas estão associadas com o dano axonal (Medeiros et al., 2016). Por outro lado, a lesão neural também pode estar associada à reação inflamatória em resposta à infecção, observada em maior intensidade nas formas paucibacilares da doença, que potencialmente levaria ao dano axonal (Lockwood and Saunderson, 2012; Scollard et al., 2015). De fato, já tendo sido observado que citocinas próinflamatórias liberadas por células de Schwann infectadas estão associadas ao dano neural (Andrade et al., 2016).

1.1.4 – O Mycobacterium leprae

O *M. leprae* pertence à família Mycobacteriacea e gênero *Mycobacterium* e apresenta um formato bacilar, metabolismo microaerófilo e crescimento lento e em temperaturas mais baixas, em torno de 30 a 33°C (Scollard et al., 2006), levando cerca de 14 dias para duplicar (Shepard and McRae, 1967). Uma característica marcante do gênero é a composição diferenciada da parede celular, rica em lipídios, conferindo assim uma resistência à descoloração com álcool, normalmente utilizado na técnica de coloração de gram (Gram, 1884), sendo por isso, classificados como bacilos álcool-ácido resistentes (B.A.A.R.) (Scollard et al., 2006).

A estrutura da parede celular do *M. leprae* apresenta um *core* similar ao peptidoglicano usual de outras bactérias, porém composto por ligações alternadas entre a N-acetilglicosamina e o N-glicosilmuramato (Azuma et al., 1970). O *core* de peptidoglicano está ligado a uma camada de arabinano, que por sua vez se liga ao galactano e este se conecta aos ácidos micólicos (Daffé and Marrakchi, 2019), formando assim uma parede celular espessa (Figura 1.1.3). Na camada mais externa dessa estrutura complexa existe ainda uma série de glicolipídios como o ftiocerol dimicocerosato (PDIM) (Draper et al., 1983), que já foi demonstrado ser um importante fator de virulência para outras micobactérias (Quigley et al., 2017; Yu et al., 2012b), assim como o glicolipídio fenólico I (PGL-I). O PGL-I apresenta uma composição

trissacarídica exclusiva do *M. leprae* e diferente dos PGLs de outras micobactérias (Hunter et al., 1982; Hunter and Brennan, 1981) e já foi mostrado ser importante na interação com a célula de Schwann (Ng et al., 2000). O lipoarabinomanano (LAM), também presente na composição da parede celular, é outro glicolipídio com potencial imunogênico que está inserido ao longo da parede celular, conectado desde a bicamada lipídica da membrana da micobactéria (Daffé and Marrakchi, 2019). No caso do *M. leprae* e de outras micobactérias de crescimento lento, a extremidade de arabinano do LAM apresenta uma proteção com um resíduo de manose (man-LAM), que modifica as propriedades imunogênicas dessa molécula (Quesniaux et al., 2004).

Figura 1.1.3 - Desenho esquemático da parede celular das micobactérias. MP: Membrana plasmática; PG: Peptidoglicano; AG: Arabinogalactano; MM:Membrana micólica; CE: Camada externa; LAM: Lipoarabinomanano; PIM: Fosfatidil inositol manosídeo; PL: Fosfolipídio; PGL- Glicolipídio fenólico; TMM:Trealose monomicolato; TDM: Trealose dimicolato; TAG: Triacilglicerol. Adaptado de (Chiaradia et al., 2017).

Diferente das outras micobactérias, o *M. leprae* apresenta um genoma altamente reduzido, com muitos pseudogenes e somente 50% de regiões codificantes (Cole et al., 2001). Acredita-se que esse processo de evolução reducional do genoma esteja intimamente relacionado com elevada adaptação ao ambiente intracelular e, com isso, a uma grande dependência do metabolismo da célula hospedeira, resultando num patógeno intracelular obrigatório (Sakharkar et al., 2004). Ao longo da evolução, que se estima que tenha ocorrido nos últimos 20 milhões de anos, genes não essenciais teriam sido eliminados por um processo de pseudogenização (Gómez-Valero et al., 2007).

Seu genoma também é altamente conservado. Um dos primeiros estudos que mapearam as regiões polimórficas do genoma do *M. leprae* observou que a frequência

de polimorfismos é incrivelmente baixa, apresentando 1 polimorfismo a cada 28 Kb (Monot et al., 2005). Mais ainda, a análise filogenética entre quatro isolados distintos de *M. leprae*, de regiões afastadas no globo, mostrou uma diferença de apenas 0,005% entre seus genomas (Monot et al., 2009). Igualmente, a comparação de 5 genomas de isolados da Europa datados da idade média, entre o décimo primeiro e décimo quarto século, com 7 isolados atuais e 4 genomas atuais de referência demonstrou uma elevada semelhança (Schuenemann et al., 2013). Acredita-se que essa conservação do genoma seja atribuída ao seu crescimento lento, que, portanto, levaria a baixas taxas de mutações (Monot et al., 2005).

O genoma reduzido do *M. leprae* impacta também as tentativas de seu cultivo in vitro, que até os dias atuais não foi alcançado. A inabilidade de cultivo in vitro do M. leprae e a falta de modelos experimentais que mimetizem todos os parâmetros da doença torna um desafio para o estudo de sua patologia (Pattyn, 1973). Porém em 1968 foi estudado a possibilidade de utilizar tatus de nove bandas (Dasypus novencintus) como modelos animais para a hanseníase devido a sua baixa temperatura corporal, entre 30° e 35°C (Kirchheimer et al., 1972; Kirchheimer and Storrs, 1971). A experimentação com os tatus foi bem sucedida, mostrando que não só são susceptíveis à infecção pelo *M. leprae* (Kirchheimer et al., 1972; Kirchheimer and Storrs, 1971), como também que ele se dissemina de forma similar nos indivíduos (Binford et al., 1976). De fato, posteriormente, foi observado que os tatus podem ser reservatórios naturais do *M. leprae* (Binford et al., 1977; Truman, 2005), apresentando inclusive lesões na epiderme similares à patologia observada nos seres humanos (Binford et al., 1977), assim como podem ser utilizados como modelo de estudo do dano neural provocado pela hanseníase (Sharma et al., 2013; Truman et al., 2014). Nos dias atuais, já foi demonstrado que o contato com tatus selvagens naturalmente infectados provavelmente está relacionado com casos de hanseníase nos Estados Unidos, aonde a hanseníase é classificada como uma zoonose (Logas and Holloway, 2019; Sharma et al., 2015; Truman et al., 2011). No Brasil, o estabelecimento de alguns casos tem também sido associado com o consumo e caça de tatus (da Silva et al., 2018; Kerr et al., 2015).

Outros possíveis reservatórios animais do *M. leprae* além dos tatus também foram descoberto mais recentemente. O genoma completo do *M. leprae* foi isolado de três primatas não humanos naturalmente infectados (Honap et al., 2018). Adicionalmente, também foram observados esquilos vermelhos (*Sciurus vulgaris*)

naturalmente infectados na Grã-Bretanha e com lesões similares à hanseníase na cabeça e membros (Avanzi et al., 2016).

A tentativa de estabelecimento de um modelo murino também teve grandes esforços ao longo dos anos, inicialmente com o modelo de Shepard, de inoculação nas patas de camundongos CFW (Shepard, 1960b). Este modelo, contudo, se mostrou limitado, uma vez que o bacilo não se dissemina e a infecção se mantém localizada na pata (Shepard, 1960b). Os modelos estabelecidos por Shepard sugeriam que os camundongos utilizados apresentavam uma imunidade capaz de conter a infecção. Dessa forma, estudos posteriores com camundongos congenitamente atímicos (*nu/nu*), que são imunocomprometidos, demonstrou um crescimento mais acentuado do *M. leprae* no coxim plantar, chegando a atingir a contagem de 10⁹ bacilos (Colston and Hilson, 1976). Nestes camundongos ocorre uma infecção disseminada, sendo encontrados bacilos também no fígado dos animais (Lancaster et al., 1983). Atualmente este é um importante modelo utilizado como fonte de bacilos para pesquisas (Truman and Krahenbuhl, 2001).

1.2 – A resposta imune inata na hanseníase

Embora classicamente a resposta imunológica durante a hanseníase seja em grande parte associada com o perfil de respostas de células T, a imunidade inata, primeira linha de defesa do organismo, também apresenta um papel relevante durante a infecção e o bacilo modula muitos de seus elementos para garantir o sucesso da infecção.

A interação da micobactéria com a célula hospedeira já dispara mecanismos de defesa através do reconhecimento de determinados componentes micobacterianos pelos receptores de reconhecimento de patógenos, como os receptores da família Toll-like, que quando ativados, levam a uma sinalização pró-inflamatória via fator nuclear Kappa B (NF-κB) ou via interferon do tipo I (IFN-I) (Akira and Takeda, 2004). Já foi demonstrado que o *M. leprae* estimula a sinalização do heterodímero dos receptores membranares TLR-2/ TLR-1 em macrófagos humanos, induzindo a produção de citocinas pró-inflamatórias como TNF. Além disso, ambos receptores Toll encontram-se mais expressos nas lesões cutâneas de pacientes tuberculóides (Krutzik et al., 2003). A participação do receptor TLR-2 também foi demonstrada em células de Schwann, em que está envolvido com o reconhecimento de um lipopeptídeo de 19-KDa da micobactéria, ativando a sinalização de morte celular por apoptose nas células (Oliveira et al., 2003). Assim como na pele, uma elevada

expressão de TLR-2 também foi observada nas lesões neurais dos pacientes (Oliveira et al., 2003).

A participação de outros receptores TLRs também pode ser observada durante a interação com o *M. leprae*, visto que o receptor TLR-6 junto com o receptor TLR-2 é importante para a indução da acumulação de corpúsculos lipídicos em macrófagos (Mattos et al., 2010), enquanto em células de Schwann, esse processo é mediado apenas pelo receptor TLR-6 (Mattos et al., 2011). Os corpúsculos lipídicos são um importante sítio de produção de mediadores inflamatórios nas duas células hospedeiras (Mattos et al., 2010, 2011). O próprio acúmulo de lipídios tem seu papel imunomodulador e é um mecanismo induzido pela micobactéria para subversão da resposta imune inata, uma vez que foi demonstrado que lipídios oxidados que acumulam durante a infecção pelo *M. leprae* diminuem a produção da citocina próinflamatória IL-12p, enquanto estimulam o aumento da produção da citocina antiinflamatória IL-10 via ativação de TLR-2/1 (Cruz et al., 2008). Também já foram reportadas alterações do perfil de mediadores inflamatórios lipídicos durante a hanseníase (Al-Mubarak et al., 2011; Amaral et al., 2013; de Macedo et al., 2018).

Além do papel já estabelecido do receptor de manose durante o processo de internalização da bactéria, o reconhecimento de Man-LAM por esse receptor também apresenta um importante papel imunomodulatório. Já foi demonstrado que o engajamento do receptor de manose no processo de fagocitose do *M. tuberculosis* e *M. avium* é importante para o impedimento da fusão e formação do fagolisossoma (Kang et al., 2005; Rajaram et al., 2017; Sweet et al., 2010) e assim como componentes da superfície do *M. leprae* estão envolvidos na inibição da maturação do fagossoma (Frehel and Rastogi, 1987).

Outro importante PRR são os receptores da família NOD-like- NLR (*nucleotide oligomerization domain like receptors*), eles são receptores citoplasmáticos envolvidos no reconhecimento de muramil dipeptídeo da parede celular das bactérias (Girardin et al., 2003). A conexão dos receptores NODs com a hanseníase foi demonstrada em estudos que apontaram que o receptor NOD2 é capaz de reconhecer muramil dipeptídeos de *M. leprae*, estimulando a produção de citocinas pró-inflamatórias como IL-32, IL-1β e IL-6 (Schenk et al., 2012, 2016) e inclusive, polimorfismos no gene de NOD2 estão diretamente associados com a suscetibilidade à hanseníase (Berrington et al., 2010).

Grande parte do engajamento dos receptores PRRs na resposta imune ao *M. leprae* está intimamente relacionada com o reconhecimento dos lipídios da parede

celular da micobactéria, que são importantes fatores de virulência das micobactérias, muitas vezes modulando a resposta imune para favorecer o estabelecimento da infecção. O próprio Man-LAM, como já discutindo anteriormente, através da sua interação com o receptor de manose apresenta efeitos imunomodulatórios, apresentando um perfil anti-inflamatório, inibindo a produção de IL-12 após estímulo com LPS (Nigou et al., 2001). O mesmo perfil anti-inflamatório também é observado quando o Man-LAM interage com o receptor DC-Sign em células dendríticas, estimulando a produção de IL-10 (Geijtenbeek et al., 2003). O PGL-I também foi conectado com a modulação da produção de citocinas em monócitos (Manca et al., 2012) e também foi demonstrado que o PGL-I também interage com o CR3 de neutrófilos e células dendríticas, levando a ativação da via de sinalização de Syk, estimulando a produção de IL-10 em neutrófilos, IL-2 em células dendríticas e IL-1β em macrófagos (Doz-Deblauwe et al., 2019).

Outro componente importante da resposta imune são os macrófagos, que não só são importantes células apresentadoras de antígeno, mas também apresentam importantes funções microbicidas, cruciais para a resposta imune inata. Durante a hanseníase os macrófagos são componentes centrais dessa resposta, pois além de seu papel como células alvo, o programa adotado pelo macrófago após a infecção parece ser importante para a polarização da doença, seja uma resposta antimicrobiana pró-inflamatória, classificada como M1, mediada pela citocina IL-15 ou uma resposta anti-inflamatória fagocítica M2, mediada pela citocina IL-10 (Montoya et al., 2009). Embora essa diferenciação não seja uma dicotomia absoluta entre os diferentes espectros da doença, cada perfil está de certa forma mais associado com uma forma clínica. Estudos reportam a associação do perfil M1 de macrófagos às formas auto-limitantes tuberculóides da hanseníase, e que essa diferenciação é mediada pelo microambiente da lesão (Kibbie et al., 2016), em contrapartida, o perfil M2 estaria mais presente nas lesões de pele dos pacientes lepromatosos (de Sousa et al., 2016), estando mais associado ao recrutamento de lipídios oxidados para favorecer a sobrevivência da micobactéria (Montoya et al., 2009). Um dos mecanismos microbicidas que são acionados pelo perfil M1 durante a infecção por M. tuberculosis é um mecanismo dependente de vitamina D, no qual a sinalização da citocina IL-15 leva a uma conversão da vitamina D em sua forma ativa, que por sua vez promove a expressão dos peptídeos antimicrobianos catelicidina e β-Defensina (Fabri et al., 2011; Krutzik et al., 2013; Liu et al., 2007) e a ativação desse mecanismo,

levando ao aumento da produção de catelicidina também foi observada em macrófagos infectados pelo *M. leprae* (Kim et al., 2018a).

Outro processo da imunidade inata que tem chamado a atenção no contexto da infecção pelas micobactérias patogênicas é a ativação da via de IFN to tipo I (IFN α/β). Embora classicamente associada às infecções virais, tem-se relacionado a ativação da via de IFN-I como um importante mecanismo de virulência de M. tuberculosis para inibir a resposta Th1 (Manca et al., 2001). No contexto da hanseníase, Teles e colaboradores (2014) demonstraram que existe uma maior expressão de IFN-β nas lesões de pele dos pacientes lepromatosos, enquanto nos pacientes tuberculóides há a predominância de IFN-γ (IFN do tipo 2) e que o estímulo de IFN-β é capaz de inibir a resposta microbicida dos macrófagos (Teles et al., 2014). Posteriormente o mesmo grupo também demonstrou que a lesão de pacientes lepromatosos tem uma assinatura genética correspondente a via de IFN-I (Montoya et al., 2019). Além disso, foi observado o aumento da expressão de OASL em células de Schwann infectadas pelo *M. leprae* e que o estímulo da sinalização de OASL em macrófagos derivados de THP-1 infectados é dependente de STING, que faz parte do sistema de reconhecimento de ácidos nucleicos citosólicos (De Toledo-Pinto et al., 2016) e OASL está relacionado com a via de IFN-I (Leisching et al., 2017).

1.3 – O Eritema Nodoso Hanseniano

1.3.1 – Aspectos gerais

O Eritema Nodoso Hanseniano (ENH), também conhecido como reação do tipo 2, pode interromper o curso da hanseníase multibacilar (formas BL e LL), levando ao agravamento do quadro do paciente e mesmo ao óbito devido à reação inflamatória exacerbada (Walker et al., 2014). Embora frequentemente reportado como um episodio agudo, o ENH muitas vezes pode perdurar por meses ou anos (Kumar et al., 2004), ou mesmo em alguns pacientes pode ser recorrente, podendo ocorrer múltiplos quadros reacionais ao longo dos anos (Pocaterra et al., 2006; Walker et al., 2014). O ENH afeta cerca de 30 a 50% dos pacientes multibacilares (Kamath et al., 2014) e ocorre comumente durante os primeiros meses de tratamento com a PQT, mas pode também ocorrer antes ou mesmo após sua conclusão (Pocaterra et al., 2006).

O diagnóstico do ENH, assim como o da hanseníase, também se baseia primariamente na observação clínica aliada à análise histopatológica da lesão. Os principais sintomas clínicos observados são o aparecimento de novas lesões eritematosas e/ou nodulares subcutâneas que podem ser doloridas e ulcerar (Figura

1.3.1), podendo estar frequentemente associado a sintomas sistêmicos como febre, mal estar, artrite, linfoadenopatia, neurite, edema da face e extremidades, dentre outros (Kahawita and Lockwood, 2008; Pfaltzgraff and Ramu, 1994). Uma variação da reação do tipo 2 é o fenômeno de Lucio em que são observadas lesões cutâneas extensivamente necrosadas e está bastante associado à regiões especificas no México (Kahawita and Lockwood, 2008), mas com casos reportados também no Brasil (Monteiro et al., 2012; Rocha et al., 2016).

Figura 1.3.1 - Lesões reacionais do ENH. (A) Numerosas lesões eritematosas espalhadas pelo tronco. Adaptado de (Kahawita and Lockwood, 2008). (B) Lesões nodulares inflamatórias no membro superior. Adaptado de (Lastória and Abreu, 2014).

A intensidade dos sinais e sintomas pode variar de branda a grave, mas a definição dos critérios de análise de gravidade do episódio reacional ainda não estavam uniformizados. Nesse sentindo, uma iniciativa denominada ENLIST (*Erythema Nodosum Leprosum International Study*), com membros de diversos grupos de diferentes países, tem focado em cruzar os dados epidemiológicos e clínicos dos episódios de ENH de diferentes regiões a fim de melhor uniformizar os critérios de diagnóstico e tratamento do episódio reacional (Walker et al., 2012). Um dos estudos do ENLIST, comparando os dados clínicos de diferentes países, observou, por exemplo, que há uma maior predominância de ENH em pacientes do sexo masculino, principalmente em países como Brasil, Nepal, Índia e Filipinas (Walker et al., 2015). E em 2017, o ENLIST formulou uma escala de severidade contendo 10 itens que são avaliados recebendo um valor de intensidade da dor de 1 a 5 (Walker et al., 2017).

As observações histopatológicas características das lesões reacionais do ENH são um intenso infiltrado neutrofílico (Job et al., 1964; Mabalay et al., 1965), evento que não é visto durante a hanseníase clínica ou em outras reações associadas à doença e com a presença de um grande número de bacilos mortos, com aspecto

granular e pouco íntegros nas lesões de pele de ENH (Job et al., 1964), além de reportar a deposição de imunocomplexos, em grande parte envolvendo antígenos do *M. leprae* (Wemambu and Turk, 1969). Em alguns casos, também foram observadas alterações vasculares, muitas vezes associadas à vasculites, que podem ser a causa por trás dos casos de necrose (Job et al., 1964; Sehgal et al., 1986).

Embora os exatos mecanismos que disparam o ENH ainda sejam pouco esclarecidos, acredita-se que uma alta carga bacilar (IB maior que 4) seja um fator de risco para o desenvolvimento do ENH (Manandhar et al., 1999). Tem-se discutido a possibilidade de co-infecções serem fatores de risco para o desenvolvimento de episódios reacionais, em que foi visto que cerca de 67% dos pacientes com ENH apresentavam alguma co-infecção, em sua maioria infecções orais (Motta et al., 2012). Também foram detectados níveis mais elevados das citocinas próinflamatórias IL-1 e IL-6 no soro dos pacientes hansênicos com co-infecções orais quando comparados com o grupo que não apresentava co-infecção (Motta et al., 2010). Mais ainda, tem-se correlacionado polimorfismos em alguns genes com um maior risco de desenvolvimento de episódios reacionais de ENH nos pacientes multibacilares. Foi observado que quatro polimorfismos no gene NOD2 estavam associados à maior susceptibilidade ao ENH (Berrington et al., 2010). Um outro estudo com uma coorte brasileira demonstrou que os polimorfismos rs2069832, rs2069840 e rs2069845 no gene de IL-6 também estão relacionados com maior risco ao episódio reacional e se correlacionam com alterações nos níveis de IL-6 no soro (Sousa et al., 2012). Contudo, ainda precisa ser melhor entendido quais são os fatores determinantes para o desenvolvimento do ENH e que expliquem por que ocorre em alguns pacientes lepromatosos, algumas vezes com múltiplas ocorrências, enquanto outros nunca desenvolvem.

1.3.2 – Tratamento

Assim como no diagnóstico, o tratamento para o ENH também apresenta ainda muitas lacunas e não é uniformizado entre os diferentes países, mas de forma ampla requer abordagens que envolvem imunossupressão. Atualmente, no Brasil, o tratamento de escolha é através do uso de talidomida, numa faixa de 100-300 mg/dia. Contudo, embora muito eficiente por seu efeito anti-inflamatório (Penna et al., 2005; Sampaio et al., 1993), devido às suas propriedades teratogênicas (Vargesson, 2015), seu uso é restrito a mulheres fora da idade fértil e homens. Por conta de seus efeitos adversos, o Brasil é o único país que adota o uso da talidomida como primeiro

tratamento de escolha para o ENH, enquanto nos demais países o tratamento de escolha é o uso de corticosteroides (Walker and Lockwood, 2015). O uso da talidomida também não está livre de ocasionar outros efeitos colaterais além dos efeitos teratogênicos. Algumas evidências apontam a ocorrência de neuropatias periféricas associadas à talidomida (Wines et al., 2002) e trombose venosa (Wu et al., 2005).

A outra opção comumente utilizada para tratamento são corticosteroides, sendo a prednisona e a dexametasona muito utilizadas para o tratamento dos episódios reacionais. Um estudo recente demonstrou que o tratamento com predinisolona, forma ativa da prednisona, diminui a expressão de citocinas pró-inflamatórias IL-6, TNF, IFNγ e IL-1β por células mononucleares de sangue periférico (PBMCs) dos pacientes reacionais, bem como a secreção das mesmas nos sobrenadantes dos PBMCs dos pacientes encontra-se diminuída in vitro (Negera et al., 2018b). Porém, os corticosteroides também apresentam efeitos colaterais (Walker et al., 2015) e têm restrições quanto ao uso prolongado, sendo um desafio nos casos de múltiplos episódios reacionais. Um estudo demonstrou que o tratamento com prednisona altera os níveis de HDL e LDL no soro dos pacientes reacionais, e que nos casos crônicos, com uso prolongado do corticosteroide, há um aumento expressivo de HDL circulante (Negera et al., 2018a), portanto, podendo levar a alterações no perfil lipídico decorrentes do tratamento que podem resultar em maiores complicações. Em alguns países como Etiópia e Índia utiliza-se bastante uma combinação de prednisona com clofazimina (Walker et al., 2015), que tem efeitos anti-inflamatórios já descritos (Cholo et al., 2012).

Outro tratamento também adotado nos casos de impossibilidade do uso de talidomida e corticosteroides é o tratamento com pentoxifilina, que diminui de forma eficaz os sintomas relacionados ao episódio reacional (de Carsalade et al., 2003; Nery et al., 2000). Foi também demonstrado que a pentoxifilina apresenta propriedades anti-inflamatórias, como promover a redução de TNF *in vitro* e *in vivo* (Sampaio et al., 1998). Contudo, um estudo randomizado demonstrou que a talidomida é mais rápida e mais eficaz no tratamento do ENH que a pentoxifilina (Sales et al., 2007) ou a predinisona (Kaur et al., 2009).

Atribui-se uma importante parte da imunopatogênese do ENH à citocina TNF, que se encontra aumentada no soro dos indivíduos reacionais (Sampaio et al., 1993; Sarno et al., 1991). Embora ainda não se saiba ao certo o exato mecanismo de ação da talidomida, dados da literatura já mostraram que ela é capaz de inibir a síntese de TNF (Sampaio et al., 1991). Considerando essas observações, como alternativa nos
casos de falha terapêutica da talidomida ou corticosteroides, muitos estudos têm explorado o uso de bloqueadores da via de TNF, como o Etanercept (Chowdhry et al., 2016; Ramien et al., 2011; Santos et al., 2017) e o Infliximab (Faber et al., 2006), em que ambos ligam ao TNF, agindo de forma neutralizante, impedindo sua interação com o seu receptor (Horiuchi et al., 2010). Em todos os casos incluídos nesses estudos observou-se sucesso no tratamento dos pacientes, e sem recorrência de novos episódios reacionais pelo menos durante os dois anos de acompanhamento subsequentes ao tratamento.

Dessa forma, ainda se faz necessária a busca por novos alvos terapêuticos, visto que todas as drogas utilizadas atualmente têm em sua maioria limitações, além de não impedirem a ocorrência de novos episódios.

1.3.3 – Mecanismo de ação da talidomida

A talidomida foi introduzida no mercado europeu em 1956, começando a ser comercializada na Alemanha, depois sendo amplamente distribuída na Europa (Mellin and Katzenstein, 1962). A droga foi comercializada como sedativo, sendo muito prescrita como anti-emético para mulheres grávidas. Contudo, mais tarde foram observados os efeitos teratogênicos da droga, levando a uma série de más formações fetais que culminou na sua retirada do mercado em 1961 (Vargesson, 2015).

Apesar de seus efeitos teratogênicos, a talidomida apresenta propriedades imunomodulatórias e anti-inflamatórias significativas, que embora ainda não completamente compreendidas, levaram diversos grupos a revisitarem seu potencial uso no tratamento de diversas doenças como, por exemplo, o mieloma múltiplo (Chang et al., 2013; Singhal et al., 1999). Mais posteriormente, alguns derivados da talidomida, como a lenalidomida e a pomalidomida foram sintetizados, na tentativa de criar novos compostos mais seguros, criando assim uma classe de drogas atualmente conhecidas como drogas imunomoduladoras - IMiDs (*immunomodulatory drugs*) (Chang et al., 2013) (Figura 1.3.2A).

Figura 1.3.2 - Estrutura química das IMiDs e mecanismo de ação. (A) Estrutura químicas da classe de drogas IMiDs: talidomida, lenalidomida e pomalidomida que apresentam um grupo ftaloil e um grupo glutarimida. (B) Mecanismo geral de ação das IMids (losango rosa) que interage com o CRBN, que passa a reconhecer novos substratos, levando a poliubiquitinação desses, culminando em sua degradação proteassomal. Adaptado de (Gao et al., 2020a).

Os efeitos imunomodulatórios são muito estudados no contexto tumoral. Dados da literatura demonstraram que as IMiDs ativam as células dendríticas, alterando o perfil de citocinas produzidas (Reddy et al., 2008). Também foi demonstrado que a talidomida aumenta a ativação de células T, estimulando a produção de IL-2, principalmente em células T CD8+ (Haslett et al., 1998). Posteriormente, foi demonstrado que além de estimular IL-2, o tratamento com IMiD também estimula a produção de IFN-y pelas células T (Payvandi et al., 2005). Foi reportado que tanto as células T CD8+ como CD4+ de pacientes reacionais ENH tratados com talidomida produzem mais IL-2 e IFN-y ex vivo quando comparados ao momento antes do tratamento, sugerindo que esses efeitos imunomodulatórios também são importantes no contexto do ENH (Haslett et al., 2005). Já os efeitos anti-inflamatórios da talidomida e outros IMiDs estão fortemente relacionados a redução da produção de TNF (Corral et al., 1999; Sampaio et al., 1991). assim como de outras citocinas pró-inflamatórias como IL-1^β, que é diminuída em PBMCs estimulados com LPS após o tratamento com talidomida (Corral et al., 1999), assim como em células no sangue total estimuladas com LPS e tratado com talidomida (Shannon et al., 2008). A inibição da produção de IL-1ß parece estar associada a um efeito inibitório do tratamento com talidomida sobre a ativação de caspase-1 (Keller et al., 2009), estando atualmente na fase 2 dos ensaios clínicos como droga potencial para o tratamento de mieloma (Lee et al., 2019). Adicionalmente, a talidomida estimula a produção da citocina anti-inflamatória IL-10 (Corral et al., 1999) em PBMCs e células no sangue total (Shannon et al., 2008), estimulados com LPS, além de inibir a expressão de COX-2, consequentemente diminuindo a produção de PGE2 em PBMCs estimulados com LPS (Payvandi et al., 2004).

Ao longo dos anos, diversos efeitos foram relacionados às IMiDs além dos efeitos imunomodulatórios e anti-inflamatórios, como efeitos anti-tumorais, antiangiogênicos, anti-proliferativos, estimulação da apoptose, inibição da migração celular, dentre muitos outros (Chang et al., 2013). Esse amplo espectro de efeitos pleiotrópicos dificulta determinar com exatidão um mecanismo de ação. Entretanto, foi determinado que os efeitos teratogênicos da talidomida, assim como das outras drogas IMiDs estão relacionados a um alvo proteico específico, a proteína Cereblon (CRBN) (Ito et al., 2010).

O processo de embriogênese, principalmente dos membros, envolve a formação de um complexo E3 ubiquitina ligase entre CRBN e as proteína DDB1 (DNA damage binding protein 1) e Cul4A, sendo o CRBN o adaptador do substrato (Ito et al., 2010). A talidomida se liga ao CRBN, interferindo em sua atividade, afetando sua auto-ubiguitinação, e o blogueio desse processo de ubiguitinação mediado pelo CRBN resulta em alterações morfológicas durante o processo de embriogênese em zebrafish (Ito et al., 2010). Posteriormente, foi determinado que a interação da talidomida e outras IMiDs com o CRBN também é responsável pelos efeitos imunomodulatórios dessas drogas (Lopez-Girona et al., 2012), a deleção de CRBN suprime o efeito imunomodulatório e anti-tumoral da droga (Zhu et al., 2011). A lenalidomida sequestra o complexo e leva a degradação de outros substratos que antes não eram alvos de degradação, como por exemplo, as proteínas Ikaros (IKZF1) e Aiolos (IKZF3), e sua degradação está relacionada à modulação da resposta imune e efeito anti-tumoral (Krönke et al., 2014; Lu et al., 2014). Já a degradação mediada pela talidomida do fator de transcrição SALL4 (importante para o processo embriogênico) está associada aos efeitos teratogênicos (Donovan et al., 2018; Matyskiela et al., 2018). Essas evidências alteraram recentemente a visão sobre o mecanismo de ação da talidomida e outras drogas IMiDs, em que ao invés da droga afetar múltiplos alvos, a droga interagiria especificamente com o CRBN, alterando sua função, promovendo a interação com novos substratos e com isso a ubiquitinação e consequente degradação de novos e diferentes alvos (Figura 1.3.2B). Cada efeito estaria relacionado a um determinado neossubstrato do CRBN, em que cada IMiDs parece induzir a interação com diferentes classes de substratos (Asatsuma-Okumura et al., 2019). Dessa forma, apesar dos incríveis avanços na compreensão do mecanismo de ação da talidomida, muitas perguntas ainda não estão respondidas, como por exemplo, a identificação de outros possíveis neossubstratos que seriam responsáveis pelos outros efeitos atribuídos a droga.

No contexto do ENH, a primeira vez que a talidomida foi utilizada no tratamento dos episódios reacionais foi em 1964, quando foi observada uma melhora acentuada nos pacientes (Sheskin, 1965). O tratamento com a talidomida ameniza as lesões reacionais em até 48 horas na maioria dos casos (Sheskin, 1980), levando a uma melhora acentuada na parte clínica (Figura 1.3.3A), além de diminuir significativamente o infiltrado neutrofílico nas lesões (Figura 1.3.3B) (Da Silva et al., 2019; Mendes et al., 2017; Sampaio et al., 1993; Schmitz et al., 2016). E, conforme comentado anteriormente, foi demonstrado que o tratamento com talidomida diminui a produção de TNF *in vitro* por monócitos (Sampaio et al., 1991) e essa redução também é observada no soro dos pacientes tratados (Sampaio et al., 1993). Contudo, o exato mecanismo de ação da talidomida que contribui para sua elevada eficácia no ENH ainda não é completamente conhecido.

Figura 1.3.3 - O tratamento com talidomida alivia os aspectos clínicos e diminui o infiltrado rico em neutrófilos nas lesões reacionais. (A) Aspecto clínico da lesão cutânea no ENH no momento do diagnósitco (painel a esquerda) e após 7 dias de tratamento com talidomida (painel a direita). Adaptado de (Mendes et al., 2017). (B) O painel a esquerda representa uma lesão de um paciente reacional, não tratado, corado com HE, com as setas e vermelho apontando os neutrófilos. O painel a direita representa um corte histológico da lesão do mesmo paciente, agora após o sétimo dia de tratamento com talidomida, demonstrando a diminuição do infiltrado inflamatório de neutrófilos. Adaptado de (Da Silva et al., 2019).

1.3.4 – Imunopatologia do ENH

Devido às observações iniciais de deposição de imunocomplexos nas lesões reacionais (Wemambu and Turk, 1969), acreditava-se que o ENH era uma doença imunomediada por anticorpos. Contudo, ao longo dos anos, essa visão foi sendo alterada diante das evidências de participação de outros componentes na resposta imune, apesar de ainda não se conhecer completamente os mecanismos que desencadeia o ENH. Recentemente tem-se atribuído um papel importante à imunidade inata nos eventos relacionados ao ENH, o que pode sugerir que seus componentes e vias sejam importantes promotores da reação, e por isso, potenciais alvos terapêuticos.

O papel dos neutrófilos, que desde o início dos estudos dos episódios reacionais de ENH já eram observados nas lesões (Mabalay et al., 1965), tem sido melhor explorado e atualmente acredita-se que possuam um papel crucial do desenvolvimento do ENH. Análises de microarranjo de lesões de pele de pacientes ENH observaram um aumento da expressão de genes relacionados com migração celular, como E-selectina, em relação aos pacientes LL não reacionais e os níveis de expressão se correlacionam com um aumento de expressão de IL-1β. No mesmo estudo, os autores mostraram em ensaios *in vitro* que a sinalização de IL-1β estimula o aumento da expressão de E-selectina em células endoteliais, resultando em uma maior adesão de neutrófilos às células, o que é inibido com o tratamento com talidomida, sugerindo que este seja um mecanismo para o recrutamento dos neutrófilos (Lee et al., 2010).

Posteriormente, o mesmo grupo, em uma análise transcriptômica mais ampla incluindo também amostras de lesão de pele de pacientes do polo tuberculóide e reacionais do tipo I (RRs), confirmou a observação de um perfil de expressão compatível com uma assinatura de neutrófilos nas lesões ENH, que se mostrou bem distinto dos outros grupos de pacientes (Inkeles et al., 2016). Os genes das quimiocinas CXCL1,CXCL5 e CCR2 foram descritos como característicos desta assinatura, podendo estar relacionados com o processo de recrutamento dos neutrófilos para a lesão. O mesmo estudo ainda observou um perfil de expressão de genes relacionados com o processo de angiogênese e resposta inflamatória, como IL-6 (Inkeles et al., 2016).

Outro estudo observou que tanto neutrófilos circulantes como aqueles presentes na lesão cutânea de pacientes ENH apresentavam maior expressão de CD64 (FCγRI- Receptor da porção Fc de anticorpos) que neutrófilos de outras formas

clínicas de hanseníase. Neste mesmo trabalho observou-se que o tratamento com talidomida diminuía a expressão de CD64, tanto na lesão como nos neutrófilos circulantes, e que uma maior expressão dessa molécula estava associada à gravidade da reação (Schmitz et al., 2016). Em outro estudo observou-se níveis aumentados do receptor da citocina IL-10 (IL-10R) tanto em neutrófilos circulantes, como naqueles localizados nas lesões dos pacientes ENH (Pacheco et al., 2020). Os autores também mostraram níveis ainda maiores de IL-10R após o tratamento dos pacientes com talidomida, mostrando concordância com a literatura que aponta que o tratamento com talidomida estimula o aumento de produção de IL-10 (Corral et al., 1999). Pacheco e colaboradores também mostraram que o tratamento com IL-10 de neutrófilos isolados de pacientes ENH e estimulados ou não com *M. leprae* sonicado diminui a liberação de citocinas pró-inflamatórias como TNF, IL-1ß e IL-8 (Pacheco et al., 2020). Estes resultados se somam a dados anteriores da literatura que demonstraram que neutrófilos estimulados com *M. leprae in vitro* produzem citocinas pró-inflamatórias como IL-8 e TNF e que esta produção é inibida após tratamento com talidomida (Oliveira et al., 1999).

Dados na literatura apontam que o soro e lesões de pele dos pacientes reacionais apresentam uma maior expressão de pentraxina 3, que é modulada negativamente após o tratamento com talidomida (Mendes et al., 2017). A pentraxina 3 é uma proteína presente nos grânulos dos neutrófilos e que também pode ser encontrada nas armadilhas extracelulares de neutrófilos (NETs - Neutrophil extracellular traps) (Jaillon et al., 2007). As NETs são redes de cromatina associada às proteínas dos grânulos dos neutrófilos, como a mieloperoxidase (MPO), que são liberadas pelos neutrófilos como mecanismos de contenção de patógenos extracelulares (Brinkmann et al., 2004). Dentro do contexto da reação, também foi observada uma participação das NETs, em que foi visto a presença de NETs nas lesões reacionais, que é reduzida após o tratamento com talidomida (Da Silva et al., 2019). Adicionalmente, também foi observado que os neutrófilos de pacientes ENH liberam espontaneamente mais NETs in vitro que neutrófilos de pacientes não reacionais e o tratamento com talidomida diminui a liberação espontânea das NETs pelos neutrófilos dos pacientes reacionais (Da Silva et al., 2019). Contudo, mesmo com os recentes estudos e crescentes evidências da contribuição dos neutrófilos para a imunopatologia do ENH, o exato papel dessas células para ao desenvolvimento da reação ainda não foi completamente elucidado e ainda existem muitas lacunas para serem preenchidas.

Os PRRs, importantes componentes da imunidade inata, também contribuem para a imunopatogenia do ENH. O receptor do tipo Toll 9 (TLR-9) é encontrado no compartimento endossomal da célula e participa do reconhecimento de DNA contendo motivos CpG, muito comuns em DNAs virais e bacterianos (Latz et al., 2004). Estudos do nosso grupo demonstraram a relevância do TLR-9 durante ENH através da observação que uma expressão elevada do receptor tanto nas lesões de pele dos pacientes reacionais, assim como em células B, células dendríticas plasmacitóides (pDC) e monócitos circulantes (Dias et al., 2016). Além disso, os PBMCs dos pacientes ENH produzem mais citocinas pro-inflamatórias como TNF, IL-6 e IL-1β após o estímulo com ligante de TLR-9 que pacientes não reacionais, sugerindo um envolvimento deste receptor e de vias de reconhecimento de ácidos nucleicos no processo inflamatório observado durante o ENH (Dias et al., 2016).

Além do TLR-9, o TLR-7 também participa do processo de reconhecimento de ácidos nucleicos, estando mais relacionado ao reconhecimento de RNA (Lund et al., 2004). Entretanto, além do envolvimento das vias de reconhecimento de ácidos nucleicos na resposta imune à processos infecciosos, já foi reportado que tanto TLR-7, como TLR-9 podem reconhecer ligantes endógenos, como por exemplo histonas (Huang et al., 2011), NETs (Garcia-Romo et al., 2011; Liu et al., 2019) e imunocomplexos de autoanticorpos para ribonucleoproteínas nucleares (snRNPs) (Vollmer et al., 2005). Entre as varias consequências possíveis, a ativação dessas vias pode estimular a produção de IFNα/β (Akira and Takeda, 2004), que por sua vez podem primar os neutrófilos e deixa-los mais permissivos para o processo de NETose (Garcia-Romo et al., 2011). Este é um processo importante durante a patogênese do lúpus eritematoso sistêmico (SLE) (Celhar et al., 2012), que é semelhante ao ENH por também ser um processo inflamatório crônico com algumas intercorrências agudas. Nosso grupo observou que, de fato, existe um aumento de ligantes endógenos de TLR-9, complexos DNA-histona, circulantes nos pacientes ENH (Dias et al., 2016). Além disso, também foi demonstrado recentemente que os neutrófilos isolados de pacientes ENH apresentam maior expressão de TLR-9 e que o estímulo com o ligante de TLR-9 micobacteriano CpG+Hlp estimula a liberação de NETs por neutrófilos in vitro (Da Silva et al., 2019), o que também é observado durante o SLE (Garcia-Romo et al., 2011), reforçando a importância das vias de reconhecimento de ácidos nucleicos na fisiopatogenia do ENH.

Dados da literatura também apontam a participação de outros receptores TLRs, como por exemplo, o receptor TLR-2, que também apresenta elevada expressão nas

lesões de pele dos pacientes reacionais e a estimulação *in vitro* de TLR-2 está associada com o aumento de expressão de IL-1 β (Lee et al., 2010). Além disso, uma observação recorrente de muitos trabalhos é a presença de elevados níveis de citocinas inflamatórias no soro dos pacientes reacionais, principalmente TNF e IL-1 β (Sarno et al., 1991). Recentemente foi reportada associação de polimorfismos no gene de IL-1 β com a ocorrência de reações na hanseníase, como o ENH (Pragasam et al., 2020). Mais ainda, também foram obsevados elevados níveis de outras citocinas pró-inflamatórias no soro dos indivíduos ENH, como por exemplo IL-2 e IFN- γ (Revisto por Polycarpou et al., 2017).

A presença de imunocomplexos nas lesões reacionais sugere que a resposta imune adaptativa também seja importante para o desenvolvimento do ENH, embora as evidências da participação dos imunocomplexo na imunopatogenia do ENH ainda sejam contraditórias. Anticorpos circulantes tem o papel crucial de ativar o sistema complemento (Schifferli et al., 1986). Um estudo de transcriptômica de PBMCs de pacientes reacionais observou um aumento do perfil de expressão de genes relacionados com o sistema complemento, além de observar uma maior presença de C1q nas lesões de pele dos pacientes reacionais (Dupnik et al., 2015). Posteriormente o aumento da expressão de componentes do complexo C1q nas lesões de pele dos pacientes ENH foi confirmado por PCR, além de ter sido observada uma diminuição de C1q livre circulante no soro dos pacientes reacionais antes do tratamento para o episódio reacional, levando os autores a sugerir que a molécula esteja sendo sequestrada para a formação dos imunocomplexos (Negera et al., 2018c). Mais recentemente, foi observado que há uma maior presença de células B CD21+ (receptor de complemento) nas lesões de pele dos pacientes reacionais, assim como de IgM, IgG e componentes do complemento no soro dos pacientes ENH quando comparado ao paciente não reacional (Amorim et al., 2019).

Os conceitos atuais de imunologia já compreendem que a resposta imune é complexa e envolve uma integração da resposta imune adaptativa com componentes da imunidade inata. Imunocomplexos são componentes importantes da imunopatogenia do SLE, sendo um dos mecanismos inflamatórios frequentemente associados ao SLE o envolvimento dos auto-anticorpos e imunocomplexos na estimulação da produção de IFN I por pDCs (Farkas et al., 2001) e liberação de NETs por neutrófilos (Garcia-Romo et al., 2011), reforçando essa integração entre a imunidade inata e adaptativa na imunopatogenia da doença.

Alguns estudos têm focado no papel dos linfócitos T durante o ENH, tendo sido observado que há uma proporção maior de células T CD4⁺ circulantes e uma menor proporção de células T CD8⁺ nos pacientes ENH (Wallach et al., 1982). Adicionalmente, outros estudos reportaram que há uma menor proporção de células T reguladoras (Tregs) nos pacientes reacionais (Abdallah et al., 2014; Attia et al., 2010; Negera et al., 2017c), sugerindo que seja importante durante a patogenia do ENH uma vez que as Tregs são responsáveis por modular a resposta efetora, impedindo que a mesma seja exacerbada (Boer et al., 2015). Adicionalmente, foi observado que as células T circulantes de pacientes ENH estão mais ativadas, além de apresentar maior proporção de células T de memória, mais especificamente da subpopulação de células T de memória efetoras (Negera et al., 2017a), o que foi confirmado posteriormente em um estudo que observou um aumento da frequência de células T CD8⁺ de memória efetora nos pacientes ENH (Silva et al., 2019).

Uma busca racional das vias imunoinflamatórias ativadas durante os episódios de ENH é essencial para o melhor entendimento da sua imunopatogênese, o que também pode levar à descoberta de novos medicamentos e testes diagnósticos. Estudos de expressão gênica em larga escala são conduzidos para monitorar a resposta do hospedeiro frente a um patógeno. Além de revelar as interações patógeno-hospedeiro, estes estudos têm potencial como ferramenta diagnóstica, especialmente, para distinguir pacientes afetados por uma doença de indivíduos saudáveis e até classificar diferentes formas de uma mesma doença. Todavia, até o momento, poucos estudos focam em uma assinatura de expressão gênica baseada em sangue em hanseníase, com apenas registros bem recentes, com foco em biomarcadores que diferenciem os polos pauci e multibacilares (Tió-Coma et al., 2019), bem como focando na busca por uma assinatura sistêmica na reação reversa (Teles et al., 2019; Tió-Coma et al., 2019), não havendo ainda, até o momento, um estudo de uma assinatura global de sangue em pacientes ENH. Por outro lado, os estudos de avaliação de perfis transcricionais da lesão cutânea entre as diferentes formas clínicas da hanseníase estão cada vez mais comuns (Belone et al., 2015; Inkeles et al., 2016; Lee et al., 2010; Montoya et al., 2019; Silva et al., 2017). A expressão gênica global ou transcriptoma de células mononucleares do sangue de pacientes ENH utilizando microarranjos levou a uma maior compreensão do ENH e identificou novos alvos terapêuticos (Dupnik et al., 2015). No entanto, a limitação do microarranjo e a ausência de neutrófilos, célula-chave do ENH, podem ter diminuído a detecção de genes. Essas limitações podem ser superadas com a aplicação do

sequenciamento de RNA (RNA-seq) de nova geração em amostras de sangue total de pacientes multibacilares com e sem ENH.

Entretanto, ainda assim, os exatos mecanismos de disparam a reação ainda não são completamente compreendidos, e muito ainda precisa ser elucidado do papel de cada componente da imunidade durante o ENH, além de melhor compreender a possível integração entre a resposta imune inata e adaptativa. Um breve resumo dos assuntos abordados nesse tópico está descrito na tabela 1.3.1. Esta tabela foi baseada em recente revisão sobre a imunopatogênese do ENH (Polycarpou et al., 2017). No contexto da imunidade inata, uma citocina recorrentemente observada nos episódios reacionais de ENH e citada em diversos trabalhos é a citocina pró-inflamatória IL-1β, produzida pela ativação da plataforma molecular do inflamasoma (Lamkanfi and Dixit, 2012), dessa forma, sendo fundamental o estudo da participação da mesma durante o episódio reacional.

Tabela 1.3.1 - Resumo dos principais mecanismos da imunopatogênese no ENH. MB	-
multibacilar, CS – Controle sadio, N.A – Não apresentado	

Foco do estudo	População	Procedência da população	Tipo de amostra	Principais achados	Referência
Imunocomplexo	17 ENH 6 MB	N.A.	Lesão de pele	Deposição de imunoglobulina e complemento na lesão Detecção de antígeno de ML	Wemambu and Turk, 1969
Neutrófilos	27 ENH	Filipinas	Lesão de pele	Infiltrado neutrofílico na lesão	Mabalay et al., 1965
	16 CS 64 Pacientes de hanseníase	Brasil	Lesão de pele Sangue periférico	Neutrófilos expressam CD64 nas lesões de pele ENH; Tratamento com talidomida diminui expressão de CD64 e presença de neutrófilos na lesão de pele; Aumento da expressão de CD64 no sangue total devido ao aumento da expressão em neutrófilos no ENH. Maior expressão de CD64 em neutrófilos de pacientes ENH graves	Schmitz et al., 2016
	28 MB 28 ENH	Brasil	Lesão de pele Neutrófilos isolados	Aumento da frequência de neutrófilos expressando IL- 10R e do MFI em pacientes ENH; Neutrófilos expressando IL- 10R em lesões de pele de pacientes ENH; Aumento de IL-10R em neutrófilos de pacientes ENH 7 e 14 após início de tratamento com talidomida; IL-10 <i>in vitro</i> diminui a produção de citocinas pró- inflamatórias por neutrófilos de pacientes ENH infectados com ML.	Pacheco et al., 2020

Transcriptômica	29 Pacientes de hanseníase (6 ENH)	Brasil Portugal México Filipinas	Lesão de pele	Modulação positiva de genes relacionadas a vias de resposta inflamatória, organização de matriz extracelular, quimiotaxia, angiogênese e associados à	Inkeles et al., 2016
	7 MB 6 ENH	N.A.	Lesão de pele	uma perfil neutrofílico Regulação positiva de vias de migração celular, angiogênese, vias inflamatórias e proliferação celular nas lesões dos pacientes ENH; Regulação positiva de moléculas de adesão como E-selectina no paciente ENH; Aumento de expressão de E-selectina em células	Lee et al., 2010
	19 MB 11 ENH 11 RR	Brasil	PBMC	endotellais na lesao ENH Observação de vias relacionadas à resposta imune, resposta à bactérias, processos inflamatórios e resposta à estresse; Observação de genes associadas a uma assinatura de expressão de doenças como SLE, artrite reumatoide e da via coagulação e ativação de complemento	Dupnik et al., 2015
Pentraxina 3 (PTX3)	25 CS 81MB (27 ENH)	Brasil	Lesão de pele Soro	Aumento de PTX3 no soro de pacientes ENH; Talidomida diminui os níveis de PTX3 no soro e nas lesões de pele; PTX co-localiza com neutrófilos nas lesões de pele reacionais	Mendes et al., 2017
NETS	17 MB 23 ENH	Brasil	Lesão de pele Soro Neutrófilos isolados	Marcadores de NET e filamentos de cromatina observados nas lesões de pele de pacientes ENH; Aumento de marcadores de NETs circulantes nos pacientes ENH; Produção maior de NETs espontânea e induzida estímulo com sonicado de ML <i>in vitro</i> em neutrófilos isolados de pacientes ENH e que reduz com o tratamento com talidomida	Da Silva et al., 2019
TLR-9	31 CS 24 MB 30 ENH	Brasil	Lesão de pele Soro PBMC	Aumento de TLR-9 nas lesões de pele dos pacientes reacionais e em células B, monócitos e pDCs de pacientes ENH; Aumento de ligantes de TLR-9 circulantes nos soro dos pacientes ENH; Ligantes de TLR-9 estimulam a produção de TNF, IL-1β e IL-6 em PBMC de pacientes ENH e o bloqueio da via diminui a produção dessas citocinas estimuladas por sonicado de ML	Dias et al., 2016
TNF	47 Pacientes de hanseníase (18 ENH)	Brasil	Soro	Aumento da concentração TNF circulante nos pacientes ENH	Sarno et al., 1991

IL-1β	39 Pacientes de hanseníase (18 FNH)	Brasil	Soro	Aumento da concentração IL-1β circulante nos pacientes ENH	Sarno et al., 1991
	243 CS 70 Pacientes de hanseníase (12 ENH)	índia	Sangue total	Encontrada uma forte associação entre polimorfismos no gene de IL- 1β e a ocorrência de reações	Pragasam et al., 2020
	7 MB 6 ENH	N.A.	Lesão de pele	Aumento da expressão de IL-1R nas lesões de pele de pacientes ENH ; Ativação de TLR-2 promove a produção de IL-1β que é diminuída com o tratamento com talidomida; Estimulo de IL-1β aumenta a adesão de neutrófilos em células endoteliais <i>in vitro</i> , que é diminuído com a adição de talidomida	Lee et al., 2010
Sistema complemento	19 MB 11 ENH 11 RR	Brasil	Lesão de pele PBMC	Aumento da expressão de C1q no PBMC de pacientes ENH; Aumento da expressão de receptores de complemento e de porção Fc em monócitos dos pacientes ENH; Observação de maior marcação para C1q em lesão de pele reacional	Dupnik et al., 2015
	30 ENH 30 LL	Etiópia	Lesão de pele Sangue total	C1q circulante está diminuída nos pacientes reacionais; Expressão aumentada de C1q em células sanguíneas e na lesão de pele de pacientes ENH antes do tratamento, que reduz após o mesmo	Negera et al., 2018b
	14 Contatos 96 PB + MB 64 Reacionais (29 ENH)	Brasil	Lesão de pele PBMC células B	Maiores níveis de C4 e anticorpos anti-ML circulantes em pacientes ENH	Amorim et al., 2019
Células B	14 Contatos 96 PB + MB 64 Reacionais (29 ENH)	Brasil	Lesão de pele PBMC células B	Maior proporção de plasmablastos em pacientes ENH; Maior expressão de CD21 em lesões de pele de pacientes ENH	Amorim et al., 2019
	30 ENH 30 LL	Etiópia	PBMC	Maior proporção de células B de memória ativadas no paciente ENH em comparação ao LL antes do tratamento; Sem diferenças nas proporções de células B maduras entre pacientes ENH e LL; Menor proporção de células B <i>naïve</i> em pacientes ENH antes do tratamento em comparação à pacientes LL; Menor proporção de células B de memória residente em pacientes ENH que LL antes e durante o tratamento	Negera et al., 2017b
Células T CD4	24 MB (9 ENH)	Múltiplas localidades na África e Ásia	Sangue total	Aumento na proporção de células T CD4+ nos pacientes ENH em proporção às células T CD8+	Wallach et al., 1982

	35 ENH 25 LL	Etiópia	PBMC	Maior proporção de células T CD4+ ativadas em pacientes ENH antes do tratamento que em pacientes LL; Maior proporção de células T de memória totais, T CD4+ de memória, T CD4 de memória central e memória efetora em pacientes ENH antes do tratamento que em pacientes LL;	Negera et al., 2017a
Células T CD8	35 ENH 25 LL	Etiópia	PBMC	Maior proporção de células T CD8+ ativadas em pacientes ENH antes do tratamento que em pacientes LL; Maior proporção de células T CD8+ de memória efetora, pacientes ENH antes do tratamento; Menor proporção de células T CD8+ de memória central pacientes ENH antes do tratamento	Negera et al., 2017a
	15 CS 19 ENH 15 LL	Brasil	PBMC	Maior proporção de células T CD8+ de memória central e efetora em pacientes ENH quando comparadas a pacientes LL e indivíduos sadios; Menor proporção de células T CD8+ <i>naïve</i> em pacientes ENH; Maior proporção de células T CD8+ de memória efetoras produtoras de TNF em pacientes ENH	Silva et al., 2019
Células Treg	40 CS 43 Pacientes de Hanseníase (6 ENH)	Egito	Sangue total	Menor proporção de células Treg em pacientes ENH e menor razão Treg/Teff	Abdallah et al., 2014
	38 CS 38 Pacientes de Hanseníase (6 ENH)	Egito	Sangue total	Menor proporção de células Treg e maior proporção células FoxP3+ em pacientes ENH em comparação aos demais pacientes hasenianos	Attia et al., 2010
	46 ENH 31 LL	Etiópia	PBMC	Níveis menores de células Tregs CD4+ em pacientes ENH em comparação aos pacientes não reacionais; Menor proporção de células CD4+ FoxP3+ em pacientes ENH	Negera et al., 2017c

1.4 – O inflamassoma

1.4.1 – Composição e ativação

O inflamassoma é uma plataforma molecular da imunidade inata associada com o processamento e clivagem das citocinas pró-inflamatórias IL-1 β e IL-18, bem como com o evento de morte celular inflamatória, conhecida como piroptose (Revisto por Guo et al., 2015). A dependência da caspase-1 para a clivagem da pró-IL-1 β já era conhecida desde o início da década de 90 (Cerretti et al., 1992; Thornberry et al.,

1992), porém o mecanismo de ativação da mesma e elucidação da plataforma do inflamassoma ocorreu somente em 2002 (Martinon et al., 2002).

Martinon e colaboradores em 2001 haviam demonstrado que a proteína NLRP-1 possui um domínio N-terminal conhecido como pirina (PYD) (Martinon et al., 2001). Posteriormente, o mesmo grupo foi o primeiro a demonstrar que NLRP-1 interage com caspase-1 e é importante para sua ativação e consequente clivagem de IL-1β, mostrando ainda que a interação de NLRP-1 com caspase-1 era dependente da proteína ASC (Martinon et al., 2002).A proteína ASC apresenta um domínio Cterminal denominado de CARD que também é encontrado nas proteínas da família caspase. Com isso, o estudo propôs que ASC atuaria como um adaptador através da homodimerização dos domínios PYD e CARD com os respectivos domínios em NLRP-1 e caspase-1, promovendo assim a interação entre as 3 proteínas, formando o complexo molecular que foi denominado pelos autores de inflamassoma, que ao oligomerizar, permite a auto-clivagem de caspase-1, culminando na sua ativação (Martinon et al., 2002).

Nos anos seguintes outras proteínas com domínios PYD e/ou CARD foram descritas como importantes para a ativação de caspase-1, primeiramente associando a proteína NLRP3 com o inflamassoma durante o contexto de uma doença autoinflamatória (Agostini et al., 2004) e logo em seguida a proteína NLRC4 em macrófagos infectados com *Salmonella enterica* sorotipo Typhimurium (Mariathasan et al., 2004). Dessa forma, as proteínas receptoras podem interagir diretamente via domínio CARD ou através do adaptador ASC via domínio PYD (Revisto por Lamkanfi and Dixit, 2012). Quando ASC participa do processo, promove uma oligomerização que resulta em uma estrutura puntiforme que pode ser observada por microscopia, sendo denominada de *speck* (Proell et al., 2013).

As diferentes proteínas sensores reconhecem diferentes estímulos no citosol, formando assim um potente mecanismo da resposta imune para reconhecimento de um amplo espectro de PAMPs e DAMPs intracelulares (Lamkanfi and Dixit, 2012), aliando-se ao arsenal de PRRs. Atualmente, os principais receptores envolvidos são NLRP1, NLRP3, NLRP6, NLRC4, AIM2 e Pirina (Revisto por Christgen and Kanneganti, 2020). Uma das proteínas mais estudadas é a proteína NLRP3 e ao longo dos anos, diferentes PAMPs e DAMPS foram descritos como capazes de ativar o inflamassoma de NLRP3, sendo o ATP um potente indutor de ativação, em um processo dependente do receptor purinérgico P2X7 (Revisto por Di Virgilio et al., 2017), mas também com outros estímulos bem descritos como nigericina, cristais de

ácido úrico , sinalização de Ca²⁺, dentre muitos outros (He et al., 2016a; Mariathasan et al., 2006; Martinon et al., 2006) (Figura 1.4.1). O grande espectro de potenciais ativadores indica que NLRP3 não seria um receptor direto para esses componentes, diferente das outras proteínas sensoras, mas sim seria capaz de reconhecer algum evento em comum estimulado por esses diferentes componentes. Posteriormente, passou-se a relacionar o efluxo de K⁺ como um processo comum aos diferentes estímulos e importante para a ativação de NLRP3 (Muñoz-Planillo et al., 2013), embora ainda não tivesse sido descrito o exato mecanismo do mesmo. Alguns estudos reportaram que a ubiquitinação de NLRP3 tem um papel importante de regulação do inflamassoma, uma vez que parte dos estímulos, como ROS liberado pela mitocôndria, promove a deubiquitinação de NLRP3, permitindo sua ativação (Juliana et al., 2012; Py et al., 2013).

Posteriormente a proteína NEK7 foi relacionada à ativação de NLRP3, sendo importante sua interação com o mesmo para promover sua oligomerização após o evento de efluxo de K⁺, sendo um processo exclusivo da ativação de NLRP3, visto que NEK7 não é necessária para a ativação dos inflamassoma de AIM2 e NLRC4 (He et al., 2016b). Mais recentemente foi observado que a ativação de NLRP3 envolve a desorganização da porção Trans do complexo de Golgi, que passa a formar uma rede que permite o ancoramento de NLRP3 via Ptdin4 (Fosfatidil inositol 4-fosfato) e consequentemente sua ativação que é seguida do recrutamento de ASC para montagem do inflamassoma (Chen and Chen, 2018). O grupo ainda demonstrou que o influxo de K⁺ era importante para promover a associação de NLRP3 à rede de trans Golgi para alguns estímulos, como a nigericina (Chen and Chen, 2018), embora não fosse importante para outros. Dessa forma, o estudo contribuiu para esclarecer um pouco mais sobre o mecanismo de ativação do inflamassoma de NLRP3, embora a identificação do exato estímulo que leva à dissociação do trans Golgi ainda precise ser desvendada. Mais ainda, outro grupo reportou que a proteína β-catenina também seria importante para a ativação de NLRP3 e embora não promova a expressão dos componentes do inflamassoma, o grupo demonstrou que a β -catenina interage com NLRP3 e permite sua interação com ASC (Huang et al., 2020).

Diferente de NLRP3, as demais proteínas sensoras possuem ativadores bem estabelecidos. NLRP-1 tem sido associado ao reconhecimento da toxina letal de *Bacillus anthracis* (Boyden and Dietrich, 2006) (Figura 1.4.1). Contudo, a ativação do inflamassoma de NLRP-1 também parece não ser um reconhecimento direto da toxina, visto que é dependente da acidificação do fagolisossoma e liberação do fator

letal e de eventos como atividade proteassomal e efluxo de K⁺ (Fink et al., 2008). Já NLRC4 é ativado por uma série de bactérias intracelulares como S. Typhimurium; Shigella flexneri e Legionella pneumophila (Revisto por Lamkanfi and Dixit, 2012), estando envolvida com o reconhecimento de flagelina e da proteína PrgJ do sistema de secreção do tipo III (T3SS) (Miao et al., 2010), necessitando de outra proteína pertencente à família de NLRs, a proteína NAIP, para estabelecer a associação com NLRC4 (Revisto por Sharma and Kanneganti, 2016). Em camundongos existem diferentes NAIPs, onde NAIP1 é responsável pelo reconhecimento da agulha do T3SS (Rayamajhi et al., 2013; Yang et al., 2013a); NAIP5 e NAIP6 são responsáveis pelo reconhecimento de flagelina e NAIP2 da PrgJ (Kofoed and Vance, 2011; Zhao et al., 2011) (Figura 6). Porém no genoma humano só há um gene funcional para NAIP (Romanish et al., 2009) e recentemente foi demonstrado que a mesma proteína é capaz de reconhecer tanto flagelina como o T3SS (Ruiz et al., 2017). Contudo, apesar do papel extensamente descrito no reconhecimento desses componentes pelo NLRC4/NAIP, tem-se observado uma relevância de NLRC4/NAIP durante o contexto de tumorigênese no cólon (Hu et al., 2010), além de processos infecciosos com Klebsiella pneumoniae (Cai et al., 2012), que não possui flagelina ou T3SS, sugerindo que existam outros potenciais ligantes.

O inflamassoma de AIM2 está envolvido com o reconhecimento de DNA dupla fita através do domínio HIN200 (Figura 1.4.1), que é um domínio de ligação ao DNA e usualmente encontra-se inibido devido a interação com o domínio PYD (Jin et al., 2012, 2013). A afinidade com DNA dupla fita libera o domínio que passa a interagir com o ácido nucleico (Jin et al., 2012, 2013), reconhecendo assim os fragmentos de DNA presentes no citosol da célula (Fernandes-Alnemri et al., 2009; Hornung et al., 2009; Jin et al., 2012, 2013), enquanto o domínio PYD recruta ASC, que permite então a associação com caspase-1 e montagem do inflamassoma (Hornung et al., 2009). A ativação do AIM2 não se dá exclusivamente por DNAs de patógenos e não demanda uma sequência específica. Estudos mostram que AIM2 reconhece qualquer DNA com cerca de 80 pbs (Jin et al., 2012) e qualquer DNA dupla fita transfectado direto no citosol é reconhecido e ativa o inflamassoma de AIM2 (Fernandes-Alnemri et al., 2009; Hornung et al., 2009). Contudo, DNA endógeno usualmente não é encontrado no citosol das células em condições de homeostase, o que evita sua ativação por antígenos próprios.

Existem ainda outras proteínas sensores menos estudadas e cujos ativadores ainda não são totalmente conhecidos, como NLRP6 e pirina. Existem evidências de

participação de NLRP6 na regulação da microbiota (Elinav et al., 2011) e da pirina no reconhecimento de fatores de virulência que inativam Rho GTPases (Revisto por Schnappauf et al., 2019). Os diferentes subtipos de inflamassoma comumente são ativados de forma concomitante dentro de um contexto infeccioso (Lima-junior and Zamboni, 2015; Mascarenhas and Zamboni, 2017), mas também foi demonstrado que existe um *cross-talk* entre eles. Por exemplo, em macrófagos murinos infectados com *L. pneumophila*, o inflamassoma de AIM2 é ativado por DNA citosólico do patógeno e a ativação do mesmo promove um efluxo de K⁺, que promove a ativação do inflamassoma de NLRP3, potencializando a resposta inflamatória (Cunha et al., 2017).

Figura 1.4.1 - Diferentes subtipos de inflamassoma. Representação esquemáticas das diferentes composições do inflamassoma canônico, representando as diferentes proteínas receptoras: NLRP1; NLRP3; NLRC4, AIM2, Pirina e NLRP6. De modo geral, todos convergem para a clivagem e ativação de caspase-1, que por sua vez promove a clivagem de pró-IL-18 em suas formas maduras IL-1β e IL-18, além de promover a clivagem de gasdermina D (GSDMD), que media o processo de piroptose. O inflamassoma de NLRP1, por exemplo, é ativado por atividade protease induzida pelo fator letal da toxina letal de B. anthracis; NLRP3 é ativado por uma série de PAMPS e DAMPS, como espécies reativas de oxigênio, fluxo iônico (principalmente K+) e danos em organelas, como a mitocôndria. NLRC4 reconhece patógenos intracelulares como S. Typhimurium, reconhecendo flagelina e componentes do T3SS, como agulha e bastão, via NAIP. O inflamassoma de AIM2 reconhece DNA dupla fita no citosol. O inflamassoma de pirina é ativado por toxinas e patógenos que causam modificações na RhoA GTPase e o inflamassoma de NLRP6 parece estar associados com o reconhecimento de metabólitos produzidos pela microbiota e LTA (ácido lipoteicoico). Adicionalmente, o inflamassoma não canônico que envolve a ativação de caspase-4 em humanos e caspase-11 em camundongos está associado ao reconhecimento de LPS diretamente no citosol. Adaptado de (Sanchez-Garrido et al., 2020).

O inflamassoma tem sido ao longo dos anos primariamente estudado por ser a plataforma responsável pela produção de IL-1 β e IL-18, que participam do processo inflamatório, onde IL-1 β é pirogênica induzindo febre (Zheng et al., 1995), e promovem a ativação de células da imunidade inata como neutrófilos e macrófagos (Revisto por Sims and Smith, 2010). Estas citocinas também estão envolvidas em coordenar alguns aspectos da resposta imune adaptativa, como IL-1 β que estimula a proliferação de células B (Rousset et al., 1991). Alem disso, IL-1 β e IL-18 participam da polarização da resposta das células T *helper* (Schmitz et al., 2005) e IL-18, em conjunto com IL-12, estimula que células T produzam IFN-y (Ahn et al., 1997).

A ativação do inflamassoma requer dois sinais (Figura 1.4.2), um primeiro sinal que usualmente está relacionado com o reconhecimento de PAMPs ou DAMPs por PRRs, como, por exemplo, os receptores da família TLR (Revisto por Guo et al., 2015). O reconhecimento do primeiro sinal estimula a ativação da via de sinalização de NFκB, que por sua vez promove a expressão de pró-IL-1β e pró-IL-18 (Revisto por Guo et al., 2015). Além disso, o primeiro sinal também é importante para primar a célula e assim estimular a expressão dos próprios componentes do inflamassoma que normalmente são encontrados em níveis basais nas células, como NLRP3, que tem a expressão estimulada após ativação de NF-κB, por exemplo, via TLR-4 após estímulo com LPS (Bauernfeind et al., 2009). De fato, esse estudo demonstrou que uma estabilização da expressão de NLRP3 dispensa a etapa de primar a célula (Bauernfeind et al., 2009). No contexto do inflamassoma de AIM2, a sinalização de IFN-I é importante para a ativação do inflamassoma em infecções por Francisella tularensis, visto que o knock out do receptor de IFN-I (IFNAR) em camundongos impede a clivagem de caspase-1 (Fernandes-Alnemri et al., 2010). O processo de clivagem de pró-IL-1β e pró-IL-18 é mediado por caspase-1, que por sua vez demanda um segundo sinal para sua própria ativação, visto que a mesma é produzida como um zimogênio (Elliott et al., 2009). O segundo sinal é reconhecido pelas diferentes proteínas sensoras que promovem a oligomerização e montagem do inflamassoma com auxilio ou não da proteína adaptadora ASC (dependendo do sinal e da proteína sensora que é ativada). Isto leva a autoativação de caspase-1 por clivagem, liberando duas porções, uma com 20 KDa (p20) e outra porção com 10 KDa (p10) (Revisto por Guo et al., 2015). A caspase-1 ativa catalisa então a clivagem de pró-IL-1β e/ou IL-18, permitindo a secreção das mesmas em sua forma madura (Cerretti et al., 1992; Martinon et al., 2002; Thornberry et al., 1992).

Figura 1.4.2 - Ativação do inflamassoma canônico. A ativação do inflamassoma, representado pelo inflamassoma de NLRP3, envolve dois sinais, um primeiro sinal que é reconhecido por PRRs como TLR e NOD1/2 que leva à ativação de NF-κB, que por sua vez promove a expressão dos componentes do inflamassoma, como o próprio NLRP3, e da citocina pró-inflamatória pró-IL-1β. O segundo sinal é reconhecido e ativa a proteína sensora (aqui representado como NLRP3, que é capaz de ser ativada por uma série de PAMPs e DAMPs). A ativação de NLRP3 promove a montagem do inflamassoma, que permite a clivagem e ativação de caspase-1, que ativa IL-1β por clivagem. Adaptado de (Franchi et al., 2012).

Em adição à produção de IL-1 β e/ou IL-18, outro resultado da ativação do inflamassoma tem chamado a atenção e tem sido mais estudado, a piroptose. A piroptose é caracterizada por uma morte celular inflamatória, com desfragmentação da cromatina, perda da integridade da membrana plasmática e liberação de IL-1 β (Brennan and Cookson, 2000). Originalmente foi descrita como um processo de citotoxicidade mediada pela infecção pela bactéria intracelular S. Typhimurium, mas desde o princípio foi diferenciada da apoptose por não ser mediada por caspase-3, e da necrose por ser dependente de caspase-1 (Brennan and Cookson, 2000). Outros grupos reforçaram as observações que a infecção por S. Typhimurium em macrófagos promove uma morte celular dependente de caspase-1 (Monack et al., 2001). Brennan e Cookson cunharam o termo piroptose, com a etimologia inspirada do grego *pyro* (fogo, febre) e *ptosis* (queda) (Cookson and Brennan, 2001). Posteriormente foi observado que o processo de piroptose também estava associado a infecções com outros patógenos intracelulares (Revisto por Bergsbaken et al., 2009), assim como em processos não infecciosos, como infarto do miocárdio (Frantz et al., 2003). Em 2006,

Fink e Cookson descreveram que a ruptura osmótica da célula durante a piroptose está relacionada com a formação de poros na membrana, que por sua vez, são dependentes da ativação de caspase-1 e reorganização do citoesqueleto (Fink and Cookson, 2006). Mais tarde foi demonstrado que o processo de piroptose envolve a proteína gasdermina D (GSDMD), que é ativada por clivagem mediada pela caspase-1, assim como outras caspases (caspase -8, -4 e- 5) (Shi et al., 2015). A clivagem de GSDMD permite que a porção N-terminal interaja com a bicamada lipídica, formando poros na membrana (Ding et al., 2016), sendo assim, o fenômeno central responsável pelo processo de morte celular. A própria liberação de IL-1β e IL-18 é dependente de GSDMD, sendo sugerido que a formação do poro media a secreção dessas citocinas (Kayagaki et al., 2015; Shi et al., 2015). Além de orguestrar o fenômeno de piroptose, têm-se descoberto outras funções da GSDMD. Anteriormente havia sido descrito que enquanto macrófagos passavam pelo processo de piroptose após ativação do inflamassoma, o mesmo não era observado em neutrófilos, que apenas liberavam IL-1β (Chen et al., 2014; Karmakar et al., 2015). Contudo, em 2018, dois grupos distintos descreveram que a GSDMD, está relacionada com a ativação do processo de Netose em neutrófilos, estando relacionada com a ativação de outras proteases envolvidas no processo, bem como mediando o processo de desorganização da cromatina (Chen et al., 2018; Sollberger et al., 2018).

Outras caspases inflamatórias também foram associadas à produção de IL-1β, como a caspase 11 em camundongos e suas análogas nos humanos, caspases 4 e 5 , sendo reconhecidas como componentes do inflamassoma não canônico (Revisto por Yang et al., 2015). A produção de IL-1β não canônica foi observada primeiramente em camundongos em resposta ao estímulo com LPS, que promove a ativação de caspase-11 e consequente clivagem de IL-1 β , independente de caspase-1 e ASC (Aachoui et al., 2013; Kayagaki et al., 2011; Wang et al., 1998), a contraparte em humanos seria realizada pela caspase 4/5 (Knodler et al., 2014; Shi et al., 2014). Mais tarde foi demonstrado que a ativação de caspase 11 só ocorre por bactérias gram negativas que escapam do fagossoma e vão para o citosol (Aachoui et al., 2013), e que essa ativação se dá pelo reconhecimento de LPS intracelular (Hagar et al., 2013; Kayagaki et al., 2013). De fato, estudos demonstraram que a caspase 11, assim como a caspase 4 são capazes de se ligar e reconhecer diretamente o LPS via domínio CARD (Shi et al., 2014). Contudo, algumas diferenças são observadas no inflamassoma de caspase 11 em camundongos e o de caspase 4/5 em humanos. A caspase 11 é primariamente expressa em macrófagos e tem a expressão induzida via

estimulação de TLR-4 (Hagar et al., 2013), mas também por outros estímulos como IFN-y (Aachoui et al., 2013; Lin et al., 2000) e ativação da via de IFN-I (Gurung et al., 2012; Rathinam et al., 2012). Já a caspase 4 é amplamente expressa em diferentes tipos celulares (Lin et al., 2000; Shi et al., 2014) e IRF-1 e IRF-2, estimulados por IFNγ, são cruciais para estimular a expressão de caspase-4 em macrófagos humanos (Benaoudia et al., 2019). Dados da literatura também reportaram que a ativação do inflamassoma não canônico de caspase 11 (Rühl and Broz, 2015) e de caspase 4/5 (Baker et al., 2015; Schmid-Burgk et al., 2015) podem mediar a ativação do inflamassoma de NLRP3 através da indução do aumento de efluxo de K⁺ (Rühl and Broz, 2015; Schmid-Burgk et al., 2015). O estudo do inflamassoma não canônico tem se intensificado pelo seu papel potencial durante o choque séptico (Revisto por Yang et al., 2015), mas, embora seu mecanismo de ativação mediado por LPS já seja extensivamente descrito, estudos recentes têm sugerido que outros componentes podem mediar a ativação caspase 11/4/5. Por exemplo, foi observado que infecções por diferentes espécies do parasita intracelular do gênero Leishmania promovem a ativação de caspase 11 em camundongos, levando a ativação do inflamassoma de NLRP3 e produção de IL-1ß através do seu glicolipídio de membrana, o lipofosfoglicano (LPG) (de Carvalho et al., 2019). A ativação do inflamassoma não canônico de caspase-11 também foi reportada em macrófagos infectados por Candida albicans, estimulado por aspartil proteinases do fungo (Gabrielli et al., 2015), reforçando que outros potenciais estímulos além do LPS podem ativar o inflamassoma não canônico.

A caspase-8 não é originalmente considerada uma caspase inflamatória, mas alguns estudos demonstraram que ela também pode participar da clivagem e ativação de IL-1β (Man et al., 2013; Mascarenhas et al., 2017), bem como da clivagem de GSDMD, promovendo a piroptose (Orning et al., 2018; Sarhan et al., 2018). Inicialmente foi observado que a caspase-8 promove a liberação de IL-1β independente de caspase-1 após estímulo do receptor dectina em infecções fúngicas. Foi visto que o engajamento do receptor de dectina no reconhecimento de patógenos extracelulares promove a formação de um arcabouço que envolve as proteínas CARD-9, BCL-10 e Malt1 que recrutam ASC e permite a interação com a caspase-8 (Gringhuis et al., 2012). O mesmo estudo também demonstrou que micobactérias são capazes de ativar a mesma via através do reconhecimento pelo receptor de dectina-1 e diferentemente do paradigma do inflamassoma canônico, a ativação de caspase-8 via dectina-1 independe do estímulo se encontrar no ambiente intracelular

(Gringhuis et al., 2012). Posteriormente foi observado que caspase 8 é capaz de interagir com ASC e participar da formação do inflamassoma de NLRC4 em infecções por *Salmonella* e *Legionella* (Man et al., 2013; Mascarenhas et al., 2017). Essa configuração alternativa parece ser um mecanismo compensatório em casos de inibição de caspase-1 e GSDMD (Mascarenhas et al., 2017). Também foi demonstrado que caspase-8 é recrutada para o inflamassoma de NLRP3 na ausência de caspase1/11 em infecções pelo fungo *Cryptococcus neoformans* (Chen et al., 2015). Essa redundância dos mecanismos de indução de piroptose e produção de IL-1β que envolve diferentes caspases e receptores reforça a importância do inflamassoma na contenção dos processos infecciosos, visto que quando o inflamassoma canônico está inativado, outras configurações de inflamassoma são capazes de ao menos parcialmente manter a resposta pró-inflamatória.

1.4.2 – O papel fisiológico do inflamassoma e das citocinas IL-1β e IL-18

Os principais produtos da ativação do inflamassoma são as citocinas da família IL-1, que incluem as mais conhecidas, IL-1β e IL-18, mas também outras como IL-33 e IL-36, bem como componentes anti-inflamatórios como IL-1Ra e IL-37 (Revisto por Kaneko et al., 2019). IL-1β, a principal citocina associada ao inflamassoma, apresenta diversas funções dentro do contexto inflamatório e é uma importante mediadora da imunidade inata (Revisto por Dinarello, 2009). A sinalização de IL-1β ocorre primariamente pelo receptor de IL-1 (IL-1R), que por sua vez leva à ativação do fator de transcrição pró-inflamatório NF-κB via Myd88 (Adachi et al., 1998; O'Neill, 2000). Já foi reportado que IL-1β promove o aumento da expressão de COX-2, que resulta na produção de PGE₂ (Conti et al., 1992; Molina-Holgado et al., 2000), um importante mediador pirogênico (Murakami et al., 1990), além de estimular a expressão de iNOS (Corbett et al., 1994; Teng et al., 2002), com isso contribuindo com a vasodilatação observada no processo inflamatório, mediada por NO (Herbert et al., 1995). Mais ainda, IL-1β, promove a expressão de moléculas de adesão (Hong et al., 1993; Wang et al., 1995), contribuindo para um aumento do infiltrado inflamatório nos tecidos. A influência de IL-1β na ativação de macrófagos também foi demonstrada, direcionando a diferenciação dos mesmos para um perfil M1 e com capacidade de apresentação de antígenos aprimorada (Schenk et al., 2014). Recentemente, tem sido demonstrado que IL-1β tem um papel de promover mudanças epigenéticas em monócitos, sugerindo uma participação no treinamento da resposta imune inata (Moorlag et al., 2018). No contexto da imunidade adaptativa, IL-1ß participa do aumento da reposta

específica a antígenos tanto de células T CD4, como T CD8, promovendo uma maior expansão e diferenciação dessas células (Ben-Sasson et al., 2009), além de ser importante para reverter a inibição de células T CD4 *naïve* mediadas por Tregs (Schenten et al., 2014). Mais ainda, também foi demonstrado que IL-1β favorece a proliferação e diferenciação de células B (Lipsky et al., 1983).

IL18 em sua forma madura apresenta 18 KDa (Okamura et al., 1995) e é reconhecida por um receptor próprio, o IL18R (Tsutsumi et al., 2014), mas com uma cascata de sinalização similar ao receptor IL1R (Adachi et al., 1998). Contudo, diferentemente de IL-1^β, a administração de IL-18 não apresentou efeitos pirogênicos em animais (Gatti et al., 2002; Kubota et al., 2001) por não promover o aumento da expressão de PGE₂ (Lee et al., 2004). Além disso, IL-18 foi primariamente descrita como um potente indutor da produção de IFN-y em células T (Okamura et al., 1995), mais tarde sendo descrito também um efeito sinérgico dessa indução em conjunto com IL-12 em células T (Ahn et al., 1997). IL-18 ainda induz a expressão de moléculas de adesão (Vidal-Vanaclocha et al., 2000), como IL-1ß. Adicionalmente, foi demonstrado que a ação em conjunto com IL-12 também é importante para a indução da produção de IFN-y por células NK, além de promover sua proliferação e ativação (El-Darawish et al., 2018; Tomura et al., 1998) e o aumento da expressão do ligante de Fas (Fas-L), favorecendo a resposta citotóxica de células NK (Tsutsui et al., 1996). Também já foi reportada a importância de IL-18 para a ativação de linfócitos T citotóxicos (Nakanishi, 2018). Outra característica singular da IL-18 é a existência de uma proteína solúvel ligante de IL-18, a IL-18BP (Novick et al., 1999) que atua sequestrando IL-18 e inibindo sua sinalização, tendo possivelmente um papel importante em evitar uma resposta Th1 exacerbada (Recisto por Dinarello et al., 2013). Em alguns casos de doenças inflamatórias crônicas, como o SLE, foi observada uma alteração do balanço de IL-18 e IL-18BP, tendo sido detectado um aumento desproporcional dos níveis de IL-18 circulante em relação à IL-18BP (Novick et al., 2010).

O inflamassoma é um importante componente da resposta imune a patógenos intracelulares, tendo sido associado, por exemplo, no combate a infecções por *L. pneumophila* (Zamboni et al., 2006) e *S.* Typhimurium (Raupach et al., 2006). Assim, muitos patógenos apresentam mecanismos de evasão dessa resposta para promover o estabelecimento da infecção na célula hospedeira (Revisto por Zamboni and Cunha, 2013).

Alterações genéticas e polimorfismos com ganho de função em diferentes componentes do inflamassoma têm sido associados a uma série de doenças autoinflamatórias hereditárias, como por exemplo, a febre mediterrânea familiar. Nesta doença se observam alterações no gene da pirina, levando a uma produção exacerbada de IL-1 β por ativação contínua do inflamassoma de pirina e está relacionada a quadros recorrentes de febre, alterações nas articulações e irritações cutâneas (Revisto por Hoffman and Brydges, 2011). Outro exemplo está associado a mutações no gene *nIrp3* que estão relacionadas com outra doença autoinflamatória, a síndrome periódica associada à criopirina (CAPS), que se caracteriza por uma inflamação sistêmica mediada por IL-1 β (Revisto por Hoffman and Brydges, 2011).

A regulação altamente controlada da ativação do inflamassoma é crucial, uma vez que o mesmo também tem um potencial de reconhecer sinais de perigo endógenos, os DAMPs, além disso, tanto IL-1 β e IL-18 podem ser importantes causadoras de dano tecidual. Já foi descrito o envolvimento dessas citocinas na imunopatogênese de uma série de doenças com processos inflamatórios crônicos como, por exemplo, Alzheimer, em que a produção de IL-1 β via ativação de NLRP3 mediada pelas placas β -amiloides em células gliais está intimamente associada ao dano tecidual e consequente desenvolvimento da doença (Halle et al., 2008; Heneka et al., 2013). A participação de IL-18 em doenças crônicas inflamatórias do trato gastrointestinal, como doença de Crohn, também já foi reportada, onde níveis elevados de IL-18 foram detectados na mucosa intestinal dos pacientes (Pages et al., 2000). Também foi relatado que o tratamento com bloqueador da sinalização de IL-18 ameniza os sintomas de colite em camundongos C57BL/6 (Siegmund et al., 2001).

Adicionalmente, essas citocinas também contribuem com diversas doenças inflamatórias sistêmicas. No contexto de sepse induzida pelo choque endotóxico, a deleção do gene de caspase-1 promove a sobrevivência dos camundongos e a utilização de anticorpo neutralizante para IL-18 protege camundongos do choque séptico induzido por infecções com *E. coli* e *Salmonella* (Netea et al., 2000). A relação entre o inflamassoma e a imunopatogenia de doenças inflamatórias sistêmicas também se estende ao contexto de doenças autoimunes, como, por exemplo, o SLE (Kahlenberg et al., 2013; Mende et al., 2018; Zhang et al., 2016a), em que níveis mais elevados de IL-18 foram reportados no soro dos pacientes em comparação a indivíduos sadios (Mende et al., 2018). Também foi relatado que anticorpos anti-dsDNA (Zhang et al., 2016a) e NETs (Kahlenberg et al., 2013) ativam o inflamassoma de NLRP3 em macrófagos derivados de pacientes com SLE. Mais ainda, foi

observado um aumento de expressão de caspase-1 em PBMCs de pacientes com esclerose múltipla em relação a indivíduos sadios e também que os níveis de mRNA de caspase-1 em pacientes estavam mais elevados na semana que precedia o episódio agudo da doença, sugerindo a importância do inflamassoma para a imunopatogênese dessa doença (Furlan et al., 1999). No caso de outra doença autoimune com observações sistêmicas, a artrite reumatoide, foram reportados níveis elevados de expressão de IL-18R em macrófagos e linfócitos isolados do fluído sinovial dos pacientes (Gracie et al., 1999), e o uso do antagonista do receptor de IL-1, o IL-1ra, reduz consideravelmente os sintomas associados à artrite reumatoide sistêmica juvenil (Pascual et al., 2005). De fato, uma série de estudos reportam efeitos benéficos da utilização de inibidores de IL-1β no tratamento de uma série de doenças inflamatórias, como artrite reumatoide, diabete do tipo 2, entre outras (Revisto por Hernandez-Santana et al., 2019). Dessa forma, o inflamassoma e consequentemente as citocinas IL-1β e IL-18 são importantes componentes envolvidos no desenvolvimento de uma série de patologias, infecciosas e não infecciosas, sendo alvos promissores de estudo no contexto de doenças inflamatórias.

1.4.3 – O inflamassoma e as Micobactérias

A contribuição do inflamassoma durante as infecções por micobactérias ainda é controversa; alguns estudos apontam que ela é essencial para o controle da infecção, enquanto outros apontam que o inflamassoma seria dispensável. Porém, é inegável que existe uma vasta literatura que associa o inflamassoma às infecções com diferentes micobactérias, como *M. tuberculosis*, *M. leprae*, *M. bovis* BCG, *M. kansasii* entre outras, embora ainda muito precise ser elucidado.

Mayer-Barber e colaboradores demonstraram em 2010 que IL-1 β é essencial no combate ao *M. tuberculosis,* uma vez que a deleção de IL-1 β ou do seu receptor em camundongos aumenta a susceptibilidade à infecção pelo *M. tuberculosis* e a carga de bacilos nos pulmões, contudo, por um mecanismo independente de caspase-1 ou ASC, visto que a produção de IL-1 β ainda era observada nos animais *knock outs*, sugerindo a potencial participação do inflamassoma não canônico no processo (Mayer-Barber et al., 2010).

O envolvimento do inflamassoma em infecções por outras micobactérias também já foi descrito. Alguns estudos apontam que cepas virulentas de *M. bovis*, são capazes de ativar o inflamassoma e promover a produção de IL-1β (Yang et al., 2013b; Zhou et al., 2015, 2016). Yang e colaboradores demonstraram que a produção de IL-

1β induzida pela infecção pelo *M. bovis* em macrófagos murinos ocorre via AIM2, em um processo dependente do efluxo de potássio para a ativação de caspase-1 (Yang et al., 2013b). Embora usualmente a ativação do inflamassoma de AIM2 seja independente do balanço iônico de K⁺ na célula (Muñoz-Planillo et al., 2013), um estudo posterior confirmou a dependência do efluxo de K⁺ para a ativação do inflamassoma de AIM2 durante a infecção de macrófagos THP-1 com *M. bovis*, uma vez que altas concentrações de K⁺ inibiam a ativação do inflamassoma (Zhou et al., 2015). O mesmo grupo confirmou que a infecção por *M. bovis* em macrófagos THP-1 induz a expressão de mRNA de AIM2, assim como de NLRP3 e de NLRP7 e que NLRP7 é importante para o processo de produção de IL-1β e piroptose (Zhou et al., 2016).

Contudo, os relatos da relação do *M. tuberculosis* com a ativação do inflamassoma ainda são controversos. Dados da literatura reportaram que a infecção pelo M. tuberculosis promove a produção de IL-1β via NLRP3 e caspase-1 em macrófagos primários derivados de medula de camundongos e depende da região de virulência RD1 que expressa o sistema de secreção ESX-1 (Koo et al., 2008; Wassermann et al., 2015). Mais tarde, esses dados foram confirmados em outros estudos que também observaram a ativação do inflamassoma em macrófagos THP-1 infectados por *M. tuberculosis*, também através da ativação do receptor NLRP3 e em um processo dependente do sistema de secreção ESX-1 (Mishra et al., 2010; Wassermann et al., 2015). A proteína efetora ESAT6 (ativamente secretada pelo ESX-1) foi confirmada como um potente ativador do inflamassoma (Basu et al., 2018; Mishra et al., 2010), em um processo que depende da liberação de catepsina B pelo lisossomo (Amaral et al., 2018). Mishra e colaboradores também demonstraram que ESX-1 permite que outros componentes da micobactéria alcancem o citosol e com isso sejam também ativadores da plataforma do inflamassoma (Mishra et al., 2010). ESX-1 também se mostrou essencial para a produção de IL-1^β dependente de NLRP3 e ASC em células dendríticas derivadas de medula infectadas pelo M. tuberculosis, contudo, parcialmente independente de caspase-1 e 11, sugerindo uma contribuição, mesmo que modesta de outras caspases para o processo (Abdalla et al., 2012). Adicionalmente, dados da literatura sugerem que existem alguns polimorfismos nos genes de NLRP3 que levam ao ganho de função e aumento de ativação do inflamassoma e esses polimorfismos específicos conferem um efeito protetor às infecções pelo *M. tuberculosis* (Eklund et al., 2014). Mais recentemente, um estudo reportou que diferentes cepas de *M. turbeculosis* apresentam diferentes capacidades

de indução de IL-1 β em macrófagos infectados. Porém, o uso de inibidor de NLRP3 ou a deleção do gene diminuiu significativamente a sobrevivência da micobactéria, reforçando a importância da IL-1 β e do inflamassoma na imunopatogênese da tuberculose (Subbarao et al., 2020).

AIM2 também parece apresentar um papel importante na resposta à *M. tuberculosis* visto que camundongos *knock out* para AIM2 apresentam uma baixa produção de IL-1 β e são altamente susceptíveis a infecções por *M. tuberculosis*, apresentando uma menor taxa de sobrevivência e uma maior colonização dos pulmões e fígado, sugerindo que o engajamento da resposta do inflamassoma de AIM2 seja importante na imunidade contra *M. tuberculosis* (Saiga et al., 2012). Evidências recentes ainda fortalecem a importância do inflamassoma durante infecções pelo *M. tuberculosis* ao observar que a micobactéria modula a produção de IL-1 β (Sousa et al., 2020) e que IL-1 β é importante para estimular a resposta Th1 e Th17, que apresentam um papel importante no combate á micobactéria (Uchiyama et al., 2017).

Porém outros estudos sugerem a infecção pelo *M. tuberculosis* e *M. bovis* BCG são capazes de inibir a ativação de caspase-1 mesmo na presença de ATP, e que a produção de IL-1β via caspase-1 parece não ser importante para a imunidade contra as micobactérias (Master et al., 2008). Um estudo posterior demonstrou que M. tuberculosis induz a ativação do inflamassoma de NLRP3, mas confirmou que caspase-1 não seria crucial para a imunidade contra M. tuberculosis uma vez que camundongos knock out para NLRP3 e caspase-1 ainda são capazes de controlar a infecção. Este mesmo estudo sugere, porém, que IL-1β seja importante para essa resposta, visto que continua sendo produzida, contudo em níveis menores, nos camundongos knock out para NLRP3 (Dorhoi et al., 2012). Esses dados contradizem em parte um estudo anterior que observou a produção de IL-1β associada a NLRP3, contudo confirmando que a deleção de NLRP3 de fato não impacta na resposta à micobactéria (Walter et al., 2010). Mais ainda, diferente do M. bovis (Yang et al., 2013b) e de outras bactérias não patogênicas, como M. smegmatis, foi demonstrado que *M. tuberculosis* é capaz de inibir a ativação do inflamassoma induzido pelo receptor AIM2 via ESX-1 (Shah et al., 2013).

Os inflamassomas não canônicos também podem apresentar um papel importante nas micobacterioses uma vez que uma série de estudos já reportou que caspase-1 não seria essencial para o processamento de IL-1 β em infecções por *M. tuberculosis* (Abdalla et al., 2012; Dorhoi et al., 2012; Kleinnijenhuis et al., 2009;

McElvania Tekippe et al., 2010). Um estudo reportou que a micobactéria atípica *M. abscessus* é capaz de induzir a produção de IL-1 β em macrófagos humanos e promover a ativação de NLRP3 por um processo não canônico que envolve a participação do receptor de dectina-1 e da via de sinalização da tirosina kinase SYK (Lee et al., 2012). O envolvimento de SYK na promoção da ativação de NLRP3 e produção de IL-1 β já havia sido descrito previamente em macrófagos THP-1 infectados com *M. tuberculosis* (Wong and Jacobs, 2011). Posteriormente foi confirmada a importância desse eixo dectina-1-Syk para produção de IL-1 β visto que a infecção por *M. bovis* BCG e *M. leprae* em células dendríticas estimula a produção da citocina via dectina-1. Contudo, diferentemente do estudo anterior, neste caso foi visto ser independente de caspase-1, mas envolvendo a ativação de caspase-8 (Gringhuis et al., 2012).

Até o momento, existem ainda poucos relatos do envolvimento do inflamassoma em infecções pelo *M. leprae* e com isso, pouco é conhecido acerca da capacidade do bacilo de modular essa via como observado para outras micobactérias. Um dos estudos iniciais observou que a infecção pelo *M. leprae* ativa caspase-1 e promove a liberação de IL-1β em macrófagos de duas cepas diferentes de camundongos, a cepa A/J e C57BL/6 (Kang et al., 2010). Contudo, a produção foi menor pelos macrófagos do camundongo A/J, que apresenta em seu *background* genético alterações na composição da sequência de aminoácidos de Naip5 em comparação ao C57BL/6 (Wright et al., 2003), sugerindo que o inflamassoma de NLRC4 possua algum papel na resposta ao *M. leprae* em camundongos. Adicionalmente, outro estudo observou que a infecção pelo *M. leprae* estimula a ativação de caspase-1 em monócitos humanos já na primeira hora, mas o pico de ativação significativa de caspase-1 na segunda hora após estímulo, com o pico de atividade na quinta hora (Sinsimer et al., 2010).

Dados da literatura reportaram que certos polimorfismos no gene *nlrp1*, mas não *nlrp3*, podem estar relacionados com a susceptibilidade à hanseníase na forma tuberculóide (Pontillo et al., 2013). Os SNPs encontrados estão relacionados com o aumento de processamento de NLRP1 e aumento de secreção de IL-1β (Finger et al., 2012). Com isso, embora sejam marcadores de susceptibilidade, possivelmente proporcionariam uma produção aumentada de IL-1β em relação aos pacientes das formas lepromatosas, o que pode auxiliar o desenvolvimento da resposta imune celular observada nas formas paucibacilares, potencialmente estando envolvido na

determinação do polo da doença (Pontillo et al., 2013). Um outro estudo reportou que a infecção pelo M. leprae estimula a produção de IL-1ß em células dendríticas altamente dependente do receptor de dectina-1, que promove a ativação de caspase-8 via engajamento de SYK (Gringhuis et al., 2012). A ativação desta via possivelmente envolve o reconhecimento de PGL-1, visto que *M. bovis* BCG recombinante expressando PGL-1 induz uma elevada produção de IL-1β dependente de SYK em macrófagos (Doz-Deblauwe et al., 2019). Mais recentemente foi observado por imunohistoquímica que há uma expressão elevada de NLRP3 e caspase 4/5 nas lesões de pele dos pacientes lepromatosos quando comparada às lesões tuberculóides, embora não tenha sido reportado uma expressão significativa de IL-1β nessas lesões (Mendes et al., 2020). Em contrapartida, um estudo prévio havia reportado uma elevada expressão de IL-1β em lesões de pacientes LL e TT quando comparado à forma clínica indeterminada, porém sem diferença significativa entre LL e TT, essa tendência também se repete para a expressão de NLRP3, que está elevada tanto no polo LL como no polo TT (Silva et al., 2018). Além disso, o estudo avaliou a expressão de NLRP1 nas lesões de pele, tendo observado uma maio expressão nas lesões (Silva et al., 2018). Entretanto, de modo geral, muitas lacunas ainda precisam ser preenchidas acerca do envolvimento do inflamassoma na hanseníase.

1.4.4 – A integração entre o inflamassoma e vias de reconhecimento de DNA

O reconhecimento de ácidos nucleicos é um mecanismo importante da resposta imune inata, que de modo abrangente está relacionado com a ativação da via de IFN-I e por isso estando muito relacionado ao reconhecimento de material genético viral (Revisto por Roers et al., 2016). Contudo, essa via também representa em muitos casos a peça central para a promoção da resposta inflamatória de muitas patogenias não infecciosas, como lúpus, por exemplo (Celhar et al., 2012).

O repertório de receptores de ácidos nucleicos é vasto e os mesmos se diferenciam não só pela natureza da molécula que reconhecem, seja DNA simples ou dupla fita ou RNA simples ou dupla fita, mas também por suas localizações em diferentes compartimentos intracelulares e as vias que são disparadas. Dentro desse repertório estão incluídos os receptores TLRs 3, 7, 8 e 9, que estão todos localizados no compartimento endossomal (Revisto por Miyake et al., 2018). Enquanto TLR-9 está associado ao reconhecimento de DNA simples fita, normalmente com uma alta afinidade por regiões com domínios CpGs (Ohto et al., 2015), tanto TLR-3, -7 e -8

estão associados ao reconhecimento de RNAs (Revisto por Miyake et al., 2018), sendo TLR-3 envolvido no reconhecimento de RNA dupla fita (Alexopoulou et al., 2001) e TLR-7/8 envolvidos no reconhecimento de RNA simples fita e pequenos fragmento de RNA, produtos de sua degradação (Heil et al., 2013; Tanji et al., 2015; Zhang et al., 2016b). No citosol, outras famílias de PRRs estão envolvidas com o reconhecimento dos ácidos nucleicos, diversificando ainda mais o repertório. Além de AIM2, que reconhece DNA dupla fita, cGAS também é importante no reconhecimento desses PAMPs, levando à ativação da via de sinalização de STING (Cai et al., 2014), enquanto RIG-I participa do reconhecimento de RNA dupla fita (Yoneyama et al., 2004).

Além da evidente relação de AIM2 com o inflamassoma, cumprindo a função de uma conexão direta entre o reconhecimento de DNA com a ativação dessa plataforma molecular, existem inúmeras evidências na literatura que apontam a participação dos outros receptores de ácidos nucleicos na ativação do inflamassoma tanto por ligantes exógenos, quanto endógenos. Recentemente foi demonstrado que o mecanismo que leva ao choque tóxico e dano hepático em infecções por Erlichia chaffeensise envolve a ativação do inflamassoma via TLR-9 (Kader et al., 2017). Também no contexto de malária, imunocomplexos circulantes de pacientes são reconhecidos por TLR-9 e TLR-7 após sua internalização, levando à ativação do inflamassoma de NLRP3 e produção de IL-1β em monócitos (Hirako et al., 2015). Além dos receptores TLR, também já foi reportado que a via de sinalização de STING é importante para a promover a produção de IL-1β em infecções por Brucella abortus através da promoção da via de sinalização de IFN-I que por sua vez promove a ativação do inflamassoma de AIM2 (Costa Franco et al., 2018). Mais ainda, até mesmo no contexto de infecções virais já foi demonstrado, por exemplo, que vírus opsonizados com anticorpos promovem a ativação do inflamassoma de NLRP3 através do engajamento de cGAS (Labzin et al., 2019). Já no caso do vírus da influenza A, o RNA viral, ao ser reconhecido pelo receptor RIG-I, promove a ativação do inflamassoma de NLRP3 de forma direta, envolvendo a participação de TLR-3, levando à produção de IL-1β por um mecanismo dependente de IFN-β (Pothlichet et al., 2013).

De fato, a ativação do inflamassoma estimulada pela via de IFN-I já foi reportada extensamente na literatura. No lúpus, por exemplo, já foi demonstrado que a ativação do inflamassoma é mediada pela sinalização de IFN-I com envolvimento do fator IRF-I (Liu et al., 2017). Entretanto essa interação não é unilateral, já tendo

sido reportado que a ativação do inflamassoma pode modular a produção de IFN-I, visto que a ativação de caspase-I promove a clivagem de cGAS e com isso interfere na produção de IFN-I em infecções por vírus que contêm material genético de DNA (Wang et al., 2017).

O reconhecimento de ligantes endógenos, principalmente pelos receptores TLR-9/7 também pode promover a ativação do inflamassoma. Dados da literatura demonstraram que durante uma inflamação estéril o dano no tecido hepático é causado por ativação do inflamassoma de NLRP3 e ativação de caspase-1 através do reconhecimento de histonas por TLR-9 (Huang et al., 2013). Além disso, a ativação do inflamassoma estimulado por NETs também já foi reportado em diferentes contextos, como no lúpus (Kahlenberg et al., 2013), aterosclerose (Warnatsch et al., 2015) e lesões diabéticas (Liu et al., 2019). Recentemente foi demonstrado que a ativação do inflamassoma pode promover a NETose em neutrófilos, principalmente por ação da GSDMD (Chen et al., 2018). Dessa forma, a extensa literatura no assunto reforça a importância dessa comunicação entre o reconhecimento de ácidos nucleicos e a ativação do inflamassoma para os processos inflamatórios.

1.4.5 – O inflamassoma e o ENH

No contexto de reação reversa (reação do tipo 1), foi demonstrada uma maior expressão de genes da via do inflamassoma, como pró-caspase-1 e NLRP nas lesões de pele e níveis mais elevados de IL-1ß no soro dos pacientes que desenvolveram o episódio reacional posteriormente (Barbosa et al., 2018). Contudo, a participação do inflamassoma durante a inflamação observada no ENH ainda não foi descrita, embora alguns dados da literatura sugiram que o mesmo possa ser importante para a imunopatologia da reação, como por exemplo, a observação de altos níveis de IL-1ß no soro dos pacientes reacionais (Madan et al., 2011; Moubasher et al., 1998a; Sallam et al., 2014; Sarno et al., 1991). Um estudo recente observou forte correlação de polimorfismos em IL-1β com a ocorrência de reações (Pragasam et al., 2020). Mais ainda, um estudo reportou que IL-1β poderia ter um valor prognóstico para o desenvolvimento de reações nos pacientes multibacilares, visto que aqueles que apresentaram altos níveis de IL-1β no soro desenvolveram reação posteriormente (Parida et al., 1992). Somando-se a este achado, um outro trabalho demonstrou que pacientes que apresentavam maiores níveis de IL-1ß no soro apresentavam maior risco de desenvolver reação após o início do tratamento com a PQT (Moubasher et al., 1998b).

Um estudo anterior do nosso grupo demonstrou que PBMCs de pacientes ENH expressam níveis elevados de TLR-9, quando comparados a pacientes não reacionais. Os autores também demonstraram que o estímulo com o ligante de TLR-9, CpG-Hlp estimulava uma maior produção de IL-1β em PBMCs de pacientes reacionais e que o uso de um antagonista de TLR-9 diminuía a secreção de IL-1β estimulada pelo sonicado de *M. leprae* (Dias et al., 2016). Além disso, o estudo ainda demonstrou que pacientes reacionais apresentavam níveis séricos elevados de ligantes de TLR-9, como a proteína similar à histona do *M. leprae* – Hlp - e DNA humano (Dias et al., 2016). Considerando a ampla relação entre o reconhecimento de ácidos nucleicos e o inflamassoma, pode-se sugerir que a ativação do inflamassoma provenientes da micobactéria e do hospedeiro podem ser elementos importantes para ativação do primeiro sinal do inflamassoma.

De fato, Lee e colaboradores associaram a participação da citocina IL-1β no recrutamento de neutrófilos, em que demonstraram que o tratamento com IL-1β leva a um aumento da adesão de neutrófilos às células endoteliais *in vitro*, o que pode contribuir para a migração dos mesmos para o tecido, enquanto o tratamento com talidomida seria capaz de diminuir a produção de IL-1β, e consequentemente a interação dessas células com células endoteliais (Lee et al., 2010). Além disso, também já foi reportado que a talidomida diminui os níveis de IL-1β em células de sangue total tratadas (Shannon et al., 2008) e inibe a ativação de caspase-1 (Keller et al., 2009), podendo sugerir que a eficácia desse medicamento no controle do episódio reacional possa estar relacionado com a modulação do inflamassoma. Dessa forma, se torna uma questão relevante compreender o papel do inflamassoma durante o ENH.

1.5 – justificativa

O ENH permanece até os dias atuais como uma das complicações da hanseníase, mesmo anos depois do estabelecimento do tratamento poliquimioterápico. Os episódios reacionais causam extremo desconforto para os pacientes e, não excepcionalmente, são recorrentes, ocorrendo de forma intermitente por muitos anos, exigindo um acompanhamento clínico frequente.

Até os dias atuais os processos que desencadeiam o episódio reacional ainda não completamente compreendidos, assim como ainda não se sabe as razões que levam alguns pacientes multibacilares desenvolverem o quadro de ENH, enquanto outros nunca manifestam. Mais ainda, diferente da hanseníase em si, não há um consenso sobre o esquema terapêutico para o ENH e as estratégias atuais que envolvem imunossupressão, por exemplo, pelo o uso de corticosteroides ou talidomida, no caso do Brasil, tem limitações significativas. Dessa forma, torna-se crucial compreender melhor a imunopatogenia do ENH a fim de desenvolver novas estratégias de tratamento e promover progresso na qualidade de vida do paciente.

Uma série de estudos anteriores reportaram o aumento da citocina próinflamatória IL-1β no soro dos pacientes reacionais (Madan et al., 2011; Moubasher et al., 1998a; Sallam et al., 2014; Sarno et al., 1991) e nosso grupo demonstrou que PBMCs de pacientes ENH produzem mais IL-1β após o estímulo de TLR-9 (Dias et al., 2016). Contudo o papel do inflamassoma durante o ENH ainda não foi explorado, tornando-se importante o estudo dessa via para compreender sua contribuição para a imunopatogênese do ENH.

Nossa hipótese é que o inflamassoma pode contribuir no desenvolvimento do episódio reacional, e ácidos nucleicos, histonas e ligantes de TLR-9 provenientes da micobactéria e endógenos podem ser elementos importantes para ativação do primeiro sinal do inflamassoma.

Assim, um melhor entendimento das vias que contribuem para a ocorrência do ENH permite identificar potenciais alvos terapêuticos para aprimorar o tratamento e permitir alternativas. Além disso, também se torna de extrema importância a capacidade de antecipar dentre os pacientes multibacilares, aqueles com maiores probabilidades de apresentar quadros de ENH e assim permitir um tratamento em estágios iniciais ou mesmo prevenir a ocorrência dos mesmos e assim evitar suas complicações associadas, o que também pode ser favorecido pela identificação de possíveis marcadores, quanto melhor se compreende os processos envolvidos na sua patogenia.

2. Objetivos

2.1 – Objetivo geral

Investigar as vias inflamatórias envolvidas na imunopatogênese do ENH, com destaque para o inflamassoma.

2.2 – Objetivos específicos

- Determinar o perfil de expressão gênica global pela técnica de RNA-seq em amostras de sangue total de pacientes hansenianos multibacilares não reacionais (LL) e reacionais (ENH);
- Identificar possíveis vias moduladas pelo tratamento com talidomida através da análise da expressão gênica pela técnica de RNA-seq em amostras de sangue total em pacientes reacionais no momento do diagnóstico do ENH e no dia 7 após o início do tratamento com talidomida;
- Avaliar a expressão e ativação de marcadores do inflamassoma em lesões de pele e células sanguíneas de pacientes ENH;
- 4. Detectar DNA micobacteriano em lesões de pele de pacientes ENH;
- Analisar a capacidade do soro de pacientes ENH em induzir a produção de IL-1β e TNF em células mononucleares sanguíneas de indivíduos sadios;
- Investigar a habilidade de componentes micobacterianos em ativar o inflamassoma e resposta inflamatória *in vitro* em monócitos da linhagem THP-1.

3. Materiais e Métodos

3.1 - Amostras clínicas: Amostras de lesões de pele obtidas por biópsia e amostras de sangue foram coletadas de pacientes atendidos e diagnosticados no Ambulatório Souza Araújo da Fiocruz (ASA). As amostras utilizadas foram provenientes de pacientes adultos, maiores de idade e que assinaram o termo de consentimento livre e esclarecido antes da coleta das amostras. Foram excluídos todos os pacientes que apresentavam comorbidades, como diabetes, infecções com HIV, HCV e câncer; além de pacientes grávidas ou imunocomprometidos. Foram utilizadas amostras de três grupos principais de pacientes: 1) Pacientes não reacionais das formas clínicas BL e LL, antes do início da PQT; 2) Pacientes ENH no diagnóstico do episódio reacional e

3) Pacientes ENH 7 dias após o início de tratamento com talidomida. As amostras de lesões de pele de cerca de 4mm foram obtidas através do procedimento de biopsia em punch. Os pacientes ENH foram incluídos durante o primeiro episódio reacional ou, em casos de episódios recorrentes, de um novo quadro reacional em que o paciente estivesse ao menos 6 meses sem a utilização de medicações imunossupressoras como talidomida e corticosteróides. Em relação ao estágio da PQT dos pacientes ENH: foram incluídos pacientes que desenvolveram reação antes do inicio do tratamento, durante ou pelo menos 2 anos após a conclusão da PQT. As amostras de sangue destinadas para experimentos de expressão gênica e RNAseq foram coletadas em tubos PAXgene (PreAnalytiX) e as amostras destinadas para coleta de soro foram coletadas em tubos com sílica. Ao todo foram coletados 45 mL de sangue venoso conforme aprovado pelo CEP do IOC. Também foram recrutados voluntários saudáveis para doação de amostras de sangue para isolamento de PBMC para ensaios in vitro. A utilização do material clínico no presente projeto foi aprovada pelo comitê de ética da Fiocruz (CAAE 56113716.5.0000.5248). A lista de pacientes incluídos no estudo e informações se encontram no anexo 1.

3.2 – RNAseq

3.2.1 – Extração de RNA de PAXgene

Para determinar um perfil de expressão gênica, amostras de sangue foram coletadas em tubo PAXgene (PreAnalytiX) e armazenadas a -20°C conforme recomendações do fabricante, até o processamento das amostras.

O RNA foi extraído utilizando o PAXgene Blood RNA kit (PreAnalytix), seguindo as instruções do fabricante, em que as amostras foram incubadas por 2 horas a temperatura ambiente para descongelamento e total lise das células sanguíneas. Após a incubação, as amostras foram centrifugadas a 4.000 x *g* por 10 minutos em um rotor *swinging bucket*. Após centrifugação, o sobrenadante foi descartado, foram adicionados 4 mL de água RNAse *free* e o pellet foi vortexado até completa ressuspensão, seguindo de nova centrifugação à 4.000 x *g* por 10 minutos à temperatura ambiente. Após a centrifugação o sobrenadante foi descartado e o pellet ressuspenso com o auxílio de um vortex em 350 µL do tampão de ressuspensão BR1, fornecido no kit, e as amostras foram transferidas para um microtubo de 1,5 mL RNAse *free*. Foram adicionados 300 µL do tampão de ligação BR2 e 40 µL de Proteinase K, seguido de homogenização das amostras vortexando por 5 segundos e incubação a 55°C por 10 minutos com agitação.Após incubação, as amostras foram transferidas

para colunas PAXgene Shredder (lilás) acopladas a um tubo coletor e foram então centrifugadas por 3 minutos a 13.800 x g. Após centrifugação, o sobrenadante do filtrado foi coletado e transferido para um novo microtubo de 1,5 mL, com cuidado para não perturbar o pellet. Foram adicionados ao sobrenadante coletado 350 µL de etanol 100%, homogenizadas e então transferidas para um coluna PAXgene RNA spin (rosa) acoplada a um tubo coletor e foram centrifugadas a 13.800 x g por 1 minuto. A coluna foi transferida para um novo tubo coletor, descartando o anterior. Em alguns casos, o carregamento da coluna foi feito em duas etapas devido a capacidade máxima da coluna de 700 µL. Após total carregamento da amostra às colunas foram adicionados 80 µL do Mix de DNAse diretamente à membrana da coluna (mix composto de 10 µL de DNAse I, componente RNFD, em 70 µL de tampão de digestão de DNA, componente RDD, para cada amostra, ambos fornecidos com o kit) e as amostras foram incubadas por 15 minutos à temperatura ambiente. Após o tratamento com DNAse foram adicionados 350 µL de tampão de lavagem 1 BR3 às colunas e as amostras foram centrifugadas a 13.800 x g por 1 minuto e a coluna transferida para um novo tubo coletor, descartando o filtrado. As colunas foram então novamente adicionando 500 µL de tampão de lavagem 2 BR4 e centrifugando a 13.800 x g por 1 minuto e repetindo o mesmo processo por uma segunda vez, porém centrifugando por 3 minutos na segunda vez. O tubo coletor foi descartado e a coluna transferida para um novo tubo coletor e centrifugada mais uma vez a 13.800 x g por 1 minuto pra garantir total remoção do tampão. Por fim, as colunas foram transferidas para novos microtubos de 1,5 mL e o RNA foi eluído com 40 µL do tampão de eluição BR5, aplicado diretamente no centro da membrana, seguido de centrifugação a 13.800 x g por 1 minuto. Para garantir o máximo de rendimento, o processo de eluição foi repetido em uma segunda etapa, com nova adição de 40 µL do tampão de eluição BR5. Após a eluição do RNA, as amostras foram incubadas a 65°C por 5 minutos e as amostras foram armazenadas a -80°C até posterior análise e processamento.

3.2.2 – Dosagem em nanodrop e gel de integridade

As amostras de RNA extraídas foram quantificadas utilizando o aparelho Nanodrop (ND-100, Thermo Fisher Scientific) e foram incluídas para posteriores análises as amostras que tiveram ambas as razões R_{260/280} e R_{260/230} entre 1,8 e 2, consideradas como um critério de alta qualidade. Em seguida, a integridade das amostras de RNA foi determinada em uma corrida de eletroforese em gel de 1,2% agarose. O gel 1,2% de agarose foi preparado adicionando 1,2 g de agarose ultra pura
(Invitrogen) em 100 mL de tampão MOPs 1x pH 7 (ácido 3- (N-morfolino) propano sulfônico; 20 mM MOPs + 0,5 mM EDTA pH 8 + 4 mM Acetato de Sódio) em água livre de RNAse tratada com dietilpirocarbonato (DEPC), seguido de aquecimento ao micro-ondas até completa solubilização. Para o preparo das amostras foram utilizados 600 - 800 ng de RNA aos quais foram adicionados 7 µL de tampão de amostra (0,3% azul de bromofenol e xileno cianol, 70% formamida e MOPS 2x); 1 µL de SYBR III e água livre de RNAse *qsp* 15 µL. As amostras foram aquecidas a 65°C em banho seco por 15 minutos e aplicadas no gel. A corrida foi realizada no gel imerso em tampão MOPS 1x, a 120 V por 1 hora e o gel foi visualizado com a iluminação ultravioleta, no transiluminador (MiniBis pro – DNR Biolmaging System); foram consideradas integras as amostras com 2 bandas referentes aos rRNAs 28S e 18S e sem rastros.

3.2.3 – Preparação da biblioteca de cDNA e reação de sequenciamento

Após o processamento e controle de qualidade, as amostras foram enviadas para Colorado State University para a realização do sequenciamento de RNA na MIP NGS genomics core facility. A qualidade do RNA foi novamente avaliada, porém através da utilização do software Bioanalyzer. Para a preparação da biblioteca de sequenciamento, o RNA mensageiro foi enriquecido através de uma etapa de enriquecimento de poliA utilizando o kit NEBNext Poly(A) mRNA Magnetic Isolation Module New England Bioscience) e a biblioteca foi realizada utilizando o Kit NEBNext Ultra II Directional RNA for Illumina (New England Bioscience) e em seguida, a biblioteca foi sequenciada na plataforma Illumina Next-seq 550 utilizando o kit NextSeq High Output 75 cycle (Illumina).

Para a análise dos dados, inicialmente os reads foram inspecionados com (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) FastQC v.0.11.8 е MultiQC v.1.9 (Ewels et al., 2016). Os reads de baixa qualidade, sequências adaptadoras, reads muito curtos, contendo muitas bases não identificadas (N) e caudas poliA foram removidos 0 fastp v.0.21.0 com (https://github.com/OpenGene/fastp). Em seguida, o mapeamento e contagem das reads oriundas de transcritos e genes foram realizados com Salmon v.1.4 (Patro et al., 2017), mapeando contra o transcritoma de referência Human GRCh38p.12 (http://refgenomes.databio.org/v2/asset/hg38_cdna/salmon_index/) com decoys parciais (Durinck et al., 2005). As contagens de transcritos foram sumarizadas para genes identificados por ENSEMBL com tximport v.1.12.0 (Soneson et al., 2016) e biomaRt v.2.40.5 (Durinck et al., 2005). A expressão de genes específicos de

cromossomos sexuais foi utilizada para descartar troca de amostras. A análise de expressão diferencial utilizou o DESEq2 v.1.24.0 (Love et al., 2014) em ambiente R v.3.6.1 (RCoreTeam, 2020), após remoção dos genes com expressão menor que 10 contagens por milhão (cpm) e 15 contagens totais em 70% das amostras (Anders and Huber, 2010; Love et al., 2014). A normalização foi realizada com o método da razão das medianas (eq. 5 em Anders and Huber, 2010), o qual estima um fator de normalização usado para escalonar as contagens de modo que as diferenças na cobertura das amostras sejam minimizadas. O modelo de regressão linear generalizado (binomial negativa) foi utilizado contendo covariáveis como sexo e idade no caso de comparações entre indivíduos, e uma variável com id do indivíduo como bloco nas comparações intra-indivíduos (pareadas). Os valores de Presultantes foram ajustados para múltiplos testes controlando para a taxa de falsas descobertas (FDR) com o método de Benjamini e Hochberg (Benjamini and Hochberg, 1995). Por fim, os valores de log₂fold-change foram ajustados para penalizar genes com alta dispersão devido as baixas contagens (Stephens, 2017). Foram considerados genes diferencialmente expressos (GDE) aqueles que apresentaram log2foldchange igual ou maior que 0,585 (representando um mínimo de 1,5 vezes mais expresso) e com FDR menor ou igual 0,1 (10%) e genes diferencialmente menos expressos aqueles com log₂foldchange igual ou menor que -0,585 (representando um mínimo de 0,67x menos expresso) e com FDR menor ou igual 0,1. Adicionalmente, a representação dos genes diferencialmente expressos entre os grupos foi realizada através da geração de mapas de calor ou heatmaps com agrupamento por cluster hierárquico (Kolde, 2015) utilizando genes centralizados e escalonados (média = 0, variância = 1). Também se investigou o enriquecimento de vias (processos biológicos do Gene Ontology) através da análises de sobre-representação (over-representation analysis – ORA) (Ashburner et al., 2000; Boyle et al., 2004; Yu et al., 2012a). As análises de escalonamento multidimensional (MDS) e de componentes principais (PCA) foram realizadas utilizando as contagens normalizadas e contagens normalizadas seguidas de estabilização da variância (método VST), respectivamente, com os top 500 genes com maior variabilidade (Anders and Huber, 2010).

3.3 - Avaliação da expressão e ativação de marcadores do inflamassoma

3.3.1 – Imunofluorescência

Fragmentos de lesão de pele obtidos por biopsia foram submetidas à criosecção e após descongelamento, os cortes histológicos foram lavados em PBS com agitação leve por 15 minutos. As áreas dos cortes foram delimitadas com o auxílio de uma caneta hidrofóbica (Sigma) e os cortes foram bloqueados por 1 hora à temperatura ambiente [solução de bloqueio: PBS + 0,3% Triton-X100 + 2% albumina sérica bovina (BSA) + 5% soro normal de cabra (NGS)]. Após o bloqueio, os cortes foram lavados por 5 minutos em PBS e então foram incubados com os anticorpos primários anti-NLRP3 (ABF198, Millipore - camundongo-1:25) e anti-Caspase 1 (MAB6215, R&D systems - coelho-1:50) diluídos em solução de bloqueio, em câmera úmida por 16 horas a 4°C. Após a incubação, as lâminas foram lavadas duas vezes com 0,05% PBS tween 20 por 15 minutos e uma vez com PBS por mais 15 minutos e então foram incubadas com os respectivos anticorpos secundários (anti-IgG2a camundongo conjugado a alexa fluor 594 – 1:1000 e goat-anti-IgG rabbit conjugado a alexa fluor 488 – 1:1000) por 2 horas a temperatura ambiente diluídos em solução de bloqueio. Após incubação com o secundário, o mesmo foi descartado e as lâminas foram lavadas em PBS + 0,05% Tween 20 por 15 minutos por duas vezes e uma terceira por 15 minutos em PBS, seguido de incubação com DAPI 1x (1µg/mL) (4',6diamidino-2-fenilindol - Molecular Probes, Life Technologies) por 5 minutos a temperatura ambiente e protegidas da luz seguida de lavagem com PBS por 5 minutos. Uma gota de anti-fade Prolong Gold (Thermo Fisher Scientific) foi adicionada sobre os cortes e uma lamínula foi cuidadosamente disposta sobre os mesmos e então selada com EVRmount (EasyPath). As lâminas foram visualizadas no microscópio de fluorescência Zeiss Observer acoplado ao sistema Apotome e à câmera coolSnap pro CI e as imagens foram analisadas com o software Zeiss AxionVision (Carl Zeiss).

3.3.2 – Western blotting

3.3.2.1 – Extração de proteínas de lesão cutânea

Fragmentos de lesões de pele de pacientes com hanseníase obtidos por biópsia foram rapidamente imersos em 2 mL de Trizol após descongelamento e foram homogenizados a 9.000 RPM por 30-45 segundos com o auxílio de um homogenizador de tecido (Polytron PT 2500 E, Kinematica), com atenção para garantir a total homogenização do fragmento de tecido. Após a homogenização, as amostras foram divididas em duas alíquotas e armazenadas a -80°C até posterior processamento.

A extração de proteínas foi realizada após a extração de RNA, a partir da fase orgânica resultante através de diálise conforme descrito por Hummon e colaboradores (Hummon et al., 2007). Brevemente, foram adicionados 300 µL de 100% etanol à fase orgânica resultante de 1 mL de trizol para precipitação do DNA, seguido de incubação por 3 minutos à temperatura ambiente e posterior centrifugação a 2.000 x *g* por 5 minutos a 4°C. O sobrenadante foi carregado no sistema de diálise com a membrana *snakeskin* (3.5K MWCO – Thermo) e a diálise foi realizada sob agitação em 0,1% SDS a 4°C, com 3 trocas de tampão após 16 horas, 4 horas e 2 horas de incubação. Após a diálise, o precipitado proteico branco foi coletado e transferido para um tubo e as amostras foram centrifugadas a 6.000 x *g* por 10 minutos a 4°C. Após a centrifugação, as amostras adquiriram um aspecto bifásico, com uma interfase branca, corresponde às proteínas, que foi coletada e transferida para um novo tubo. As proteínas foram dissolvidas em 8M ureia em Tris 1M pH 8,0 e quantificadas pelo método de Bradford, utilizando o reagente Pierce Comassie (Thermo Fisher Scientific), segundo instruções do fabricante.

3.3.2.2 – Corrida de SDS-PAGE e imunoblotting

O volume equivalente a 10 μg de proteína de cada amostra foi reservado em um novo tubo e a ele foi adicionado tampão de amostra 4x (Tris-HCl pH 6,8 240 mM, glicerol 40%, β-mercaptoetanol 5%, SDS 8%, azul de bromofenol 0,08%) em volume suficiente para a concentração final de 1x. As amostras foram então aquecidas a 100°C por 5 minutos e foram aplicadas em um gel de poliacrilamida 12%. Aplicou-se também o padrão de peso molecular pré corado PageRuler (Thermo Fisher Scientific) para então realização da eletroforese. A corrida foi realizada em equipamento MiniProtean (BIO-RAD) utilizando o tampão de corrida composto por Tris-base 25 mM, glicina 192 mM e 0,1% de SDS e a voltagem foi fixada em 100 V. Ao término da corrida, foi realizada a transferência das proteínas para uma membrana de nitrocelulose (GE Healthcare LifeSciences) em tampão composto por Tris-base 25 mM, glicina 192 mM e 20% de etanol a 100 V por 1 hora. Ao final da transferência, a membrana foi corada com Amido Black 0,1%, para visualização das proteínas e eficiência da transferência

Após a transferência, a membrana foi bloqueada por 1 hora em solução de bloqueio contendo 3% BSA preparada em TBS-T composto por Tris-HCI 20 mM pH

8,0; NaCl 150 µM e 0,1 % Tween 20. Em seguida a membrana foi incubada por 16 horas em agitação leve com o anticorpo primário desejado, preparado em 1% de BSA em TBS-T. Os anticorpos utilizados, com suas respectivas diluições estão listados na tabela 3.3.1. Passada a incubação, a membrana foi lavada com TBS-T durante 10 minutos em agitação moderada, repetindo o processo mais 2 vezes, trocando a solução, seguido de incubação durante uma hora com anticorpo secundário apropriado para cada anticorpo, anti-IgG de coelho ou anti-IgG de camundongo conjugados à enzima peroxidase (HRP) e diluídos 1:5000 (Thermo), sob agitação leve. Ao término da incubação, foram realizadas mais 3 lavagens, conforme já descrito e então a membrana foi posicionada no cassete de revelação para dar prosseguimento à etapa de revelação por guimioluminescência, utilizando o Kit Amersham ECL Western Blotting (GE Healthcare LifeSciences), que contém o substrato, aplicado diretamente sobre a membrana. Esta etapa foi realizada em câmara escura, através da exposição de filme radiográfico Amersham Hyperfilm ECL (GE Healthcare LifeSciences) à membrana e então revelação do filme utilizando as soluções reveladora (Kodak) e fixadora (Kodak).

Para a avaliação do controle de carregamento, as membranas foram submetidas ao processo de *stripping* brando básico para remoção dos anticorpos, incubando a membrana em 0,2 N NaOH por 3 minutos, seguido de lavagem com H₂O MilliQ por 5 minutos e bloqueio da membrana com 3% BSA por 16 Horas. Após bloqueio, a membrana foi incubada por 2 horas com anti-GAPDH, utilizado como o controle de carregamento, na diluição de 1:1000 (Santa Cruz Biotechnology). Após incubação com o anticorpo primário, a membrana foi lavada com TBS-T e incubada com anti-IgG mouse conjugado à HRP para prosseguimento com a revelação por quimioluminescência de forma similar ao descrito anteriormente. Após a revelação do controle de carregamento, as membranas foram ainda submetidas a novos procedimentos de *stripping* para incubação com os demais anticorpos de marcadores do inflamassoma e revelação conforme descrito. As análises de densitometria foram realizadas utilizando o software ImageJ (NIH), utilizando o GAPDH para normalização das proteínas de interesse.

Tabela 3.3.1 - Anticorpos utilizados no western blotting					
Anticorpo	Código	Diluição/concentração	Marca		
Anti – Caspase1	MAB6215	1:1000	R&D systems		
monoclonal camundongo					
Anti – NALP3 policional		1 μg/mL	Millipore		
coelho	ABF198				
Anti – IL-1β policlonal	sc-7884	1 :200	Santa cruz biotecnologia		
coelho					
Anti- GAPDH monoclonal	sc-32233	1:1000	Santa cruz biotecnologia		
camundongo					

3.3.3 - qRT-PCR

3.3.3.1- Extração de RNA dos fragmentos de lesão de pele e de células sanguíneas

Após o processamento de homogenização das biópsias em Trizol[®] conforme descrito no item 3.2.2.1, a extração de RNA foi realizada pelo método de fenolclorofórmio. A cada tubo foram adicionados 200 µL de clorofórmio: álcool isoamílico (24:1) e os mesmos foram agitados vigorosamente até consistência leitosa e as amostras foram incubadas por 5 minutos a temperatura ambiente. Após a incubação, as amostras foram centrifugadas a 12.000 x g por 15 minutos a 4°C para então recolher a fase aquosa contendo o RNA e a fase orgânica estocada para posterior extração de DNA e proteína. Foram adicionados 500 µL de álcool isopropílico à fase aquosa, seguido de homogenização por inversão suave 1-2 vezes e incubação das amostras por 16 horas a -80°C para precipitação do RNA. Após a precipitação do RNA, foi adicionado 1 µL de GlycoBlue (Ambion), para marcação do sedimento e as amostras foram homogenizadas, centrifugadas a 14.000 x g por 30 minutos a 4°C. Após a centrifugação, o sobrenadante foi descartado e o sedimento lavado com 500 µL de etanol 70% (preparado em água livre de RNAse tratada com DEPC). Após homogenização por inversão, as amostras foram centrifugadas a 10.000 x g, por 10 minutos a 4°C e então sobrenadante foi descartado e as amostras foram deixadas em repouso para total evaporação do etanol. Posteriormente, o RNA foi ressuspenso em 20 µL água livre de RNAse, tratada com DEPC e as amostras foram estocadas -80°C até o uso.

O sangue total de pacientes não reacionais (BL/LL) e dos pacientes reacionais ENH antes e após o sétimo dia de tratamento com talidomida foi coletado em tubos PAXgene (PreAnalytix) e armazenados a -20°C imediatamente após a coleta. O RNA

foi extraído utilizando o kit PAXgene Blood RNA (PreAnalytiX) conforme já descrito no item 3.2.1.

Após a extração do RNA, a integridade do mesmo foi verificada através da observação em gel de agarose 1,2%, conforme já descrito no item 3.2.2 Após avaliação da qualidade das amostras de RNA prosseguiu-se com o tratamento para a remoção de eventuais contaminantes de DNA para as amostras de lesão de pele, uma vez que o tratamento com DNAse das amostras de células sanguínea já é realizado junto com a extração pelo kit. Para o tratamento com DNAse foi utilizada enzima DNAse do kit TURBO DNA-free (Ambion), sendo realizada com 10 μ L de cada amostra. Foram adicionados a cada amostra 3 μ L de tampão 10x contido no kit, 1 μ L de enzima DNAse TURBO e adicionou-se 16 μ L de água livre de RNAse para alcançar o volume final de reação de 30 μ L. Em seguida, as amostras foram incubadas por 30 minutos a 37°C e então inativadas com 3 μ L de reagente de inativação. Após incubação a temperatura ambiente por 5 minutos sob constante agitação, os tubos foram centrifugados a 10.000 x *g* por 1 minuto e o sobrenadante coletado, transferido para um novo tubo de 1,5 mL livre de RNAse sem perturbar o *pellet.*

3.3.3.2 – Reação de transcrição reversa

A reação de transcrição reversa foi realizada com auxílio do master mix SuperScript Vilo (Thermo), em que foram utilizados para a reação o equivalente a 900 ng de RNA tanto das amostras de sangue, como de lesões de pele. Ao volume correspondente de RNA foi adicionado um volume de H₂O necessário para completar 18 μ L e 2 μ L do master mix SuperScript Vilo. As amostras foram incubadas por 10 minutos à 25°C e a reação foi realizada por 1 hora à 42°C. A reação foi interrompida através da inativação da enzima à 85°C por 5 minutos. Também foi incluído um controle negativo da reação, em que o master mix foi primeiramente incubado à 65°C for 10 minutos para inativação da enzima, para posterior adição da amostra e então o controle negativo também foi submetido ao mesmo ciclo de incubação e temperaturas que as amostras. Após o término da reação, as amostras foram diluídas à concentração de 5 ng/ µL e incubadas à -20°C até o prosseguimento com a reação de qRT-PCR.

3.3.3.3 – Reação de qRT-PCR

A avaliação da expressão relativa de genes relacionados com o inflamassoma em amostras de cDNA extraídas de biópsias de pele e de sangue total de pacientes foi feita utilizando o intercalante de DNA Sybr green e as sequências dos oligonucleotídeos iniciadores encontram-se descritas na tabela 3.3.2. A reação de PCR foi realizada em 10 μ L de reação, utilizando Power sybr green Master Mix 2x (Thermo), 400nM de oligonucleotídeos iniciadores para cada gene (senso e antisenso), 10 ng de cDNA e água livre de RNAse para completar o volume. As placas foram submetidas a uma rápida centrifugação e dispostas na máquina StepOnePlus® ou ViiA7 (Applied Biosystems). As reações foram ajustadas para o método comparativo por $\Delta\Delta$ CT, com o sistema de detecção para Sybr Green e posterior analise da curva de dissociação (Curva de *melting*), e com duração de cerca de 3 horas, com uma etapa de iniciação da reação a 50°C por 2 minutos, seguido de um aquecimento a 95°C por 15 segundos e 60°C por 1 minuto. O programa de *melting* inclui uma etapa de aquecimento a 95°C por 15 segundos, seguido de aquecimento a 60°C por 1 minuto e aquecimento progressivo de 0,3°C até alcançar 95°C.

Gene	Sequências
Procaspase1- Senso	5'- GAACTGGAGCTGAGGTTGAC -3'
Procaspase1 – Anti-senso	5'- TCTGTAGTCATGTCCGAAGC -3'
Procaspase4- Senso	5'- CAAGAGAAGCAACGTATGGCA -3'
Procaspase4 – Anti-senso	5'- AGGCAGATGGTCAAACTCTCTA -3'
Procaspase5- Senso	5'- TCACCTGCCTGCAAGGAATG-3'
Procaspase 5–Anti-senso	5'-TCTTTTCGTCAACCACAGTGTAG -3
NIrp3- Senso	5'- GCTTCAGGTGTTGGAATTAGACA -3'
NIrp3 – Anti-senso	5'- GTCGCCCAGGTCATTGTT -3'
prolL1b- Senso	5'- GGACAGGATATGGAGCAACAA -3'
ProIL1b - Anti-senso	5'-TCTTTCAACACGCAGGACAG -3'
NIrc4- Senso	5'-TGCCCAGAAATCGAAGCCC -3'
NIrc4 – Anti-senso	5'- GGCACCAAACTGCCGTATG -3'
Aim2- Senso	5'-TGGCAAAACGTCTTCAGGAGG -3'
Aim2 –Anti-senso	5'- AGCTTGACTTAGTGGCTTTGG -3'
prolL18- Senso	5'- TCATTGACCAAGGAAATCGG -3'
ProIL18 - Anti-senso	5'-CCTCTAGGCTGGCTATCTTTAT -3'
Asc- Senso	5'- TGGATGCTCTGTACGGGAAG -3'
Asc –Anti-senso	5'- CCAGGCTGGTGTGAAACTGAA -3'
Rpl13 - Senso	5'- GACAAGAAAAAGCGGATGGT -3'
<i>RpI13</i> –Anti-senso	5'- GTACTTCCAGCCAACCTCGT -3'

Tabela 3.3.2- Sequências dos oligonucleotídeos iniciadores utilizados nas reações de qRT-PCR

A eficiência da PCR foi determinada para cada reação com o auxílio do software LinRegPCR (Ramakers et al., 2003) e análise de expressão relativa foi realizada considerando as correções de eficiência segundo descrito (Pfaffl, 2001), utilizando o gene *rlp13* como gene de referência para a normalização das amostras. As análises estatísticas dos dados foram feitas pelo teste não paramétrico, não pareado Mann Whitney com auxílio do Software GraphPad Prism 6 (GraphPad Software, inc.).

3.4 - Detecção de DNA de *M. leprae* em lesão cutânea

As amostras de pele foram processas e homogenizadas em trizol, conforme descrito no item 3.3.2.1. A extração de DNA foi realizada em seguência à extração de RNA, conforme descrito no item 3.3.3.1, em que, foram adicionados 300 µL de etanol 100% à fase orgânica para precipitação do DNA e as amostras foram homogenizadas por inversão e incubadas por 2-3 minutos à temperatura ambiente. Após incubação, as amostras foram centrifugadas a 2.000 x g por 5 minutos a 4°C e o sobrenadante foi reservado em um novo tubo para o procedimento de diálise para extração de proteína, enquanto o pellet foi encaminhado para a lavagem. A lavagem do DNA foi realizada em dois ciclos de ressuspensão do pellet em 1 mL de acetato de sódio 0.1 M em etanol 10% pH 8.5 e incubação das amostras por 30 minutos a temperatura ambiente, homogenizando ocasionalmente por inversão, seguido de centrifugação por 5 minutos a 2.000 x g a 4°C e posterior descarte do sobrenadante. Após o segundo ciclo de precipitação, os pellets foram ressuspensos em 1,5 mL de etanol 75% e incubados 20 minutos com ocasionais inversões para homogenização. Em seguida, as amostras foram centrifugadas por 5 minutos a 2.000 x g a 4°C e após descarte do sobrenadante, os pellets foram deixados em repouso cerca de 5-10 minutos até completa evaporação dos solventes. Para ressolubilização, os pellets foram ressuspensos em 600 µL de NaOH 8 mM e então as amostras foram centrifugadas por 10 minutos a 12.000 x g a 4°C e o sobrenadante transferido para um novo tubo em que o pH foi ajustado para 7 com o auxílio de HEPES, seguido de adição de EDTA 1 mM. O DNA purificado foi quantificado com o auxílio do nanodrop e as amostras foram diluídas à concentração de 5 ng/ µL e armazenadas a -20°C até posteriores análises.

A detecção do DNA de *M. leprae* foi feita por qPCR, tendo como alvo o gene de rRNA 16S (Martinez et al., 2009), utilizando sondas de hidrólise (Taqman). As sequências dos oligonucleotídeos iniciadores e sonda estão descritas na tabela 3.4.1. A reação de PCR foi realizada em 10 µL de reação, utilizando Taqman Universal Master Mix 5x (Thermo-Fisher Scientific), 200 nM de oligonucleotídeos iniciadores para o gene de rRNA 16S (senso e anti-senso – Eurofins Scientific), 200 nM de sonda para o gene de rRNA 16S (FAM/MGB-NFQ- Thermo), 20 ng de DNA e água livre de RNAse para completar o volume. As placas foram submetidas a uma rápida centrifugação e dispostas na máquina StepOnePlus (Applied Biosystems). As reações foram ajustadas para o método de detecção qualitativa *endpoint* (presença/ausência),

com o sistema de detecção para taqman, e com duração de cerca de 1 hora e 15 minutos, com uma etapa de iniciação da reação a 50°C por 2 minutos, seguido de um aquecimento a 95°C por 10 minutos e então prosseguindo para 40 ciclos de amplificação de 95°C por 15 segundos e 60°C por 1 minuto.

Tabela 3.4.1 - Sequências dos oligonucleotídeos iniciadores e sondas utilizados nas reações de qPCR

Gene/Sonda	Sequências
ML 16S - Oligonucleotídeo Senso	5'- GCATGTCTTGTGGTGGAAAGC -3'
ML 16S – Oligonucleotídeo Anti-senso	5'- CACCCCACCAACAAGCTGAT -3'
ML 16S – Sonda	5' FAM – CATCCTGCACCGCA- MGBNFQ 3'

3.5 - Análise da ativação do inflamassoma por amostras de soro

PBMCs foram isolados de voluntários sadios através de um gradiente de densidade, utilizando o reagente Ficoll Paque-Plus (GE healthcare). As amostras de sangue foram coletadas em tubos heparinizados e diluídas em PBS 1x a temperatura ambiente na proporção 1:1. Foram adicionados 15 mL de Ficoll em tubos cônicos de 50 mL e cerca de 20 mL de sangue diluído foi adicionado sobre o ficoll cuidadosamente por gotejamento, para manter a separação entre o sangue e o ficoll. As amostras foram centrifugadas a 400 x g por 30 minutos a temperatura ambiente, sem freio. Após a centrifugação, a camada de células mononucleares localizada na interface entre a camada superior de soro e a camada inferior de ficoll, foi coletada e transferida para um novo tubo e diluída em PBS 1x (1:1). As amostras foram centrifugadas a 400 x g por 10 minutos a 4°C. Após centrifugação, o sobrenadante foi descartado por inversão e as células foram ressuspensas em 10 mL de PBS 1x gelado e as amostras foram centrifugadas a 200 x g por 10 minutos a 4°C. O sobrenadante foi descartado e as células foram ressuspensas em meio RPMI (LGC biotecnologia LTDA) e a viabilidade e quantidade foi determinada por coloração de exclusão, utilizando azul de tripan e as células foram contadas com o auxílio de câmara de Neubauer.

Foram plaqueadas 2,0 x 10⁵ PBMCs por poço, mantidas em meio RPMI e foram adicionados 20% do soro a ser testado. Em alguns poços adicionaram-se 2 µM do antagonista de TLR-9 (E6446) ou 2 µM do antagonista de TLR-7 (IRS661) e as células foram então incubadas a 37°C/5% CO₂ por 24 horas. As células também foram estimuladas com LPS (5 ng/mL) ou LPS + ATP (5 ng/mL /1 mM) como controles positivos de ativação. Ao final do estímulo o sobrenadante foi recolhido e a produção

de IL-1 β e TNF foi quantificada por ELISA utilizando os kits Human IL-1 β /IL-1F2 DuoSet kit (R&D Systems) e Human TNF α DuoSet kit (R&D Systems), segundo recomendações do fabricante.

3.6- Ativação in vitro do inflamassoma por componentes do M. leprae

3.6.1 – Cultura e manutenção das células

A linhagem de monócitos THP-1 (ATCC[®] TIB-202TM) adquirida do banco de células da ATCC foi cultivada em meio RPMI 1640 suplementado com 10% soro fetal bovino (SFB) e mantidas em estufa a 37°C com 5% CO₂. Os estoques celulares foram criopreservados em nitrogênio líquido em meio contendo 90% de soro fetal bovino (SFB – Cripion Biotecnologia LTDA) e 10% de DMSO (Dimetil Sulfóxido – Sigma Aldrich) que age como crioprotetor. O descongelamento foi feito em banho maria a 37°C e, em seguida, a suspensão celular foi transferida para um tubo cônico de 15 mL contendo 9 mL de meio RPMI 1640 suplementado com SFB. Após centrifugação a 513,6 x *g* por 10 minutos a 4°C, o sobrenadante foi descartado, as células ressuspensas em 1 mL de meio, 10 µL foram retirados e diluídos 1:1 em azul de tripan (Sigma-Aldrich) e feita a contagem das células viáveis em câmara de Neubauer. Após a contagem celular, 4 x10⁵ células/mL foram transferidas para uma garrafa de cultura de 25 cm² (Corning) com 4 mL de meio RPMI suplementado com 10% SFB. A cultura foi expandida até a obtenção de células suficientes para realização dos ensaios.

3.6.2 – Estimulação das células e dosagem de IL-1β

Para investigar a capacidade de componentes específicos da micobactéria em ativar o inflamassoma em monócitos da linhagem THP-1, as moléculas lipídicas PGL-I, TMM e PIM1,2 foram ressuspensos em etanol 100% e foram adicionados à placa de 24 poços em volume suficiente para cobertura de toda área do poço, resultando em uma concentração final na cultura de 25 µg/mL. Estes poços só receberam as células após completa evaporação do etanol. Os outros componentes micobacterianos utilizados foram mAGP 25 µg/mL, LAM 10 µg/mL e DNA genômico de *M. leprae* 100 ng/mL. Estes foram diluídos diretamente no meio de cultura. Para avaliar se estes componentes funcionavam como primeiro ou segundo sinal de ativação do inflamassoma, eles foram combinados ou não com LPS 5 ng/mL (utilizado como primeiro sinal) ou nigericina (NGC) 10 µM, este último utilizado como segundo sinal. As células (2 x10⁵ células/ poços) foram estimuladas com o primeiro sinal por 16 horas a 37°C/ 5% CO₂. Nas últimas 2 horas de estimulo, o segundo sinal foi adicionado. Para os estímulos imobilizados, a adição do LPS (primeiro sinal) foi realizada concomitante ao plaqueamento das células nos poços com o estímulo já imobilizado. Também foi incluído o controle positivo de ativação do inflamassoma com o primeiro estímulo com LPS e o segundo com ATP ou NGC. Ao final do tempo de incubação, a suspensão celular de cada condição foi recuperada e transferida para tubos de 1,5 mL, centrifugadas a 513,6 x *g* por 10 minutos e os sobrenadantes foram coletados para dosagem de IL-1 β , realizada pelo método de imunoensaio por ELISA, utilizando o kit DUO-SET (R&D systems).

4. Resultados

4.1 – RNAseq

4.1.1- Análise global

O ENH apresenta uma série de sintomas sistêmicos que são característicos desse quadro reacional e diferencia o mesmo do quadro de reação reversa, ou mesmo dos sintomas associados à Hanseníase em si. Contudo, ainda não são conhecidos os exatos mecanismos responsáveis por essas manifestações. Dessa forma, para melhor compreender as alterações sistêmicas associadas ao quadro de ENH, foi realizada uma análise da expressão gênica global em células sanguíneas de pacientes não reacionais LL e pacientes ENH, bem como uma análise pareada de amostras de pacientes ENH quando do diagnóstico da reação e no sétimo dia de tratamento com talidomida.

Com isso, foi realizado um sequenciamento de RNA das amostras de células sanguíneas de cada grupo de pacientes. A preparação da biblioteca de cDNA mostrou heterogeneidade entre as amostras, porém, de modo geral, as amostras apresentaram uma boa distribuição de tamanhos da biblioteca para prosseguir com a reação de RNAseq, que gerou um pool de *reads* de boa qualidade para cada amostra após a remoção dos adaptadores e de *reads* de menor qualidade. Contudo, ao realizar a análise de componente principal com os 500 genes com maior variância entre todas as amostras, pode-se observar duas amostras *outliers* em relação ao restante das amostras, LL3 e LL8, que, por isso, foram excluídas das análises subsequentes (Figura 4.1.1). Adicionalmente, pode-se observar que não existe uma distinção clara entre os grupos, o que pode estar relacionado à variabilidade das amostras humanas (Figura 4.1.1). As amostras pareadas de um mesmo paciente estão conectadas por uma linha, também não sendo observado um perfil entre as amostras pareadas.

Figura 4.1.1 - Análise de componente principal do RNAseq de amostras de células sanguíneas de pacientes com hanseníase. LL – paciente não reacional, n=9; ENH- paciente reacional ENH, n=15; ENH + Tal – paciente ENH no sétimo dia de tratamento com talidomida. n=12. A cor na legenda indica o tamanho da biblioteca. Amostras pareadas estão conectadas por uma linha..

O perfil global de expressão gênica dos três grupos pode ser observado na representação do *heatmap* global (Figura 4.1.2), no qual também se observa uma distribuição heterogênea das amostras pertencentes aos diferentes grupos, o que condiz com os dados obtidos na análise de componente principal. Contudo, é importante observar um agrupamento mais homogêneo entre as amostras de pacientes LL (amarelo) que difere mais amplamente da maioria dos indivíduos ENH (vermelho) e ENH + TAL (azul) (Figura 4.1.2). Notadamente, alguns indivíduos ENH apresentam um perfil de expressão gênica mais similar ao observado entre os pacientes LL, sendo esses os indivíduos ENH 3, 4, 5, 6, 7 e 9.

Figura 4.1.2 – Heatmap do perfil de expressão gênica global de células sanguíneas de pacientes multibacilares não reacionais e pacientes reacionais antes e durante o tratamento com talidomida. Níveis de expressão gênica estão representados por uma escala de Log₂ de fold change (Log₂FC) de -4 (azul escuro) até 4 (vermelho). Pacientes não reacionais (LL- amarelo, n=7), pacientes reacionais antes do tratamento (ENH – vermelho, n=15) e pacientes ENH no sétimo dia de tratamento com talidomida (ENH + TAL – azul, n=12).

4.1.2– Comparação do perfil de expressão gênica de células sanguíneas de pacientes ENH e LL

A fim de estabelecer um perfil de assinatura gênica do paciente ENH que possa diferencia-lo do paciente não reacional multibacilar e com isso também identificar vias que sejam importantes durante o episodio reacional, foi realizada uma análise de expressão gênica diferencial (DGE) entre as amostras provenientes do grupo de pacientes ENH, em relação aos pacientes LL.

A análise de componente principal não mostrou uma separação clara entre os dois grupos analisados, embora os pacientes LL (amarelo) apresentem um comportamento mais homogêneo, enquanto os pacientes ENH (vermelho) apresentam um perfil mais heterogêneo e disperso (Figura 4.1.3A). Na análise de expressão diferencial foram observados 34 genes significativamente mais expressos

no grupo ENH em relação ao grupo LL e nenhum gene modulado negativamente, representado graficamente em um *volcano plot*, onde se pode observar a ausência de genes com níveis de expressão menores no ENH, com valor de p significativo. Dentre os genes significativamente mais expressos durante o ENH, destacam-se, por exemplo, genes relacionados com ativação de neutrófilos, como *cd177*, *mmp8* (mieloperoxidase 8) e *hp* (haptoglobina) (Hu et al., 2014; Owen et al., 2004; Theilgaard-Mönch et al., 2006); os genes *fcgr1b* e *fcgr1a* (CD64), ambos genes de receptor de porção Fc de imunoglobulina (Maresco et al., 1996; Takai et al., 1994); *tlr5*, que codifica o receptor do tipo Toll 5, associado com imunidade inata (Rock et al., 1998), *socs3* associado com a regulação da resposta imune em geral (Carow and Rottenberg, 2014) e *cd274* (PD-L1), associado com a exaustão da resposta de células T (Wilcox et al., 2009) e que tem expressão estimulada pela via de NF-κB (Antonangeli et al., 2020) (Figura 4.1.3B). Os resultados brutos da análise de DGE de ENH x LL estão representados no anexo 2.

Figura 4.1.3 – PCA e volcano plot da análise de expressão gênica diferencial de ENH x LL. (A) Análise de componente principal dos genes diferencialmente expressos em pacientes ENH (azul - n= 15) em relação a pacientes não reacionais LL (amarelo - n=7). (B) *Volcano plot* com genes significativamente diferencialmente expressos na comparação ENH x LL.

Para melhor compreender a assinatura de expressão gênica das células sanguíneas de pacientes ENH, foi realizado um *heatmap* com todos os genes diferencialmente expressos no ENH, dessa forma, sendo possível avaliar individualmente o perfil de expressão gênica em cada paciente. Pode-se observar que

a maioria dos pacientes ENH apresentam um perfil de expressão gênica marcado por uma maior expressão de genes associados a processos inflamatórios e resposta imune. Além dos genes já destacados no volcano plot, podemos citar, por exemplo, o gene naip, associado ao inflamassoma (Gram et al., 2021); s100a9, também conhecida como calgranulina B, que forma juntamente com s100a8 um peptídeo antimicrobiano denominado calprotectina (Abtin et al., 2010) e o gene batf2, associado com a sinalização de IFN-y e regulação da resposta imune (Roy et al., 2015) (Figura 4.1.4). Outros genes expressivamente presentes são genes associados com a ativação e degranulação de neutrófilos, como olfm4 (olfactomedina 4) (Welin et al., 2013). Esse perfil de maior expressão gênica desses genes pró-inflamatório e com maior ativação da imunidade é mais nitidamente observado em 4 pacientes, que apresentam valores de log₂FC próximos a 2 (ENH 8, 9, 13 e 15) (Figura 4.1.4). Entretanto, são observados outros 4 pacientes ENH (ENH 3; 5; 6 e 11) que se destacam do perfil característico do grupo reacional e apresentam um perfil mais similar ao grupo LL (Figura 4.1.4). Estes 4 pacientes são os mesmos que na análise de PCA aparecem misturados aos pacientes LL (Figura 4.1.3A).

Figura 4.1.4 – Heatmap do perfil de expressão gênica diferencial de células sanguíneas entre pacientes ENH e LL . Níveis de expressão gênica estão representados por uma escala de Log₂ de *fold change* (Log₂FC) de -4 (azul escuro) até 4 (vermelho). Pacientes não reacionais (LL- amarelo, n=7) e pacientes reacionais (ENH – vermelho, n=15).

Para investigar a que vias pertencem os genes diferencialmente expressos e, com isso, definir as vias potencialmente moduladas durante o ENH, foi realizada uma análise de superrepresentação de vias (over representation analysis – ORA) (resultados brutos estão descritos no anexo 3). No gráfico de *dotplot* (Figura 4.1.5A) pode-se observar que vias relacionadas com a resposta imune neutrofílica, como as responsáveis pela ativação e degranulação de neutrófilos, são aquelas com o maior número de genes significativamente expressos relacionados a via, com cerca de 9 genes, e com valor de p ajustado mais significativo no ENH, embora com um odds ratio em torno de 7, um pouco menor que outras vias enriquecidas. O Odds ratio representa a probabilidade dos genes mais expressos e relacionados àquela via ser um evento real e não ao acaso. Com isso, quanto maior esse valor, aliado ao valor de p ajustado, maior a relevância das vias observadas. Outras vias em destaque, que aparecem com o maior valor de odds ratio, entre 50 e 40, porém com uma menor proporção de genes diferencialmente expressos, apresentando em torno de 2 representantes, foram vias relacionadas ao desmonte de nucleossomo, cromatina e complexos DNA-proteína, à regulação negativa da produção de IL-10, e à regulação negativa da via de sinalização apoptótica intrínseca induzida por estresse de retículo endoplasmático (RE). Logo em seguida, as vias com odds ratio entre 40 e 25, mas ainda apenas com 2 genes associados, foram as vias de homeostase iônica de cálcio no RE, de regulação positiva de processo apoptótico de leucócitos, vias de resposta imune mediada por peptídeos antimicrobiano e resposta imune a fungos. Outras vias enriquecidas, apresentando 3 ou 4 genes diferencialmente expressos e com odds ratio intermediários, entre 25 e 10 são as vias de migração de neutrófilos e granulócitos, via de resposta a bactérias, secreção de proteínas e a via de sinalização mediada por IFN-y. E por fim, as vias moduladas positivamente com menor odds ratio, apresentando cerca de seis representantes, foram vias relacionadas a regulação da secreção proteica e de peptídeos e via de resposta de defesa a outros organismo (Figura 4.1.5).

Figura 4.1.5 – Vias reguladas positivamente em pacientes ENH em comparação com LL. *Dotplot* das 27 vias mais enriquecidas após análise de ORA. As vias estão dispostas hierarquicamente de acordo com o *odds ratio*. O tamanho e a cor dos círculos representam, respectivamente, o número de genes detectados na via e o valor de p ajustado conforme as escalas.

Para avaliar se existe interação entre as vias moduladas e para melhor visualização dos genes envolvidos em cada via, foram gerados um cnetplot das 15 vias mais enriquecidas (Figura 4.1.6A) e um heatplot (Figura 4.1.6B) na análise de ORA, respectivamente. Nestas representações é possível observar a interação entre os genes, quais genes estão sobrepostos nas vias e o nível de expressão de cada gene em ambos os gráficos, representado pela escala de cor na legenda. Dessa forma, pode-se observar que as diferentes vias relacionadas à degranulação, ativação e reposta imune neutrofílica e granulocítica estão associadas ao mesmo conjunto de genes, especificamente os genes hp, cd177, mmp8, olfm4, s100a9, s100a12, mcemp1, lrg1 e cystm1. Dentro desse conjunto de genes, os genes cd177, s100a9 e s100a12 são compartilhados com as vias de migração de neutrófilos e granulócitos. Mais ainda, os genes s100a12, hp e s100a9 também estão presentes nas vias de resposta de defesa a bactéria, enquanto o gene mmp8 é compartilhado pelas vias de regulação da secreção proteica e peptídica e regulação negativa da produção de IL-10. Essas últimas 3 vias compartilham o gene cd274, enquanto os genes hcar2 e tmbim6 são compartilhados pelas vias de secreção de proteínas e peptídeos e o gene tlr5 é compartilhado pela via de secreção proteica, além de também estar conectado com as vias de resposta de defesa a outros organismos e resposta de defesa a

bactérias. Separado desse *cluster* encontram-se dois genes associados a todas as três vias de organização da cromatina, os genes *smarcd3* e *nfe2*. Os genes associados às demais vias enriquecidas podem ser melhor observados no *heatplot* da figura 4.1.6B. Nele, os genes *fcgr1a, fcgr1b* e *socs3* foram associados à via de sinalização mediada por IFN-γ. Já o gene *batf2* foi apenas associado com a via de resposta de defesa a outros organismos, enquanto os genes *s100a9* e *s100a12*, que também estão associados a essa via, também apresentam conexão com a via de resposta a fungos e a via de resposta por peptídeos antimicrobianos. Já no caso das vias relacionadas ao estresse de RE e homeostase iônica no RE, os genes relacionados diferencialmente expressos foram os genes *grina* e *tmbim6* (Figura 4.1.6B).

Figura 4.1.6 – Interação e nível de expressão dos genes associados às vias enriquecidas em pacientes ENH na comparação com LL. (A) *cnetplot* e (B) *heatmap* das vias mais enriquecidas após análise de ORA. Em (A) as 15 vias mais enriquecidas foram selecionadas. O tamanho e a cor dos círculos representam, respectivamente, o número de genes associados a cada via e o nível de expressão em *fold change* conforme as escalas. Em (B) Cada quadrado indica a quais vias determinado gene está associado, e a cor representa o valor de Log₂FC conforme a escala.

Como foi observado um perfil mais heterogêneo entre os pacientes ENH, principalmente por 4 pacientes em particular, que apresentaram um perfil de expressão mais similar ao perfil observado para os pacientes não reacionais, foi realizada uma nova análise, com um novo subgrupo de amostras que excluíam esses pacientes (ENH 3, 5, 6 e 11). O resultado obtido com a nova análise de DGE para esse subgrupo está apresentada no anexo 4. Inicialmente, pode-se observar que a análise de DGE para esse novo subgrupo de pacientes ENH em comparação aos pacientes LL resultou em um número maior de genes diferencialmente expressos, evidenciado no volcano plot pelos pontos em azul, inclusive apresentando genes modulados negativamente no ENH, o que não havia sido observado com a análise considerando todas as amostras (Figura 4.1.7A). Nesta nova análise também se observam alguns genes modulados positivamente no ENH em destague no volcano plot que tinham sido observados na primeira análise, como os genes cd177, mmp8, *tlr5, cd274, lrg1, batf2, hp, fcgr1a, fcgr1b*, dentre outros (Figura 4.1.7A). Neste novo subgrupo de pacientes reacionais observou-se 407 genes regulados positivamente e 103 genes regulados negativamente de forma significativa em relação ao grupo de pacientes LL (anexo 4). Na análise de componente principal pode-se observar um perfil muito parecido com a análise anterior, com os pacientes ENH, em vermelho, dispersos, enquanto os pacientes LL, em amarelo, se agrupam mais uniformemente (Figura 4.1.7B). Mais ainda, no *heatmap* gerado para essa análise todos os pacientes ENH se encontram agora agrupados, mantendo, contudo, a observação da primeira análise de um grupo mais heterogêneo com dois subgrupos distintos, contrapondo-se a um perfil de expressão gênico homogêneo nos pacientes LL (Figura 4.1.7C). No heatmap pode-se confirmar a observação de um número maior de genes modulados, além da presença de genes negativamente modulados nos pacientes reacionais, em comparação com o grupo LL (Figura 4.1.7C).

Figura 4.1.7 – Reanálise da expressão gênica diferencial de ENH x LL, excluindo pacientes reacionais com perfis muito distintos. (A) *Volcano plot* em que o eixo y representa o Log de valor de p e eixo x configura o log₂fold change. Cada gene é representado por um ponto e genes significativamente expressos, com log₂fold change maior ou menor que 0,585 e -0,585, respectivamente, estão destacados em azul. (B) Análise de componente principal dos genes diferencialmente expressos em pacientes ENH (Vermelho - n= 11) em relação a pacientes não reacionais LL (Amarelo - n=7). (C) *heatmap* representando os níveis de expressão gênica em uma escala de Log₂fold change (Log₂FC) -3 de (azul escuro) até 3 (vermelho). Pacientes não reacionais (LL-amarelo, n=7) e pacientes (ENH – amarelo, n=11).

De modo análogo ao que foi realizado na análise anterior, foi realizada uma análise de ORA para avaliar as vias enriquecidas nessa nova análise, tanto para os genes regulados positivamente, o que permite uma comparação com a análise anterior, quando todos os pacientes ENH estavam incluídos, mas também para os genes regulados negativamente, que aparecem exclusivamente na análise para esse novo subgrupo. Inicialmente, ao analisar as vias enriquecidas relacionadas com os genes diferencialmente expressos, foram observadas 474 vias enriquecidas com valor de *p* ajustado menor que 0,1 (Anexo 5). As 30 vias mais enriquecidas entre os genes regulados positivamente estão representadas hierarquicamente pelo *odds ratio* no *dotplot* mostrado na Figura 4.1.8. De forma similar ao observado anteriormente, as principais vias enriquecidas e com o maior número de genes diferencialmente expressos foram vias associadas à ativação, degranulação e resposta imune neutrofílica e granulocítica. Porém, como desta vez foram observados um número maior de genes modulados, o número de genes associados a cada via aumentou, e, no caso das vias neutrofílicas, mais de 60 genes foram detectados (Figura 4.1.8).

Mais ainda, foram novamente observados um enriquecimento de vias associadas à resposta de defesa a bactérias e a outros organismos, bem como enriquecimento de vias relacionadas à regulação da secreção proteica e de resposta a sinalização de IFN-γ, todas contendo um número de representantes maior que 20 genes (Figura 4.1.8). Contudo, também foram observadas novas vias enriquecidas nesta reanálise, de modo geral vias relacionadas à resposta imune inata e resposta inflamatória, incluindo vias de ativação de macrófagos e de secreção da citocina IL-1β (Figura 4.1.8).

Figura 4.1.8 - Vias reguladas positivamente na reanálise da comparação de ENH com LL. *Dotplot* das 30 vias mais enriquecidas após análise de ORA dispostas hierarquicamente de acordo com o valor do *odd ratio.* O tamanho do círculo representa o número de genes representados na via, e a cor o valor de *p* ajustado conforme demonstrado na escala.

A análise mais detalhada da interação entre as vias e dos genes pertencentes a cada via está representada tanto no *cnetplot* quanto no *heatplot*, onde as 10 vias mais enriquecidas na análise desse *dataset* foram selecionadas. Destacam-se as vias relacionadas à resposta e ativação neutrofílica e resposta a bactérias, formando dois grandes *clusters* que compartilham 21 genes (Figura 4.1.9). Dentre esses genes compartilhados, encontram-se genes já observados na primeira análise, como os genes *s100a9*, *s100a12*, *hp e lrg1*, mas expande a observação de outros genes relevantes para a resposta imune inata como *tlr2*, *camp* [que codifica o peptídeo antimicrobiano catelicidina (Zanetti, 2004)], *arg1* [que codifica arginase 1 (Monticelli et al., 2016)] e s100a8. Dentro do cluster associado à via de resposta a bactéria se observa além do gene tlr5, já detectado primeira análise, outros receptores Toll, como os codificados pelos genes tlr1 e tlr9, além de outros genes importantes para a resposta imune inata, como o gene nod2, um receptor de reconhecimento padrão intracelular, que reconhece peptidoglicanos bacterianos (Mahla et al., 2013). Aparecem também nesta análise os genes il27, tnfrsf1a (que pertence a superfamília 1A de receptores de TNF; Baker et al., 1991), *icam1*, também conhecido como CD54, que codifica a molécula de adesão ICAM-1 (Rothlein et al., 1986), importante no processo de transmigração endotelial das células mieloides e linfócitos para os tecidos (Muller, 2009) e genes associados com a via de inflamassoma como il1b, nlrc4 e casp1 (Lamkanfi and Dixit, 2012). No cluster associado com as vias de ativação neutrofílica, além dos genes modulados na primeira análise, como os genes cd177, mmp8, olfm4 e mcemp1 [que codifica a proteína 1 expressa por mastócitos (Li et al., 2005)], se observam também outros destaques associados com a imunidade de modo geral, como o gene *il4r*, que codifica o receptor de IL-4 (Pritchard et al., 1991), *il18rap*, que codifica a proteína acessória do receptor de IL-18, que garante alta afinidade por IL-18 (Debets et al., 2000), cxcr1, que codifica o receptor de IL-8 (Park et al., 2011), tnfaip6, a proteína induzida por TNF, associado a processos inflamatórios (Milner and Day, 2003) e retn, que codifica a proteína resistina que está presente nos grânulos azurófilos de neutrófilos (Boström et al., 2009).

Figura 4.1.9 - Interação e nível de expressão dos genes associados às vias enriquecidas na reanálise da comparação de ENH com LL. (A) *cnetplot* dos genes associados às 10 vias mais enriquecidas após análise de ORA. o tamanho do círculo representa o número de genes representados na via e a cor, o nível de expressão em *fold change* conforme demonstrado na escala. (B) *heatplot* de top 10 vias enriquecidas após análise de ORA em que cada quadrado representa a quais vias determinado gene é associado e a cor representa valor de Log₂FC conforme demonstrado na legenda da escala.

Diferentemente da análise anterior onde todos os pacientes ENH foram incluídos, a análise deste *dataset* mostrou cerca de 100 genes negativamente modulados nos pacientes ENH em comparação aos pacientes não reacionais. Os 30 genes que apresentaram maior regulação negativa da sua expressão estão listados na tabela 4.1.1. Dentre estes, destacam-se os genes *mmp28*, uma metaloproteinase que se relaciona com os processos de reorganização da matriz extracelular (Rodgers et al., 2009), e também relacionada com a polarização de macrófagos para um perfil m2 (Gharib et al., 2014); *ccr4*, receptor das quimiocinas TARC (CCL17) e CCL22 (Yoshie and Matsushima, 2015) e *p2ry10*, um receptor purinérgico pertencente a família P2Y que já foi associado ao processo de degranulação eosinofílica (Hwang et al., 2018).

Símbolo	Nome do gene	log2foldchange	pvalue	padj
HS3ST1	heparan sulfate-glucosamine 3-sulfotransferase 1	-1,45728	8,78E-06	0,000917
MMP28	matrix metallopeptidase 28	-1,34662	3,42E-05	0,002244
PCBD2	pterin-4 alpha-carbinolamine dehydratase 2	-1,20225	2,71E-06	0,000444
FCGBP	Fc fragment of IgG binding protein	-1,12348	2,01E-05	0,001599
PTPRK	protein tyrosine phosphatase receptor type K	-1,11785	2,42E-05	0,001741
ZDHHC11B	zinc finger DHHC-type containing 11B	-1,01445	0,000141	0,005612
C14orf132	chromosome 14 open reading frame 132	-1,00706	3,34E-05	0,002209
MROH7-TTC4	MROH7-TTC4 readthrough (NMD candidate)	-0,9865	0,000328	0,009749
ZNF285	zinc finger protein 285	-0,98554	1,9E-05	0,001556
CCR4	C-C motif chemokine receptor 4	-0,97375	6,38E-06	0,000749
CCDC144CP	coiled-coil domain containing 144C, pseudogene	-0,96609	0,000298	0,009185
DUSP4	dual specificity phosphatase 4	-0,89921	9,81E-06	0,00097
EHBP1	EH domain binding protein 1	-0,88246	2,7E-06	0,000444
PLAAT5	phospholipase A and acyltransferase 5	-0,87104	0,000458	0,011788
P2RY10	P2Y receptor family member 10	-0,85022	3,95E-06	0,000567
CHD5	chromodomain helicase DNA binding protein 5	-0,84933	0,000525	0,012613
TAMALIN		-0,84479	5,62E-06	0,000689
RCAN3	RCAN family member 3	-0,83668	5,43E-07	0,00017
GALNT12	polypeptide N-acetylgalactosaminyltransferase 12	-0,80703	4,92E-05	0,00284
VPS4B	vacuolar protein sorting 4 homolog B	-0,79314	0,000465	0,011858
WNT7A	Wnt family member 7A	-0,79204	0,000359	0,010243
MAGED1	MAGE family member D1	-0,7818	0,000156	0,005976
NOG	noggin	-0,78082	0,000301	0,009236
ELAPOR2		-0,77946	0,000317	0,009482
ZNF860	zinc finger protein 860	-0,77675	0,000732	0,015731
ADAM22	ADAM metallopeptidase domain 22	-0,77398	0,000113	0,004782
CA5B	carbonic anhydrase 5B	-0,76531	6,11E-06	0,000734
TRBV12-4	T cell receptor beta variable 12-4	-0,76357	0,000282	0,008959
PATJ	PATJ crumbs cell polarity complex component	-0,76209	3,65E-06	0,00054
GPR15	G protein-coupled receptor 15	-0,75529	0,000741	0,01585

Tabela 4.1.1- Genes regulados negativamente na reanálise da comparação de ENH com LL.

A análise de enriquecimento de vias que albergam os genes downregulados demonstrou cerca de 40 vias moduladas (Anexo 5), sendo as vias com maior odds ratio, entre 30 e 40, as vias relacionadas com morfogênese e desenvolvimento de mesonefro e outros componentes do sistema renal, bem como vias de produção de IL-5. Logo em sequência, com odds ratio intermediários, entre 30 e 10, pode-se observar uma grande extensão de vias relacionadas a desenvolvimento do sistema renal, bem como alguns destaques para vias de diferenciação de células T e produção de IL-4 (Figura 4.1.10A). Importante ressaltar, que mesmo com menor odds ratio, mas ainda assim com cerca de 9 genes, são observadas vias de quimiotaxia. De modo geral se observam a modulação de vias associadas à diferenciação e ativação de células T e ao desenvolvimento e morfogênese, principalmente do sistema renal e vias relacionadas com a produção de IL-4 e IL-5 (Figura 4.1.10A). Ao analisar os genes modulados em detalhe, vale destacar o gene gata3 que está intimamente relacionado com a diferenciação para o perfil Th2, e portanto, com a promoção da produção de citocinas das perfil, como IL-4, IL-5 e IL-13 (Zheng and Flavell, 1997), e está associado

com a maioria das vias moduladas negativamente, só não estando associado a três vias (Figura 4.1.10B). Já os principais genes relacionados às vias de ativação e diferenciação de células T são *ccr7, cd28* e *bcl11b*, enquanto os genes *dchs1, maged1, nog* e *sox8* estão associados às vias de morfogênese e desenvolvimento do sistema renal. Assim, é possível traçar um perfil majoritariamente de regulação negativa da ativação da resposta de células T, morfogênese do sistema renal e de produção de IL-4 e IL-5, embora tais observações devam ser feitas com cautela, uma vez que ela não se estende para todo o grupo de pacientes ENH, sugerindo que há um perfil bem heterogêneo entre os pacientes.

Figura 4.1.10 - *Dotplot* e *heatplot* das vias e genes regulados negativamente na reanálise da comparação de ENH com LL. (A) *dotplot* das 40 vias com maior modulação negativa dispostas hierarquicamente de acordo com o valor de *odds ratio.* O tamanho do círculo representa o número de genes associados à via e a cor, o valor de *p* ajustado conforme demonstrado na escala. (B) *heatplot* das mesmas vias em que cada quadrado indica a quais vias determinado gene se encontra associado e a cor representa o valor de Log₂FC conforme demonstrado na legenda da escala.

4.1.3 – Comparação do perfil de expressão gênica de células sanguíneas de pacientes reacionais no diagnóstico de ENH e 7 dias após o inicio do tratamento com talidomida

A análise em larga escala do efeito da talidomida no perfil de expressão gênica das células sanguíneas dos pacientes reacionais é inédita e, portanto, ainda muito necessária para melhor compreender os mecanismos de ação sistêmica da talidomida durante o episódio reacional. Dessa forma, foi realizado um estudo longitudinal, com amostras pareadas dos pacientes ENH quando do diagnostico da reação (grupo ENHvermelho) e no sétimo dia de tratamento com talidomida (Grupo ENH + TAL – azul).

A análise de componente principal revela um perfil de expressão gênica heterogêneo, sem uma separação clara entre os grupos ENH e ENH + TAL (Figura 4.1.11A). Os dados completos da análise de expressão diferencial de genes estão descritos no anexo 6, em que foram observados 41 genes modulados positivamente e 23 genes com modulação negativa no grupo ENH + TAL, quando comparado ao grupo ENH. Uma representação gráfica pode ser vista no volcano plot, em que se observa esse maior número de genes com regulação positiva (Figura 4.1.11B). Dentre os genes menos expressos no grupo ENH + TAL, destacam-se os genes kcnh3, que codifica um canal de potássio dependente de voltagem (Gutman et al., 2005); celsr2, que codifica um tipo de caderina que pertence a subfamília flamingo (Vincent et al., 2000); e hapln3, uma proteína relacionada à ligação ao ácido hialurônico (Spicer et al., 2003), sendo os 3 genes com o menor valor de Log₂FC gênica (Figura 4.1.11B). Dentre os genes induzidos, destacam-se os genes camp e chit1, que já havia sido visto modulados positivamente na comparação ENH x LL, principalmente na análise com o segundo dataset; o gene igfbp2, que codifica uma proteína ligante de fator de crescimento semelhante a insulina (IGF) (Ding and Wu, 2018); o gene alox15, que codifica uma lipoxigenase associada à via de resolvinas com papel anti-inflamatório (Kim et al., 2018b); e o gene *il5ra*, que anteriormente foi visto regulado negativamente na comparação ENH X LL na análise com o segundo dataset (Figura 4.1.11B).

Figura 4.1.11- PCA e volcano plot da análise de expressão gênica diferencial de ENH + TAL x ENH. (A) Análise de componente principal dos genes diferencialmente expressos em pacientes ENH no sétimo dia de tratamento com talidomida (ENH + TAL, azul - n= 12) em relação a pacientes ENH não tratados (ENH, vermelho, - n=15). (B) *Volcano plot* com genes significativamente diferencialmente expressos na comparação ENH + TAL x ENH.

Ao avaliar o perfil de expressão gênica entre os dois grupos no *heatmap*, podeser observar que com exceção dos pacientes ENH + TAL 5 e 7, a expressão gênica no grupo ENH + TAL parece muito homogênea. Já no grupo ENH, a metade inferior apresenta um perfil mais heterogêneo (Figura 4.1.12). Além disso, também pode-se observar um grande bloco de genes *upregulados* que formam a assinatura genética do grupo ENH + TAL, compondo dois terços inferiores do *heatmap*, enquanto o terço superior encontra-se modulado negativamente nesses pacientes em comparação aos pacientes ENH não tratados (Figura 4.1.12).

Figura 4.1.12 – *Heatmap* do perfil de expressão gênica diferencial de células sanguíneas na comparação de ENH + TAL com ENH. Níveis de expressão gênica estão representados em um escala de -4 (azul escuro) até 4 (vermelho) do Log₂ de *fold change* (Log₂FC). Pacientes reacionais quando do diagnostico de ENH (ENH – vermelho, n=15), e pacientes ENH no sétimo dia de tratamento com talidomida (ENH + TAL – azul, n=12).

Na análise das vias enriquecidas relacionadas aos genes regulados positivamente no grupo ENH + TAL (Anexo 6), observa-se que das 30 vias mais reguladas, as principais vias com o maior número de genes estão envolvidas com ativação e degranulação de neutrófilos, bem como com processos associados a resposta imune mediada por neutrófilos, com mais de 15 genes significativamente regulados (Figura 4.1.13A). Também foram observadas outras vias induzidas que já estavam moduladas positivamente quando da comparação entre ENH e LL, como as vias de resposta a bactéria, e vias de resposta de defesa a bactérias e a outros organismos (Figura 4.1.13A). Mais ainda, outras vias ainda associadas à resposta imune que estão enriquecidas no grupo ENH + TAL, mas que não apareceram anteriormente na comparação entre pacientes ENH e LL, são as diferentes vias relacionadas a resposta imune humoral e vias de imunidade de mucosa, com grande destague por apresentarem os maiores valores de odds ratio, bem como as vias de adesão celular e vias associadas à morte celular de outros organismos (Figura 4.1.13A). Notadamente, algumas vias foram exclusivamente observadas na comparação ENH + TAL x ENH como a via de biossíntese de ácidos graxos de cadeia longa, além da via de transporte de cofator (Figura 4.1.13A).

Ao avaliar o mapa de enriquecimento pode-se observar um perfil com dois agrupamentos de vias, um de vias relacionadas à resposta neutrofílica e outro relacionado à resposta imune humoral, que estão bem interconectados pelas vias de resposta a bactéria e resposta a outros organismos (Figura 4.1.13B). O perfil observado na comparação de ENH + TAL x ENH apresenta dois *cluster* interconectados, um *cluster* relacionado à ativação neutrofílica e outro relacionado à resposta imune de defesa à bactérias e outros organismo, sendo bem semelhante ao observado para a análise do segundo *dataset* de ENH x LL. Entretanto, no caso do grupo ENH + TAL, o segundo *cluster* está associado a uma resposta imune humoral. Mais ainda, se observam três grupos funcionais isolados do *cluster* principal. Duas vias não estão conectadas a mais nenhuma, a via de regulação da regulação leucocítica, na parte superior da imagem, e a via de transporte de cofator. Já o terceiro grupo funcional forma um pequeno agrupamento de vias relacionadas a adesão celular que estão interconectadas, incluindo aqui também a via de processo biossintético de ácidos graxos de cadeia longa (Figura 4.1.13B).

Figura 4.1.13 – Dotplot e emapplot das vias induzidas na comparação do grupo ENH + TAL com ENH. (A) *dotplot* das 30 vias mais enriquecidas após análise de ORA dispostas hierarquicamente de acordo com o odds ratio. O tamanho do círculo representa o número de genes representados na via e a cor, o valor de *p* ajustado conforme indicado na escala. (B) *emapplot* das 20 vias mais enriquecidas em que cada conexão representa genes sobrepostos em cada via. O tamanho do círculo representa o número de genes representados na via e a cor, o valor de genes representados na via e a cor, o valor de genes representados na via e a cor, o valor de *p* ajustado conforme indicado na escala.

Um olhar detalhado dos genes que compõem as dez principais vias induzidas no grupo ENH + TAL em relação a ENH mostra que quatro genes são compartilhados entre as vias de resposta neutrofílica e as vias de resposta imune humoral e de mucosa: os genes *lcn2, ltf, rnase3* e *camp*, este último responsável por codificar o peptídeo antimicrobiano catelicidina. Em contrapartida, o outro peptídeo antimicrobiano, a α -defensina, codificada pelo gene *defa3*, se relaciona somente com as cinco vias associadas à resposta imune humoral e de mucosa, e o gene *pi3*, que codifica a proteína inibidora de peptidase 3 (Clauss et al., 2002), se relaciona com a via de resposta humoral antimicrobiana. Os genes *camp*, *defa3*, *lcn2*, *ltf* e *rnase3* também estão associados as vias de resposta a defesa a bactéria e outros organismos, assim como o gene *rnase2*, que além de estar associado às vias de resposta neutrofílica, também se associa à via de resposta de defesa a outros organismos (Figura 4.1.14). Em contrapartida, alguns genes estão apenas associados a uma via, como os genes *clc, igfbp2* e *il5ra*, que estão associados à via de regulação da proliferação leucocítica e o gene *slc9a3r1*, que está associado unicamente à via de transporte de cofator, mas que também alberga os genes *tcn1* e *lcn2*. O gene *vsig4* também está associado à via de regulação da proliferação leucocítica, bem como à via de resposta imune humoral. Os principais genes induzidos relacionados às vias de adesão celular são os genes *ceacam6* e *alox15*, esse último também associado à via de processo biossintético de ácidos graxos de cadeia longa, que por sua vez também está associada ao gene *myosa*m (Figura 4.1.14)

Figura 4.1.14 - *Heatplot* dos genes induzidos na comparação de ENH + TAL x ENH. *heatplot* das vias enriquecidas após análise de ORA em que cada quadrado representa a quais vias determinado gene está associado e a cor representa o valor de Log₂FC conforme indicado na legenda da escala.

Embora tenham sido observados genes modulados negativamente na comparação ENH + TAL x ENH, apresentados na tabela 4.1.2, não foi encontrada nenhuma via enriquecida a partir dos genes observados. Entretanto, o gene *nlrp6,* associado ao inflamassoma (Zheng et al., 2021), se destaca dentre os genes modulados negativamente, assim como o gene *mpzl1*, que atua como um receptor de concavalina A (Yu et al., 2018).

Símbolo	Nome do gene	log2foldchange	pvalue	padj
CELSR2	cadherin EGF LAG seven-pass G-type receptor 2	-2,37228	2,19E-07	0,000298
KCNH3	potassium voltage-gated channel subfamily H member 3	-1,95284	1,9E-09	5,19E-06
HAPLN3	hyaluronan and proteoglycan link protein 3	-1,64471	6,75E-14	9,21E-10
MRAS	muscle RAS oncogene homolog	-1,63821	1,75E-06	0,00133
MYH10	myosin heavy chain 10	-1,48323	9,29E-06	0,004872
RNA5SP389	RNA, 5S ribosomal pseudogene 389	-1,35247	9,17E-10	3,13E-06
ZNF608	zinc finger protein 608	-1,26658	1,07E-05	0,005198
SPCS1	signal peptidase complex subunit 1	-1,2465	1,88E-05	0,00692
C11orf95	chromosome 11 open reading frame 95	-1,18961	3,83E-05	0,011363
PEG10	paternally expressed 10	-1,07041	6,6E-05	0,017688
FMO5	flavin containing monooxygenase 5	-1,03173	2,8E-05	0,009104
ENAH	ENAH actin regulator	-0,90377	9,4E-05	0,020978
ТК2	thymidine kinase 2	-0,86591	6,18E-06	0,003805
RNA5SP202	RNA, 5S ribosomal pseudogene 202	-0,80675	8,73E-05	0,020477
ARHGAP23	Rho GTPase activating protein 23	-0,75136	0,000209	0,033584
TDRD9	tudor domain containing 9	-0,74242	0,000108	0,022322
CYP1B1	cytochrome P450 family 1 subfamily B member 1	-0,74179	2,7E-05	0,008972
VASH1	vasohibin 1	-0,72486	2,56E-05	0,008729
NLRP6	NLR family pyrin domain containing 6	-0,65586	6,61E-05	0,017688
MPZL1	myelin protein zero like 1	-0,6424	8,31E-07	0,000709
SLC46A2	solute carrier family 46 member 2	-0,63579	7,28E-05	0,01856
C4BPA	complement component 4 binding protein alpha	-0,61514	0,000273	0,040876
SLC8A1	solute carrier family 8 member A1	-0,60517	8,29E-05	0,020199

Tabela 4.1.2 - Genes regulados negativamente na análise pareada ENH + TAL x ENH

Também foi determinada em uma análise de grupos independentes, a expressão diferencial de genes entre os grupos ENH + TAL e LL. Os dados de expressão diferencial estão apresentados no anexo 9. Ao avaliar o resultado da análise de componente principal, podemos observar, um perfil muito semelhante à comparação ENH x LL (Figura 4.1.3A), onde os pacientes LL (amarelo) estão mais agrupados, enquanto os pacientes ENH + TAL (azul) estão mais dispersos, com apenas duas amostras posicionadas mais próxima do grupo LL (Figura 4.1.15A). Foram observados 345 genes positivamente regulados e 60 genes negativamente regulados no grupo ENH + TAL em relação aos pacientes LL (Anexo 9). Na representação gráfica do *volcano plot* pode-se observar uma quantidade mais expressiva de genes positivamente regulados no grupo ENH + TAL x ENH, como os genes *camp, chit1, ltf, olfm4,crisp3, tcn1, lcn2, retn, abca13, chi311* e *igfbp2* (Figura 4.1.15B). Dentre os genes *downregulados*, apenas os genes *celsr2* e *slc41a2* estão em destaque, sendo o primeiro também altamente modulado

negativamente na comparação ENH + TAL x ENH, sugerindo a forte correlação do tratamento com talidomida com esse gene.

Figura 4.1.15 - PCA e volcano plot da análise de expressão gênica diferencial de ENH + TAL x LL. (A) Análise de componente principal dos genes diferencialmente expressos em pacientes ENH + TAL (azul - n=12) em relação a pacientes não reacionais LL (amarelo - n=7). (B) Volcano plot com genes significativamente diferencialmente expressos na comparação ENH + TAL x LL.

Ao avaliar o perfil de expressão gênica no *heatmap*, observa-se uma divisão dos pacientes ENH + TAL, em azul, em dois subgrupos, embora os dois apresentem um perfil de expressão similar. No subgrupo à esquerda do *heatmap*, os pacientes identificados como ENH + TAL 12, 1 e 9 apresentam perfis muito similares, com um acentuado número de genes com aumento da expressão gênica (Figura 4.1.16). Já os pacientes ENH + TAL 2 e 5 estão mais similares ao perfil encontrado nos pacientes LL, em amarelo, que formam um grupo bem homogêneo, com um quarto superior com genes mais expressos e 3/4 inferiores menos expressos em relação aos pacientes ENH + TAL (Figura 4.1.16).

Figura 4.1.16 - *Heatmap* do perfil de expressão gênica diferencial de células sanguíneas entre os grupos de pacientes ENH + TAL e LL. Níveis de expressão gênica estão representados de -4 (azul escuro) até 4 (vermelho) na escala de Log₂*fold change* (Log₂FC). Pacientes não reacionais (LL – amarelo, n=7) e pacientes ENH no sétimo dia de tratamento com talidomida (ENH + TAL – azul, n=12).

As análises de vias enriquecidas mostraram resultados semelhantes aos obtidos nas comparações anteriores ENH x LL e ENH + TAL x ENH (Anexo 10). As principais vias enriquecidas relacionadas aos genes induzidos são vias de resposta neutrofílica que apresentam maior número de genes, mais de 30 genes associados. Também foram observadas vias associadas a resposta imune humoral, resposta de morte celular, morte de outros organismos e resposta de defesa a bactérias e a outros organismos (Figura 4.1.17A). Naturalmente, por ter sido visto um número maior de genes positivamente regulados, algumas vias que foram observadas na análise de ENH + TAL x ENH aparecem de forma estendida na comparação dos pacientes reacionais tratados com talidomida em relação aos pacientes não reacionais, como as

vias relacionadas a homeostase iônica, também sendo vista vias de homeostase de cátions e íons inorgânicos com mais genes associados, entre 20 a 30 genes. Mais ainda, também foram vistas vias relacionadas ao catabolismo de drogas, possivelmente relacionadas ao processamento da talidomida em si, assim como outras vias catabólicas, como vias de catabolismo de cofatores e de peróxido de hidrogênio, sendo essa última a via com o maior valor de *odds ratio* (16). Outras vias inéditas também estão enriquecidas, como vias relacionadas aos processos de maturação e desenvolvimento de eritrócitos e de homeostase e diferenciação de eritrócitos, com *odds ratio* entre 16 e 12, além de vias de metabolização de grupamento heme, que apresentam cerca de 10 genes (Figura 4.1.17A).

Adicionalmente, pode-se observar cinco grupamentos funcionais distintos no *emapplot*, embora o grupamento maior e mais interconectado apresente dois polos, um associado à resposta neutrofílica e outro associado à resposta imune humoral e resposta de ataque a outros organismos altamente conectados por intermédio das vias relacionadas à resposta de defesa a bactérias, resposta a bactérias, resposta de defesa a outros organismos e resposta humoral antimicrobiana, sendo um perfil bem similar ao observado na análise de ENH + TAL x ENH (Figura 4.1.17B). Também é observado um grupo funcional isolado, relacionado a vias de homeostase de cátions. Os outros dois *clusters* bem distintos são os *clusters* de desenvolvimento e diferenciação de eritrócitos, que também se interconecta com vias de desenvolvimento e homeostase de células mieloides e o *cluster* de catabolismo, que inclui as vias de catabolismo de droga e de cofator, de peróxido de hidrogênio, detoxificação de oxidante celulares (Figura 4.1.17B).

30

0.01

0.02 0.03

0.04

Figura 4.1.17 – Dotplot e emapplot das vias positivamente reguladas na comparação ENH + TAL x LL. (A) dotplot das 40 vias mais enriquecidas após análise de ORA dispostas hierarquicamente de acordo com o valor de odds ratio. O tamanho do círculo representa o número de genes representados na via e a cor, o valor de p ajustado conforme demonstrado na escala. (B) emapplot das 40 vias mais enriquecidas em que cada conexão representa genes sobrepostos em cada via. O tamanho do círculo representa o número de genes representados na via, e a cor, o valor de p ajustado conforme demonstrado na escala.

perovi

hydrogen p

drug catabolic process

tabolic process myeloid cell homeostasis

e metabolic process

regulation of hy

cellular oxidant detoxification

c pro

hydrogen peroxide

A maioria dos genes induzidos na comparação ENH + TAL x LL estão associados as vias de ativação e resposta de neutrófilos, que congregam 37 genes. Dentre esses, muitos genes já foram observados regulados positivamente tanto na comparação ENH x LL, quanto na comparação ENH + TAL x ENH (Figura 4.1.18). Existem 32 genes com log₂FC acima de 2, dentre esses se encontram os principais genes observados tanto em ENH + TAL x ENH e ENH x LL, como os genes olfm4, olr1, mmp8, slc2a5, clec5a, crisp3, mcemp1, chi3l1, tcn1, retn, camp, ltf, lcn2, hp, chit1 e abca13. Alguns outros genes associados as vias de resposta neutrofílica também estão em destaque, como os genes s100a9, arg1, defa4 e mmp9. As vias de ativação e resposta neutrofílica estão interconectadas com cinco vias, sendo as vias de resposta de defesa a bactérias, via de resposta imune humoral antimicrobiana mediada por peptídeo antimicrobiano e via de resposta humoral as que compartilham mais genes (Figura 4.1.18). Os principais genes que são compartilhados por essas vias são os genes camp, pglyrp1, ltf, s100a12, hp, rnase3, defa4, s100a9, lcn2 e bpi. A via de resposta de defesa a bactéria também se relaciona com mais cinco genes, os genes tlr5, optn, slamf8, nod2 e cebpe. O gene pi3 apenas está associado à via de reposta humoral antimicrobiana, enquanto o gene hp, associado às vias de resposta neutrofílica, também está anotado nas via de resposta de defesa a bactéria e as vias de processo catabólico de drogas e processo catabólico de peróxido de hidrogênio. A via de catabolismo de droga compartilha com as vias de resposta neutrofílica o gene chit1, além de também apresentarem como genes modulados diferencialmente os genes kyat1, gpx3, gpx1, ache, smox, fah, prdx2 e snca, dentre os quais, snca, gpx3, prdx2 e gpx1 também são associados a via de processo catabólico de peróxido de hidrogênio. Já em relação às vias de desenvolvimento e diferenciação de eritrócitos, oito genes são compartilhados, os genes bpgm, trim58, epb42, dmtn, scl4a1, tal1, gata1 e fam210b. Contudo, a via de diferenciação eritrocítica ainda está relacionada a outros quatro genes, os genes alas2, klf1, trim10 e dyrk3 (Figura 4.1.18). Mais ainda, também é importante ressaltar que a via de resposta de defesa a outros organismos, além de compartilhar muitos genes já relatados com as vias de resposta a bactéria, também apresenta genes que estão exclusivamente associados a essa via, como os genes batf2 e bnp3l, bem como genes compartilhados com a via de resposta a fungo, como por exemplo *il17rc* (Figura 4.1.18B).

Figura 4.1.18 – Cnetplot e heatplot dos genes induzidos na comparação ENH + TAL x LL. (A) cnetplot das 15 vias mais enriquecidas após análise de ORA contendo os genes associados a cada via, em que o tamanho do círculo representa o número de genes representados na via e a cor, o nível de expressão em fold change conforme demonstrado na escala. (B) heatplot das 25 vias mais enriquecidas após análise de ORA em que cada quadrado representa a quais vias determinado gene está associado e a cor representa valor de Log₂FC conforme demonstrado na legenda da escala.

Assim como na comparação THAL x ENH, na comparação THAL x LL não é observado um enriquecimento de vias para o conjunto de genes *reprimidos*. Alguns dos principais genes modulados negativamente se repetem em relação a análise anterior, como os genes *celsr2, hapln3* e *kcnh3* (Tabela 4.1.2), sugerindo que devam ser melhor estudados futuramente. Interessantemente, o fator de transcrição *sox4*, que é importante para promoção de proliferação (Moreno, 2020) e está envolvido em uma série de processos durante a embriogênese (Miao et al., 2019), está modulado negativamente no grupo tratado com talidomida. Mais ainda, o gene *tnfrs21*, que integra a superfamília de receptores de TNF também está menos expresso durante o tratamento com talidomida (Tabela 4.1.3).

Símbolo	Nome do gene	log2foldchange	pvalue	padj
CELSR2	cadherin EGF LAG seven-pass G-type receptor 2	-2,99926	9,57E-10	2,75E-06
SLC41A2	solute carrier family 41 member 2	-2,33465	4,48E-06	0,001696
HAPLN3	hyaluronan and proteoglycan link protein 3	-1,95955	2,51E-12	1,81E-08
C11orf95	chromosome 11 open reading frame 95	-1,8811	4,63E-10	1,66E-06
KCNH3	potassium voltage-gated channel subfamily H member 3	-1,77533	1,09E-05	0,00277
KRT5	keratin 5	-1,73631	9,21E-05	0,009681
MRAS	muscle RAS oncogene homolog	-1,57711	9,32E-06	0,002626
HMGB1P5	high mobility group box 1 pseudogene 5	-1,57153	0,000197	0,014504
VMO1	vitelline membrane outer layer 1 homolog	-1,55929	9,85E-05	0,009976
MID1	midline 1	-1,54374	0,000163	0,013137
AL357143.1		-1,5042	0,000209	0,015117
HES4	hes family bHLH transcription factor 4	-1,48772	5,66E-05	0,007588
CFD	complement factor D	-1,45992	1,3E-05	0,003053
CDKN1C	cyclin dependent kinase inhibitor 1C	-1,38406	7,45E-05	0,008853
XKRX	XK related X-linked	-1,33483	0,000121	0,011535
NR4A1	nuclear receptor subfamily 4 group A member 1	-1,28924	1,66E-05	0,003723
SCAMP5	secretory carrier membrane protein 5	-1,27039	0,000134	0,012079
RET	ret proto-oncogene	-1,17315	0,000489	0,025574
GSTA4	glutathione S-transferase alpha 4	-1,16106	0,000579	0,027063
CCDC171	coiled-coil domain containing 171	-1,15849	0,000658	0,029202
BMPR1A	bone morphogenetic protein receptor type 1A	-1,06905	0,000306	0,019125
LRRC26	leucine rich repeat containing 26	-0,98828	0,001086	0,039823
AL358113.1		-0,96372	0,000821	0,033523
СКВ	creatine kinase B	-0,95368	0,000391	0,021959
FMO5	flavin containing monooxygenase 5	-0,95192	5,66E-05	0,007588
SOX4	SRY-box 4	-0,94299	5,84E-07	0,000467
MS4A7	membrane spanning 4-domains A7	-0,93889	6,28E-05	0,007915
AGRN	Agrin	-0,93115	0,000566	0,026931
ABHD6	abhydrolase domain containing 6	-0,88878	2,17E-05	0,004307
MMP28	matrix metallopeptidase 28	-0,88259	0,001238	0,042875

Tabela 4.1.3 - Lista com os 30 genes mais reprimidos na comparação ENH + TAL x LL

Adicionalmente, foram gerados diagramas de Venn para melhor visualização da interpolação dos genes regulados nas três comparações analisadas. Seis genes foram induzidos em todas as condições de análise (Figura 4.1.19A), sendo esses os principais genes recorrentes relacionados as vias de ativação e resposta de neutrófilos, os genes *chit1, olfm4, camp, lcn2, retn* e *crisp3*. Dentre os genes *upregulados* nas três análises, nenhum gene é compartilhado somente entre ENH x LL (azul) e ENH + TAL x ENH (vermelho); Já o maior numero de genes compartilhados (78) foi observada na comparação somente entre ENH x LL (azul) e ENH + TAL x LL (verde), enquanto 17 genes induzidos são compartilhados somente entre ENH + TAL x ENH (vermelho) e ENH + TAL x LL (verde) (Figura 4.1.19A). No caso dos genes *downregulados*, de modo geral, um número menor de genes são observados e nenhum gene é compartilhado unicamente entre as comparações ENH x LL (azul) e ENH + TAL x ENH (vermelho) (Figura 4.1.19B). Apenas 11 genes modulados negativamente são

compartilhados apenas entre as comparações ENH x LL (azul) e ENH + TAL x LL (verde) e 8 genes são compartilhados entre ENH + TAL x LL (verde) e ENH + TAL x ENH (vermelho) (Figura 4.1.19B).

Figura 4.1.19 - Diagramas de Venn dos genes diferencialmente expressos nas comparações entre ENH + TAL x ENH, ENH x LL e ENH + TAL x LL. A análise de ENH x LL está representada em azul, a análise ENH + TAL x ENH está representada em vermelho e a análise ENH + TAL x LL está representada em verde. (A) Comparação entre o número de genes induzidos nas três condições de análise. (B) Comparação entre o número de genes reprimidos nas três condições de análise.

4.2 - Análise da ativação do inflamassoma NLRP3 e do efeito da talidomida em células sanguíneas de pacientes ENH

As análises de RNAseq demonstraram que alguns genes associado ao inflamassoma, como il1b, il1r1, casp1, nlrc4, casp4, casp5, aim2, il18r1 e il18rap estão modulados positivamente nas células sanguíneas dos pacientes ENH em comparação aos pacientes não reacionais LL, principalmente ao considerar o segundo dataset de análise, que também indicou a via de produção de IL-1 como uma das vias enriquecidas. Além disso, deve-se considerar, que mesmo ao analisar o dataset completo, há uma regulação positiva de vias inflamatórias e de regulação da imunidade inata. Dessa forma, para aprofundar a análise da importância da via do inflamassoma durante o episódio reacional, e com isso confirmar que essa via está positivamente regulada, foi realizada uma análise para determinar o score dessa via, considerando o segundo grupo de pacientes ENH, sem os indivíduos outliers. Ao observar o score da via do inflamassoma dentro da base de dados do reactome, notase que há um aumento estatisticamente significativo nos pacientes reacionais (vermelho) em comparação aos não reacionais (amarelo) (Figura 4.2.1A). Também observa-se uma diminuição significativa desse score nos pacientes reacionais no sétimo dia de tratamento com a talidomida (azul), ao comparar com os pacientes ENH

antes do tratamento, além de se notar a redução efetiva do *score* entre os pacientes pareados. Apesar de haver uma tendência a um *score* um pouco maior entre os pacientes ENH tratados com talidomida em comparação com os pacientes LL, essa diferença não é significativa (p=0.29). O mesmo perfil de aumento do *score* da via do inflamassoma também se observa nos pacientes ENH em comparação aos pacientes LL, mas agora comparando com a base de dados do *gene ontology* (GO), com uma diferença significativa (Figura 4.2.1A). Ao comparar as diferenças entre os *scores* entre os pacientes reacionais antes e durante o tratamento com talidomida, não se observam diferenças no *score*, e é observada queda em apenas 3 amostras pareadas, enquanto em 4 amostras há um aumento após o tratamento com talidomida. Entretanto, de forma diferente ao observado para a base da dados do *reactome*, há um leve aumento no *score* entre os pacientes reacionais tratados com talidomida em relação aos pacientes LL, que é estatisticamente significativo (Figura 4.2.1A).

Ao observar especificamente os genes que compõem cada base de dados no *heatmap*, observa-se que os principais genes induzidos no grupo de pacientes reacionais estão presentes em ambas as bases de dados, como *casp1*, *aim2*, *nlrc4* e *pycard* (asc) (Figura 4.2.1B). Contudo, alguns genes presentes somente na base de dados do gene ontology também se destacam, como *gsdmd*, *naip*, *casp4*, *casp5*, *card8* e *nlrp6* e, ao comparar com o grupo de pacientes reacionais tratados com talidomida, se observa uma tendência maior expressão nos pacientes ENH, segundo o indicado pelo *heatmap* (Figura 4.2.1B). Ao analisar os genes presentes somente na base de dados no grupo dos pacientes ENH, podendo ser apontados os genes *nlkb1*, *nlkb2. panx1* e *txnip* (Figura 4.2.1B). Contudo, se observa de forma mais clara uma redução da expressão de um número maior de genes dessa base da dados no grupo tratado com talidomida.

Figura 4.2.1- Análise de score da via do inflamassoma e *heatmap* de células sanguíneas de pacientes dos grupos LL, ENH e ENH tratados com talidomida. (A) *Score* da via do inflamassoma utilizando os bancos de dados do *reactome* (painel esquerdo) e *gene ontology* (painel direito). Pacientes LL (amarelo, n=7), pacientes ENH (vermelho, n=11) e pacientes ENH no sétimo dia de tratamento com talidomida (ENH + TAL – azul, n=12). (B) *Heatmap* com o perfil de expressão gênica genes pertencentes a base de dados do *reactome* e *gene ontology*. Níveis de expressão gênica estão representados em um escala com -3 de (azul escuro) até 3 (vermelho) de log₂*fold change* (Log₂FC). Pacientes não reacionais (LL- amarelo, n=7), pacientes reacionais quando do diagnostico da reação (ENH – vermelho, n=15) e pacientes ENH no dia sétimo dia de tratamento com talidomida (ENH + TAL – azul, n=12).

Numa etapa seguinte, para validar os achados do RNAseq, a expressão de genes associados ao inflamassoma foi avaliada em células sanguíneas de pacientes ENH e BL/LL por qRT-PCR. Pode-se observar que, assim como no RNAseq, foi visto por qRT-PCR uma maior expressão dos genes pró-IL-1β (Figura 4.2.2A); AIM2 (Figura 4.2.2E); NLRC4 (Figura 4.2.2F) e pró-caspase 4 (Figura 4.2.2H) nos pacientes ENH, validando assim as observação do sequenciamento de RNA. No caso do gene da pró-caspase 1 (Figura 4.2.2B), observou-se uma tendência de aumento no ENH, também concordando com o RNAseq. Já o gene de pró-caspase 5, que apresentou modulação positiva nos pacientes reacionais no RNAseq, nos dados de qRT-PCR, que apresenta um n maior, não se observa uma diferença na mediana dos níveis de expressão entre os dois grupos, embora alguns indivíduos reacionais apresentem níveis de expressão bem mais elevados desse gene (Figura 4.2.2I). Mais ainda, os genes NLRP3 (Figura 4.2.2C), pró-IL-18 (Figura 4.2.2D) e ASC (Figura 4.2.2G) que não aparecem entre os genes induzidos no ENH na análise de RNAseq, também não mostraram diferenca de expressão entre pacientes ENH e BL/LL por gRT-PCR. Uma observação importante é que para a maioria dos genes, os pacientes BL/LL que apresentaram uma expressão elevada dos genes do inflamassoma em sua maioria foram indivíduos que desenvolveram um quadro reacional em até um ano após a conclusão da PQT (representados por círculos verdes na Figura 4.2.2).

Figura 4.2.2 - A expressão gênica dos componentes do inflamassoma pró-IL-1 β , **pró-caspase-4**, **AIM2 e NLRC4 se encontra aumentada em pacientes ENH.** Sangue total de pacientes não reacionais BL/LL e de pacientes reacionais (ENH) foi coletado em tubos PAXgene e o RNA foi extraído conforme instruções do fabricante e a expressão gênica de (A) pró-IL-1 β (BL/LL (n=14); ENH (n=19)); (B) pró-caspase-1 (BL/LL (n=14); ENH (n=19)); (C) NLRP3 (BL/LL (n=14); ENH (n=19)); (D) pró-IL-18 (BL/LL (n=10); ENH (n=14)); (E) AIM2 (BL/LL (n=10); ENH (n=15)); (F) NLRC4 (BL/LL (n=9); ENH (n=14)); (G) ASC (BL/LL (n=10); ENH (n=14)), (H) pró-Caspase-4 (BL/LL (n=10); ENH (n=14)) e (I) pró-Caspase-5 (BL/LL (n=10); ENH (n=14)) foram determinadas por qRT-PCR. O gene *rpl13* foi utilizado como gene de referência. Indivíduos destacados em verde foram indivíduos que desenvolveram episódio de reação após a coleta dessa amostra em até 1 ano após o término da PQT. * p<0,05 pelo teste estatístico de Mann-Whitney.

Para avaliar um possível impacto da talidomida na expressão dos genes envolvidos no inflamassoma durante o ENH e também, com isso, validar os resultados do RNAseq, os níveis de expressão gênica de diferentes marcadores foram determinados por qRT-PCR em amostras de células sanguíneas pareadas de pacientes reacionais antes (ENH) e no sétimo dia de tratamento com talidomida (ENH + Tal). Pode-se observar que de um modo geral, há uma expressão bem heterogênea entre os indivíduos para a maioria dos genes, não podendo determinar um perfil definido de alteração da expressão nos dois momentos avaliados (Figura 4.2.3). Apenas o gene NLRP3 apresentou uma alteração significativa, observando-se um aumento nos seus níveis de expressão no grupo de amostras ENH + Tal (Figura 4.2.3C). Parece também haver uma tendência de aumento dos níveis de expressão do gene de pró-caspase 4 (Figura 4.2.3H) e ASC (Figura 4.2.3G) neste grupo de amostras. Os demais genes avaliados mostraram um comportamento heterogênio, ora aumentando ou diminuindo sua expressão nas amostras ENH + Tal. Tais observações estão de acordo com os dados do RNAseq em que também não foram observadas alterações claras de modulação dos genes do inflamassoma e de vias inflamatórias de modo geral no grupo ENH + Tal.

Figura 4.2.3 - Avaliação da expressão gênica de componentes do inflamassoma por qPCR pacientes ENH em tratamento com a talidomida. Sangue total de pacientes ENH quando do diagnostico do episodio reacional (ENH) e no sétimo dia de tratamento com talidomida (ENH+ Tal) foi coletado em tubos PAXgene e o RNA foi extraído para determinação da expressão gênica de (A) pró-IL-1 β (n=10); (B) pró-caspase-1 (n=10); (C) NLRP3 (n=10); (D) pró-IL-18 (n=9); (E) AIM2 (n=10) (F) NLRC4 (n=9); (G) ASC (n=9), (H) pró-Caspase-4 (n=9) e (I) pró-Caspase-5 (n=9) por qRT-PCR. O gene *rpl13* foi utilizado como gene de referência.* p<0,05 pelo teste estatístico de Wilcoxon.

4.3 - Análise da ativação do inflamassoma NLRP3 e do efeito da talidomida em lesões de pele de pacientes ENH

Após observar uma tendência de ativação do inflamassoma sistemicamente, buscou-se investigar se essa plataforma molecular também apresentaria um papel relevante para o ENH no local da lesão. Para tal, um acompanhamento longitudinal foi realizado em amostras de paciente multibacilar BL/LL em dois momentos distintos: 1) no diagnóstico de hanseníase, quando o paciente não apresentava sinais de reação; e 2) no momento do diagnóstico do ENH. Fragmentos de lesão de pele obtidos por biopsia foram processados e corados para análise por imunofluorescência utilizando um anticorpo específico para NLRP3, marcado com fluórocromo verde, e outro para caspase-1, marcado com fluórocromo vermelho. Pode-se observar que existe uma maior co-localização entre caspase-1 e NLRP3 no paciente na lesão de ENH quando comparado à condição não reacional, evidenciado pelas regiões amareladas e indicadas pelas setas, dentro da região retangular pontilhada (Figura 4.3.1). Uma maior associação dos dois marcadores do inflamassoma sugere uma maior ativação do inflamassoma canônico, uma vez que o adaptador NLRP3 se associa à caspase-1 durante a montagem e ativação do inflamassoma. Adicionalmente, também se pode notar uma maior marcação tanto para caspase-1, guanto para NLRP3 na lesão ENH (Figura 4.3.1), sugerindo, assim, uma participação do inflamassoma durante o episódio reacional ENH no sitio da lesão cutânea.

Figura 4.3.1 - Associação de NLRP3 e Caspase-1 é maior em lesão de pele de pacientes ENH. Lesões de pele de pacientes BL/LL no momento do diagnóstico de hanseníase (sem sintomas da reação) (Painel superior) e durante o quadro reacional de ENH (Painel inferior) foram seccionadas para obtenção de cortes histológicos e foram marcadas para caspase-1 (Alexa Fluor 594 – Vermelho); NLRP3 (Alexa Fluor 488 – Verde) e núcleo (DAPI – azul). As regiões demarcadas pelo retângulo pontilhado estão aumentadas nas imagens à direita para cada painel. As regiões de associação entre os marcadores aparecem em amarelo e estão indicadas por setas brancas. Resultado representativo de 3 pacientes (n=3). As lâminas foram observadas em um microscópio de fluorescência acoplado ao sistema Apotome no aumento de 400x. Barra de escala representa 20 µM.

A fim de confirmar a ativação do inflamassoma NLRP3 durante o episódio de ENH, assim como um possível efeito da talidomida sobre esta via, a clivagem de IL-1β e caspase-1, bem como os níveis de expressão proteica de NLRP3 foram avaliados por western blotting em lesões de pele. Para tal, um acompanhamento longitudinal foi realizado em amostras de paciente multibacilar em três momentos distintos: 1) no diagnóstico de hanseníase, quando o paciente não apresentava sinais de reação (BL/LL); 2) no momento do diagnóstico do ENH (ENH); e 3) no sétimo dia de tratamento do ENH com talidomida (ENH+Tal). A ativação do inflamassoma canônico, independente do adaptador, perpassa a clivagem de caspase-1, culminando na liberação de duas subunidades maduras, a subunidade p10 (10 KDa) e p20 (KDa). Através da técnica de western blotting foi possível observar a subunidade madura clivada de caspase-1, a subunidade p20, nas lesões ENH, sugerindo a ativação desta via (Figura 4.3.2A). Entretanto, também foi observada a forma clivada de caspase-1 nas lesões BL/LL. Além disso, uma análise densitométrica das bandas mostrou não haver diferenças nos níveis tanto de pró-caspase-1 e caspase-1 clivada nas lesões BL/LL e ENH (Figura 4.3.2B). A sugestão da ativação do inflamassoma durante a reação foi reforçada pela observação da forma madura e clivada de IL-1β (17 KDa) nas lesões ENH (Figura 4.3.2C). Embora o perfil seja heterogêneo entre os pacientes, tanto pró-IL-1β, quanto IL-1β madura parecem estar em níveis mais elevados na lesão ENH da maioria dos pacientes analisados quando comparada à lesão BL/LL (Figura 4.3.2D). A expressão de IL-1β madura está aumentada na lesão ENH em quatro dos cinco pacientes estudados, sugerindo com isso o envolvimento de IL-1ß na inflamação cutânea durante o episódio reacional. Contudo, ao avaliar o adaptador NLRP3 não foram encontradas diferenças de expressão antes e durante a reação (Figura 4.3.2E e F).

Figura 4.3.2 - Caspase-1 e IL-1 β encontram-se clivadas nas lesões cutâneas de pacientes ENH. Proteínas foram extraídas de amostras de lesão de pele obtidas através de acompanhamento longitudinal de pacientes multibacilares antes do episódio reacional (BL/LL), durante o episódio reacional (ENH) e no sétimo dia após início do tratamento com talidomida (ENH + tal). A expressão e clivagem de Caspase-1 (A e B); IL-1 β (C e D) e a expressão de NLRP3 (E e F) foram determinadas por *western blotting* através da utilização de anticorpos específicos. GAPDH foi utilizado como controle de carregamento. (B, D e F) representam a quantificação relativa por densitometria. Resultado representativo do acompanhamento de cinco pacientes (n=5).

Buscando complementar a análise por *western blotting,* os níveis de expressão gênica dos componentes já avaliados, bem como de outros componentes do inflamassoma canônico e não canônico, como as caspases-4/5, foram investigados por qRT-PCR. De forma similar ao observado para os níveis de proteína, não houve diferenças entre a mediana dos níveis de expressão de NLRP3 entre pacientes não reacionais e pacientes durante a reação (Figura 4.3.3C). O mesmo foi observado na expressão de pró-IL-1β, embora alguns indivíduos ENH apresentassem níveis de expressão bem mais elevados (Figura 4.3.3A), dentre esses indivíduos alguns que

desenvolveram ENH mesmo após 2 anos de termino de tratamento com a PQT (indivíduos em vermelho). Contudo, tanto a mediana de expressão de pró-caspase-1 (Figura 4.3.3B) quanto de ASC (Figura 4.3.3D) foi significativamente maior na lesão ENH quando comparado ao grupo não reacional. No que se refere aos demais componentes do inflamassoma, diferentemente do observado para as células sanguíneas, não foram observadas diferenças nas medianas dos níveis de expressão dos genes AIM2 (Figura 4.3.3E) e NLRC4 (Figura 4.3.3F), esse último, apresentando inclusive uma tendência de queda de expressão nos pacientes reacionais. Mais ainda, os níveis de expressão gênica de pró-caspase-4 (Figura 4.3.3G) e pró-caspase 5 (Figura 4.3.3H) não se mostraram diferentes nos dois grupos analisados embora alguns indivíduos ENH mostraram níveis de expressão mais elevados.

Figura 4.3.3 - Análise dos níveis de expressão gênica de componentes do inflamassoma em lesões de pele de pacientes reacionais e não reacionais. cDNA foi gerado a partir de RNA extraído de amostras de lesão cutânea de pacientes BL/LL e pacientes reacionais (ENH) e os níveis de expressão gênica de (A) pró-IL-1 β (BL/LL (n=14); ENH (n=15)); (B) pró-Caspase-1 (BL/LL (n=19); ENH (n=16)); (C) NLRP3 (BL/LL (n=11); ENH (n=20)); (D) ASC (BL/LL (n=9); ENH (n=17)); (E) AIM2 (BL/LL (n=8); ENH (n=14)); (F) NLRC4 (BL/LL (n=7); ENH (n=14)); (G) pró-Caspase-4 (BL/LL (n=3); ENH (n=7)) e (H) pró-Caspase-5 (BL/LL (n=10); ENH (n=14)) foram determinados por qRT-PCR. O gene *rpl13* foi utilizado como gene de referência. Indivíduos destacados em verde representam os pacientes multibacilares não reacionais no momento da coleta que desenvolveram reação em até 1 anos após o término da PQT e indivíduos em vermelho representam indivíduos que desenvolveram ENH pelo menos mais de 2 anos após o fim da PQT. * p<0,05 pelo teste estatístico de Wilcoxon.

Embora não tenham sido observadas modulações relevantes nos genes do inflamassoma em células sanguíneas, buscou-se avaliar se o tratamento com talidomida impacta a expressão e ativação do inflamassoma na pele. Para isso, a expressão de NLRP3 e clivagem de caspase-1 e IL-1β foram avaliadas por *western blotting* em amostras pareadas de pacientes ENH no momento do diagnóstico da reação e após o sétimo dia de início de tratamento com talidomida. De modo geral,

observou-se um perfil heterogêneo entre os pacientes. Contudo, a expressão de pró-IL-1β e principalmente sua clivagem se mostraram diminuídas após o tratamento com talidomida na maioria dos pacientes (Figura 4.3.2D;4.3.4A-B) Entretanto, não foram observadas diferenças nos níveis de expressão de pró-caspase-1, mas sua clivagem em caspase-1 madura diminuiu após o tratamento na maioria dos pacientes (Figura 4.3.2B; 4.3.4C-D). Quanto aos níveis de expressão de NLRP3, houve um comportamento heterogêneo. Foi observado a diminuição da expressão de NLRP3 em quatro pacientes, que representa metade do grupo amostral, enquanto para a outra metade detectou-se um aumento (Figura 4.3.2F; 4.3.4E-F).

Figura 4.3.4 - Análise do efeito do tratamento com talidomida na expressão de componentes do inflamassoma na lesão cutânea de pacientes ENH. Análise por *western blotting* de extratos proteicos de lesão de pele de pacientes reacionais antes do tratamento (ENH) e após o sétimo dia de tratamento com talidomida (ENH + tal). GAPDH (37KDa) foi utilizado como controle de carregamento. (A,B) Avaliação da expressão de pró-IL-1β (p31) e sua clivagem em IL-1β (p17). (B) Densitometrias correspondentes em unidades arbitrárias. Resultado representativo de amostras pareadas de um total de 7 pacientes (n=7). (C,D) Avaliação da expressão de pro-caspase-1 (p50) e sua forma madura (p20). (D) Densitometrias (unidades arbitrárias) correspondentes. Resultados representativos de 8 indivíduos. (n=8). (E, F) Análise da expressão de NLRP3 (80 KDa). (F) Densitometria em unidades arbitrárias.

4.4 - Ativação do inflamassoma e detecção de DNA micobacteriano em lesões de pele de pacientes ENH que apresentaram reação no mínimo dois anos após conclusão da PQT

Em muitos casos o episódio reacional de ENH ocorre mesmo muitos anos após a conclusão da PQT, dificultando a compreensão dos processos responsáveis pelo desenvolvimento do ENH. Uma vez que foi observada a ativação do inflamassoma nas lesões de pele de pacientes ENH que desenvolveram reação próximo ou durante a PQT, buscou-se avaliar se esta via inflamatória também se encontrava ativada em pacientes que manifestaram o episodio reacional anos após o término da PQT. Dessa forma, as análises foram realizadas em lesões de pele de pacientes pertencentes a três diferentes grupos: 1) grupo BL/LL, constituído por pacientes LL que não desenvolveram quadro reacional durante o tratamento; 2) grupo ENH_{diag}, incluindo pacientes ENH que desenvolveram reação antes do início do tratamento com a PQT; e 3) grupo ENH_{>2anos} com pacientes reacionais ENH que desenvolveram o episódio reacional mais de dois anos após a conclusão da PQT.

De forma similar ao observado nos resultados anteriores, também foram encontrados marcadores de ativação do inflamassoma em pacientes que apresentaram ENH após 2 anos da conclusão da PQT (ENH>2 anos), visto que esses pacientes apresentaram IL-1 β (Figura 4.4.1A e B) e caspase-1 (Figura 4.4.1C e D) clivadas nas lesões de pele. Também foram incluídos nesta análise pacientes que abriram um quadro reacional no momento do diagnóstico de hanseníase e, portanto, desenvolveram reação antes de iniciar a PQT (ENH_{diag}). Esse grupo foi incluído como controle a fim de excluir uma possível ativação do inflamassoma potencialmente promovida pelo tratamento com a PQT em si, visto que nas análises anteriores, grande parte das amostras de pacientes reacionais ENH foi coletada de indivíduos que apresentaram o episódio reacional de ENH durante o tratamento ou logo após sua conclusão. Nestes casos, também observamos ativação do inflamassoma ao detectar tanto a clivagem de IL-1β e caspase-1 (Figura 4.4.1G). Os dados sugerem que a expressão de caspase-1 clivada é maior nos pacientes ENH_{diag} e ENH_{>2 anos} que em pacientes BL/LL (Figura 4.4.1C e D). Ao analisar a expressão do receptor NLRP3 nessas amostras observou-se que a mesma está elevada nos dois grupos de pacientes reacionais, quando comparada aos pacientes BL/LL (Figura 4.4.1E e F).

Figura 4.4.1 - O inflamassoma se encontra ativado em lesões de pele de pacientes que desenvolveram reação após 2 anos da conclusão da PQT. Resultado representativo de *western* blotting de proteínas extraídas de lesões de pele de pacientes multibacilares não reacionais (BL/LL) (n=5); pacientes que desenvolveram ENH no diagnóstico de hanseníase (ENH_{diag}) (n=5) e pacientes que desenvolveram reação mais de 2 anos após conclusão da PQT (ENH _{>2 anos}) (n=9). GAPDH (37 KDa) foi utilizado como controle de carregamento. (A,B,G) Análise da expressão de pró-IL-1 β (31 KDa) e clivagem em IL-1 β madura. (B) Densitometria correspondente em unidades arbitrária. (C,D,G) Detecção de pró-caspase-1 (50 KDa) e sua clivagem na sua forma ativa (caspase-1 – 20 KDa). (D) Densitometria correspondente em unidades arbitrária. (E,F) Análise da expressão de NLRP3 (80 KDa). (F) Densitometria correspondente em unidades arbitrárias. Teste estatístico Kruskal-Wallis com pós teste Dunn's, ** p<0,01.

Em vista dos resultados obtidos que demonstraram a ativação do inflamassoma nas lesões de pele de indivíduos que manifestaram ENH após 2 anos ou mais da conclusão da PQT (ENH_{>2anos}), investigou-se a presença de componentes de *M. leprae* nestas lesões que pudessem ser responsáveis pela ativação do inflamassoma. Uma vez que dados do nosso grupo já reportaram o aumento de ligantes de TLR-9 circulantes e da expressão do próprio receptor TLR-9 durante o ENH (Dias et al., 2016), buscou-se detectar a presença de possíveis traços de DNA micobacteriano. Foi detectado DNA de *M. leprae* por qPCR na lesão de pele de pacientes ENH_{>2anos}, porém em níveis mais baixos que nas lesões de pele de pacientes que apresentaram

ENH no diagnóstico de hanseníase, antes do inicio do tratamento com a PQT (ENH_{diag}), e de pacientes multibacilares não reacionais (BL/LL) (Figura 4.4.2). Enquanto a detecção do DNA micobacteriano nas amostras de pacientes BL/LL apresentou um CT em torno de 26, os CTs encontrados nas lesões de ENH_{>2anos} variou entre 34 a 38, não tendo sido detectado em apenas duas amostras dentre o n amostral de dez. Já para o grupo ENH_{diag}, o gene 16S do DNA micobacteriano foi detectado em todas as amostras, apresentando CTs em um nível intermediário entre os dois grupos, numa faixa entre 27 e 32.

Figura 4.4.2 - DNA de *M. leprae* é detectado em lesões de pele de pacientes que desenvolveram reação pelo menos 2 anos após o termino da PQT. Lesões de pele de pacientes não reacionais (BL/LL) (n=2); pacientes que já chegaram no diagnóstico de hanseníase com ENH e, portanto, manifestaram ENH antes do inicio da PQT (ENH_{diag}) (n=5) e pacientes que desenvolveram reação pelo menos 2 anos após conclusão da PQT (ENH_{s2anos}) (n=9) foram processadas em trizol e o DNA foi extraído para detecção por qPCR do gene de rRNA 16s de *M. leprae*. CT –*cycle threshold*.

4.5 - Determinação da capacidade do soro de pacientes ENH e da participação das vias de TLR-9 e TLR-7 em estimular a produção de IL-1β

Foi observado até o momento que o inflamassoma encontra-se ativo tanto nas lesões de pele, como sistemicamente, sugerindo que essa plataforma molecular seja importante durante o episódio reacional de ENH. Para melhor compreender os mecanismos de ativação do inflamassoma e com isso destrinchar um pouco mais a contribuição sistêmica do mesmo para a reação inflamatória durante o episódio reacional, buscamos avaliar se o soro de pacientes reacionais apresenta fatores solúveis diversos com uma maior capacidade de ativar o inflamassoma. Assim, a produção de IL-1β e TNF por PBMCs de indivíduos sadios estimulados por 24 horas com o soro de controles sadios (CS), pacientes multibacilares (BL/LL), pacientes ENH (ENH) e pacientes ENH tratados com talidomida (ENH + Tal) foi avaliada por ELISA.

Os resultados sugerem que, embora exista um perfil heterogêneo nos pacientes hansenianos, há uma tendência dos soros ENH de induzirem uma maior produção de IL-1 β em comparação aos soros de controles sadios (CSs) e de pacientes BL/LL (Figura 4.5.1A). É interessante notar que o soro dos indivíduos ENH + Tal mostraram maior capacidade de induzir IL-1 β em relação ao soro dos controles sadios e pacientes BL/LL (Figura 4.5.1A), embora a diferença não seja significativa em relação ao soro dos pacientes ENH. No caso da indução da produção de TNF, os soros de pacientes ENH + Tal e ENH também apresentaram maior capacidade em relação aos soros de indivíduos sadios, embora diferentemente do observado para IL-1 β , não há diferença estatística entre a indução modulada pelos soros de pacientes ENH + Tal em relação aos soros de pacientes BL/LL (Figura 4.5.1B).

Figura 4.5.1 - O soro de pacientes ENH estimula a produção de IL-1 β e TNF por PBMCs de indivíduos sadios. PBMCs foram plaqueados em 2x10⁵ células/poço e foram estimulados por 24 horas com 20 % do volume com soro de indivíduos controles sadios (CS) (n=12); pacientes multibacilares (BL/LL) (n=13); pacientes reacionais (ENH) (n=14) ou pacientes reacionais após o sétimo dia de tratamento com talidomida (ENH + tal) (n=9). Células tratadas com LPS (5 ng/ml) e LPS + ATP (1 mM) foram incluídas como controles positivos. NE- não estimulado. O nível de IL-1 β e TNF encontrado nas amostras de soro incluídas no ensaio foi avaliado nos poços em que não houve adição de células (-PBMC). A produção de (A) IL-1 β e (B) TNF foi determinada por ELISA. Teste estatístico one-way ANOVA com correção de bonferroni, *p<0,05.

Uma vez que o soro de pacientes reacionais apresentaram maior capacidade de induzir a produção de IL-16 por PBMCs sadios e dados anteriores do nosso grupo demonstraram um aumento de ligantes de TLR-9 no soro de pacientes reacionais (Dias et al., 2016), buscamos avaliar se os potenciais estímulos circulantes no soro dos pacientes ENH ativam o inflamassoma via TLR-9. Para isso, PBMCs de voluntários sadios foram estimulados com os soros de indivíduos sadios ou dos pacientes, conforme descrito acima, na presença ou não do antagonista de TLR-9, E6446. Os resultados apontam que a inibição da via de TLR-9 diminuiu significativamente produção de IL-1ß em células estimuladas com soros de pacientes ENH + Tal e, embora não significativo, também apresenta uma tendência a redução da indução da produção de TNF (Figura 4.5.2A). Não observamos uma tendência a diminuição da produção de IL-16 no grupo estimulado com soro de pacientes ENH (Figura 4.5.2A). A diminuição da mediana da concentração de TNF para o grupo estimulado com soro de paciente ENH + Tal é ainda mais expressiva após o tratamento com E6446, quando comparado à mediana de IL-1β, embora não seja estatisticamente significativo. Adicionalmente, não são observadas alterações na concentração, tanto de IL-1B, quanto de TNF, na presença ou ausência do antagonista nas condições de estímulo com soro proveniente de indivíduos sadios (CS) e pacientes BL/LL.

Ao avaliar o comportamento pareado do estimulo de cada soro na presença ou não de E6446, pode-se notar um perfil mais heterogêneo entre os pacientes BL/LL, enquanto pode-se traçar um perfil mais homogêneo de queda do estímulo da produção tanto de IL-1 β , quanto de TNF, após inibição de TLR-9, principalmente no grupo estimulado com soros de pacientes ENH + Tal (Figura 4.5.2B), em que a diferença é significativa no caso de IL-1 β . No caso do grupo estimulado com soro de pacientes ENH, pode-se observar que apenas dois indivíduos apresentaram um perfil contrário ao perfil de queda da produção de IL-1 β na presença do antagonista de TLR-9, enquanto os níveis de indução de TNF foram baixos, em sua maioria próximos a zero, e com isso, portanto, inconclusívos (Figura 4.5.2B).

Figura 4.5.2 - Avaliação da participação da via de TLR-9 na produção de IL-1 β **e TNF estimulados pelo soro de pacientes ENH.** Foram plaqueados 2x10⁵ PBMCs de indivíduos sadios e foram estimulados por 24 horas com 20 % de soro de indivíduos controles sadios (CS) (n=9); pacientes multibacilares (BL/LL) (n=10); pacientes reacionais (ENH) (n=11) ou pacientes reacionais após o sétimo dia de tratamento com talidomida (ENH + tal) (n=9) e tratados ou não com o antagonista de TLR-9, E6446 2 µM. A produção de IL-1 β e TNF foi determinada por ELISA. (A) Representação do perfil geral de cada condição com (+E6446 – cinza) e sem (-E6446 – branco) o tratamento com antagonista de TLR-9 E6446. (B) Análises pareadas do perfil referente ao soro de cada paciente com (+ E6446 - \blacksquare) e sem (- E6446 - \bullet) o tratamento com o antagonista de TLR-9. Teste estatístico two-way anova com correção de Bonferroni, * p<0,05.

As vias de reconhecimento de ácidos nucleicos também envolvem o reconhecimento de RNAs, como por exemplo, através do receptor TLR-7. Dessa forma, para avaliar se essa via contribui para a ativação do inflamassoma e para a produção de TNF, de forma análoga ao descrito anteriormente, os PBMCs de voluntários sadios foram estimulados com os soros dos diferentes grupos de indivíduos na presença ou não de um antagonista de TLR-7 (IRS661) e a produção de IL-1β e TNF foi avaliada por ELISA. Pode-se observar que diferentemente do observado para a via TLR-9, a via de TLR-7 parece não contribuir para a produção de IL-1β e TNF induzida pelo soro de pacientes reacionais, visto não haver diferenças entre os grupos estudados após a inibição da via com o tratamento com o antagonista de TLR-7 (Figura 4.5.3A). Mais ainda, o perfil em todos os grupos foi bem heterogêneo, não apresentando um perfil claro majoritário de alteração dos níveis de ambas as citocinas após a inibição da via mediante tratamento com antagonista de TLR-7 (Figura 4.5.3B).

Figura 4.5.3 - Avaliação da participação da via de TLR-7 na produção de IL-1 β e TNF estimulados pelo soro de pacientes ENH. $2x10^5$ PBMCs de indivíduos sadios foram plaqueados e estimulados por 24 horas com 20 % de soro de indivíduos controles sadios (CS) (n=2); pacientes multibacilares (BL/LL) (n=6); pacientes reacionais (ENH) (n=5) ou pacientes reacionais após o sétimo dia de tratamento com talidomida (ENH + tal) (n=6) e tratados ou não com o antagonista de TLR-7, IRS661 2 µM. A produção de IL-1 β e TNF foi determinada por ELISA. (A) Representação do perfil geral de cada condição com (+IRS661 – cinza) e sem (-IRS661 – branco) o tratamento com antagonista de TLR-7 IRS661 - \blacksquare) e sem (-IRS661 - \bullet) o tratamento com o antagonista de TLR-7. Teste estatístico two-way anova com correção de Bonferroni.

4.6 – Investigação da capacidade de componentes do *M. lepra*e de estimular a ativação do inflamassoma em monócitos THP-1 *in vitro*

Ao longo do trabalho, foi observada a ativação do inflamassoma durante o ENH, bem como a possível importância de componentes da micobactéria, principalmente componentes relacionados à ativação da via de TLR-9. Dessa forma, para melhor investigar quais outros potenciais componentes micobacterianos seriam capazes de ativar o inflamassoma e promover a produção de IL-1β, monócitos da linhagem THP-1 foram estimulados com diferentes componentes micobacterianos, que foram apresentados de duas formas distintas. Componentes solúveis, como DNA de *M. leprae* +Hlp , LAM e o *core* da parede celular do *M. leprae*, composto pelo micolatoarabinogalactano-peptidoglicano (mAGP), foram adicionados diretamente à cultura, enquanto estímulos lipídicos da parede, como PGL-I e PIM foram primeiramente imobilizados na superfície da placa. Para compreender os mecanismos de ativação, os estímulos foram adicionados sozinhos; após o primeiro sinal de LPS, em que

atuariam como um segundo sinal, ou foram adicionados em um primeiro momento, como primeiro sinal e foram seguidos de um segundo sinal como ATP ou nigericina (NGC). O controle com sonicado de *M. leprae* foi capaz de estimular a produção de IL-1β em níveis similares ao primeiro estímulo de LPS (Figura 4.6.1). Dentre os estímulos imobilizados estudados, o estímulo de PGL-I na concentração de 25µg/mL não foi capaz de induzir a produção de IL-1β, tanto quando administrado de forma isolada, quanto em combinação com LPS ou NGC (Figura 4.6.1A). Em contrapartida, o estímulo isolado de PGL-I na concentração de 250 µg/mL estimulou a produção de IL-1β em níveis similares ao estímulo isolado de LPS (Figura 4.6.1B). O uso em combinação de PGL-I e LPS estimulou a produção de IL-16 de forma sinérgica, chegando a níveis acima de 100 pg/mL, e assim, portanto, mais elevado que os estímulos de LPS, NGC ou PGL-I sozinhos, embora mais baixos que o controle positivo de LPS + NGC (Figura 4.6.1B). Adicionalmente, a combinação do estímulo de PGL-I 250 µg/mL como primeiro sinal e NGC como segundo sinal estimulou a produção de IL-1β que, embora não tenha sido significativamente estatístico, apresentou uma tendência de níveis mais elevados (média de 52,8 pg/mL de 3 experimentos) que o estímulo isolado de NGC (media de 5,77 pg/mL). O estímulo com 25 µg/mL PIM imobilizado na placa também apresentou uma tendência de estimular a produção de IL-1β quando associado à adição de NGC como segundo sinal, levando a níveis próximos a 50 pg/mL, enquanto o estímulo sozinho de PIM e NGC levam a produção de IL-1^β, respectivamente, em torno de 10 pg/mL e 5 pg/mL (Figura 4.6.1C).

Dentre os estímulos solúveis, apenas o estímulo com o *core* da parede do *M. leprae*, micolato-arabinogalactano-peptidoglicano (mAGP), quando adicionado como primeiro sinal e com adição subsequente da nigericina como segundo sinal, apresentou uma tendência de estimular a produção de IL-1β pelos monócitos da linhagem THP-1, estimulando a produção de IL-1β em níveis próximos a 50 pg/mL, principalmente em comparação ao estímulo isolado de NGC (~ 5 pg/mL) e PIM (~ 20 pg/mL) (Figura 4.6.1D). Em contrapartida, os estímulos de LAM (Figura 4.6.1E) e DNA + Hlp (Figura 4.6.1.F) não estimularam a produção de IL-1β pelos monócitos THP-1, mesmo em associação com LPS ou NGC.

Figura 4.6.1 – Componentes da parede do *M. leprae* são capazes de ativar a produção de IL-1 β por monócitos humanos da linhagem THP-1. 2x10⁵ células de monócitos humanos da linhagem THP-1 foram plaqueados em placas contendo os estímulos imobilizados PGL-I ((A) 25 ou (B) 250 µg/mL) ou (C) PIM 1,2 (25 µg/mL) ou somente o veículo (etanol) ou em placas sem nenhum tratamento. As células foram estimuladas por 16 horas a 37°C com LPS 5ng/mL ou componentes solúveis do *M. leprae* ((D) mAGP 25 µg/mL; (E) LAM 10 µg/mL ou (F) DNA + Hlp (DNA 100 ng/mL + Hlp 0,25 µM) como primeiro sinal, e posteriormente por mais 2 horas com NGC 10 µM ou componentes solúveis do *M. leprae* nas concentrações já citadas como segundo sinal. A citocina IL-1 β foi quantificada no sobrenadante por ELISA. NE: Não estimulado (n=3). Análise estatística realizada pelo teste ANOVA com correção de Bonferroni, * p<0,05; ** p<0,01, *** p<0,001, **** p<0,0001. Em B, *** sobre a barra de LPS + NGC representa *** p<0,001 em todas as comparações com os controles NE, veículo, LPS e NGC.

5. Discussão

5.1 – Análise da assinatura genética do ENH

Nos últimos anos, o uso de ferramentas de análises globais, conhecidas como "ômicas", têm sido cruciais para o melhor entendimento das vias envolvidas em diferentes patologias. O foco em perfis transcriptômicos baseados em sangue total tem ganhado força como ferramenta de estudo de marcadores para uma série de patologias (Chaussabel, 2015; Mohr and Liew, 2007). No contexto da hanseníase, diferentes estudos recorreram à análises transcriptômicas para compreender os principais mecanismos que diferenciam as formas clínicas da doença, principalmente focando em amostras de lesões de pele (Belone et al., 2015; Inkeles et al., 2016; Lee et al., 2010; Montoya et al., 2019; Silva et al., 2017). Contudo, a compreensão do perfil de expressão gênica dos episódios reacionais, sobretudo do ENH, ainda é limitada e poucos estudos focaram no aspecto sistêmico do ENH, buscando compreender a assinatura gênica nas células sanguíneas. Dessa forma, nosso estudo é essencial por ser o primeiro a estabelecer o perfil transcriptômico das células sanguíneas totais durante o episódio reacional e com isso melhor compreender as particularidades do ENH que o diferencia dos demais pacientes multibacilares não reacionais. Adicionalmente, as limitações do uso da talidomida no tratamento do ENH tornam imperioso compreender melhor os mecanismos de ação que resultam na sua eficácia no tratamento do episódio reacional. Com isso, nosso estudo também buscou determinar a assinatura genética e principais vias moduladas durante o tratamento com a talidomida, também focando no aspecto sistêmico, ao determinar o transcriptoma de células sanguíneas, a fim de evidenciar alvos cruciais na resposta e controle do ENH e, com isso, futuramente permitir direcionar melhor o esquema terapêutico e possivelmente contornar as limitações das opções de tratamento atuais.

Nosso estudo teve duas propostas principais a partir das análises de RNAseq: 1) realizar uma comparação entre amostras independentes dos grupos ENH e LL e 2) realizar um *follow-up* dos pacientes ENH antes e durante o tratamento com talidomida (ENH + TAL x ENH). É importante ressaltar que o grupo de pacientes selecionados para as análises seguiu critérios importantes, como, por exemplo, excluir comorbidades com perfis inflamatórios sistêmicos, como diabetes, e outras possíveis co-infecções. Além disso, apenas pacientes do polo LL, excluindo, assim, pacientes *borderline* lepromatoso (BL), foram incluídos no grupo dos pacientes multibacilares não reacionais, a fim de minimizar a heterogeneidade desse grupo. Quanto às análise pareadas, involuntariamente o grupo apresentou uma predominância de indivíduos do sexo masculino devido as limitações do uso da talidomida na terapêutica das mulheres.

Antes de cumprir os dois objetivos propostos, uma análise geral incluindo os três grupos foi realizada a fim de observar o perfil geral de expressão gênica, o que não mostrou diferenças claras entre os grupos. Contudo, deve-se considerar que o paciente ENH foi ou ainda é um paciente multibacilar, e portanto, apresenta muitas semelhanças aos pacientes LL. Ainda assim, dentre os três grupos, os pacientes LL ainda compuseram o grupo mais homogêneo na comparação global e essa característica se manteve nas análises posteriores de ENH x LL.

A análise inicial comparando genes diferencialmente expressos no ENH em relação aos pacientes LL revelou que não há uma distribuição homogênea do perfil de expressão gênica das células sanguíneas de pacientes ENH. Além da heterogeneidade inerente das diferenças genéticas entre indivíduos em estudos com

amostras humanas, deve-se também considerar que o ENH também não é um evento homogêneo, podendo ocorrer em diversos momentos ao longo do curso da hanseníase, bem como a reação em si também pode ocorrer múltiplas vezes e com diferentes graus de gravidade, o que por sua vez, pode afetar o perfil de expressão gênica dos indivíduos. Mais ainda, o momento desde o início dos sintomas do episódio reacional que motivou os pacientes a procurarem atendimento clínico no ambulatório, resultando na coleta da amostra, apresentou variações entre indivíduos, não seguindo uma mesma cronologia para todos, o que consequentemente reflete na composição desse grupo amostral no presente estudo.

Nosso desenho experimental e seleção das amostras não fez distinção de indivíduos que apresentavam o primeiro episódio reacional ou que já tinham apresentado episódios previamente, em uma tentativa de buscar uma assinatura de expressão mais geral característica do ENH. Interessantemente, os guatro indivíduos que apresentaram o perfil de expressão gênica mais semelhante ao perfil LL compartilham o fato de terem amostras analisadas que representam um novo episódio de episódios de ENH recorrentes e não o primeiro episódio reacional diagnosticado, enquanto dentre os demais pacientes ENH, que juntos formam um segundo grupo com assinatura de expressão gênica semelhante, sete pacientes tiveram amostras coletadas no primeiro episódio reacional e apenas três indivíduos (ENH 7, ENH 14 e ENH 15) também tiveram amostras coletadas em episódios reacionais recorrentes. A realização de uma segunda análise, excluindo os indivíduos com perfil mais heterogêneo, mostrou uma assinatura gênica mais semelhante entre os pacientes e mais expandida, com um número maior de genes diferencialmente expressos e consequentemente de vias enriquecidas, permitindo com isso investigar mais a fundo vias potencialmente importantes no ENH.

De modo geral, o conjunto de dados gerado em ambas as análises estudadas da comparação ENH x LL sugere uma assinatura de expressão gênica marcante de genes associados com a resposta neutrofílica e de vias pró-inflamatórias nas células sanguíneas dos pacientes ENH quando comparados com os pacientes não reacionais LL, sugerindo um perfil de elevada ativação da resposta imune, principalmente da resposta imune inata. Dentre as vias enriquecidas, as principais vias moduladas sistemicamente durante o ENH foram as vias relacionadas à resposta neutrofílica, o que reforça a importância desse tipo celular na imunopatogênese do ENH e, embora a presença de um infiltrado neutrofílico nas lesões cutâneas seja um fato amplamente

estudado, poucos estudos abordam a importância dessas células no aspecto sistêmico do ENH.

Entretanto alguns estudos tem explorado sua participação em processos inflamatórios sistêmicos. Dados da literatura reportaram que no contexto de SLE pediátrico, além da assinatura bem descrita de genes de resposta ao IFN I no sangue total, também é observado um aumento da expressão de genes de resposta neutrofílica em cerca de 50% dos pacientes analisados (Banchereau et al., 2016). Uma assinatura neutrofílica já havia sido reportada em análises de transcriptômica de sangue em pacientes com SLE em geral (Chaussabel et al., 2008). Além disso, um perfil de expressão neutrofílica, com maior expressão de genes como olfm4, defa4, camp e ltf, que também foram vistos mais expressos em nosso conjunto de dados na comparação ENH x LL, também está associado com um status de maior atividade do SLE com manifestações clínicas renais (Banchereau et al., 2016). A associação da assinatura neutrofílica com um maior risco de inflamação vascular também já foi reportada no SLE (Carlucci et al., 2018) e é importante notar que muitos casos de ENH são acompanhados de vasculite nas lesões de pele (Massone et al., 2015). A participação dos neutrófilos também já foi relatada em outra doença inflamatória sistêmica, a artrite reumatoide, em que foi observada uma migração não usual de neutrófilos para as articulações, que contribuem para o dano tecidual da cartilagem (Chou et al., 2010).

Corroborando as observações da participação neutrofílica durante a artrite reumatoide, foi observada uma assinatura gênica característica de neutrófilos no sangue total de pacientes com artrite reumatoide e que a observação da maior expressão de alguns genes como *tnfaip6* e *s100a8* também pode ser extrapolada para o tecido afetado (Rychkov et al., 2021). Outras patologias como tuberculose também tem relatos de uma assinatura gênica sanguínea característica de maior ativação neutrofílica (Berry et al., 2010).

O perfil de maior expressão gênica dos genes associados às vias neutrofílicas observado nos pacientes ENH, como por exemplo os genes *ltf*; *mmp8*; *camp*, *s100a8* e *s100a9*, corresponde ao perfil transcriptômico já descrito para subpopulações mais diferenciadas e ativadas de neutrófilos no sangue periférico (Xie et al., 2021). Interessantemente, o perfil de expressão gênica dos subgrupos de neutrófilos no sangue periférico após o estímulo com *E. coli* se modifica para um perfil enriquecido em vias relacionadas à migração leucocítica, morte de bactérias, resposta a IFN-γ,

regulação da resposta inflamatória e de secreção de citocinas (Xie et al., 2021), sendo essas vias também enriquecidas nas células sanguíneas dos pacientes ENH.

De fato, uma série de genes induzidos durante o ENH associados às vias neutrofílicas, como *hp, s100a12, lcn2, arg1* e *anxa3*, já foram associados a uma assinatura gênica característica de infecções bacterianas, sendo compartilhados em infecções por diferentes espécies, como *E. coli* e *S. aureus*, e mesmo no evento da sepse (Song et al., 2017). Outros genes também associados a esse perfil transcriptômico induzido por bactérias que foram observados com maior expressão durante o ENH foram os genes *tlr5, fcgr1a e fcgr1b*.

A observação de maior expressão de ICAM-1 nas células sanguíneas dos pacientes reacionais também pode estar associada à população de neutrófilos, uma vez que trabalhos da literatura tem demonstrado que a ICAM-1 é um marcador de ativação neutrofílico, em que uma população de neutrófilos ICAM-1⁺ está associada a contextos pró-inflamatórios em eventos como a sepse, por exemplo (Ode et al., 2018). ICAM-1 é uma adesina e está intimamente relacionada à resposta a bactérias, conforme anotado na nossa análise, uma vez que participa do processo de migração leucocítica transendotelial aos sítios de infecção e inflamação, interagindo com as moléculas de superfície LFA-1 e MAC-1 em leucócitos (Buckley et al., 1997). A expressão de ICAM-1 é induzida em contextos inflamatórios, promovida por citocinas pró-inflamatórias como IL-1β e TNF (Tosi et al., 1992). Em neutrófilos, a população ICAM-1⁺ está mais relacionada a uma maior liberação de NETs (Ode et al., 2018), que por sua vez já foram observadas em lesões de pele de pacientes ENH (Da Silva et al., 2019), assim como uma maior imunomarcação para ICAM-1 também foi observada em lesões de pele de pacientes ENH em relação a pacientes lepromatosos não reacionais (Sullivan et al., 1991). Adicionalmente, a administração intravenosa de anticorpos bloqueadores de ICAM-1 em camundongos com sepse induzida por ligadura e punção cecal diminuiu a expressão de PD-L1 no timo e baço, receptor também visto mais expresso nas células sanguíneas no nosso conjunto de dados durante o ENH, além de promover uma maior sobrevivência dos camundongos (Zhao et al., 2014). Em outra patologia inflamatória sistêmica, a sarcoidose, também foi observada uma maior expressão de ICAM-1 em neutrófilos isolados do sangue periférico, quando comparado a indivíduos sadios (Fortunati et al., 2009). Portanto, sua indução durante o ENH possivelmente favorece a migração de neutrófilos e outros tipos celulares para o tecido, que por sua vez, podem contribuir com a lesão tecidual durante o episódio reacional.

Mais ainda, uma maior expressão de PD-L1 também pode estar associada a uma tentativa de regulação negativa da resposta imune. Dados da literatura demonstraram em um estudo clínico que neutrófilos isolados de indivíduos com processos inflamatórios sistêmicos induzidos pela administração de LPS apresentam uma alta expressão de PD-L1 (De Kleijn et al., 2013). A maior expressão de PD-L1 também foi observada no sangue total de pacientes com tuberculose ativa em relação a indivíduos saudáveis, principalmente devido a maior expressão deste marcador em neutrófilos, e o tratamento diminui sua expressão (Mcnab et al., 2011). Adicionalmente, a estimulação de neutrófilos com IFN-y promove a expressão de PD-L1, que por sua vez, inibe a proliferação de linfócitos T e pode, com isso, desempenhar um papel de supressão da resposta imune mediada por células T (De Kleijn et al., 2013). Vale aqui ressaltar que, dentre as vias enriquecidas durante o ENH também foram detectadas a via de sinalização estimulada por IFN-y e vias de regulação negativa de processos imunes, sugerindo haver uma ligação desses processos também com o envolvimento dos neutrófilos no sangue periférico. Entretanto, a maior expressão de PD-L1 durante o ENH possivelmente é uma consequência da ativação prolongada da imunidade.

Ao explorar os demais genes, a observação de s100a8 e s100a9 regulados positivamente nas células sanguíneas dos pacientes reacionais corrobora os dados da literatura, uma vez que esses também são vistos mais expressos nas lesões de pele (Lee et al., 2010) e em elevados níveis no soro dos pacientes ENH (Sunderkötter et al., 2004), sugerindo serem importantes fatores envolvidos na reação inflamatória do episódio reacional. As proteínas da família S100, também chamadas de alarminas, são consideradas DAMPs e são produzidas primariamente por granulócitos e monócitos, e já foi reportado que S100a8/S100a9 estimulam a ativação da via de NFκB através do reconhecimento por TLR-4 (Vogl et al., 2007). Em condições de homeostasia, S100a8/S100a9 apresentam níveis de expressão basais e são induzidas em processos inflamatórios, tanto no tecido quanto no sangue periférico (Ehrchen et al., 2009), tendo sido observadas moduladas positivamente em uma infinidade de diferentes processos patológicos infecciosos, inflamatórios e autoimunes, como câncer, SLE, artrite reumatoide, sepse, psoríase, diabetes, aterosclerose, dentre muitos outros (Ehrchen et al., 2009). Inclusive, na pele, têm-se atribuído um papel de sinal de alarme para S100a8/S100a9, que além da estimulação em diferentes contextos inflamatórios, também podem ter a expressão estimulada em queratinócitos por fatores de estresse ambientais, como exposição à luz UV

(Grimbaldeston et al., 2003; Marionnet et al., 2003). Com isso, recentemente têm sido estudado a viabilidade de utiliza-las como importantes biomarcadores de processos inflamatórios (Vogl et al., 2014). Mais ainda, também foi demonstrado em neutrófilos que S100a9 aumenta a afinidade de interação de MAC-1 (Newton and Hogg, 1998) e posteriormente o heterodímero S100a8/S100a9 foi associado à indução do processo de transmigração endotelial de monócito para os tecidos através de ICAM-1 (Eue et al., 2000). No contexto de tuberculose, foi demonstrado que S100a8 e S100a9 estimulam em neutrófilos a produção de itgam, que codifica a cadeia de CD11b de βintegrina do complexo de receptor MAC-1 (Fagerholm et al., 2013), favorecendo com isso o recrutamento dessas células para os pulmões (Scott et al., 2020). Na reanálise da comparação do grupo ENH com LL o gene *itgam* também surge como um gene induzido no ENH. Dessa forma, a observação de elevados níveis de expressão de S100a8/S100a9 no sangue total no contexto altamente inflamatório do ENH não é inesperada e confirma os dados da literatura que observaram elevados níveis desse complexo no soro de pacientes ENH (Sunderkötter et al., 2004). Estes dados apontam para uma possível utilização de S100a8/S100a9 como biomarcadores do episódio reacional. bem como de estuda-los como importantes componentes da imunopatogênse do ENH, com possível papel de amplificar a resposta inflamatória, tanto na pele, quanto sistemicamente, possivelmente compondo um eixo S100s-ICAM-indução da migração neutrofílica, que contribui para a imunopatologia do ENH.

Assim como S100a8/S100a9, S100a12 também está intimamente relacionada a processos inflamatórios (Pietzsch and Hoppmann, 2009), com propriedades quimioatrativas para monócitos e neutrófilos já descritas . Seu principal receptor é o receptor RAGE (Hofmann et al., 1999) que ativa principalmente a via de NF-κB, mas também pode ativar outras vias, como a via de MAP kinase (Van Zoelen et al., 2011). Assim como observado para S100a8/S100a9, dados da literatura também haviam reportado um maior nível de S100a12 circulante no soro dos pacientes multibacilares reacionais em comparação aos pacientes não reacionais (Kim et al., 2006), dessa forma, corroborando nossos dados de maior expressão de S100a12 em células sanguíneas dos pacientes ENH e, com isso, sugerindo que juntamente com S100a8/a9, S100a12 também possua um papel central na imunopatogênese do ENH.

Dessa forma, podemos sugerir a partir de nossos dados que a ativação e degranulação neutrofílica durante o ENH é uma das vias fundamentais atreladas ao processo inflamatório sistêmico do episódio reacional. Nossas análises se correlacionam com um estudo recente que associou a maior proporção de neutrófilos

de baixa densidade presentes na fração de PBMCs isoladas de pacientes ENH com um aumento da degranulação dos neutrófilos, sugerindo que seria o evento responsável pelo maior aparecimento dessas células no sangue dos pacientes reacionais, uma vez que foi observada uma correlação positiva entre os níveis de MMP9 no soro (proteína presente em grânulos neutrófílicos) com a maior proporção de neutrófilos de baixa densidade nos pacientes ENH (Tavares et al., 2021). O estudo ainda demonstrou que o estímulo com sonicado e a infecção com *M. leprae in vitro* em sangue total induzem um aumento na proporção de neutrófilos de baixa densidade, reforçando, assim, que o evento de degranulação neutrofílica ocorre amplamente no sangue nos pacientes ENH.

A via de resposta a IFN-y também foi vista modulada positivamente no episódio reacional em ambas as análises, corroborando os dados da literatura que já reportaram o IFN-y como um componente importante do ENH, com relatos de níveis elevados no soro de pacientes ENH (lyer et al., 2007; Moubasher et al., 1998a) e elevada expressão de IFN-γ em PBMCs isolados de pacientes ENH em comparação a pacientes não reacionais (Moraes et al., 1999; Nath et al., 2000b). Um dos genes associado a essa via observado nas duas análises, com expressão elevada nos pacientes ENH, foi o gene socs3, que já foi visto modulado positivamente em lesões cutâneas de pacientes ENH (Lee et al., 2010). Além dele, também foi observado modulado em ambas as análises, o gene fcgr1a, também conhecido como CD64. O CD64 é um importante receptor de porção Fc de imoglobulinas IgG monoméricas (Tamm and Schmidt, 1997) e juntamente com o gene fcgr1b são induzidos por IFN-y em neutrófilos e monócitos (Cassatella et al., 1990). Já foi reportada na literatura a associação de CD64 com outras patologias como malária (Hirako et al., 2015) e SLE (Li et al., 2010). Nossos dados ainda ratificam os estudos recentes, que observaram que pacientes ENH apresentam maior expressão de CD64 em PBMCs (Dupnik et al., 2015) e maior proporção de neutrófilos circulantes expressando CD64 (Schmitz et al., 2016). Interessantemente, tem-se sugerido que a observação de neutrófilos positivos para CD64 seja um bom marcador diferencial para doenças inflamatórias com origem em infecções, uma vez que são visto aumentados nesse último em comparação à patologias inflamatórias autoimunes (Mangalam and Yadav, 2019). Mais ainda, uma modulação positiva de CD64 reforça a sugestão de que anticorpos sejam importantes fatores envolvidos no episódio reacional. Embora inicialmente tenha-se proposto que o ENH seria uma patologia mediada por imunocomplexos devido aos achados iniciais que demonstraram deposição de imunocomplexo nas lesões cutâneas reacionais

(Wemambu and Turk, 1969), o CD64 não apresenta alta afinidade de interação com imunocomplexos, que por sua vez são reconhecidos pelos receptores FcGRII (CD32) e FcGRIII(CD16) (Tamm and Schmidt, 1997). Contudo, a indução de CD64 reforça a semelhança com outras doenças inflamatórias mediadas por anticorpos, como o SLE (Arbuckle et al., 2003; Pisetsky, 2016). Juntamente com a observação de uma modulação importante de vias neutrofílicas durante o ENH, aliado às evidências da literatura de maior liberação de NET no ENH (Da Silva et al., 2019) que atuam como importante fontes de auto antígenos (Fousert et al., 2020), pode-se sugerir um possível papel de auto-anticorpos durante esse processo, conforme relatado no SLE (Lou et al., 2020).

Ainda aprofundando as vias relacionadas a IFN- γ , na reanálise com um conjunto de pacientes ENH mais homogêneo, outros genes ganham também destaque, como os genes *gbps*, que codificam proteínas ligantes de guanilato que são identificadas com funções antimicrobianas e de regulação de processos da imunidade inata (Praefcke, 2018). Os genes *gbp1*, 2, 5 e 6 foram os principais genes observados modulados positivamente que são induzidos por IFN- γ . Embora essa observação seja nova para o ENH, com apenas o relato em lesão de pele de uma maior expressão de *gbp1*, 2 e 4 em pacientes ENH em comparação a indivíduos sadios (Belone et al., 2015), a modulação desses genes e a associação de uma assinatura induzida por IFN- γ em sangue total também foi observado em pacientes durante a reação reversa, o outro episódio reacional associado à hanseníase (Teles et al., 2019).

No caso das demais vias induzidas, a observação da modulação positiva de vias relacionadas a regulação da secreção de proteínas está possivelmente relacionada a esse perfil mais pró-inflamatório do ENH, com elevada produção de citocinas e peptídeos antimicrobianos, o que é reforçado pelos genes que compartilham como *cd274*, *mmp8* e *tlr5*, por exemplo.

Adicionalmente, vale destacar a modulação positiva de vias relacionadas a estresse de retículo, que embora pouco se estude sobre o papel dessas vias durante a hanseníase, um artigo recente demonstrou que genes relacionados a estresse de RE estão regulados positivamente em células supressoras derivadas de mieloide em pacientes ENH, que por sua vez também apresentam uma maior proporção dessas células no sangue periférico (Kelly-Scumpia et al., 2020). Contudo, os genes associados à essa via induzidos na nossa análise (*tbmim6* e *grina*) não se encontram dentre o grupo de genes observados por Kelly-Scumpia e colaboradores (2020), embora deva-se considerar que a transcriptômica de sangue total é mais abrangente,

envolvendo todos os componentes celulares do sangue, enquanto no estudo citado apenas um tipo celular é analisado. Mais ainda, alterações no perfil de RE foram observadas por microscopia eletrônica de trasmissão em neutrófilos de baixa densidade, que estão em maior proporção nos pacientes ENH (Tavares et al., 2021), sugerindo a ocorrência de estresse de RE, corroborando assim nossas observações. Também deve-se considerar que os genes *tbmim*6 e *grina* estão envolvidos na homeostase do íon Ca²⁺ no RE (Robinson et al., 2011; Rojas-Rivera et al., 2012), e a sinalização de Ca²⁺ se interconecta com diferentes processos da fisiologia celular, inclusive com papéis importantes na resposta imune, como na via do inflamassoma e de STING (Vig and Kinet, 2009; Wang et al., 2020). Dessa forma, esse dado revela novas vias em potencial para serem exploradas no ENH que não devem ser descartadas.

Ao considerar a reanálise sem as amostras heterogêneas dos pacientes ENH pode-se observar uma ampliação de genes, e consequentemente vias, ligados à resposta imune inata e a um perfil inflamatório, que de modo geral conversam com as vias moduladas já observadas na primeira análise e que também reaparecem na reanálise, mas também permitem explorar outras vias com potencial relação com o ENH. Uma dessas vias que aparece somente na reanálise e que merece destaque é a via de ativação de macrófago. Embora a diferenciação de monócitos em macrófagos ocorra apenas nos tecidos periféricos, de modo que não há macrófagos circulantes no sangue, como é uma célula com papel fundamental na imunidade inata e o ENH em si apresenta manifestações cutâneas, a observação dessa via e o estudo dos genes relacionados a ela se torna interessante. Naturalmente, alguns desses genes anotados também estão associados a outros processos biológicos relacionados com a resposta imune inata, como os genes *tlr1, tlr2* e *tlr8* (Akira and Takeda, 2004).

De fato, outros genes toll, como os genes *tlr9* e *tlr5* também foram induzidos durante o ENH, e embora não tenham sido anotados como parte da via de ativação de macrófagos, foram associados à diferentes processos biológicos relacionados às vias de resposta imune inata e resposta inflamatória. A promoção da expressão de genes de receptores de reconhecimento de padrão fortalece a relevância da resposta imune inata durante o ENH e corroboram as observações prévias da literatura, que observaram uma maior expressão de *tlr2* em células sanguíneas de pacientes ENH (Antunes et al., 2019), assim como uma maior expressão proteica de TLR-9 tanto nas lesões cutâneas, como em PBMCs de pacientes reacionais (Dias et al., 2016). Mais ainda, a indução de *tlr1* e não *tlr6*, sugere que ligantes do heterodímero TLR-1/TLR-2

sejam potenciais indutores da resposta inflamatória, enquanto a maior expressão de *tlr9* e *tlr8* sugere que o reconhecimento de ácidos nucleicos também possa desempenhar um papel no desenvolvimento da resposta inflamatória. Até o momento não são encontrados registros de estudos que investiguem a associação dos genes *tlr8* e *tlr5* no contexto de hanseníase, entretanto, recentemente foi demonstrado que a heterodimerização de TLR-4/TLR-8 participa do reconhecimento de *M. tuberculosis* no endossoma (Thada et al., 2021), assim como também já foi reportado que diferentes cepas de *M. tuberculosis* induzem a expressão de TLR-5 em células epiteliais de alvéolo pulmonar (Mvubu et al., 2018), sugerindo que esses receptores TLRs também possam desempenhar algum papel na imunopatogênese do ENH.

Outro gene modulado positivamente durante o ENH associado não só à via de ativação de macrófagos, mas também aos processos biológicos relacionados à resposta inflamatória e resposta imune inata foi o gene *c1qa*. Além deste, outros genes associados ao sistema complemento também foram vistos modulados no ENH, que apresentou maior expressão de genes como *cr1, c4a, c4bpa* e *cr1l*. A relação entre o sistema complemento e o ENH já é amplamente estudada na literatura (revisto por Polycarpou et al., 2017), já sendo reportado a expressão diferencial de C1qA em análise de transcriptômica de PBMCs de pacientes ENH (Dupnik et al., 2015) e confirmada por qRT-PCR tanto no sangue total quanto em biópsias de pele de pacientes ENH (Negera et al., 2018c). Dessa forma, os dados obtidos na reanálise do ENH x LL corroboram os dados já reportados na literatura, além de reforçar a importância do sistema complemento, bem como de anticorpos e imunocomplexos para a imunopatogênese do ENH, uma vez que C1q está relacionado à via clássica de ativação de complemento (Bordron et al., 2020).

Assim como o envolvimento do sistema complemento é amplamente estudado no ENH, a participação do TNF como peça central da imunopatologia sistêmica também é amplamente descrita na literatura (Chowdhry et al., 2016; Parida et al., 1992; Polycarpou et al., 2017; Sampaio et al., 2002; Sarno et al., 1991; Silva et al., 2019). Corroborando esses dados, também foram observadas vias relacionadas à produção e resposta ao TNF enriquecidas nas células sanguíneas dos pacientes ENH e embora essas não configurem entre as principais 40 vias mais moduladas, elas podem ser vistas no anexo 5.

Outra via enriquecida exclusivamente observada na reanálise, mas com conexões importantes com os demais processos biológicos é a via de produção de IL-1. Embora apenas um componente relacionado a IL-1 apareça entre as principais 40 vias mais moduladas no ENH, outras anotações do gene ontology também associados à produção e resposta a essa citocina também foram observados modulados positivamente, embora com valores de p mais altos, conforme consta no anexo 5. Esses dados prontamente sugerem a importância do inflamassoma no contexto sistêmico do ENH, o que por sua vez corroboram os diversos relatos na literatura que observaram maiores níveis de IL-1ß circulante no soro dos pacientes ENH (Moubasher et al., 1998b, 1998a; Polycarpou et al., 2017; Sarno et al., 1991). Os principais genes induzidos observados foram os genes il1b, casp1, aim2 e nlrc4, o que sugere a parcipação do inflamassoma canônico no contexto sistêmico do ENH, mas os genes casp4 e casp5, que são associados ao inflamassoma não canônico, embora não relacionados no termo do gene ontology, também estão mais expressos durante o ENH. Assim como observado nos nossos dados, diferentes genes associados aos diversos tipos de inflamassoma também estão concomitantemente modulados positivamente na transcriptômica de sangue total em pacientes com meningite tuberculósica pediátrica (Rohlwink et al., 2019), dessa forma sugerindo que diferentes configurações do inflamassoma contribuem simultaneamente em processos inflamatórios sistêmicos, e com isso estariam implicados na elevada produção de IL-1β observada no ENH.

É importante ressaltar que a maior expressão de *nlrc4*, que reconhece flagelina, pode estar conectada com a observação de uma maior expressão de *tlr5*, que também foi obtido na análise do RNAseq, uma vez que TLR-5 também reconhece flagelina e com isso, sugerindo que ligantes semelhantes a flagelina desempenham um papel importante de promoção da resposta inflamatória durante o ENH. A expressão elevada de *tlr5* e *nlrc4* também já foi reportada em transcriptômica de sangue total em pacientes com tuberculose pulmonar ativa (Bah et al., 2018; Bloom et al., 2013), meningite tuberculósica pediátrica (Rohlwink et al., 2019) e sarcoidose (Bloom et al., 2013), patologias que usualmente não estão conectadas com os processos de reconhecimento de flagelina, sugerindo que outros ligantes importantes contribuem para a resposta inflamatória através desses receptores.

O inflamassoma já foi implicado na imunopatogênese da psoríase (Garshick et al., 2019), que por sua vez é uma doença autoimune cutânea com repercussões inflamatórias sistêmicas (Greb et al., 2016). Nesse estudo, as vias inflamatórias também estavam enriquecida no transcriptoma de sangue total de pacientes com psoríase, que apresentaram maior expressão de genes relacionados ao inflamassoma, como *il1b* e *casp5*, que posteriormente se correlacionaram com a

indução do inflamassoma na pele (Garshick et al., 2019). Durante o ENH, a maior expressão de alguns genes relacionados ao inflamassoma já foi reportada em diferentes estudos de transcriptômica, como por exemplo, a observação da modulação positiva do gene *il1r* (Lee et al., 2010) e *il1b* (Belone et al., 2015) em lesões cutâneas de pacientes ENH em comparação a pacientes multibacilares não reacionais, assim como foi observada a maior expressão de *gsdmd*, *caps1* e *casp5* quando comparado a fragmentos de pele de controles sadios (Belone et al., 2015). Dessa forma, assim como durante a

psoríase se observa uma ativação sistêmica do inflamassoma que se estende para os tecidos periféricos, pode-se inferir que o mesmo fenômeno ocorre no ENH, com consequências importantes para o desenvolvimento do episódio reacional

De modo geral, o enriquecimento de vias associadas à resposta inflamatória, como vias de produção de IL-1 e de IFN-y, assim como de vias associadas à ativação e degranulação neutrofílica, reforçam a importância da regulação da resposta imune inata sistemicamente durante a ocorrência do ENH. Dessa forma, diante de múltiplas evidências de uma interação de neutrófilos com a ativação do inflamassoma e de outros processos relacionados à imunidade inata, formando um mecanismo de retroalimentação positiva que sustenta o processo inflamatório em diferentes patologias, como por exemplo a asma (Lachowicz-Scroggins et al., 2019; Tan et al., 2019), SLE (Kahlenberg et al., 2013), artrite reumatóide (Yang et al., 2016), aterosclerose (Warnatsch et al., 2015) ou mesmo diferentes doencas autoinflamatórias cutâneas, como o pioderma gangrenoso (Marzano et al., 2019), é factível estender essa interação para o ENH e postular que a conexão entre esses elementos esteja no centro da imunopalogia do ENH.

No caso das vias moduladas negativamente durante o ENH observadas na reanálise, destacam-se as vias relacionadas a IL-4, que usualmente estão associadas a um papel mais Th2 e de reparo tecidual (Gieseck et al., 2018), e ainda com capacidade de inibir a produção de citocinas tipicamente pró-inflamatórias como IL-1β e TNF (Opal and DePalo, 2000) e direcionar a polarização macrocítica para um perfil M2, mais anti-inflamatório (Shapouri-Moghaddam et al., 2018). Embora relatos do envolvimento de IL-4 no ENH sejam controversos, com estudos ora apontando para um aumento da expressão no ENH (Nath et al., 2000a), ora apontando para uma ausência de diferença de IL-4 entre pacientes ENH e pacientes não reacionais (Iyer et al., 2007) e outros detectando uma diminuição no soro dos pacientes ENH (Abdallah et al., 2013, 2014), de modo geral pode-se considerar o envolvimento dessa citocina

durante o episódio reacional. Embora dentre os dados do RNAseq, não tenha sido detectado transcritos de *il4 per se*, foi observada uma diminuição da expressão de *cd28*, que codifica uma importante molécula co-estimulatória e responsável por promover a diferenciação em Th2 e a produção de IL-4 (Kubo et al., 1999), bem como de *gata3*, que também é um importante regulador da diferenciação para o perfil Th2 (Zheng and Flavell, 1997).

Em outras patologias, já foi relatado um papel moderador do processo inflamatório pela IL-4, como por exemplo na psoríase, em que estudos recentes vem avaliando que o tratamento com IL-4 parece se relacionar com a melhora na resolução das lesões de psoríase (Hahn and Ghoreschi, 2017), inclusive com estudos demonstrando a supressão da produção de IL-1β por IL-4 (Onderdijk et al., 2015). De fato, em estudos in vitro com monócitos da linhagem THP-1, IL-4 inibe a produção de IL-1β ao suprimir a montagem e oligomerização do inflamassoma de NLRP3 (Hwang et al., 2015). Dados da literatura também demonstraram que na artrite reumatoide, IL-4 inibe o recrutamento de neutrófilos para a membrana sinovial (Panda et al., 2020), assim como a sinalização do receptor de IL-4 diminui a liberação de NETs (Impellizzieri et al., 2019). Dessa forma, é razoável sugerir que a regulação negativa de vias que poderiam estar contribuindo para a moderação do processo inflamatório também seja importante para a imunopatogênse do ENH, principalmente no caso do IL-4 que possivelmente apresenta funções que contrapõem processos como a atividade neutrofílica, produção de NETs e ativação do inflamassoma, que parecem ser importantes durante o ENH.

Assim como IL-4, IL-5 também está associado a um perfil Th2 (Dougan et al., 2019), mas diferentemente de IL-4, pouco tem sido investigado dessa citocina durante o ENH, com apenas um estudo reportando não haver diferença entre os níveis de IL-5 circulantes entre pacientes ENH e pacientes multibacilares não reacionais (Stefani et al., 2009). Similar ao caso das vias de IL-4, também não foi detectado expressão diferencial em *il5* em si, mas a modulação negativa de *gata3* que também impactaria na sua produção (Zhang et al., 1998) e também foi visto a modulação negativa da subunidade alfa receptor de IL-5, *il5ra*. IL-5 está intimamente relacionado com a ativação de eosinófilos e consequentemente em doenças inflamatórias eosinofílicas (Kouro and Takatsu, 2009). Entretanto, já foi descrito na literatura uma função protetora de IL-5 sistêmica durante a sepse (Linch et al., 2012), sugerindo um papel mediador da resposta inflamatória sistêmica. Com isso, a participação de IL-5 durante o ENH surge como uma perspectiva de estudo.
De modo geral, as principais vias moduladas negativamente são relacionadas a processos de morfogênese, principalmente do sistema renal, contudo, deve-se considerar, que a maioria dos genes relacionados a essas vias, como os genes *gata3, nog* e *sox8*, são reguladores gerais de processos de diferenciação celular (Weider and Wegner, 2017; Yanagita, 2005; Zaidan and Ottersbach, 2018). Gata3, por exemplo, conforme mencionado anteriormente, está intimamente associado aos processos de diferenciação de células T direcionando para um pefil Th2 (Naito et al., 2011). Gata3 também participa da manutenção da expressão de FoxP3 em Tregs durante o contexto inflamatório (Wohlfert et al., 2011) e da imunidade inata, contribuindo para a diferenciação de células linfoides inatas (ILCs) (Mjösberg et al., 2012). De fato, vias relacionadas à diferenciação e desenvolvimento de células T também estão moduladas negativamente durante o ENH em relação ao paciente LL, reforçando a sugestão de que a supressão do perfil Th2, assim como da própria atividade de células T sejam importantes no ENH.

Até o momento, poucos estudos já foram realizados de transcriptômica de sangue no ENH. Um dos poucos estudos existentes explora a expressão gênica em PBMCs isolados dos pacientes ENH em comparação aos pacientes não reacionais e pacientes RR (Dupnik et al., 2015). Nosso estudo encontrou 72 genes compartilhados com os genes diferencialmente expressos modulados positivamente obtidos por Dupnik e colaboradores (2005), com destaque para os genes cxcr1, mmp8, anxa3, olfm4, hp e lcn2 associados às vias neutrofílicas; fcgr1a, fcgr1b e soc3, associados às vias de IFN- y; arg1, camp, il1r2, c1qa e s100a12, associados às vias de resposta imune inata e resposta a bactérias; e tnfaip6 e tnfrsf1a, associados à via de TNF. Entretanto, é importante ressaltar que as análises do estudo citado foram feitas por microarranjo, metodologia que possui limitação intrínseca aos genes participantes do screening, e apenas com PBMCs, o que inevitavelmente leva à perda de transcritos oriundos de outros tipos celulares excluídos da fração de células mononucleares, como os neutrófilos. Considerando o grande enriquecimento de vias relacionadas a ativação e resposta neutrofílica observados na análise de RNAseq, pode-se concluir que componentes importantes da imunopatogênese do ENH estavam ausentes em análises anteriores. Um estudo recente de análise de metagenômica de dados de microarranjo de lesões de pele de pacientes ENH e multibacilares disponíveis e publicados em trabalhos anteriores (Belone et al., 2015; Lee et al., 2010) mostrou que a maioria das vias moduladas positivamente no ENH está relacionada à ativação e

reposta neutrofílica (Leal-Calvo and Moraes, 2020), reforçando nossos achados em sangue periférico.

Ainda assim, deve-se considerar que a análise de RNAseg em si não está isenta de limitações, principalmente relacionada à detecção de transcritos raros e, uma vez que os neutrófilos são as células mais abundantes circulantes no sangue periférico, pode-se esperar uma dominância de transcritos associados a essas células. Um estudo recente demonstrou que a elevada frequência de neutrófilos no sangue inevitavelmente gera um *bias* em análises de transcriptômica de sangue total (Wu et al., 2017). Ainda assim, o estudo reforçou as observações anteriores para o modelo estudado da tuberculose, demonstrando que de fato os neutrófilos apresentam a maior alteração do perfil de expressão gênica, corroborando os dados da literatura que demonstraram a modulação positiva de uma assinatura característica de neutrófilos na tuberculose (Berry et al., 2010). Pode-se, assim, concluir que a superrepresentação de vias neutrofílicas observadas em estudos de transcriptômica de sangue total tem um valor biológico importante, contudo pode mascarar a modulação de genes relacionados a outros tipos celulares menos abundantes nos sangue periférico, como monócitos. Dessa forma, as análises do presente estudo aliadas às análises de transcriptômica de estudos anteriores focadas em PBMCs (Dupnik et al., 2015) se complementam e permitem melhor compreender a imunopatogênese do ENH.

5.2 – Análise do perfil transcriptômico do paciente ENH após início do tratamento com talidomida

Na análise pareada entre pacientes ENH antes e durante o tratamento com talidomida o fato que mais se destaca é a persistência da regulação positiva de vias de ativação e degranulação neutrofílica, sugerindo que 7 dias de tratamento com talidomida não é capaz de alterar o perfil de regulação positiva dessas vias, que já estavam moduladas positivamente no episódio reacional. Na comparação ENH + TAL x ENH observou-se inclusive um aumento da expressão de genes associados à resposta imune inata, reforçando a ideia de que um tempo curto de tratamento com talidomida não é capaz de alterar a nível sistêmico o perfil de elevada ativação destas vias.

Entretanto, algumas considerações devem ser feitas a cerca do grupo ENH + TAL. Também deve ser levado em conta que além da introdução do tratamento com talidomida em relação a amostra coletada antes do mesmo, esse grupo também reflete um momento mais tardio do episódio reacional do paciente, com isso, algumas mudanças observadas podem ser um reflexo da evolução do episódio reacional e não atreladas ao efeito da talidomida em si. Assim, sugerindo que as principais vias e genes candidatos observados devam ser explorados mais a fundo para confirmar sua putativa conexão com a imunomodulação promovida pela talidomida.

Seguindo com a observação dos resultados obtidos, seis genes estão ainda mais induzidos nos pacientes ENH + TAL em relação ao grupo ENH, com alguns associados a vias de resposta a bactérias e de defesa, mas todos estão principalmente associados às vias de ativação e degranulação neutrofílica. Um desses genes que se destaca é o gene *chit1*, que codifica uma quitinase, a quitriosidase 1 e, embora seu papel principal seja de clivar quitina (Boot et al., 1998; Di Rosa et al., 2015), CHIT1 já foi associada a uma série de doenças inflamatórias no sistema nervoso, pulmonares e no trato gastrointestinal (Chang et al., 2020; Kanneganti et al., 2012). CHIT1 é produzida principalmente por macrófagos (Di Rosa et al., 2009) e neutrófilos (Zurawska-Płaksej et al., 2015) em resposta a estímulos pró-inflamatórios como IFN-y e TNF (Malaguarnera et al., 2005). Na análise de transcriptômica de PBMCs de pacientes ENH x LL não foi observada uma diferença de expressão para esse gene (Dupnik et al., 2015), portanto, sugerindo que neutrófilos sejam efetivamente a principal fonte desse transcrito no sangue. CHIT1 já foi reportada mais expressa nas lesões de pele de pacientes ENH em comparação a fragmentos de pele de indivíduos sadios (Belone et al., 2015). Além disso, também foi reportado que pacientes ENH apresentam uma maior atividade de quitriosidases no soro quando comparados à indivíduos sadios e que o tratamento com dexametasona diminui a atividade dessa enzima nos pacientes ENH (lyer et al., 2009), reforçando, com isso, a importância dessa proteína para o contexto inflamatório do ENH.

Outro gene interessante que se mantém regulado positivamente na comparação ENH + TAL x ENH é o gene *olfm4*, que está associado a uma subpopulação específica de neutrófilos (Alder et al., 2019; Clemmensen et al., 2012), altamente conectada a um perfil pró-inflamatório, inclusive sendo implicada como um marcador de gravidade de sepse (Kangelaris et al., 2021). Posteriormente, foi reportado casos de produção de autoanticorpos ANCA (anticorpo anti-citoplasma de neutrófilo) específicos para OLFM4, que reconhecem a subpopulação de neutrófilos OLFM4⁺ (Amirbeagi et al., 2015), revelando, assim, essa proteína como um possível autoantígeno. De fato, dados da literatura reportaram que a subpopulação de neutrófilos OLFM4⁺ apresenta grande parte das funcionalidades usuais dos

neutrófilos, inclusive a capacidade de liberação de NETs que apresentam OLFM4 em sua composição (Alder et al., 2019; Welin et al., 2013), reforçando seu possível papel como autoantígeno. Relatos da literatura ainda demonstraram que camundongos knock out para OLFM4 apresentavam um maior percentual de sobrevivência no contexto de choque séptico (Alder et al., 2019), apontando para um papel crucial dessa subpopulação de neutrófilos em um cenário de resposta inflamatória exacerbada. Essa importância de OLFM4 também foi observada em fragmentos de pele de pacientes com uma forma bem agressiva de psoríase conhecida como psoríase pustular generalizada, onde foi demonstrado que neutrófilos na pele desses pacientes produzem citocinas pró-inflamatórias, como IL-18, IL-1β e TNF em níveis muito elevados e OLFM4 foi detectada em neutrófilos apenas de pacientes com essa condição (Shao et al., 2019). Dessa forma, a observação desse marcador durante o ENH sugere uma importância dessa subpopulação de neutrófilos e de vias neutrofílicas para a imunopatogênese em geral e pode refletir esse momento mais tardio do episódio reacional, embora uma maior expressão no paciente já em tratamento deva ser melhor estudada.

Adicionalmente, camp também se destaca dentre esses genes mais expressos também nos pacientes ENH + TAL, uma vez que codifica o peptídeo antimicrobiano catelicidina, em humanos também conhecida como LL-37 (Zhang et al., 2010). A catelicidina tem uma relação muito íntima com as vias de reconhecimento de DNA, uma vez que configura um peptídeo com carga positiva que interage com ácidos nucleicos (Zhang et al., 2010) e com isso favorece seu reconhecimento e direcionamento para o ambiente intracelular, e já foi associada com a patogênese de diferentes doenças autoimunes, assim como no próprio contexto da hanseníase (Dang et al., 2019; Kim et al., 2018a; Lyrio et al., 2015), embora mais direcionado para um papel de controle da infecção. LL-37 já foi detectada em NETs de neutrófilos e esse conjunto contribui para incitar uma parte da resposta inflamatória em diferentes patologias como SLE (Moreno-Angarita et al., 2020) e psoríase (Dombrowski and Schauber, 2012). Mais ainda, a associação de LL-37 com RNA também foi demonstrada em NETs, com um papel ativo de promoção da resposta inflamatória via TLR-8 (Herster et al., 2020), que também foi visto regulado positivamente nos nossos dados. Também já foi demonstrado que a interação de LL-37 com NETs é capaz de induzir a ativação do inflamassoma NLRP3 em macrófagos de pacientes com lúpus e promover a liberação de IL-1β e IL-18, que por sua vez amplificam a liberação de NETs em neutrófilos (Kahlenberg et al., 2013). Além disso, foi demonstrado que a

associação de LL-37 com C1q aumenta a resposta inflamatórias de macrófagos induzida pelo reconhecimento do estímulo de NETs (Ribon et al., 2019), assim como NETs + LL-37 estimulam a produção de autoanticorpos no contexto de SLE (Gestermann et al., 2018). Dessa forma, a conexão de LL-37 com diferentes componentes como NETs, C1q e a própria via do inflamassoma, que também foram observados modulados positivamente durante o ENH, reforça esse possível ambiente cíclico de amplificação da resposta inflamatória que contribui para o ENH. Nossos dados corroboram os dados da literatura que também observaram aumento de expressão de camp em PBMCs de pacientes ENH em comparação a pacientes multibacilares (Dupnik et al., 2015), embora não se tenha relatos do efeito da talidomida nesse gene especificamente. Um estudo demonstrou que o tratamento com talidomida é capaz de diminuir a potente inflamação induzida na pele por LL-37, mas não reportou se a droga afeta os níveis de LL-37 em si (Chen et al., 2019). Embora nossos dados indiquem um aumento persistente da transcrição desse gene mesmo no sétimo dia de tratamento com talidomida, não se deve descartar que em tempos mais tardios de tratamento possa ocorrer uma inversão desse perfil de expressão, assim como para os demais genes.

A promoção da expressão desses genes durante o episódio reacional, e sua continuada expressão mesmo após o inicio do tratamento com talidomida, reforça a importância dos mesmos, e, consequentemente das vias de ativação, degranulação e resposta neutrofílica para a imunopatogênese sistêmica do episódio reacional. Entretanto, a manutenção e acentuação desse perfil de expressão gênica em células sanguíneas, mesmo durante o tratamento com talidomida é inesperada e portanto deve ser melhor estudada, reforçando a similaridade do perfil inflamatório entre os dois momentos do ENH estudados nessa análise pareada, mesmo diante do início do tratamento com talidomida, indicando assim a necessidade de um estudo mais prolongado em diferentes momentos do tratamento.

Embora ainda seja observada uma indução de vias associadas à ativação e resposta neutrofílica no sétimo dia de tratamento com talidomida, há uma diferença na composição genética e perfil de expressão dessas vias durante o tratamento, sugerindo que a modulação dessas vias em células sanguíneas possa desempenhar algum papel no efeito terapêutico da talidomida durante o episódio reacional e esses outros genes possam apresentar efeitos importantes de imunomodulação para direcionar para um maior controle da resposta inflamatória. De fato, já foi reportado que a talidomida modula determinadas funções neutrofílicas (Yasui et al., 2005). Foi

observado, por exemplo, que neutrófilos isolados de pacientes HIV positivo tratados com talidomida por duas semanas apresentavam uma diminuição na expressão de CD16 (Aseffa et al., 1997). Dados da literatura ainda reportaram que o tratamento com talidomida reduz a migração de neutrófilos para o edema causado na pata de ratos injetados com toxinas de *clostridium difficile* (Carneiro-Filho et al., 2001). De fato, no ENH já foi demonstrado que após o tratamento por 7 dias com talidomida se observa uma diminuição de pentraxina no soro dos pacientes e uma redução da marcação de pentraxina nas lesões cutâneas (Mendes et al., 2017), além de uma redução expressiva do infiltrado neutrofílico nas lesões (Da Silva et al., 2019; Mendes et al., 2017; Schmitz et al., 2016), uma diminuição da expressão de TLR-9 (Da Silva et al., 2019) e CD64 (Schmitz et al., 2016) em neutrófilos circulantes e menor liberação de NETs espontâneas ex vivo (Da Silva et al., 2019). Contudo, a modulação desses genes não foi observada nas nossas análises de RNAseg. Ainda assim, deve-se ponderar que as análises transcriptômicas são análises exploratórias iniciais que depois devem ser aprofundadas e que de um modo geral, as vias neutrofílicas estão bem representadas nas análises, corroborando as principais evidências da literatura de que neutrófilos são importantes para a imunopatogênese do ENH e que a talidomida possivelmente também desempenha um papel imunomodulatório sobre essas células.

No acompanhamento longitudinal dos pacientes tratados, 11 genes associados às vias neutrofílicas estão exclusivamente regulados positivamente no sétimo dia de tratamento com a talidomida, sendo esses os genes Itf, chi3l1, tcn1, lilra3, rnase3 slc2a5, cxcl8, ceacam6, rnase2, abca13 e clec5a. Embora esses genes possam representar uma própria evolução do processo de ativação das vias neutrofílicas durante o ENH, ainda assim é possível que apresentem alguma conexão com o tratamento com talidomida. Alguns desses genes como rnase2 e rnase3 já foram apontados como potenciais marcadores de SLE (Bing et al., 2016), doença inflamatória intestinal (Kristjánsson et al., 2004) e artrite reumatoide (Bovin et al., 2004; Wright et al., 2017), sendo sugeridos como marcadores genéricos de doenças inflamatórias sistêmicas (Bovin et al., 2007). Estes genes também são sugeridos como marcadores de predição de resposta ao tratamento na artrite reumatoide, uma vez que tendem a diminuir após uma boa resposta ao tratamento (Wright et al., 2017). No caso de lilra3, embora já tenha sido associado à indução de NETs (Wang et al., 2021), também já teve um papel anti-inflamatório descrito, reduzindo a produção de citocinas pró-inflamatórias como IFN-γ e TNF em monócitos in vitro (Lan et al., 2021). Ainda,

alguns desses genes podem estar relacionados com funções anti-inflamatórias e com isso, poderiam se relacionar com a imunomodulação promovida pela talidomida que culmina na melhora do episódio reacional. A observação de uma maior expressão de transcobalamina (TCN1) sugere que a modulação da via de vitamina B12 possa desempenhar um papel importante no tratamento com talidomida, uma vez que já foi demonstrado que o tratamento com vitamina B12 atenua inflamações e diminui a ativação de NF-κB (Veber et al., 2008), produção de NO (Weinberg et al., 2009) e o percentual de macrófagos positivos para TNF e iNOS, enquanto aumenta o percentual de macrófagos positivos para citocinas anti-inflamatórias IL-4 e IL-10 em lesões de nervo periférico (Ehmedah et al., 2019), sugerindo que possam ser eventos importantes durante a terapia com talidomida.

Os demais genes exclusivamente modulados positivamente no grupo ENH + TAL durante o tratamento com talidomida estão principalmente relacionados a promoção de vias de resposta humoral, dessa forma, pode-se sugerir que as vias associadas a uma resposta imune humoral, com perfil mais Th2, tem um papel importante para o efeito da talidomida no episódio reacional. Tais observações corroboram os relatos da literatura que já observaram a indução de um perfil Th2 em PBMCs tratados *in vitro* com talidomida (McHugh et al., 1995).

Apenas dois genes apresentaram uma inversão do perfil de expressão após o tratamento com talidomida em ambos os sentidos. Dentre esses, no caso dos genes *upregulados* após o tratamento com talidomida, pode-se destacar o gene *il5ra*, que por sua vez também está associado às vias de resposta humoral, enriquecidas no tratamento com talidomida. Essa observação aliada ao perfil anterior de modulação negativa de uma via de resposta Th2 durante a fase aguda da reação e a observação de enriquecimento de vias de resposta humoral no sétimo dia após o início do tratamento com talidomida, sugere que a reversão do perfil de expressão para estimular uma resposta Th2 seja importante para o controle do episódio reacional e pode constituir um dos elementos mediados pela talidomida, embora não possa ser descartado que essa mudança componha um próprio efeito regulatório da imunidade do indivíduo devido à extensa ativação da mesma durante o episódio inflamatório do ENH. Ainda assim, representa um potencial alvo para aprofundamento da sua contribuição para o controle e resolução do ENH.

Outro gene associado às vias de resposta humoral que também se destacam por apresentar um perfil mais anti-inflamatório e de modulação negativa da resposta imune é o gene *vsig4*. Vsig4 apresenta diversos efeitos de regulação negativa da

resposta imune, como a inibição do inflamassoma NLRP3 em macrófagos (Huang et al., 2019), além de inibir e suprimir a atividade de células T (Xu et al., 2010) e a atividade pró-inflamatória de macrófagos in vitro induzidos com LPS (Li et al., 2017). Em um trabalho recente, os autores demonstraram de forma muito elegante que macrófagos de camundongos knock out para Vsig4 produzem níveis mais elevados de citocinas pró-inflamatórias como TNF, IL-1ß e IL-6 após estímulo com LPS. Em contrapartida, observaram que a superexpressão de Vsig4, através da transfecção com vetor lentiviral, reduz os níveis de produção dessas citocinas, e que o mecanismo de inibição de uma resposta inflamatória passa pela ativação da via de PI3K/AKT (Li et al., 2017). Adicionalmente, já foi demonstrado que o tratamento com Vsig4 melhora a progressão da artrite reumatoide (Katschke et al., 2007) e diminui a deposição de imunocomplexos nos rins, com isso reduzindo a extensão da glomerulonefrite associada ao SLE, além de diminuir a inflamação na pele (Lieberman et al., 2015), sugerindo um potencial terapêutico. Também foi observada uma conexão entre drogas imunomoduladoras (IMiDs) e a indução Vsig4, onde foi observado que o tratamento com lenalidomida, um análogo da talidomida, aumenta a expressão de Vsig4 tanto em eritroblastos isolados de pacientes com síndromes mielodisplásicas, quanto de indivíduos sadios in vitro (Pellagatti et al., 2007).

Essa tendência de uma mudança para um perfil mais anti-inflamatório também pode ser observada na regulação positiva do gene alox15, que está relacionado à produção de mediadores lipídicos que podem ter papeis de resolução da inflamação, como a lipoxina A4 (LXA4) (Tornhamre et al., 2000). Já foi demonstrado que LXA4 regula a migração de neutrófilos para os sítios de inflamação e apresenta um papel de regular negativamente o processo inflamatório (Lee et al., 1989; Levy et al., 2001). LXA4 também reduz o infiltrado inflamatório na pele induzido por PMA e a inibição da via de sinalização de IFN-y promove aumento de expressão de ALOX15 (Zhang et al., 2013a). Além disso, o tratamento com LXA4 aumenta a fagocitose de neutrófilos por macrófagos e diminui a produção de citocinas pró-inflamatórias como IFN-y e IL-6 por macrófagos, além de induzir a produção de IL-10 (Schwab et al., 2007). Mais ainda, também foi demonstrado que a deleção de alox15 juntamente com alox12 resulta em uma inflamação exacerbada com piora da progressão da doença no modelo animal experimental de artrite reumatoide (Krönke et al., 2009). Dados da literatura também demonstraram que outro mediador lipídico produzido por ALOX15, o ácido 5hidroperoxieicosatetranoico (15-HPETE) (Ivanov et al., 2015), diminui a produção de TNF em monócitos induzida por LPS (Ferrante et al., 1997), possivelmente ao acelerar

a degradação do mRNA de TNF (Ferrante and Ferrante, 2005). Interessantemente, o mesmo fenômeno de acentuação da degradação do mRNA de TNF já havia sido observado em monócitos *in vitro* tratados com talidomida (Moreira et al., 1993).

Dessa forma, pode-se sugerir que as vias associadas a uma resposta imune humoral tem um papel importante para o efeito da talidomida no episódio reacional, bem como vias relacionadas à adesão celular. E apesar de inicialmente ainda se observar uma manutenção de um perfil pró-inflamatório e de ativação neutrofílica na primeira semana de tratamento com talidomida, possivelmente constituindo ainda um reflexo do quadro reacional, a observação da indução de alguns genes com potencial anti-inflamatório e imunomodulatórios pode apontar para um caminho de controle e resolução do processo inflamatório, principalmente por terem papeis já descritos de modulação de importantes componentes atuantes no ENH como a atividade neutrofílica, TNF e IL-1β.

Contudo, não foram observadas modulações diretas em genes ligados a via de TNF, uma vez que a talidomida é considerada um inibidor de TNF e já tenha sido mostrado na literatura em diversas oportunidades que o tratamento com talidomida, bem como com outras drogas imunomodulatórias derivadas, diminui a produção dessa citocina (Lopez-Millan et al., 2017; Majumder et al., 2012; Moraes et al., 2000; Sampaio et al., 1993, 2002; Zhang et al., 2019). Ainda sim, os demais relatos da literatura que apontam o potencial imunomodulador dos genes e vias vistos enriquecidos após 7 dias de tratamento com talidomida não afastam a possibilidade de um efeito indireto ou mesmo mais tardio. De fato, já havia sido reportado anteriormente um leve aumento nos níveis de TNF no soro dos pacientes ENH ainda na primeira semana de tratamento com talidomida, mesmo com a melhora expressiva nas lesões de pele, mas que decai uma semana após a interrupção do tratamento (Haslett et al., 2005), reforçando a existência de uma cinética de imunomodulação promovida pela talidomida durante o ENH.

Embora o conjunto de genes *downregulados* durante o tratamento não aponte para vias específicas, alguns desses genes corroboram essa tendência de migração para um perfil mais anti-inflamatório, como por exemplo o gene *c4bpa* que demonstra uma inversão no seu perfil de expressão, já que estava mais expresso na comparação ENH x LL. O gene *c4bpa* está relacionado à regulação do sistema complemento (Blom et al., 2004), e com isso reforçando o envolvimento do sistema complemento durante o ENH. Outro gene modulado negativamente com destaque é o gene *mras*, que participa da super família de proteínas Ras-GTPases (Young and Rodriguez-Viciana,

2018), já sendo demonstrado que diante do estimulo de TNF, mRAS regula o processo de adesão leucocítica ao estimular a expressão de LFA-1, e com isso favorecendo a adesão via LFA-1-ICAM-1 (Yoshikawa et al., 2007). Adicionalmente, outro gene que também se encontra modulado negativamente durante o sétimo dia de tratamento com talidomida é o gene cyp1b1, e dados da literatura reportaram que células do endotélio sinusoidal do fígado knock out para cyp1b1 apresentam menor expressão de ICAM-1 e TNF (Falero-Perez et al., 2018), sugerindo essa conexão com o processo de transmigração via ICAM-1. Considerando que ICAM-1 parece ter um papel relevante durante o ENH, a regulação desse eixo de adesão e migração celular pode ser um evento importante durante o tratamento com talidomida. Além disso, já foi reportado na literatura que a expressão de CYP1B1 é promovida por TNF (Kamel et al., 2012; Smerdová et al., 2014). Dessa forma, a modulação negativa desse gene poderia resultar, de forma indireta, de uma menor ativação da sinalização de TNF no sétimo dia de tratamento com talidomida, o que por sua vez corroboraria o efeito já amplamente descrito de inibição a produção de TNF por drogas imunomodulatórias, como a talidomida.

O gene *nlrp6*, que notadamente compõe uma das conformações de inflamassoma e atua como um sensor citoplasmático muito relacionado com imunidade de mucosas (Levy et al., 2017), também é visto modulado negativamente no grupo tratado com a talidomida, com isso, podendo estar associado ao efeito antiinflamatório da talidomida. Embora o inflamassoma NLRP6 ainda seja pouco estudado, evidências recentes apontam para um controle da migração de neutrófilos, além de implicar sua participação na indução do processo de NETose durante a sepse induzida pós pneumonia bacteriana (Cai et al., 2021). Embora relatos anteriores sugiram que NLRP6 tenha um efeito inverso ao atuar como um regulador negativo da imunidade mediada por neutrófilos (Anand et al., 2012; Ghimire et al., 2018), é inegável sua relação com a atividade neutrofílica e regulação da resposta inflamatória. Assim, podemos propor que NLRP6 desempenha um papel importante durante o ENH e que sua modulação negativa durante o tratamento possivelmente contribui para uma modulação de outros fatores importantes durante o ENH, como o processo de NETose e a resposta neutrofílica em geral.

Os dados obtidos a partir da comparação do grupo ENH + TAL com o grupo de pacientes não reacionais (ENH + TAL x LL) permitem ampliar o conhecimento de vias e genes modulados pela talidomida e que podem ser cruciais durante o tratamento do ENH. A análise de grupos independentes entre os pacientes LL e pacientes reacionais

tratados com talidomida resultou em um número expressivamente maior de genes modulados no grupo ENH + TAL, tanto positivamente quanto negativamente, quando comparada à análise pareada entre ENH + TAL x ENH, o que pode ser atribuído ao intervalo de acompanhamento dos pacientes reacionais antes e durante o tratamento com talidomida, sendo esse de apenas 7 dias. Esse intervalo pode não ser suficiente para observar alterações significativas na assinatura de expressão gênica do paciente reacional tratado. Além disso, como a análise entre os grupos ENH + TAL e LL foi realizada de forma independente, por não serem amostras pareadas, consequentemente o n amostral do grupo de pacientes ENH + TAL pôde ser um pouco maior, sendo incluídos dois pacientes que não puderam ser incluídos nas análises pareadas por não ter amostra dos mesmos no momento do diagnóstico do ENH, e, com isso, possivelmente isso se reflete numa maior observação de genes modulados durante o tratamento com talidomida.

Esse número mais expressivo de genes observado na comparação ENH + TAL x LL se reflete principalmente nas vias relacionadas a catabolismo de drogas e de desenvolvimento eritrocítico, as primeiras possivelmente associadas ao metabolismo da talidomida em si. Através desta análise foi possível ampliar o conhecimento de vias e genes potencialmente modulados pela talidomida e que podem ser cruciais durante o tratamento do ENH, onde é possível confirmar a tendência observada na análise pareada de mudança de um perfil pró-inflamatório observado no paciente ENH no diagnóstico para um perfil de ativação da imunidade humoral após 7 dias de tratamento com talidomida.

A observação de transcritos relacionados a vias de desenvolvimento eritrocítico na comparação ENH + TAL x LL pode ser atribuída ao fato de não ter sido realizada uma etapa de depleção de globina no momento de construção da biblioteca de cDNA. Entretanto, alguns estudos apontam que essa depleção afeta o rendimento de RNA obtido das amostras para consequente construção da biblioteca de cDNA (Shin et al., 2014). Porém, deve-se considerar que todas as bibliotecas foram construídas igualmente, dessa forma, essa etapa não foi realizada em nenhum dos grupos, o que indica que o enriquecimento de vias e genes relacionados ao desenvolvimento eritrocítico apenas em uma das análises sugere que seja um evento biológico verdadeiro e não um artefato da técnica. Tal fato pode ser fortalecido por relatos na literatura que apontam efeitos promissores do tratamento com talidomida e outros derivados, como a lenalidomida, em casos de síndrome mielodisplásica, onde ocorre citopenias de diferentes tipos, reportando impactos positivos nos índices da fração

eritrocítica (Germing et al., 2019; Kurtin and List, 2009; Moreno-Aspitia et al., 2006; Raza et al., 2001; Strupp et al., 2003), bem como evidências de indução de eritropoiese em pacientes com mieloma múltiplo (Bouchnita et al., 2016; Grzasko et al., 2006) e síndrome mielodisplásica (Ebert et al., 2008). Embora o efeito da talidomida em vias de eritropoiese e seus benefícios sejam amplamente descritos em outras condições clínicas, ainda deve-se elucidar se essa modulação observada apresenta um impacto direto de benefício para o tratamento do ENH ou se configura um efeito colateral atrelado ao mecanismo de ação amplo da talidomida, sem apresentar uma conexão direta com o efeito terapêutico da talidomida no ENH. Também deve-se considerar que os genes envolvidos nas vias de desenvolvimento de eritrócitos também estão intimamente conectados ao metabolismo e homeostase de ferro, que por sua vez também possui um papel relevante no equilíbrio redox do organismo (Dickson and Zhou, 2020; Urrutia et al., 2014), bem como na mediação de processos inflamatórios (Wu et al., 2019), estando, por exemplo, relacionado com a polarização de macrófagos (Pereira et al., 2019; Pradhan et al., 2020), e portanto, podem efetivamente apresentar um papel importante de imunomediação durante o tratamento do ENH.

Oitenta e quatro genes modulados positivamente são compartilhados entre as comparações ENH x LL e ENH + TAL x LL, assim como 11 genes modulados negativamente são compartilhados entre essas duas análises. Grande parte desses genes induzidos estão associados às principais vias que se reproduzem em cada análise, como as vias de resposta e ativação neutrofílica e as vias de processos da imunidade inata. Uma vez que o grupo ENH + TAL ainda compõe pacientes reacionais, pois o tempo de início de tratamento é de apenas 7 dias, pode-se supor que esses genes e vias estão intimamente associados a imunopatogênese do ENH em si. Já entre as comparações ENH + TAL x ENH e ENH + TAL x LL foram encontrados 23 genes regulados positivamente compartilhados, estando esses genes associados em sua maioria às vias de resposta humoral e imunidade de mucosa, além de vias de transporte iônico, sugerindo serem processos associados à ação da talidomida em si.

Embora algumas vias possam ser destacadas da análise pareada de amostras de sangue total dos indivíduos ENH durante o tratamento com talidomida, também seria interessante estender a investigação da assinatura genética durante o tratamento com talidomida nas lesões de pele, de forma a melhor integrar as

observações e melhor compreender os mecanismos de imunomodulação da talidomida durante o ENH.

5.3 – Avaliação da ativação do inflamassoma no ENH

Os dados do RNAseq sugerem que a via de produção de IL-1 β e consequentemente vias do inflamassoma estejam moduladas sistemicamente em células sanguíneas durante o ENH. Estes resultados foram reforçados com a observação de um score mais elevado para a via do inflamassoma nas duas bases de dados utilizadas, com isso sugerindo que representam vias importantes durante a inflamação sistêmica no episódio reacional. De fato, grande parte dos pacientes ENH apresenta uma maior expressão de genes clássicos do inflamassoma, como *casp1*, aim2 e *nlrc4*, que os pacientes LL. Essas observações corroboram os dados da literatura que já reportaram a presença de IL-1 β no soro de pacientes reacionais ENH (Moubasher et al., 1998b; Sarno et al., 1991) e o aumento da expressão do receptor de IL-1 (IL-1R) nas lesões de pele de pacientes ENH quando comparado a pacientes não reacionais (Lee et al., 2010), com isso, sugerindo a participação do inflamassoma durante a inflamação observada no ENH. Contudo, a ativação de fato dessa plataforma molecular e sua contribuição para a imunopatogênese da reação ainda não tinham sido estudadas.

Ao explorar o *score* da via do inflamassoma para os pacientes pareados se observa que nos pacientes tratados com talidomida esse valor diminui, sugerindo que a droga esteja efetivamente modulando negativamente a expressão de componentes da via do inflamassoma, podendo com isso, afetar a produção de IL-1 β no sangue, o que pode contribuir para sua eficácia. Os efeitos da talidomida na produção de IL-1 β e, por extensão, na expressão de componentes do inflamassoma, já foram reportados em modelos *in vitro* e em outras doenças. Recentemente foi demonstrado que o tratamento com talidomida diminui a ativação de inflamassoma de NLRP3 e a produção de IL-1 β no tecido renal de camundongos em um modelo experimental de lesão renal induzida, diminuindo a expressão de NLRP3 e NF- κ B no tecido renal (Amirshahrokhi, 2021). Em um outro estudo foi reportado que o tratamento com talidomida suprime a ativação do inflamassoma, principalmente por diminuir a expressão de NLRP3 no mesentério de camundongos cirróticos e em células endoteliais (Li et al., 2016). Outros trabalhos também haviam relatado o efeito inibitório da talidomida na produção de IL-1 β , tendo sido observado em células totais do sangue

tratadas com talidomida (Shannon et al., 2008), assim como em PBMCs tratados *in vitro* com duas drogas análogas da talidomida (Corral et al., 1999) e em PBMCs estimulados com ligantes de TLR-2/1 (Lee et al., 2010). Mais ainda, foi visto que o tratamento com talidomida diminui os níveis de IL-1 β nos tecidos em um modelo experimental de sepse induzido por LPS (Ilhan et al., 2017) e ao estudar o potencial do tratamento com talidomida ou seus análogos na psoríase, foi observado que a talidomida efetivamente inibe a produção de IL-1 β em queratinócitos *in vitro*, pré estimulados com TNF (Tang et al., 2020).

Além de diversas evidências de uma modulação da via do inflamassoma em si, outros trabalhos também demonstraram que o tratamento com talidomida impacta a resposta pró-inflamatória mediada por IL-1β em diversos modelos (Jin et al., 2002; Qu et al., 2018; Song et al., 2016), principalmente por diminuir a expressão de NF-κB (Ilhan et al., 2017; Kawai et al., 2013), e assim dessa forma mediando a resposta antiinflamatória de uma forma bem ampla. Efetivamente, os genes *nfkb1* (subunidade p50), *nfkb2* (subunidade p52) e *rela* (subunidade p65) estão entre os genes mais modulados negativamente durante o tratamento com talidomida segundo o *heatmap* descrito na figura 4.2.1B, dessa forma corroborando as evidências anteriores da literatura que atribui à talidomida e seus análogos, um efeito de inibição de NF-κB (Revisto por Majumder et al., 2012).

Dessa forma, o estudo aprofundado e pontual da via do inflamassoma a partir dos dados do RNAseq permitiu observar essa modulação que na análise geral não havia sido evidenciada. Dessa forma, para validar esses dados, bem como expandir a observação da importância do inflamassoma também na pele, a etapa seguinte do estudo foi investigar a expressão de genes associados a essa via em células sanguíneas de pacientes ENH e pacientes multibacilares, bem como investigar a ativação local do inflamassoma, isto é, nas novas lesões cutâneas que surgem durante o ENH.

Nos estudos de expressão de células sanguíneas, que abordam o aspecto sistêmico do ENH, o aumento na mediana de expressão de pró-IL-1β, AIM2, NLRC4 e pró-caspase 4 não só confirmam os resultados observados no RNAseq, uma vez que foram os principais genes modulados positivamente observados na reanálise da comparação de ENH x LL no RNAseq, mas, juntamente com a tendência de aumento de expressão de pró-caspase-1, reforçam a sugestão da indução do inflamassoma a nível sistêmico e reforça os dados da literatura que reportam a detecção de níveis elevados de IL-1β no soro de pacientes reacionais (Moubasher et al., 1998b; Sarno et

al., 1991). Além disso, a indução de diferentes tipos de inflamassoma, como AIM2 e NLRC4, que reconhecem grupos de PAMPs e DAMPs distintos (Lamkanfi and Dixit, 2012), bem como de caspase-4, que está envolvida no inflamassoma não canônico (Viganò et al., 2015; Yang et al., 2015) sugere o engajamento dessa via de forma na circulação, por ligantes de diferentes naturezas, embora a ativação em si da plataforma do inflamassoma no contexto sistêmico ainda deve ser confirmada em futuros ensaios. Em outras patologias diferentes tipos de inflamassoma já foram correlacionados com uma inflamação sistêmica exacerbada. Uma maior expressão de AIM2 e NLRP3 foi observada em PBMCs de pacientes com psoríase, que se correlaciona com a promoção de uma inflamação sistêmica (Verma et al., 2021). A maior expressão de NLRC4 também foi observada em células sanguíneas de pacientes com lesões ateroscleróticas, que também geram um contexto de inflamação sistêmica (Borborema et al., 2020) e níveis elevados de AIM2 expressos por PBMCs de pacientes com SLE se correlacionam com a gravidade da doença (Zhang et al., 2013b). Interessantemente, um estudo recente demonstrou que a ativação do inflamassoma NLRC4 em uma população específica de células positivas para S100a8, que em sua maioria é configurada por macrófagos, contribui imensamente com a liberação ampla de citocinas e um processo inflamatório sistêmico (Nichols et al., 2017). Dessa forma, possivelmente as diferentes plataformas do inflamassoma contribuem para a potente resposta pró-inflamatória observada no ENH responsável por grande parte dos sintomas sistêmicos.

De fato, a reação de ENH apresenta uma coleção de sintomas sistêmicos, como febre e mal-estar, que não estão habitualmente relacionados com o curso regular da hanseníase multibacilar (Lastória and Abreu, 2014). Com isso, pode-se hipotetizar que a participação do inflamassoma sistemicamente seja um evento importante da imunopatogênese do ENH. Vale a pena destacar que alguns pacientes não reacionais que na nossa análise mostraram níveis de expressão mais elevados dos marcadores de inflamassoma desenvolveram reação em um período de até 1 ano após o término da PQT. Isto sugere que a maior expressão de componentes do inflamassoma no contexto sistêmico possa ter algum valor prognóstico de ocorrência de reação em pacientes multibacilares. Esta hipótese poderia ser aprofundada através de estudos de acompanhamento longitudinal destes pacientes.

O conjunto de dados do RNAseq e de expressão gênica por qRT-PCR de sangue total efetivamente contribui com a hipótese da importância do inflamassoma no contexto sistêmico do ENH, mas ainda não confirma a ativação em si dessa plataforma no contexto sistêmico, o que ainda precisa ser confirmado com ensaios que demonstrem a montagem desse sistema para ativação de caspase-1, bem como a conexão da IL-1β produzida com a ativação esse sistema. Além disso, também não responde quais tipos celulares seriam os principais envolvidos. E, embora a observação de algumas vias enriquecidas no RNAseq nos pacientes ENH sugira que neutrófilos tenham uma grande participação nesse processo, essa questão continua relevante e necessita ser abordada e aprofundada no futuro.

Uma das estratégias escolhidas para avaliar a relevância do inflamassoma durante o ENH foi investigar o efeito da talidomida na ativação e expressão desses marcadores ao comparar amostras pareadas de pacientes reacionais antes e durante o tratamento com talidomida. A talidomida é extremamente eficiente em aliviar e regredir os sinais e sintomas da reação, embora seu exato mecanismo de ação durante a reação não seja completamente conhecido. Acredita-se que um dos seus efeitos no ENH esteja atrelado à diminuição da produção de citocinas próinflamatórias, visto que já foi reportado que seu uso diminui os níveis de TNF no soro de pacientes durante a reação (Sampaio et al., 1993) e *in vitro* em PBMCs tratados com talidomida (Sampaio et al., 1991). A possível conexão entre a talidomida e a ativação do inflamassoma também já foi anteriormente descrita. Dados da literatura reportaram que a talidomida inibe a ativação de caspase-1 (Keller et al., 2009) e a produção de IL-1β por PBMCs (Lee et al., 2010). Dessa forma, pode-se propor que uma possível explicação para a eficácia da talidomida possa estar em parte relacionada com essa potencial capacidade de diminuir a expressão de componentes do inflamassoma, conforme observado no score da via a partir dos dados do RNAseq demonstrados na figura 4.2.1A, e reforçando assim a importância dessa via para a patogênese do episódio reacional. Para validar tais observações, também foram realizadas análises de gRT-PCR de células sanguíneas de pacientes ENH pareados.

Nas análises pareadas por qRT-PCR, o tratamento com talidomida durante 7 dias não afetou de forma significativa os níveis de mRNA dos genes do inflamassoma estudados, com exceção do gene de *nlrp3*, que teve sua expressão modulada positivamente e do gene *asc*, que apresentou uma tendência de aumento de expressão. De modo geral, tais observações refletem os dados da analise geral da comparação ENH + TAL x ENH no RNAseq, em que também não foram observadas alterações claras de modulação dos genes do inflamassoma e de vias inflamatórias nos pacientes durante o tratamento com talidomida. Alguns dados da literatura reportam que a talidomida não é capaz de inibir a expressão de genes do

inflamassoma em queratinócitos *in vitro* (Keller et al., 2009), enquanto em outros tipos celulares como células endoteliais de linhagem HUVEC, foi observado uma diminuição da expressão de NLRP3 mediante o tratamento com talidomida (Li et al., 2016), dessa forma sugerindo que seu efeito seja diferente em cada tipo celular e, portanto, sendo importante avaliar o possível efeito da talidomida individualmente em cada componente do sangue. Estudos anteriores também reportaram que o tratamento com talidomida aumenta os níveis de expressão gênica de NLRP3 *in vitro* em queratinócitos humanos (Keller et al., 2009). No caso de nossas análises, também seria interessante avaliar qual tipo celular primariamente contribui para esse fenômeno observado.

Também deve-se considerar que a expressão em si de NLRP3 e qualquer outro componente do inflamassoma não reflete diretamente sua ativação, que está intimamente relacionada com uma complexa sinalização envolvendo os dois sinais e montagem da plataforma molecular e, portanto, pode apenas indicar que ainda no sétimo dia de tratamento com talidomida as células sanguíneas mantém o perfil *"primado"* e pró-inflamatório, conforme também observado de modo mais amplo no RNAseq. Com isso, pode-se inferir que a nível sistêmico o período de 7 dias de tratamento com talidomida não é suficiente para reduzir os níveis de expressão gênica dos genes associadas à via do inflamassoma no sangue total, sugerindo que a expressão desses genes deva ser avaliada novamente em tempos mais tardios do tratamento com talidomida.

Em seguida, buscou-se avaliar se, assim como sugerido pelos dados de expressão sistêmica, o inflamassoma também estaria induzido nas lesões de pele e potencialmente ativo. Uma vez que o inflamassoma classicamente mais estudado é o de NLRP3, ele foi o alvo inicialmente avaliado. O reconhecimento do sinal de estresse por um receptor intracitoplasmático, como NLRP3, sinaliza para montagem do inflamassoma, em que o receptor se associa com o adaptador ASC que, então, recruta pró-caspase-1, permitindo assim sua auto clivagem e ativação (Guo et al., 2015). O aumento da co-localização do receptor NLRP3 com a caspase-1 nas lesões de pele ENH em relação às lesões de pele do mesmo paciente antes da reação sugere a proximidade desses dois componentes do inflamassoma, o que pode indicar a montagem do mesmo, e potencialmente sua ativação. Contudo, a co-localização exata dessas duas moléculas necessita ser aferida por microscopia confocal. Além disso, a técnica de imunofluorescência não permite avaliar a clivagem e ativação

efetiva de caspase-1, portanto necessitando de técnicas adicionais, como o *western blotting*, que permite a avaliação desse parâmetro.

A observação de IL-1β e caspase-1 (p20) clivadas nas lesões de pele ENH demonstra que o inflamassoma efetivamente está ativo durante a reação e no local da lesão. Não foram observadas diferenças na expressão de NLRP3 entre pacientes não reacionais (BL/LL) e pacientes ENH, tanto a nível de expressão gênica, como a nível de proteínas. Contudo, deve-se considerar que embora a regulação positiva da expressão de NLRP3 seja uma consequência do primeiro sinal de ativação do inflamassoma, que promove sua expressão via ativação de NF-κB (Bauernfeind et al., 2009), a ativação canônica requer ainda um segundo sinal, reconhecido pelo receptor citoplasmático que vai levar à ativação de caspase-1 (Yang et al., 2019). Dessa forma, observar a expressão de NLRP3 mesmo no paciente não reacional ou antes da reação não indica necessariamente que o inflamassoma esteja ativo, mas sim que existe um *priming* inicial que estaria agindo como o primeiro sinal, talvez estimulado pelo próprio contexto da infecção com altas cargas bacilares nos pacientes multibacilares.

Ainda, a observação de caspase-1 e IL-1β clivadas, aparentemente em níveis similares tanto nas lesões de pele de pacientes não reacionais como de pacientes reacionais indicam que o inflamassoma está ativo em ambos os momentos. Entretanto, deve-se considerar que as lesões de pele lepromatosas do paciente multibacilar são lesões distintas das lesões reacionais, que por sua vez, são novas lesões que surgem com o quadro inflamatório do episódio reacional, em regiões da pele aparentemente saudáveis, sem lesões lepromatosas. Com isso, a observação da ativação do inflamassoma nas lesões ENH pode ser considerada um evento novo e independente da lesão lepromatosa, o que não exclui a potencial importância dessa via para a reação inflamatória e imunopatogênese do ENH, enquanto a ativação do inflamassoma nas lesões não reacionais não seria uma surpresa visto que há a presença de infiltrado inflamatório nas lesões (Revisto por Pinheiro et al., 2018).

Os dados de qRT-PCR dão suporte aos resultados obtidos a nível proteico observados no *western blotting*, assim como ao observado por imunofluorescência, contribuindo com a evidência de indução de um *priming* inflamassoma também localmente, uma vez que *pro-caspase-1* e *asc* também foram vistos mais expressos nas lesões de pele de pacientes ENH, ainda que em níveis de expressão relativamente mais baixos que os observados nas células sanguíneas. Entretanto, aliado aos demais dados, pode-se concluir que de fato os componentes do

inflamassoma também estão mais expressos nas lesões de pele ENH, e possivelmente em níveis maiores que nos pacientes não reacionais.

A análise de qRT-PCR também permitiu avaliar a expressão de outros genes envolvidos na via do inflamassoma, como, por exemplo, *aim*2 e *nlrc*4. Entretanto, diferentemente do que foi observado para as células sanguíneas, no caso das lesões de pele não foram observadas diferenças significativas para os demais genes, sugerindo que no local da lesão, esses outros componentes do inflamassoma possuem um papel menos relevante. Adicionalmente, os níveis de expressão gênica de pró-caspase-4 na pele são extremamente baixos, com detecção em poucas amostras, resultando em um n amostral muito reduzido, e com isso, com resultados inconclusivos. Dessa forma, diante dos dados é possível sugerir que assim como observado sistemicamente, o inflamassoma também pode desempenhar um papel no contexto inflamatório nas lesões cutâneas. Vale a pena ressaltar que o inflamassoma canônico de NLRP3 parece ser o protagonista na pele, em contraste com o sangue, onde os demais inflamassomas possivelmente também contribuem para a produção de IL-1β.

Ao avaliar um possível efeito da talidomida na ativação do inflamassoma nas lesões cutâneas pode-se sugerir que embora o tratamento com talidomida não afete a expressão de pró-caspase-1 nas lesões de pele reacionais, a talidomida diminui expressivamente a clivagem e produção de IL-1β madura na lesão na maioria dos pacientes ENH estudados, indicando então que a talidomida tenha um efeito de inibir a produção de IL-1^β localmente, potencialmente contribuindo com a diminuição da reação inflamatória localmente. Essa intervenção possivelmente ocorre a nível póstranscricional, uma vez que não há indicações de modulações dos genes do inflamassoma nas análises pareadas do RNAseg e por gRT-PCR, principalmente ao considerar que o principal mecanismo de ação da talidomida está associado a interação do CRBN com novos substratos e consequente ubiquitinação e degradação dos mesmos, portanto apresentando um efeito proeminente a nível proteico (Gao et al., 2020b). Também foi observada uma menor clivagem de caspase-1 no sétimo dia de tratamento com talidomida para alguns dos pacientes ENH, corroborando o que já fora reportado pela literatura (Keller et al., 2009). Contudo, ao considerar os pacientes em que não houve diferença ou houve aumento, deve-se ter em mente que os dados anteriores da literatura são evidências do efeito da talidomida in vitro, enquanto in vivo o efeito da talidomida pode ser produto de um mecanismo combinado mais complexo, envolvendo uma série de componentes que não podem ser considerados em

avaliações isoladas *in vitro*. A diminuição da detecção de IL-1β nas lesões após o tratamento com talidomida pode também não ser só um efeito direto da diminuição da clivagem de caspase-1, mas pode, por exemplo, estar relacionado com o aumento da degradação dessa molécula. Ainda, o intervalo de estudo do efeito da talidomida, após sete dias do inicio de sua administração, pode não ser suficiente para observar mudanças mais expressivas, o que não exclui a possibilidade de um efeito mais tardio da talidomida da diminuição da ativação de caspase-1 *in vivo* nos demais pacientes em que não foi observada essa alteração no tempo estudado.

Uma vez que o aumento da expressão de componentes do inflamassoma foi visto durante a reação, é igualmente importante investigar quais são os ativadores dessa via para melhor entender quais os mecanismos que contribuem para a inflamação observada durante a reação. Como grande parte dos episódios reacionais ocorre durante o tratamento com a PQT, acredita-se que a morte massiva de bacilos provocados pelo esquema terapêutico altamente bactericida libere componentes micobacterianos e que esses componentes possam ser ativadores da resposta inflamatória, promovendo o episódio reacional. Dessa forma, buscou-se investigar a presença de componentes micobacteriano em lesões de pele de pacientes reacionais para responder essa pergunta. Optou-se por avaliar lesões ENH de pacientes que desenvolveram reação pelo menos de 2 anos após o término da PQT, quando supostamente já teria ocorrido um *clearance* maior de componentes da micobactéria. Esta análise também ajudaria a entender por que o ENH ocorre mesmo anos após a conclusão do tratamento com a PQT e supostamente após a cura bacteriológica do paciente.

O inflamassoma também foi encontrado ativo na lesão de pele ENH de pacientes que apresentaram reação mais de dois anos após a conclusão do tratamento uma vez que foram observados nessas lesões tanto a presença de IL-1β madura, como caspase-1 clivada, sugerindo a conexão com o processo de ativação do inflamassoma. Este resultado reforça a importância da via do inflamassoma para o processo inflamatório durante o ENH. Ainda, pode-se sugerir que, em pacientes que desenvolveram ENH antes da PQT, algum fator da própria resposta imune do indivíduo contribui para a ativação do inflamassoma, e não necessariamente o efeito da PQT em si, favorecendo a morte do bacilo e liberação de antígenos. Mais ainda, diferente dos dados anteriores de expressão proteica de NLRP3 em pacientes reacionais antes e durante a reação, a expressão de NLRP3 nos pacientes reacionais tanto que desenvolveram reação antes da PQT, como no grupo que desenvolveu anos

após sua conclusão é significativamente maior que em pacientes não reacionais. Tal diferença poderia ser explicada uma vez que nas análises iniciais, a expressão de NLRP3 foi investigada em amostras pareadas de pacientes, isto é, em pacientes multibacilares que em um momento posterior também desenvolveram ENH, o que pode incluir um viés nas análises, principalmente se a via do inflamassoma mais ativa no paciente não reacional for crucial para o desenvolvimento do ENH. Já as análises posteriores foram realizadas em grupos independentes e não pareados, o que pode com isso ter diminuído o viés das análises anteriores e, assim, levado à observação de um aumento da expressão de NLRP3 durante a reação.

No entanto, os dados da comparação independente entre os grupos de pacientes multibacilares e pacientes ENH a nível proteico não coincidem com os resultados observados a nível transcricional, por gRT-PCR, onde pode-se observar que os pacientes identificados em vermelho, que correspondem aos pacientes que desenvolveram o ENH depois de dois anos após o término da PQT, não apresentam níveis de expressão relativa altos ou mesmo sugestivamente maiores que os pacientes BL/LL, conforme observado na figura 4.3.3. Entretanto, para os genes significativamente mais expressos no gRT-PCR, a expressão nesses pacientes segue o perfil observado para os demais pacientes ENH. Também se observa uma diferença do perfil de expressão de pró-caspase-1 entre a análise de western blotting e a análise de gRT-PCR, em que, enquanto no primeira não são observadas diferenças claras de expressão entre os pacientes ENH e os pacientes BL/LL, no segundo a diferença é visível. Entretanto, deve-se considerar que o n amostral do grupo BL/LL na análise de qRT-PCR é bem superior ao disponível as análises de western blotting, o que indica a necessidade de aumentar o número de amostras para os pacientes BL/LL nessas análises. Adicionalmente, deve-se considerar que a técnica de gRT-PCR é mais sensível, e, com isso, alterações mais discretas nos níveis de expressão gênica, como as observadas para o gene de *casp1*, que varia em torno de 0,2 de expressão relativa, podem não ser detectáveis a nível proteico por *western blotting*. Além disso, também deve-se considerar que o mRNA e proteína foram isoladas dos mesmos fragmentos de lesão de pele correspondentes a cada paciente e, considerando que a detecção de mRNA precede a produção proteica em si, bem como o *turn over* da proteína produzida também impacta em seus níveis disponíveis no tecido, pode-se especular que o diferente perfil de expressão gênica observado no momento da coleta da amostra, para aquele microambiente da lesão cutânea, direcione para uma maior

produção proteica de caspase-1 nas próximas horas, enquanto essa modulação a nível transcricional para NLRP3 já ocorreu em momentos anteriores ao da coleta.

Nossos dados reforçam a importância do inflamassoma durante a ENH, visto ser um evento observado independente do tempo da ocorrência da reação, antes, durante ou mesmo anos após o término da PQT. Nossos resultados ainda sugerem que a ativação do inflamassoma ocorreria de forma passiva, na ausência de M. leprae vivo, possivelmente desencadeada por PAMPs derivados da micobactéria, uma vez que a produção de IL-1β madura foi detectada em situações onde a morte bacteriana já teria sido consumada, como nos pacientes pós-PQT. De fato, algumas evidências apontam que na hanseníase multibacilar há uma modulação promovida pelo bacilo vivo para manutenção de uma alça anti-inflamatória/pró-resolução que favorece a persistência do patógeno e a expansão da infecção. Já foi reportado, por exemplo, que pacientes multibacilares apresentam uma bacteremia expressiva, com monócitos e neutrófilos circulantes carregados de bacilos, sem apresentarem sinais de sepse (Drutz et al., 1972). Também foi demonstrado que pacientes multibacilares apresentam níveis elevados de mediadores lipídicos anti-inflamatórios/pró-resolução circulantes (Al-Mubarak et al., 2011; Amaral et al., 2013). A produção da citocina antiinflamatória IL-10 também é central na imunomodulação promovida pelo *M. leprae*, onde IL-10 está aumentada no soro de pacientes LL, tendo sido demonstrado uma correlação positiva entre o IB e os níveis séricos de IL-10 (Moubasher et al., 1998a), assim como macrófagos isolados de pacientes LL produzem mais IL-10 in vitro (Misra et al., 1995) e de fato, mais tarde foi demonstrado que IL-10 está envolvida em promover um perfil mais fagocítico em macrófagos, atenuando as funções microbicidas e favorecendo a infecção pelo *M. leprae* (Montoya et al., 2009). Mais recentemente foi reportado que apenas o estímulo com M. leprae morto, e não a infecção com M. leprae vivo, é capaz de induzir a produção de IL-8 e CCL4 em neutrófilos in vitro, com isso, sugerindo que ocorre uma inibição da produção dessas quimiocinas dependente da viabilidade da micobactéria (Pacheco et al., 2020).

Assim, numa etapa seguinte investigou-se a possível presença de DNA micobacteriano nas lesões de pele desse grupo específico de pacientes reacionais com base nas evidências anteriores do nosso grupo, que observou aumento da expressão de TLR-9, receptor que reconhece DNA, nas lesões de pele dos pacientes ENH (Dias et al., 2016). De fato foi possível detectar DNA de *M. leprae* nas lesões dos pacientes ENH que desenvolveram reação mais de dois anos após o termino da PQT, sugerindo uma possível conexão com os processos inflamatórios envolvendo o

inflamassoma, conforme observado nas mesmas lesões. Pode-se supor que os dois apresentem correlação visto que o DNA de M. leprae é um possível ligante de TLR-9, podendo então atuar como primeiro sinal da via de ativação do inflamassoma, assim como apresenta potencial de ativar o inflamasoma de AIM2. E mesmo que não tenha sido observada diferenças de expressão desse gene na lesão, o mesmo encontra-se fortemente induzido no sangue periférico. Dados da literatura demonstram amplamente que vias de reconhecimento de DNA estão atreladas à resposta inflamatória em outras doenças inflamatórias como lúpus eritematoso sistêmico (Celhar et al., 2012), em que já foi reportado o aumento de expressão de genes da via do inflamassoma (Liu et al., 2017). Também foi reportado que o uso de antagonistas de TLR-9/7/8 inibe a ativação do inflamassoma e os níveis de IL-16 no soro, como também melhoram os índices no modelo murino de lúpus (Zhu et al., 2013). O uso de antagonistas de TLR-9/7 também alivia as lesões de pele e diminui os níveis de componentes do inflamassoma como IL-1β, AIM2 e NLRP3 na pele no modelo experimental murino de psoríase (Jiang et al., 2013). Outros estudos também descreveram que a via de TLR-9/7 pode contribuir para a ativação do inflamassoma no contexto da infecção por malária (Hirako et al., 2015) e que histonas também são capazes de ativar o inflamassoma (Huang et al., 2013).

A sinalização de TLR-9 parece também ter um papel crucial na resposta inflamatória sistêmica durante a reação, visto que foi observado mais expresso nos pacientes ENH nas análises de RNAseg, corroborando os dados do nosso grupo, que reportaram o aumento de expressão de TLR-9 nos PBMCs de pacientes reacionais (Dias et al., 2016). Adicionalmente, no mesmo trabalho, nosso grupo identificou nos pacientes reacionais o aumento de ligantes de TLR-9 circulantes, tanto da micobactéria (complexos DNA-HLP) como endógenos (complexos DNA-histona) (Dias et al., 2016). A relação dessa via com a ativação do inflamassoma também parece estar presente, visto que os PBMCs de pacientes reacionais produzem mais IL-1β após estímulo com agonista de TLR-9 (Dias et al., 2016) e o uso de inibidor de TLR-9 diminui a produção de IL-1β promovida pelo estímulo com sonicado de M. leprae em PBMCs de pacientes reacionais (Dias et al., 2016). Dessa forma, para investigar mais a fundo a participação dessa via na ativação do inflamassoma, em um primeiro momento avaliou-se se o soro de pacientes ENH teria maior capacidade de promover a produção de IL-1β por PBMCs de voluntários sadios. Os resultados obtidos demonstram que, de fato, o soro dos pacientes ENH apresenta uma maior capacidade de induzir a produção de IL-1β, assim como de TNF, principalmente em

relação ao soro de controle sadios, com isso sugerindo que o soro dos pacientes ENH tem uma maior capacidade de promoção da resposta inflamatória, ao estimular a produção dessas citocinas, possivelmente passando por um processo de ativação do inflamassoma, visto que há o estímulo da produção de IL-1β.

Interessantemente, essa indução da produção das citocinas pró-inflamatórias é ainda mais acentuada no tratamento com os soro de pacientes no sétimo dia de tratamento com talidomida, o que por sua vez, corrobora as observações do RNAseq que demonstraram que o pacientes tratados com talidomida, no tempo analisado, ainda mantêm um perfil de indução da imunidade inata observado no episódio reacional. Com isso, possivelmente, esse maior potencial de indução de IL-1β sistemicamente reflete um período mais tardio da reação, provavelmente com maior acúmulo desses fatores pró-inflamatórios.

Estes resultados sugerem a maior presença de fatores no soro de pacientes ENH, potencialmente os ligantes de TLR-9 já reportados como complexos DNAhistona (Dias et al., 2016), bem como de outros potenciais ligantes endógenos provenientes de NETs, como mieloperoxidase (Da Silva et al., 2019), que ainda permanece após uma semana de tratamento com talidomida, e que podem ativar o inflamassoma, ratificando assim sua importância durante o episódio reacional.

Com isso, o próximo passo foi avaliar diretamente a participação da via de TLR-9 e também TLR-7 nessa possível ativação do inflamassoma que estaria relacionada com produção de IL-1β mediada pelo soro dos pacientes reacionais utilizando inibidores desses receptores, para assim confirmar essa hipótese. Os dados demonstram que, de fato, ligantes de TLR-9, mas não TLR-7, contribuem para a produção de IL-1β, reforçando os dados prévios do grupo que observaram o aumento dos ligantes de TLR-9 no soro dos pacientes reacionais (Dias et al., 2016) e assim sugerindo a importância da via de TLR-9 para a resposta inflamatória observada durante o ENH, possivelmente mediando a ativação do inflamassoma sistemicamente. E juntamente com os dados do RNAseq que demonstraram maior expressão tanto de TLR-9, quanto de AIM2 nas células sanguíneas dos pacientes reacionais, pode-se postular que o reconhecimento de DNA, e possivelmente DNA micobacteriano em si, seja um importante catalisador do processo inflamatório sistêmico durante o ENH.

Dessa forma, os dados sugerem que a promoção da produção de IL-1β mediada pelo soro de pacientes ENH, e até certa extensão, a produção de TNF, está atrelada à presença de ligantes de TLR-9 circulantes durante o ENH com potencial capacidade de ativação do inflamassoma e estimular a produção de citocinas pró-

inflamatórias, em um processo que envolve a sinalização de TLR-9. Entretanto, como o reconhecimento de RNAs não é exclusividade do receptor TLR-7, assim como também deve considerar que TLR-8 foi um dos genes modulados positivamente no ENH durante o RNAseq, não se pode ainda excluir a contribuição de PAMPs de natureza de RNA para o processo inflamatório sistêmico.

Embora as análises de RNAseq apontem para papel central dos neutrófilos na inflamação sistêmica durante o ENH e, com isso, possivelmente seja a principal célula envolvida na produção de IL-1β, muitas evidências da literatura também apontam para os monócitos como importantes produtores de IL-1β na circulação, principalmente a subpopulação de monócitos intermediários (Hirako et al., 2015; Santos et al., 2018). O envolvimento dessas células na ativação do inflamassoma foi reportado no contexto de leishmaniose cutânea (Santos et al., 2018) e no contexto de malária, onde também foi observado que a estimulação da produção de IL-1β após estímulos com imunocomplexos purificados de pacientes com malária ocorre via reconhecimento de receptores TLR-9 e com envolvimento de CD64 (Hirako et al., 2015), ambas moléculas que foram vistas induzidas nas células sanguíneas dos pacientes ENH. Assim, não se pode descartar que monócitos circulantes também sejam importantes promotores da resposta inflamatória sistêmica no ENH e importante fonte de IL-1β na circulação durante o ENH.

Ainda, a detecção de DNA micobacteriano nas lesões de pacientes ENH abre possibilidade para a presença de outros potenciais componentes da micobactéria residuais no hospedeiro e, considerando que em média o decaimento do IB ocorre de forma bem lenta (Kumar et al., 2003), pode-se especular que os demais componentes da estrutura de parede micobacteriana possam contribuir com a ativação do inflamassoma. Dessa forma, para investigar a possível capacidade de outros componentes do *M. leprae* em ativar o inflamassoma, um *screening* inicial foi realizado com monócitos de linhagem THP-1, para em um momento posterior investigar os principais candidatos em monócitos e neutrófilos primários isolados de controles sadios e, assim, possivelmente contribuindo para ratificar o papel dessas duas células como protagonistas do processo inflamatório sistêmico do ENH. A escolha de realizar o experimento em monócitos não diferenciados foi principalmente orientada para estar mais próxima do fenótipo dos monócitos circulantes, assim como para minimizar o viés introduzido com a diferenciação com PMA, que já configura um perfil pré-ativado para essas células.

Os resultados apontam para o PGL-I, componente da parede do M. leprae, como um potencial ativador do inflamassoma em monócitos de linhagem in vitro, principalmente atuando em conjunto a um priming com LPS, por induzir a secreção de IL-1^β no sobrenadante das culturas. Entretanto, a menor concentração de PGL-I de 25 µg/mL não apresentou efeito. Uma observação semelhante foi vista em um estudo com PBMC de indivíduos sadios estimulado in vitro de forma similar, com a molécula imobilizada na superfície da placa, embora tenha sido dosado apenas TNF (Charlab et al., 2001). No mesmo estudo foi observado que o tratamento com PGL-I juntamente com a infecção com *M. leprae* promove a produção de TNF, reforçando a importância de mais de um sinal para a promoção de uma resposta inflamatória induzida por componentes da micobactéria (Charlab et al., 2001). Adicionalmente também foi observado que o estímulo com 50 µg/mL de PGL-I em monócitos de doadores saudáveis não induz a produção de IL-1ß (Manca et al., 2012), embora o estímulo tenha sido isolado. Ainda assim, o PGL-I é um dos principais candidatos da micobactéria com potencial de ativação da resposta inflamatória, conforme indica nossos dados, uma vez que o PGL-I é um dos lipídios mais abundantes da micobactéria, compondo cerca de 3% de seu peso total (Gaylord and Brennan, 1987) e já foi reportado que níveis elevados de IgM anti PGL-I acompanham o IB do paciente (Meeker et al., 1990), bem como foi observado IgM anti PGL-I em pacientes ENH (Guerra et al., 2004). Inclusive, os níveis de anti-PGL-I são maiores no soro dos pacientes ENH em relação aos pacientes não reacionais (Hungria et al., 2017), dessa forma sendo compreensível ser um dos PAMPs micobacterianos mais abundantes e persistentes no ENH e com potencial de ativação da resposta imune. De fato, uma marcação positiva para PGL-I foi vista no infiltrado na pele de pacientes ENH que foram acompanhados por dois anos após a conclusão de um esquema de PQT por 24 meses, também apresentando marcação para outros antígenos micobacterianos como LAM (Verhagen et al., 1999).

Adicionalmente, também se observa uma tendência de indução da produção de IL-1β diante do pré-estímulo de PIM e mAGP, que podem atuar como primeiros sinais de promoção da ativação do inflamassoma em monócitos. Conforme já descrito, o *clearance* de componentes da micobactéria é extremamente lento, onde o decaimento de 1 índice do IB leva em média 1 ano para ocorrer (Kumar et al., 2003) e uma vez que o IB é determinado por esfregaços intradérmicos de diferentes regiões do paciente com observação de B.A.A.R, pode-se deduzir que um IB positivo se correlaciona com a persistências de estruturas da parede celular do bacilo. A

observação de um alto IB no paciente, acima de 4+, efetivamente configura um fator de risco para o desenvolvimento do ENH (Manandhar et al., 1999), assim como um IB positivo após o tratamento (Antunes et al., 2013), com isso reforçando a hipótese que PAMPs da micobactéria são fatores importantes para desencadear o episódio reacional. Além disso outros fatores também são associados com um maior risco de desenvolver ENH, como por exemplo, a presença de co-infecções (Motta et al., 2012). Dessa forma, um contexto infeccioso anterior ao episódio reacional pode sugerir um *priming* prévio da resposta imune, possivelmente atuando com um primeiro sinal, que pode contribuir para diminuir o *threshold* de ativação do inflamassoma a partir de componentes residuais do ML como glicolipídios da parede e DNA micobacteriano, que atuariam como um segundo sinal. Entretanto, o complexo DNA micobacteriano + HIp não foi capaz de ativar a produção de IL-1β em monócitos da linhagem THP-1, indo na contramão dos dados anteriores que sugerem que ligantes de TLR-9 são promotores da produção de IL-1β.

Dessa forma, pode-se sugerir que componentes micobacterianos, principalmente componentes da parede do M. leprae, sejam os lipídios, ou seu core micolato-arabino-galactano-peptidoglicano, são possíveis de ativadores do inflamassoma em monócitos humanos. Ainda assim, não se deve descartar que DNA+Hlp, bem como o próprio LAM, sejam capazes de ativar o inflamassoma em diferentes concentrações, ou mesmo possam ter um efeito mais proeminente em monócitos humanos primários ou neutrófilos. Além disso, o contexto in vitro não representa fidedignamente o episódio reacional in vivo, que converge uma miríade de potenciais fatores pró-inflamatórios e de pré-estímulos, como por exemplo os fatores de risco, que juntos podem potencializar o efeito desses componentes micobacterianos, que não são observados in vitro. Com isso, torna-se também importante discriminar o potencial de indução da produção de IL-1β desses componentes micobacterianos em células primárias de pacientes ENH, sejam monócitos ou neutrófilos, em comparação a pacientes multibacilares não reacionais e controles sadios em um segundo momento.

O conjunto de dados apresentados, tanto nas análises do RNAseq, quanto nos ensaios experimentais, permite apontar duas importantes peças na imunopatogênese do ENH, tanto sistêmica, quanto local: a resposta neutrofílica e o inflamassoma e consequente produção de IL-1β, onde os dois podem apresentar uma interdependência na expansão do processo inflamatório e desenvolvimento do ENH. Essa relação íntima é observada em outras doenças inflamatórias, como a doença de

Still do adulto, que se caracteriza por uma elevada contagem de neutrófilos no sangue, juntamente com uma produção exacerbada de citocinas pró-inflamatórias, dentre elas a IL-1 β , e foi demonstrado que nessa patologia NETs provenientes de pacientes contribuem para a ativação do inflamassoma de NLRP3 e produção de IL-18 e IL-18 (Hu et al., 2019). Relatos da literatura de mostram que IL-1β atua ativamente no recrutamento de neutrófilos do sangue para a periferia, como articulações (Amaral et al., 2012) e pulmão (Mascarenhas et al., 2015), em camundongos. Ainda foi reportado que em células endoteliais o estimulo com IL-1β promove a expressão de E-selectina (Lee et al., 2010), que pode favorecer a migração de neutrófilos do sangue para a pele, enquanto o tratamento com talidomida diminui a expressão dessa molécula, via redução da produção de IL-1ß (Lee et al., 2010). Dessa forma, é possível que a ativação do inflamassoma durante a reação possa contribuir com o recrutamento de neutrófilos para a pele e com isso contribuir para a amplificação da resposta inflamatória. A inibição do inflamassoma a partir do uso de inibidores farmacológicos tem sido amplamente utilizada como estratégia para controle de doenças inflamatórias e mesmo autoimunes (Revisto por Dinarello et al., 2012). O uso, por exemplo, do anakinra, que é um análogo do antagonista do receptor de IL-1 (IL-1Ra), tem sido empregado com sucesso no tratamento da doença de Still do adulto (Castañeda et al., 2018) e artrite reumatoide (Cunnane et al., 2001), além de ser investigado para o tratamento de outras patologias com processos inflamatórios sistêmicos, como, por exemplo, doenças cardiovasculares (Revisto por Abbate et al., 2020) e sepse (Rajasekaran et al., 2014).

Assim, a partir dos achados obtidos ao longo desse estudo, foi possível elaborar um modelo, apresentado na figura 5.3.1, que converge os principais achados do RNAseq com a participação do inflamassoma na imunopatogênese do ENH e demais elementos importantes da mesma, como a atividade neutrofílica. Componentes da micobactéria residuais presentes na pele do paciente, como DNA e glicolipídios da parede da micobactéria, seriam fatores que poderiam promover a ativação do inflamassoma na pele, levando à produção de IL-1β e contribuindo para o processo inflamatório local, onde a liberação exacerbada de citocinas pró-inflamatórias promoveria o recrutamento de neutrófilos para a pele. É oportuno ressaltar aqui que um importante fator de risco para o desenvolvimento de ENH é a presença no paciente de alta carga bacilar, que estaria, sem duvida atrelado à maior probabilidade da presença de PAMPs micobacterianos na pele. PAMPs estão presentes durante todo o curso da hanseníase multibacilar, uma vez que o indivíduo

apresenta uma carga bacilar elevada. No entanto, como mencionado anteriormente, o bacilo viável seria capaz de modular negativamente a reposta inflamatória no paciente multibacilar, um caso clássico de tolerância ao patógeno, evitando a ativação de uma resposta inflamatória descontrolada e sistêmica como ocorre no ENH. Contudo, num cenário pré-início do tratamento, a ocorrência conjunta de alguns fatores de risco para o desenvolvimento do ENH, como, por exemplo, co-infecções, poderia levar a uma ativação da resposta inflamatória que seria capaz de ultrapassar o limiar de tolerância promovido pela micobactéria e, com isso, culminar na ocorrência do episodio reacional. Já em pacientes em tratamento com a PQT, a morte dos bacilos não só contribuiria com uma maior disponibilidade de PAMPs micobacterianos, como também diminuiria a modulação anti-inflamatória promovida pelo M. leprae, favorecendo, assim, a ativação da resposta inflamatória e desenvolvimento do ENH. Por outro lado, num cenário de ocorrência de ENH após o término da PQT, o clearence lento e consequente permanência prolongada de componentes da micobactéria associada a outros sinais e fatores de risco poderiam desencadear uma ativação da resposta inflamatoria permitindo o aparecimento do episodio reacional.

Na pele, a ativação neutrofílica contribuiria para a exacerbação do processo inflamatório e o processo de NETose disponibilizaria possíveis autoantígenos que colaboram com a estimulação de produção de autoanticorpos. Já no sangue periférico, a circulação de autoantígenos e autoanticorpos favorece a ativação de neutrófilos, levando a sua degranulação, que assim contribui com a liberação de mais autoantígenos, bem como uma série de fatores pró-inflamatórios no contexto sistêmicos. Dentre esses fatores, destacam-se as alarminas S100a8, S100a9 e S100a12 que além de contribuir com a promoção do processo inflamatório em si, também estariam correlacionadas com o estímulo do processo de transmigração celular, com participação importante de ICAM-1 e com isso favorecendo a migração neutrofílica para a pele. A ativação sistêmica das células mieloides, principalmente monócitos e neutrófilos também perpassaria o reconhecimento de antígenos circulantes ligantes de TLR-9, que promovem a ativação do inflamassoma e consequente liberação de IL-1β, que por sua vez também contribuiria ampliando o evento de ativação das células no sangue, como neutrófilos, por exemplo, e promovendo uma alça de retroalimentação positiva de manutenção do processo inflamatório. Desta maneira, a ativação do inflamassoma tanto na pele quanto no sangue periférico e esse intercâmbio entre os dois tecidos, bem como os processos de ativação neutrofílica podem constituir importantes elementos de persistência da

resposta inflamatória no ENH. Com isso, diante dos dados apresentados, pode-se sugerir que o inflamassoma possa ser um alvo em potencial para estratégias terapêuticas no ENH, bem como que sua conexão com a resposta neutrofílica seja um componente central da imunopatogênese do ENH.

Figura 5.3.1 – Modelo hipotético do papel do inflamassoma na imunopatogênese do ENH.

6. Conclusões

Assim, as conclusões finais do estudo apontam para cinco direções principais: 1) No contexto sistêmico, a maior expressão de genes associados a resposta neutrofílica observada no ENH consolida o papel central desta célula na imunopatogênese do mesmo; 2) O inflamassoma encontra-se ativado nas lesões de pele do ENH. Este dado, aliado à maior expressão de seus componentes nas células células sanguíneas destes pacientes, sugere que esta via desempenha um papel relevante no processo inflamatório observado durante o ENH; 3) As vias de reconhecimento de DNA, como a via de TLR-9, podem contribuir com a ativação do inflamassoma no contexto sistêmico observado no ENH; 4) Componentes da micobactéria podem contribuir para a ativação do inflamassoma durante o ENH; e 5) Embora o tratamento com talidomida pareca reduzir os níveis de IL-1^β nas lesões de pele, nossos dados sugerem que sua ação imunomodulatória a curto prazo ao nível sistêmico poderia estar mais atrelada a outros processos, como a estimulação de uma resposta com perfil Th2. Dessa forma, o estudo contribuiu para elucidar o papel do inflamassoma durante o ENH, bem como aprofundar o entendimento do papel da talidomida na estratégia de controle do ENH e com isso, revelar possíveis caminhos para o diagnóstico e tratamento do episódio reacional.

7. Referências Bibliográficas

- Aachoui, Y., Leaf, I. A., Hagar, J. A., Fontana, M. F., Campos, C. G., Zak, D. E., et al. (2013). Caspase-11 protects against bacteria that escape the vacuole. *Science (80-.).* 339, 975–978. doi:10.1126/science.1230751.
- Abbate, A., Toldo, S., Marchetti, C., Kron, J., Van Tassell, B. W., and Dinarello, C. A. (2020). Interleukin-1 and the Inflammasome as Therapeutic Targets in Cardiovascular Disease. *Circ. Res.*, 1260–1280. doi:10.1161/CIRCRESAHA.120.315937.
- Abdalla, H., Srinivasan, L., Shah, S., Mayer-Barber, K. D., Sher, A., Sutterwala, F. S., et al. (2012). Mycobacterium tuberculosis infection of dendritic cells leads to partially caspase-1/11-independent IL-1?? and IL-18 secretion but not to pyroptosis. *PLoS One* 7, 1–10. doi:10.1371/journal.pone.0040722.
- Abdallah, M., Attia, E. A. S., Saad, A. A., El-Khateeb, E. A., Lotfi, R. A., Abdallah, M., et al. (2014). Serum Th1/Th2 and macrophage lineage cytokines in leprosy; correlation with circulating CD4+ CD25highFoxP3+ T-regs cells. *Exp. Dermatol.* 23, 742–747. doi:10.1111/exd.12529.
- Abdallah, M., Emam, H., Attia, E., Hussein, J., and Mohamed, N. (2013). Estimation of serum level of interleukin-17 and interleukin-4 in leprosy, towards more understanding of leprosy immunopathogenesis. *Indian J Dermatol Venereol Leprol* 79, 772–776. doi:10.4103/0378-6323.120723.
- Abtin, A., Eckhart, L., Gläser, R., Gmeiner, R., Mildner, M., and Tschachler, E. (2010). The antimicrobial heterodimer S100A8/S100A9 (Calprotectin) is upregulated by bacterial flagellin in human epidermal keratinocytes. *J. Invest. Dermatol.* 130, 2423–2430. doi:10.1038/jid.2010.158.
- Adachi, O., Kawai, T., Takeda, K., Matsumoto, M., Tsutsui, H., Sakagami, M., et al. (1998). Targeted disruption of the MyD88 gene results in loss of IL-1- and IL- 18-mediated function. *Immunity* 9, 143–150. doi:10.1016/S1074-7613(00)80596-8.
- Agostini, L., Martinon, F., Burns, K., Mcdermott, M. F., Hawkins, P. N., and Rg Tschopp, J. (2004). NALP3 Forms an IL-1-Processing Inflammasome with Increased Activity in Muckle-Wells Autoinflammatory Disorder containing protein called ASC binds and activates pro-caspase-1 (Martinon et al ASC contains a C-terminal CARD motif as well as an N-terminal CAR. *Immunity* 20, 319–325.
- Ahn, H., Maruo, S., Tomura, M., Mu, J., Hamaoka, T., Nakanishi, K., et al. (1997). A mechanism underlying synergy between IL-12 and IFN-gamma-inducing factor in enhanced production of IFN-gamma. *J. Immunol. (Baltimore, Md 1950)* 159, 2125–2131.
- Akira, S., and Takeda, K. (2004). Toll-like receptor signalling. *Nat. Rev. Immunol.* 4, 499– 511. doi:10.1038/nri1391.
- Al-Mubarak, R., Vander Heiden, J., Broeckling, C. D., Balagon, M., Brennan, P. J., and Vissa, V. D. (2011). Serum metabolomics reveals higher levels of polyunsaturated fatty acids in lepromatous leprosy: Potential markers for susceptibility and pathogenesis. *PLoS Negl. Trop. Dis.* 5. doi:10.1371/journal.pntd.0001303.
- Alder, M. N., Mallela, J., Opoka, A. M., Lahni, P., Hildeman, D. A., and Wong, H. R. (2019). Olfactomedin 4 marks a subset of neutrophils in mice. *Innate Immun.* 25, 22–33. doi:10.1177/1753425918817611.
- Alexopoulou, L., Holt, A., Medzhitov, R., and Flavell, R. (2001). Recognition of doublestranded RNA and activation of NF-kappaB by Toll-like receptor 3. *Nature* 413, 732– 738.

Amaral, E. P., Riteau, E., Moayeri, M., Maier, N., Mayer-Barber, K. D., Pereira, R., et al.

(2018). Lysosomal cathepsin release is required for nlrP3-inflammasome activation by Mycobacterium tuberculosis in infected Macrophages. *Front. Microbiol.* 9. doi:10.3389/fimmu.2018.01427.

- Amaral, F. A., Costa, V. V., Tavares, L. D., Sachs, D., Coelho, F. M., Fagundes, C. T., et al. (2012). NLRP3 inflammasome-mediated neutrophil recruitment and hypernociception depend on leukotriene B4 in a murine model of gout. *Arthritis Rheum.* 64, 474–484. doi:10.1002/art.33355.
- Amaral, J. J., Antunes, L. C. M., de Macedo, C. S., Mattos, K. a., Han, J., Pan, J., et al. (2013). Metabonomics Reveals Drastic Changes in Anti-Inflammatory/Pro-Resolving Polyunsaturated Fatty Acids-Derived Lipid Mediators in Leprosy Disease. *PLoS Negl. Trop. Dis.* 7. doi:10.1371/journal.pntd.0002381.
- Amirbeagi, F., Thulin, P., Pullerits, R., Pedersen, B., Andersson, B. A., Dahlgren, C., et al. (2015). Olfactomedin-4 autoantibodies give unusual c-ANCA staining patterns with reactivity to a subpopulation of neutrophils. *J. Leukoc. Biol.* 97, 181–189. doi:10.1189/jlb.5a0614-311r.
- Amirshahrokhi, K. (2021). Thalidomide reduces glycerol-induced acute kidney injury by inhibition of NF-kB, NLRP3 inflammasome, COX-2 and inflammatory cytokines. *Cytokine* 144, 155574. doi:10.1016/j.cyto.2021.155574.
- Amorim, F. M., Nobre, M. L., Nascimento, L. S., Miranda, A. M., Monteiro, G. R. G., Freire-Neto, F. P., et al. (2019). Differential immunoglobulin and complement levels in leprosy prior to development of reversal reaction and erythema nodosum leprosum. *PLoS Negl. Trop. Dis.* 13, 1–17. doi:10.1371/journal.pntd.0007089.
- Anand, P. K., Subbarao Malireddi, R. K., Lukens, J. R., Vogel, P., Bertin, J., Lamkanfi, M., et al. (2012). NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens. *Nature* 488, 389–393. doi:10.1038/nature11250.
- Anders, S., and Huber, W. (2010). Differential expression analysis for sequence count data. *Genome Biol.* 11, 1–12. doi:10.1186/gb-2010-11-10-r106.
- Andrade, P. R., Jardim, M. R., Da Silva, A. C. C., Manhaes, P. S., Antunes, S. L. G., Vital, R., et al. (2016). Inflammatory cytokines are involved in focal demyelination in leprosy neuritis. *J. Neuropathol. Exp. Neurol.* 75, 272–283. doi:10.1093/jnen/nlv027.
- Andrade, P. R., Pinheiro, R. O., Sales, A. M., Illarramendi, X., De Mattos Barbosa, M. G., Moraes, M. O., et al. (2015). Type 1 reaction in leprosy: A model for a better understanding of tissue immunity under an immunopathological condition. *Expert Rev. Clin. Immunol.* 11, 391–407. doi:10.1586/1744666X.2015.1012501.
- Antonangeli, F., Natalini, A., Garassino, M. C., Sica, A., Santoni, A., and Di Rosa, F. (2020). Regulation of PD-L1 Expression by NF-κB in Cancer. *Front. Immunol.* 11, 584626. doi:10.3389/fimmu.2020.584626.
- Antunes, D. E., Araujo, S., Ferreira, G. P., da Cunha, A. C. S. R., da Costa, A. V., Gonçalves, M. A., et al. (2013). Identification of clinical, epidemiological and laboratory risk factors for leprosy reactions during and after multidrug therapy. *Mem. Inst. Oswaldo Cruz* 108, 901–908. doi:10.1590/0074-0276130222.
- Antunes, D. E., Goulart, I. M. B., Lima, M. I. S., Alves, P. T., Tavares, P. C. B., and Goulart, L. R. (2019). Differential Expression of IFN- γ, IL-10, TLR1, and TLR2 and Their Potential Effects on Downgrading Leprosy Reaction and Erythema Nodosum Leprosum. *J. Immunol. Res.* 2019, 3405103. doi:10.1155/2019/3405103.
- Arbuckle, M., McClain, M., Rubertone, M., Scofield, R., Dennis, G., James, J., et al. (2003). Development of Autoantibodies before the Clinical Onset of Systemic Lupus Erythematosus. N Engl J Med 349, 1526–1533. Available at: www.nejm.org.

- Asatsuma-Okumura, T., Ito, T., and Handa, H. (2019). Molecular mechanisms of cereblonbased drugs. *Pharmacol. Ther.* 202, 132–139. doi:10.1016/j.pharmthera.2019.06.004.
- Aseffa, A., Dietrich, M., and Shannon, E. (1997). Effect of thalidomide on apoptosis of lymphocytes and neutrophils. *Immunopharmacol. Immunotoxicol.* 19, 313–326.
- Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., et al. (2000). Gene ontology: Tool for the unification of biology. *Nat. Genet.* 25, 25–29. doi:10.1038/75556.
- Attia, E. A. S., Abdallah, M., Saad, A. A., Afifi, A., El Tabbakh, A., El-Shennawy, D., et al. (2010). Circulating CD4+ CD25highFoxP3+ T cells vary in different clinical forms of leprosy. *Int. J. Dermatol.* 49, 1152–1158. doi:10.1111/j.1365-4632.2010.04535.x.
- Avanzi, C., Del-Pozo, J., Benjak, A., Stevenson, K., Simpson, V. R., Busso, P., et al. (2016). Red squirrels in the British Isles are infected with leprosy bacilli. *Science* 354, 744–747.
- Azuma, I., Thomas, D., Adam, A., Ghuysen, J., Bonaly, R., Petit, J., et al. (1970). Occurence of N-glucosylmuramic acid in bacterial cell walls. *Biochim Biophys Acta* 20, 444–451.
- Bah, S. Y., Forster, T., Dickinson, P., Kampmann, B., and Ghazal, P. (2018). Meta-analysis identification of highly robust and differential immune-metabolic signatures of systemic host response to acute and latent tuberculosis in children and adults. *Front. Genet.* 9, 1–16. doi:10.3389/fgene.2018.00457.
- Baker, E., Chen, L. Z., Smith, C. A., Callen, D. F., Goodwin, R., and Sutherland, G. R. (1991). Chromosomal location of the human tumor necrosis factor receptor genes. *Cytogenet. Genome Res.* 57, 117–118. doi:10.1159/000133127.
- Baker, P. J., Boucher, D., Bierschenk, D., Tebartz, C., Whitney, P. G., D'Silva, D. B., et al. (2015). NLRP3 inflammasome activation downstream of cytoplasmic LPS recognition by both caspase-4 and caspase-5. *Eur. J. Immunol.* 45, 2918–2926. doi:10.1002/eji.201545655.
- Banchereau, R., Hong, S., Cantarel, B., Rossello-Urgell, J., Wright, T., and Correspondence, V. P. (2016). Personalized Immunomonitoring Uncovers Molecular Networks that Stratify Lupus Patients. doi:10.1016/j.cell.2016.03.008.
- Barbieri, R. R., Sales, A. M., Illarramendi, X., Moraes, M. O., Nery, J. A. D. C., Moreira, S. J. M., et al. (2014). Diagnostic challenges of single plaque-like lesion paucibacillary leprosy. *Mem. Inst. Oswaldo Cruz* 109, 944–947. doi:10.1590/0074-0276140212.
- Barbosa, M. G. de M., Silva, B. J. de A., Assis, T. Q., Prata, R. B. da S., Ferreira, H., Andrade, P. R., et al. (2018). Autophagy impairment is associated with increased inflammasome activation and reversal reaction development in multibacillary leprosy. *Front. Immunol.* 9. doi:10.3389/fimmu.2018.01223.
- Barreto, J. G., Bisanzio, D., Guimarães, L. S., Spencer, J. S., Vazquez-Prokopec, G. M., Kitron, U., et al. (2014). Spatial Analysis Spotlighting Early Childhood Leprosy Transmission in a Hyperendemic Municipality of the Brazilian Amazon Region. *PLoS Negl. Trop. Dis.* 8, e2665. doi:10.1371/journal.pntd.0002665.
- Barreto, J. G., Guimarães, L. D. S., Leão, M. R. N., Ferreira, D. V. G., Lima, R. A. D. A., and Salgado, C. G. (2011). Anti-PGL-I seroepidemiology in leprosy cases: household contacts and school children from a hyperendemic municipality of the Brazilian Amazon. *Lepr. Rev.* 82, 358–70. Available at: https://www.lepra.org.uk/platforms/lepra/files/lr/Dec11/1700.pdf%5Cnhttp://www.ncbi.nl m.nih.gov/pubmed/22439276.
- Barth-Jaeggi, T., Steinmann, P., Mieras, L., Van Brakel, W., Richardus, J. H., Tiwari, A., et al. (2016). Leprosy Post-Exposure Prophylaxis (LPEP) programme: Study protocol for evaluating the feasibility and impact on case detection rates of contact tracing and

single dose rifampicin. BMJ Open 6. doi:10.1136/bmjopen-2016-013633.

- Basu, S., Fowler, B. J., Kerur, N., Arnvig, K. B., and Rao, N. A. (2018). NLRP3 inflammasome activation by mycobacterial ESAT-6 and dsRNA in intraocular tuberculosis. *Microb. Pathog.* 114, 219–224. doi:10.1016/j.micpath.2017.11.044.
- Bauernfeind, F. G., Horvath, G., Stutz, A., Alnemri, E. S., MacDonald, K., Speert, D., et al. (2009). Cutting Edge: NF-κB Activating Pattern Recognition and Cytokine Receptors License NLRP3 Inflammasome Activation by Regulating NLRP3 Expression. *J. Immunol.* 183, 787–791. doi:10.4049/jimmunol.0901363.
- Belone, A. D. F. F., Rosa, P. S., Trombone, A. P. F. F., Fachin, L. R. V. V, Guidella, C. C., Ura, S., et al. (2015). Genome-wide screening of mRNA expression in leprosy patients. *Front. Genet.* 6, 1–12. doi:10.3389/fgene.2015.00334.
- Ben-Sasson, S. Z., Hu-Li, J., Quiel, J., Cauchetaux, S., Ratner, M., Shapira, I., et al. (2009). IL-1 acts directly on CD4 T cells to enhance their antigen-driven expansion and differentiation. *Proc. Natl. Acad. Sci. U. S. A.* 106, 7119–7124. doi:10.1073/pnas.0902745106.
- Benaoudia, S., Martin, A., Puig Gamez, M., Gay, G., Lagrange, B., Cornut, M., et al. (2019). A genome-wide screen identifies IRF2 as a key regulator of caspase-4 in human cells. *EMBO Rep.* 20, 1–14. doi:10.15252/embr.201948235.
- Benjamini, Y., and Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 57, 289–300. doi:10.1111/j.2517-6161.1995.tb02031.x.
- Bergsbaken, T., Fink, S. L., and Cookson, B. T. (2009). Pyroptosis: Host cell death and inflammation. *Nat. Rev. Microbiol.* 7, 99–109. doi:10.1038/nrmicro2070.
- Bernardes, F. F., Paula, N. A. De, Leite, M. N., Abi-rached, T. L. C., Vernal, S., Batista, M., et al. (2017). Evidence of hidden leprosy in a supposedly low endemic area of Brazil. *Mem. Inst. Oswaldo Cruz* 112, 1–7. doi:10.1590/0074-02760170173.
- Berrington, W. R., Macdonald, M., Khadge, S., Sapkota, B. R., Janer, M., Hagge, D. A., et al. (2010). Common polymorphisms in the NOD2 gene region are associated with leprosy and its reactive states. *J. Infect. Dis.* 201, 1422–35. doi:10.1086/651559.
- Berry, M. P. R., Graham, C. M., McNab, F. W., Xu, Z., Bloch, S. A. A., Oni, T., et al. (2010). An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. *Nature* 466, 973–977. doi:10.1038/nature09247.
- Binford, C. H., Meyers, W. M., Walsh, G. P., Storrs, E. E., and Brown, H. L. (1977). Naturally acquired leprosy like disease in the nine-banded armadillos D. novemcintus, histopathologic and microbiologic studies of tissues. *J. Reticuloendothel Soc.* 33, 377–388.
- Binford, C. H., Storrs, E. E., and Walsh, G. P. (1976). Disseminated infection in the nine-banded armadillo (Dasypus novemcinctus) resulting from inoculation with M. leprae:
 Observations made on 15 animals studied at autopsy. *Int. J. Lepr. other Mycobact. Dis.* 44, 80–83.
- Bing, P. F., Xia, W., Wang, L., Zhang, Y. H., Lei, S. F., and Deng, F. Y. (2016). Common marker genes identified from various sample types for systemic lupus erythematosus. *PLoS One* 11. doi:10.1371/journal.pone.0156234.
- Blom, A. M., Villoutreix, B. O., and Dahlbäck, B. (2004). Functions of human complement inhibitor C4b-binding protein in relation to its structure. *Arch. Immunol. Ther. Exp.* (*Warsz*). 52, 83–95. Available at: https://pubmed.ncbi.nlm.nih.gov/15179322/ [Accessed August 3, 2021].

- Bloom, C. I., Graham, C. M., Berry, M. P. R., Rozakeas, F., Redford, P. S., Wang, Y., et al. (2013). Transcriptional Blood Signatures Distinguish Pulmonary Tuberculosis, Pulmonary Sarcoidosis, Pneumonias and Lung Cancers. *PLoS One* 8, e70630. doi:10.1371/journal.pone.0070630.
- Bobosha, K., Wilson, L., van Meijgaarden, K. E., Bekele, Y., Zewdie, M., van der Ploeg- van Schip, J. J., et al. (2014). T-Cell Regulation in Lepromatous Leprosy. *PLoS Negl. Trop. Dis.* 8, 2–10. doi:10.1371/journal.pntd.0002773.
- Boer, M. C., Joosten, S. A., and Ottenhoff, T. H. M. (2015). Regulatory T-cells at the interface between human host and pathogens in infectious diseases and vaccination. *Front. Immunol.* 6, 1–15. doi:10.3389/fimmu.2015.00217.
- Boot, R. G., Renkema, G. H., Verhock, M., Strijland, A., Bliek, J., De Meulemeester, T. M. A.
 M. O., et al. (1998). The human chitotriosidase gene Nature of inherited enzyme deficiency. *J. Biol. Chem.* 273, 25680–25685. doi:10.1074/jbc.273.40.25680.
- Borborema, M. E. de A., Crovella, S., Oliveira, D., and de Azevêdo Silva, J. (2020). Inflammasome activation by NLRP1 and NLRC4 in patients with coronary stenosis. *Immunobiology* 225, 151940. doi:10.1016/j.imbio.2020.151940.
- Bordron, A., Bagacean, C., Tempescul, A., Berthou, C., Bettacchioli, E., Hillion, S., et al. (2020). Complement System: a Neglected Pathway in Immunotherapy. *Clin. Rev. Allergy Immunol.* 58, 155–171. doi:10.1007/s12016-019-08741-0.
- Boström, E. A., Tarkowski, A., and Bokarewa, M. (2009). Resistin is stored in neutrophil granules being released upon challenge with inflammatory stimuli. *Biochim. Biophys. Acta Mol. Cell Res.* 1793, 1894–1900. doi:10.1016/j.bbamcr.2009.09.008.
- Bouchnita, A., Eymard, N., Moyo, T. K., Koury, M. J., and Volpert, V. (2016). Bone marrow infiltration by multiple myeloma causes anemia by reversible disruption of erythropoiesis. *Am. J. Hematol.* 91, 371–378. doi:10.1002/ajh.24291.
- Bovin, L. F., Brynskov, J., Hegedüs, L., Jess, T., Nielsen, C. H., and Bendtzen, K. (2007). Gene expression profiling in autoimmune diseases: Chronic inflammation or disease specific patterns? *Autoimmunity* 40, 191–201. doi:10.1080/08916930701233813.
- Bovin, L. F., Rieneck, K., Workman, C., Nielsen, H., Sørensen, S. F., Skjødt, H., et al. (2004). Blood cell gene expression profiling in rheumatoid arthritis: Discriminative genes and effect of rheumatoid factor. *Immunol. Lett.* 93, 217–226. doi:10.1016/j.imlet.2004.03.018.
- Boyden, E. D., and Dietrich, W. F. (2006). Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. *Nat. Genet.* 38, 240–244. doi:10.1038/ng1724.
- Boyle, E. I., Weng, S., Gollub, J., Jin, H., Botstein, D., Cherry, J. M., et al. (2004). GO::TermFinder - Open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. *Bioinformatics* 20, 3710–3715. doi:10.1093/bioinformatics/bth456.
- Brennan, M. A., and Cookson, B. T. (2000). Salmonella induces macrophage death by caspase-1-dependent necrosis. *Mol. Microbiol.* 38, 31–40. doi:10.1046/j.1365-2958.2000.02103.x.
- Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D. S., et al. (2004). Neutrophil Extracellular Traps Kill Bacteria. *Science (80-.).* 303, 1532–1535. doi:10.1126/science.1092385.

Browne, S. G. (1970). How Old is Leprosy ? Br. Med. J. 3, 640–641.

Buckley, C. D., Ferguson, E. D., Liftier, A. J., Bossy, D., and Simmons, D. L. (1997). Role of ligands in the activation of LFA-1. *Eur. J. Immunol.* 27, 957–962.
doi:10.1002/eji.1830270423.

- Cai, S., Batra, S., Wakamatsu, N., Pacher, P., and Jeyaseelan, S. (2012). NLRC4 Inflammasome-Mediated Production of IL-1β Modulates Mucosal Immunity in the Lung against Gram-Negative Bacterial Infection. *J. Immunol.* 188, 5623–5635. doi:10.4049/jimmunol.1200195.
- Cai, S., Paudel, S., Jin, L., Ghimire, L., Taylor, C. M., Wakamatsu, N., et al. (2021). NLRP6 modulates neutrophil homeostasis in bacterial pneumonia-derived sepsis. *Mucosal Immunol.* 14, 574–584. doi:10.1038/s41385-020-00357-4.
- Cai, X., Chiu, Y. H., and Chen, Z. J. (2014). The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. *Mol. Cell* 54, 289–296. doi:10.1016/j.molcel.2014.03.040.
- Carlucci, P. M., Purmalek, M. M., Dey, A. K., Temesgen-Oyelakin, Y., Sakhardande, S., Joshi, A. A., et al. (2018). Neutrophil subsets and their gene signature associate with vascular inflammation and coronary atherosclerosis in lupus. *JCl insight* 3, 1–15. doi:10.1172/jci.insight.99276.
- Carneiro-Filho, B. A., Souza, M. L. P., Lima, Aldo, A. M., and Ribeiro, R. A. (2001). The effect of tumour necrosis factor (TNF) inhibitors in Clostridium difficile toxin-induced paw oedema and neutrophil migration. *Pharmacol. Toxicol.* 88, 313–318. doi:10.1034/j.1600-0773.2001.880605.x.
- Carow, B., and Rottenberg, M. E. (2014). SOCS3, a major regulator of infection and inflammation. *Front. Immunol.* 5. doi:10.3389/fimmu.2014.00058.
- Carvalho, A. P. M., Coelho, A. da C. O., Correa-Oliveira, R., and Lana, F. C. F. (2017). Specific antigen serologic tests in leprosy: Implications for epidemiological surveillance of leprosy cases and household contacts. *Mem. Inst. Oswaldo Cruz* 112, 609–616. doi:10.1590/0074-02760160505.
- Cassatella, M. A., Flynn, R. M., Amezaga, M. A., Bazzoni, F., Vicentini, F., and Trinchieri, G. (1990). Interferon gamma induces in human neutrophils and macrophages expression of the mRNA for the high affinity receptor for monomeric IgG (FcγR-I or CD64). *Biochem. Biophys. Res. Commun.* 170, 582–588. doi:10.1016/0006-291X(90)92131-I.
- Castañeda, S., Atienza-Mateo, B., Martín-Varillas, J. L., Serra López-Matencio, J. M., and González-Gay, M. A. (2018). Anakinra for the treatment of adult-onset Still's disease. *Expert Rev. Clin. Immunol.* 14, 979–992. doi:10.1080/1744666X.2018.1536548.
- Celhar, T., Magalhães, R., and Fairhurst, A. M. (2012). TLR7 and TLR9 in SLE: When sensing self goes wrong. *Immunol. Res.* 53, 58–77. doi:10.1007/s12026-012-8270-1.
- Cerretti, D. P., Kozlosky, C. J., Mosley, B., Nelson, N., Van Ness, K., Greenstreet, T. A., et al. (1992). Molecular cloning of the interleukin-1β converting enzyme. *Science (80-.).* 256, 97–100. doi:10.1126/science.1373520.
- Chang, D., Sharma, L., and Dela Cruz, C. S. (2020). Chitotriosidase: A marker and modulator of lung disease. *Eur. Respir. Rev.* 29. doi:10.1183/16000617.0143-2019.
- Chang, X., Zhu, Y., Shi, C., and Stewart, a K. (2013). Mechanism of immunomodulatory drugs ' action in the treatment of multiple myeloma Development of IMiDs Effects of IMiDs in the Treatment of MM. *Acta Biochim. Biophys. Sin* 46, 1–14. doi:10.1093/abbs/gmt142.Review.
- Charlab, R., Sarno, E. N., Chatterjee, D., and Pessolani, M. C. V. (2001). Effect of unique Mycobacterium leprae phenolic glycolipid-I (PGL-I) on tumour necrosis factor production by human mononuclear cells. *Lepr. Rev.* 72, 63–69. doi:10.5935/0305-7518.20010010.
- Chaussabel, D. (2015). Assessment of immune status using blood transcriptomics and potential implications for global health. *Semin. Immunol.* 27, 58–66.

doi:10.1016/j.smim.2015.03.002.

- Chaussabel, D., Quinn, C., Shen, J., Patel, P., Glaser, C., Baldwin, N., et al. (2008). A Modular Analysis Framework for Blood Genomics Studies: Application to Systemic Lupus Erythematosus. *Immunity* 29, 150–164. doi:10.1016/j.immuni.2008.05.012.
- Chen, J., and Chen, Z. J. (2018). PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation. *Nature* 564, 71–76. doi:10.1038/s41586-018-0761-3.
- Chen, K. W., Groß, C. J., Sotomayor, F. V., Stacey, K. J., Tschopp, J., Sweet, M. J., et al. (2014). The Neutrophil NLRC4 Inflammasome Selectively Promotes IL-1β Maturation without Pyroptosis during Acute Salmonella Challenge. *Cell Rep.* 8, 570–582. doi:10.1016/j.celrep.2014.06.028.
- Chen, K. W., Monteleone, M., Boucher, D., Sollberger, G., Ramnath, D., Condon, N. D., et al. (2018). Noncanonical inflammasome signaling elicits gasdermin D–dependent neutrophil extracellular traps. *Sci. Immunol.* 3. doi:10.1126/sciimmunol.aar6676.
- Chen, M., Xie, H., Chen, Z., Xu, S., Wang, B., Peng, Q., et al. (2019). Thalidomide ameliorates rosacea-like skin inflammation and suppresses NF-kB activation in keratinocytes. *Biomed. Pharmacother.* 116. doi:10.1016/j.biopha.2019.109011.
- Chen, M., Xing, Y., Lu, A., Fang, W., Sun, B., Chen, C., et al. (2015). Internalized *Cryptococcus neoformans* Activates the Canonical Caspase-1 and the Noncanonical Caspase-8 Inflammasomes. *J. Immunol.* 195, 4962–4972. doi:10.4049/jimmunol.1500865.
- Chiaradia, L., Lefebvre, C., Parra, J., Marcoux, J., Burlet-Schiltz, O., Etienne, G., et al. (2017). Dissecting the mycobacterial cell envelope and defining the composition of the native mycomembrane. *Sci. Rep.* 7, 1–12. doi:10.1038/s41598-017-12718-4.
- Cholo, M. C., Steel, H. C., Fourie, P. B., Germishuizen, W. A., and Anderson, R. (2012). Clofazimine: Current status and future prospects. *J. Antimicrob. Chemother.* 67, 290–298. doi:10.1093/jac/dkr444.
- Chou, R. C., Kim, N. D., Sadik, C. D., Seung, E., Lan, Y., Byrne, M. H., et al. (2010). Lipid-Cytokine-Chemokine Cascade Drives Neutrophil Recruitment in a Murine Model of Inflammatory Arthritis. *Immunity* 33, 266–278. doi:10.1016/J.IMMUNI.2010.07.018.
- Chowdhry, S., Shukla, A., D'souza, P., Dhali, T., and Jaiswal, P. (2016). Treatment of severe refractory erythema nodosum leprosum with tumor necrosis factor inhibitor Etanercept. *Int. J. Mycobacteriology* 5, 223–225. doi:10.1016/j.ijmyco.2016.02.002.
- Christgen, S., and Kanneganti, T. D. (2020). Inflammasomes and the fine line between defense and disease. *Curr. Opin. Immunol.* 62, 39–44. doi:10.1016/j.coi.2019.11.007.
- Clauss, A., Lilja, H., and Lundwall, Å. (2002). A locus on human chromosome 20 contains several genes expressing protease inhibitor domains with homology to whey acidic protein. *Biochem. J.* 368, 233–242. doi:10.1042/BJ20020869.
- Clemmensen, S. N., Bohr, C. T., Rørvig, S., Glenthøj, A., Mora-Jensen, H., Cramer, E. P., et al. (2012). Olfactomedin 4 defines a subset of human neutrophils. *J. Leukoc. Biol.* 91, 495–500. doi:10.1189/jlb.0811417.
- Cochrane, R. G. (1952). Bacteriological index in Leprosy. Lepr. Rev. 23, 135–138.
- Cole, S. T., Eiglmeier, K., Parkhill, J., James, K. D., Thomson, N. R., Wheeler, P. R., et al. (2001). Massive gene decay in the leprosy bacillus. *Nature* 409, 1007–1011. doi:10.1038/35059006.
- Colston, M. J., and Hilson, G. R. F. (1976). Growth of Mycobacterium leprae and M. marinum in congenitally athymic (nude) mice. *Nature* 262, 399–401. doi:10.1038/262399a0.

- Conti, P., Panara, M. R., Barbacane, R. C., Placido, F. C., Bongrazio, M., Reale, M., et al. (1992). Blocking the interleukin-1 receptor inhibits leukotriene B4 and prostaglandin E2 generation in human monocyte cultures. *Cell. Immunol.* 145, 199–209. doi:10.1016/0008-8749(92)90323-H.
- Cookson, B. T., and Brennan, M. A. (2001). Pro-inflammatory programmed cell death. *Trends Microbiol.* 9, 113–114. doi:10.1016/s0966-842x(00)01936-3.
- Corbett, J. A., Kwon, G., Misko, T. P., Rodi, C. P., and McDaniel, M. L. (1994). Tyrosine kinase involvement in IL-1β-induced expression of iNOS by β- cells purified from islets of Langerhans. *Am. J. Physiol. Cell Physiol.* 267. doi:10.1152/ajpcell.1994.267.1.c48.
- Corral, L. G., Haslett, P. A. J., Muller, G. W., Chen, R., Wong, L. M., Ocampo, C. J., et al. (1999). Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-alpha. *Int. J. Lepr. Other Mycobact. Dis.* 67, 501.
- Costa Franco, M. M., Marim, F., Guimarães, E. S., Assis, N. R. G., Cerqueira, D. M., Alves-Silva, J., et al. (2018). Brucella abortus Triggers a cGAS-Independent STING Pathway To Induce Host Protection That Involves Guanylate-Binding Proteins and Inflammasome Activation . J. Immunol. 200, 607–622. doi:10.4049/jimmunol.1700725.
- Cruz, D., Watson, A. D., Miller, C. S., Montoya, D., Ochoa, M. T., Sieling, P. A., et al. (2008). Host-derived oxidized phospholipids and HDL regulate innate immunity in human leprosy. *J. Clin. Invest.* 118, 2917–2928. doi:10.1172/JCI34189.
- Cunha, L. D., Silva, A. L. N., Ribeiro, J. M., Mascarenhas, D. P. A., Quirino, G. F. S., Santos, L. L., et al. (2017). AIM2 Engages Active but Unprocessed Caspase-1 to Induce Noncanonical Activation of the NLRP3 Inflammasome. *Cell Rep.* 20, 794–805. doi:10.1016/j.celrep.2017.06.086.
- Cunnane, G., Madigan, A., Murphy, E., FitzGerald, O., and Bresnihan, B. (2001). The effects of treatment with interleukin-1 receptor antagonist on the inflamed synovial membrane in rheumatoid arthritis. *Rheumatology* 40, 62–69. doi:10.1093/rheumatology/40.1.62.
- Da Silva, C. O., Dias, A. A., Da Costa Nery, J. A., De Miranda MacHado, A., Ferreira, H., Rodrigues, T. F., et al. (2019). Neutrophil extracellular traps contribute to the pathogenesis of leprosy type 2 reactions. *PLoS Negl. Trop. Dis.* 13, 1–17. doi:10.1371/journal.pntd.0007368.
- da Silva, M. B., Portela, J. M., Li, W., Jackson, M., Gonzalez-Juarrero, M., Hidalgo, A. S., et al. (2018). Evidence of zoonotic leprosy in Pará, Brazilian Amazon, and risks associated with human contact or consumption of armadillos. *PLoS Negl. Trop. Dis.* 12. doi:10.1371/journal.pntd.0006532.
- Daffé, M., and Marrakchi, H. (2019). Unraveling the Structure of the Mycobacterial Envelope. *Microbiol. Spectr.* 7. doi:10.1128/microbiolspec.gpp3-0027-2018.
- Dang, A. T., Teles, R. M. B., Liu, P. T., Choi, A., Legaspi, A., Sarno, E. N., et al. (2019). Autophagy links antimicrobial activity with antigen presentation in Langerhans cells. *JCI Insight* 4, 1–17. doi:10.1172/jci.insight.126955.
- de Carsalade, G. Y., Achirafi, A., and Flageul, B. (2003). Pentoxifylline in the treatment of erythema nodosum leprosum: results of an open study. *Acta Leprol.* 12, 117–122.
- de Carvalho, R. V. H., Andrade, W. A., Lima-Junior, D. S., Dilucca, M., de Oliveira, C. V., Wang, K., et al. (2019). Leishmania Lipophosphoglycan Triggers Caspase-11 and the Non-canonical Activation of the NLRP3 Inflammasome. *Cell Rep.* 26, 429-437.e5. doi:10.1016/j.celrep.2018.12.047.
- De Kleijn, S., Langereis, J. D., Leentjens, J., Kox, M., and Netea, M. G. (2013). IFN-c-Stimulated Neutrophils Suppress Lymphocyte Proliferation through Expression of PD-

L1. PLoS One 8, 72249. doi:10.1371/journal.pone.0072249.

- De Lima Silveira, E., De Sousa, J. R., De Sousa Aarão, T. L., Fuzii, H. T., Dias Junior, L. B., Carneiro, F. R. O., et al. (2015). New immunologic pathways in the pathogenesis of leprosy: Role for Th22 cytokines in the polar forms of the disease. *J. Am. Acad. Dermatol.* 72, 729–730. doi:10.1016/j.jaad.2014.11.023.
- de Macedo, C. S., de Carvalho, F. M., Amaral, J. J., de Mendonça Ochs, S., Assis, E. F., Sarno, E. N., et al. (2018). Leprosy and its reactional episodes: Serum levels and possible roles of omega-3 and omega-6-derived lipid mediators. *Cytokine* 112, 87–94. doi:10.1016/j.cyto.2018.07.008.
- de Sousa, J. R., de Sousa, R. P. M., de Souza Aarão, T. L., Dias, L. B., Carneiro, F. R. O., Fuzii, H. T., et al. (2016). In situ expression of M2 macrophage subpopulation in leprosy skin lesions. *Acta Trop.* 157, 108–114. doi:10.1016/j.actatropica.2016.01.008.
- De Sousa, J. R., Pagliari, C., De Almeida, D. S. M., Barros, L. F. L., Carneiro, F. R. O., Dias, L. B., et al. (2017). Th9 cytokines response and its possible implications in the immunopathogenesis of leprosy. *J. Clin. Pathol.* 70, 521–527. doi:10.1136/jclinpath-2016-204110.
- De Toledo-Pinto, T. G., Ferreira, A. B. R., Ribeiro-Alves, M., Rodrigues, L. S., Batista-Silva, L. R., Silva, B. J. D. A., et al. (2016). STING-Dependent 2'-5' Oligoadenylate Synthetase-Like Production Is Required for Intracellular Mycobacterium leprae Survival. *J. Infect. Dis.* 214, 311–320. doi:10.1093/infdis/jiw144.
- Debets, R., Timans, J. C., Churakowa, T., Zurawski, S., de Waal Malefyt, R., Moore, K. W., et al. (2000). IL-18 Receptors, Their Role in Ligand Binding and Function: Anti-IL-1RAcPL Antibody, a Potent Antagonist of IL-18. *J. Immunol.* 165, 4950–4956. doi:10.4049/jimmunol.165.9.4950.
- Di Rosa, M., Distefano, G., Zorena, K., and Malaguarnera, L. (2015). Chitinases and immunity: Ancestral molecules with new functions. *Immunobiology* 221, 399–411. doi:10.1016/j.imbio.2015.11.014.
- Di Rosa, M., Zambito, A. M., Marsullo, A. R., Li Volti, G., and Malaguarnera, L. (2009). Prolactin induces chitotriosidase expression in human macrophages through PTK, PI3-K, and MAPK pathways. *J. Cell. Biochem.* 107, 881–889. doi:10.1002/jcb.22186.
- Di Virgilio, F., Dal Ben, D., Sarti, A. C., Giuliani, A. L., and Falzoni, S. (2017). The P2X7 Receptor in Infection and Inflammation. *Immunity* 47, 15–31. doi:10.1016/j.immuni.2017.06.020.
- Dias, A. A., Silva, C. O., Santos, J. P. S., Batista-Silva, L. R., Acosta, C. C. D., Fontes, A. N. B., et al. (2016). DNA Sensing via TLR-9 Constitutes a Major Innate Immunity Pathway Activated during Erythema Nodosum Leprosum. *J. Immunol.* doi:10.4049/jimmunol.1600042.
- Dickson, K. B., and Zhou, J. (2020). Role of reactive oxygen species and iron in host defense against infection. *Front. Biosci. Landmark* 25, 1600–1616. doi:10.2741/4869.
- Dinarello, C. A. (2009). Immunological and inflammatory functions of the interleukin-1 family. *Annu. Rev. Immunol.* 27, 519–550. doi:10.1146/annurev.immunol.021908.132612.
- Dinarello, C. A., Novick, D., Kim, S., and Kaplanski, G. (2013). Interleukin-18 and IL-18 binding protein. *Front. Immunol.* 4, 289. doi:10.3389/fimmu.2013.00289.
- Dinarello, C. A., Simon, A., and van der Meer, J. W. M. (2012). Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. *Nat. Rev. Drug Discov.* 11, 633– 652. doi:10.1038/nrd3800.Treating.

Ding, H., and Wu, T. (2018). Insulin-like growth factor binding proteins in autoimmune

diseases. Front. Endocrinol. (Lausanne). 9, 499. doi:10.3389/fendo.2018.00499.

- Ding, J., Wang, K., Liu, W., She, Y., Sun, Q., Shi, J., et al. (2016). Pore-forming activity and structural autoinhibition of the gasdermin family. *Nature* 535, 111–116. doi:10.1038/nature18590.
- Dombrowski, Y., and Schauber, J. (2012). Cathelicidin LL-37: A defense molecule with a potential role in psoriasis pathogenesis. *Exp. Dermatol.* 21, 327–330. doi:10.1111/j.1600-0625.2012.01459.x.
- Donovan, K. A., An, J., Nowak, R. P., Yuan, J. C., Fink, E. C., Berry, B. C., et al. (2018). Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane radial ray syndrome. *Elife* 7, 1–25. doi:10.7554/eLife.38430.
- Dorhoi, A., Nouailles, G., J??rg, S., Hagens, K., Heinemann, E., Pradl, L., et al. (2012). Activation of the NLRP3 inflammasome by Mycobacterium tuberculosis is uncoupled from susceptibility to active tuberculosis. *Eur. J. Immunol.* 42, 374–384. doi:10.1002/eji.201141548.
- Dougan, M., Dranoff, G., and Dougan, S. K. (2019). GM-CSF, IL-3, and IL-5 Family of Cytokines: Regulators of Inflammation. *Immunity* 50, 796–811. doi:10.1016/j.immuni.2019.03.022.
- Doz-Deblauwe, É., Carreras, F., Arbues, A., Remot, A., Epardaud, M., Malaga, W., et al. (2019). CR3 Engaged by PGL-I Triggers Syk-Calcineurin-NFATc to Rewire the Innate Immune Response in Leprosy. *Front. Immunol.* 10, 1–15. doi:10.3389/fimmu.2019.02913.
- Draper, P., Payne, S. N., Dobson, G., and Minnikin, D. E. (1983). Isolation of a characteristic phthiocerol dimycocerosate from Mycobacterium leprae. *J. Gen. Microbiol.* 129, 859–63. doi:10.1099/00221287-129-3-859.
- Drutz, D. J., Chen, T. S. N., and Lu, W.-H. (1972). The Continuous Bacteremia of Lepromatous Leprosy. *N. Engl. J. Med.* 287, 159–164. doi:10.1056/nejm197207272870402.
- Dupnik, K. M., Bair, T. B., Maia, A. O., Amorim, F. M., Costa, M. R., Keesen, T. S. L., et al. (2015). Transcriptional Changes That Characterize the Immune Reactions of Leprosy. *J. Infect. Dis.* 211, 1658–1676. doi:10.1093/infdis/jiu612.
- Durinck, S., Moreau, Y., Kasprzyk, A., Davis, S., De Moor, B., Brazma, A., et al. (2005). BioMart and Bioconductor: A powerful link between biological databases and microarray data analysis. *Bioinformatics* 21, 3439–3440. doi:10.1093/bioinformatics/bti525.
- Ebert, B. L., Galili, N., Tamayo, P., Bosco, J., Mak, R., Pretz, J., et al. (2008). An Erythroid Differentiation Signature Predicts Response to Lenalidomide in Myelodysplastic Syndrome. *PLoS Med.* 5, e35. doi:10.1371/journal.
- Ehmedah, A., Nedeljkovic, P., Dacic, S., Repac, J., Pavlovic, B. D., Vucevic, D., et al. (2019). Vitamin B complex treatment attenuates local inflammation after peripheral nerve injury. *Molecules* 24. doi:10.3390/molecules24244615.
- Ehrchen, J. M., Sunderkötter, C., Foell, D., Vogl, T., and Roth, J. (2009). The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. *J. Leukoc. Biol.* 86, 557–566. doi:10.1189/jlb.1008647.
- Eklund, D., Welin, A., Andersson, H., Verma, D., Söderkvist, P., Stendahl, O., et al. (2014). Human gene variants linked to enhanced NLRP3 activity limit intramacrophage growth of mycobacterium tuberculosis. *J. Infect. Dis.* 209, 749–753. doi:10.1093/infdis/jit572.

El-Darawish, Y., Li, W., Yamanishi, K., Pencheva, M., Oka, N., Yamanishi, H., et al. (2018).

Frontline Science: IL-18 primes murine NK cells for proliferation by promoting protein synthesis, survival, and autophagy. *J. Leukoc. Biol.* 104, 253–264. doi:10.1002/JLB.1HI1017-396RR.

- Elinav, E., Strowig, T., Kau, A. L., Henao-Mejia, J., Thaiss, C. A., Booth, C. J., et al. (2011). NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. *Cell* 145, 745–757. doi:10.1016/j.cell.2011.04.022.
- Elliott, J. M., Rouge, L., Wiesmann, C., and Scheer, J. M. (2009). Crystal structure of procaspase-1 zymogen domain reveals insight into inflammatory caspase autoactivation. *J. Biol. Chem.* 284, 6546–6553. doi:10.1074/jbc.M806121200.
- Eue, I., Pietz, B., Storck, J., Klempt, M., and Sorg, C. (2000). Transendothelial migration of 27E10 human monocytes.
- Ewels, P., Magnusson, M., Lundin, S., and Käller, M. (2016). MultiQC: Summarize analysis results for multiple tools and samples in a single report. *Bioinformatics* 32, 3047–3048. doi:10.1093/bioinformatics/btw354.
- Faber, W. R., Jensema, A. J., and Goldschmidt, W. F. M. (2006). Treatment of recurrent erythema nodosum leprosum with infliximab [15]. *N. Engl. J. Med.* 355, 739. doi:10.1056/NEJMc052955.
- Fabri, M., Stenger, S., Shin, D.-M., Yuk, J.-M., Liu, P. T., Realegeno, S., et al. (2011). Vitamin D Is Required for IFN- -Mediated Antimicrobial Activity of Human Macrophages. *Sci. Transl. Med.* 3, 104ra102-104ra102. doi:10.1126/scitranslmed.3003045.
- Façanha, M. C., Lima, J. R. C., Teixeira, G. F. D., Pinheiro, A. C., Ferreira, M. L. L. T., and Rouquayrol, M. Z. (2006). Leprosy: Underreported cases in Fortaleza - Ceará, Brazil. *An. Bras. Dermatol.* 81, 329–333.
- Fagerholm, S. C., Macpherson, M., James, M. J., and Lau, C. S. (2013). The CD11b-integrin (ITGAM) and systemic lupus erythematosus. *Lupus* 22, 657–663.
- Falero-Perez, J., Song, Y. S., Zhao, Y., Teixeira, L., Sorenson, C. M., and Sheibani, N. (2018). Cyp1b1 expression impacts the angiogenic and inflammatory properties of liver sinusoidal endothelial cells. *PLoS One* 13. doi:10.1371/journal.pone.0206756.
- Farkas, L., Beiske, K., Lund-Johansen, F., Brandtzaeg, P., and Jahnsen, F. L. (2001). Plasmacytoid dendritic cells (natural interferon-α/β-producing cells) accumulate in cutaneous lupus erythematosus lesions. *Am. J. Pathol.* 159, 237–243. doi:10.1016/S0002-9440(10)61689-6.
- Fernandes-Alnemri, T., Yu, J. W., Datta, P., Wu, J., and Alnemri, E. S. (2009). AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. *Nature* 458, 509–513. doi:10.1038/nature07710.
- Fernandes-Alnemri, T., Yu, J. W., Juliana, C., Solorzano, L., Kang, S., Wu, J., et al. (2010). The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. *Nat. Immunol.* 11, 385–393. doi:10.1038/ni.1859.
- Ferrante, J. V., and Ferrante, A. (2005). Cutting Edge: Novel Role of Lipoxygenases in the Inflammatory Response: Promotion of TNF mRNA Decay by 15-Hydroperoxyeicosatetraenoic Acid in a Monocytic Cell Line. J. Immunol. 174, 3169– 3172. doi:10.4049/jimmunol.174.6.3169.
- Ferrante, J. V., Huang, Z. H., Nandoskar, M., Hii, C. S. T., Robinson, B. S., Rathjen, D. A., et al. (1997). Altered responses of human macrophages to lipopolysaccharide by hydroperoxy eicosatetraenoic acid, hydroxy eicosatetraenoic acid, and arachidonic acid inhibition of tumor necrosis factor production. *J. Clin. Invest.* 99, 1445–1452. doi:10.1172/JCI119303.

- Ferreira, J. da S., Souza, D. A., Santos, J. P., Ribeiro, C. C. D. U., Baêta, B. A., Teixeira, R. C., et al. (2018). Ticks as potential vectors of Mycobacterium leprae: Use of tick cell lines to culture the bacilli and generate transgenic strains. *PLoS Negl. Trop. Dis.* 12, 1–25. doi:10.1371/journal.pntd.0007001.
- Finger, J. N., Lich, J. D., Dare, L. C., Cook, M. N., Brown, K. K., Duraiswamis, C., et al. (2012). Autolytic proteolysis within the function to find domain (FIIND) is required for NLRP1 inflammasome activity. *J. Biol. Chem.* 287, 25030–25037. doi:10.1074/jbc.M112.378323.
- Fink, S. L., Bergsbaken, T., and Cookson, B. T. (2008). Anthrax lethal toxin and Salmonella elicit the common cell death pathway of caspase-1-dependent pyroptosis via distinct mechanisms. *Proc. Natl. Acad. Sci. U. S. A.* 105, 4312–4317. doi:10.1073/pnas.0707370105.
- Fink, S. L., and Cookson, B. T. (2006). Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. *J. Immunol.* 202, 1913–1926. doi:10.1111/J.1462-5822.2006.00751.x.
- Fortunati, E., Kazemier, K. M., Grutters, J. C., Koenderman, L., and Van Den Bosch, V. J. M. M. (2009). Human neutrophils switch to an activated phenotype after homing to the lung irrespective of inflammatory disease. *Clin. Exp. Immunol.* 155, 559–566. doi:10.1111/j.1365-2249.2008.03791.x.
- Fousert, E., Toes, R., and Desai, J. (2020). Neutrophil Extracellular Traps (NETs) Take the Central Stage in Driving Autoimmune Responses. *Cells* 9, 915. doi:10.3390/cells9040915.
- Frade, M. A. C., de Paula, N. A., Gomes, C. M., Vernal, S., Bernardes Filho, F., Lugão, H. B., et al. (2017). Unexpectedly high leprosy seroprevalence detected using a random surveillance strategy in midwestern Brazil: A comparison of ELISA and a rapid diagnostic test. *PLoS Negl. Trop. Dis.* 11, 1–12. doi:10.1371/journal.pntd.0005375.
- Franchi, L., Muñoz-Planillo, R., and Núñez, G. (2012). Sensing and reacting to microbes through the inflammasomes. *Nat. Immunol.* 13, 325–332. doi:10.1038/ni.2231.
- Frantz, S., Ducharme, A., Sawyer, D., Rohde, L. E., Kobzik, L., Fukazawa, R., et al. (2003). Targeted deletion of caspase-1 reduces early mortality and left ventricular dilatation following myocardial infarction. *J. Mol. Cell. Cardiol.* 35, 685–694. doi:10.1016/S0022-2828(03)00113-5.
- Frehel, C., and Rastogi, N. (1987). Mycobacterium leprae surface components intervene in the early phagosome-lysosome fusion inhibition event. *Infect. Immun.* 55, 2916–2921. doi:10.1128/iai.55.12.2916-2921.1987.
- Furlan, R., Filippi, M., Bergami, A., Rocca, M. A., Martinelli, V., Poliani, P. L., et al. (1999). Peripheral levels of caspase-1 mRNA correlate with disease activity in patients with multiple sclerosis; A preliminary study. *J. Neurol. Neurosurg. Psychiatry* 67, 785–788. doi:10.1136/jnnp.67.6.785.
- Gabrielli, E., Pericolini, E., Luciano, E., Sabbatini, S., Roselletti, E., Perito, S., et al. (2015). Induction of caspase-11 by aspartyl proteinases of Candida albicans and implication in promoting inflammatory response. *Infect. Immun.* 83, 1940–1948. doi:10.1128/IAI.02895-14.
- Gao, S., Wang, S., Fan, R., and Hu, J. (2020a). Recent advances in the molecular mechanism of thalidomide teratogenicity. *Biomed. Pharmacother.* 127, 110114. doi:10.1016/j.biopha.2020.110114.
- Gao, S., Wang, S., and Song, Y. (2020b). Novel immunomodulatory drugs and neosubstrates. *Biomark. Res.* 8. doi:10.1186/s40364-020-0182-y.

- Garcia-Romo, G. S., Caielli, S., Vega, B., Connolly, J., Allantaz, F., Xu, Z., et al. (2011). Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. *Sci. Transl. Med.* 3. doi:10.1126/scitranslmed.3001201.
- Garshick, M. S., Barrett, T. J., Wechter, T., Azarchi, S., Scher, J. U., Neimann, A., et al. (2019). Inflammasome Signaling and Impaired Vascular Health in Psoriasis. *Arterioscler. Thromb. Vasc. Biol.* 39, 787–798. doi:10.1161/ATVBAHA.118.312246.
- Gatti, S., Beck, J., Fantuzzi, G., Bartfai, T., and Dinarello, C. A. (2002). Effect of interleukin-18 on mouse core body temperature. *Am. J. Physiol. - Regul. Integr. Comp. Physiol.* 282, 702–709. doi:10.1152/ajpregu.00393.2001.
- Gaylord, H., and Brennan, P. J. (1987). LEPROSY AND THE LEPROSY BACILLUS: Recent Developments In Characterization of Antigens and Immunology of the Disease. *Annu. Rev. Microbiol.* 41, 645–675. doi:10.1007/978-3-642-71094-0.
- Geijtenbeek, T. B. H., Van Vliet, S. J., Koppel, E. A., Sanchez-Hernandez, M., Vandenbroucke-Grauls, C. M. J. E., Appelmelk, B., et al. (2003). Mycobacteria target DC-SIGN to suppress dendritic cell function. *J. Exp. Med.* 197, 7–17. doi:10.1084/jem.20021229.
- Germing, U., Schroeder, T., Kaivers, J., Kündgen, A., Kobbe, G., and Gattermann, N. (2019). Novel therapies in low- and high-risk myelodysplastic syndrome. *Expert Rev. Hematol.* 12, 893–908. doi:10.1080/17474086.2019.1647778.
- Gestermann, N., Di Domizio, J., Lande, R., Demaria, O., Frasca, L., Feldmeyer, L., et al. (2018). Netting Neutrophils Activate Autoreactive B Cells in Lupus. *J. Immunol.* 200, 3364–3371. doi:10.4049/jimmunol.1700778.
- Gharib, S. A., Johnston, L. K., Huizar, I., Birkland, T. P., Hanson, J., Wang, Y., et al. (2014). MMP28 promotes macrophage polarization toward M2 cells and augments pulmonary fibrosis. *J. Leukoc. Biol.* 95, 9–18. doi:10.1189/jlb.1112587.
- Ghimire, L., Paudel, S., Jin, L., Baral, P., Cai, S., and Jeyaseelan, S. (2018). NLRP6 negatively regulates pulmonary host defense in Gram-positive bacterial infection through modulating neutrophil recruitment and function. *PLoS Pathog.* 14. doi:10.1371/journal.ppat.1007308.
- Gieseck, R. L., Wilson, M. S., and Wynn, T. A. (2018). Type 2 immunity in tissue repair and fibrosis. *Nat. Rev. Immunol.* 18, 62–76. doi:10.1038/nri.2017.90.
- Girardin, S. E., Boneca, I. G., Viala, J., Chamaillard, M., Labigne, A., Thomas, G., et al. (2003). Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. *J. Biol. Chem.* 278, 8869–8872. doi:10.1074/jbc.C200651200.
- Gómez-Valero, L., Rocha, E. P. C., Latorre, A., and Silva, F. J. (2007). Reconstructing the ancestor of Mycobacterium leprae: The dynamics of gene loss and genome reduction. *Genome Res.* 17, 1178–1185. doi:10.1101/gr.6360207.
- Gracie, J. A., Forsey, R. J., Chan, W. L., Gilmour, A., Leung, B. P., Greer, M. R., et al. (1999). A proinflammatory role for IL-18 in rheumatoid arthritis. *J. Clin. Invest.* 104, 1393–1401. doi:10.1172/JCI7317.
- Gram, A. M., Wright, J. A., Pickering, R. J., Lam, N. L., Booty, L. M., Webster, S. J., et al. (2021). Salmonella Flagellin Activates NAIP/NLRC4 and Canonical NLRP3 Inflammasomes in Human Macrophages . *J. Immunol.* 206, 631–640. doi:10.4049/jimmunol.2000382.
- Gram, H. (1884). Über die isolierte Färbung der Schizomyceten in Schnittund Trockenpräparaten. *Fortschr Med* 2, 185–189.

Greb, J. E., Goldminz, A. M., Elder, J. T., Lebwohl, M. G., Gladman, D. D., Wu, J. J., et al.

(2016). Psoriasis. Nat. Rev. Dis. Prim. 2, 16082. doi:10.1038/nrdp.2016.82.

- Grimbaldeston, M. A., Geczy, C. L., Tedla, N., Finlay-Jones, J. J., and Hart, P. H. (2003). S100A8 Induction in Keratinocytes by Ultraviolet A Irradiation Is Dependent on Reactive Oxygen Intermediates. *J. Invest. Dermatol.* 121, 1168–1174. doi:10.1046/j.1523-1747.2003.12561.x.
- Gringhuis, S. I., Kaptein, T. M., Wevers, B. A., Theelen, B., Van Der Vlist, M., Boekhout, T., et al. (2012). Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical caspase-8 inflammasome. *Nat. Immunol.* 13, 246–254. doi:10.1038/ni.2222.
- Grzasko, N., Dmoszynska, A., Hus, M., and Soroka-Wojtaszko, M. (2006). Stimulation of erythropoiesis by thalidomide in multiple myeloma patients: Its influence on FasL, TRAIL and their receptors on erythroblasts. *Haematologica* 91, 386–389. Available at: https://pubmed.ncbi.nlm.nih.gov/16531263/ [Accessed September 2, 2021].
- Guerra, J. G., Penna, G. O., de Castro, L. cândida M., Martelli, C. M. T., Stefani, M. M. de A., and Costa, M. B. (2004). Avaliação de série de casos de eritema nodoso hansênico: perfil clínico, base imunológica e tratamento instituído nos serviços de saúde. *Rev. Bras. Med. Trop.* 37, 384–390.
- Guo, H., Callaway, J. B., and Ting, J. P.-Y. (2015). Inflammasomes: mechanism of action, role in disease, and therapeutics. *Nat. Med.* 21, 677–687. doi:10.1038/nm.3893.
- Gurung, P., Gomes, C. M., Vernal, S., and Leeflang, M. M. G. (2019). Diagnostic accuracy of tests for leprosy: a systematic review and meta-analysis. *Clin. Microbiol. Infect.* 25, 1315–1327. doi:10.1016/j.cmi.2019.05.020.
- Gurung, P., Subbarao Malireddi, R. K., Anand, P. K., Demon, D., Vande Walle, L., Liu, Z., et al. (2012). Toll or interleukin-1 receptor (TIR) domain-containing adaptor inducing interferon-β (TRIF)-mediated caspase-11 protease production integrates toll-like receptor 4 (TLR4) protein- and NIrp3 inflammasome-mediated host defense against enteropathogens. *J. Biol. Chem.* 287, 34474–34483. doi:10.1074/jbc.M112.401406.
- Gutman, G. A., Chandy, K. G., Grissmer, S., Lazdunski, M., Mckinnon, D., Pardo, L. A., et al. (2005). International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. *Pharmacol. Rev.* 57, 473–508. doi:10.1124/pr.57.4.10.
- Hagar, J. A., Powell, D. A., Aachoui, Y., Ernst, R. K., and Miao, E. A. (2013). Cytoplasmic LPS activates caspase-11: Implications in TLR4-independent endotoxic shock. *Science* (80-.). 341, 1250–1253. doi:10.1126/science.1240988.
- Hahn, M., and Ghoreschi, K. (2017). The role of IL-4 in psoriasis. *Expert Rev. Clin. Immunol.* 13, 171–173. doi:10.1080/1744666X.2017.1279054.
- Halle, A., Hornung, V., Petzold, G. C., Stewart, C. R., Monks, B. G., Reinheckel, T., et al. (2008). The NALP3 inflammasome is involved in the innate immune response to amyloid-β. *Nat. Immunol.* 9, 857–865. doi:10.1038/ni.1636.
- Hansen, G. H. A. (1874). Undersogelser angaende spedalskhedens aasager. *Nor. Mag. Laegervidenskaben* 4, 1–88.
- Haslett, P. A. J., Corral, L. G., Albert, M., and Kaplan, G. (1998). Thalidomide costimulates primary human T lymphocytes preferentially inducing proliferation, cytokine production, and cytotoxic responses in the CD8 + Subset. *J. Exp. Med.* 187, 6–13.
- Haslett, P. A. J., Roche, P., Butlin, C. R., Macdonald, M., Shrestha, N., Manandhar, R., et al. (2005). Effective Treatment of Erythema Nodosum Leprosum with Thalidomide Is Associated with Immune Stimulation. *J. Infect. Dis.* 192, 2045–2053. doi:10.1086/498216.

- He, Y., Hara, H., and Núñez, G. (2016a). Mechanism and Regulation of NLRP3 Inflammasome Activation. *Trends Biochem. Sci.* 41, 1012–1021. doi:10.1016/j.tibs.2016.09.002.
- He, Y., Zeng, M. Y., Yang, D., Motro, B., and Núñez, G. (2016b). NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. *Nature* 530, 354–357. doi:10.1038/nature16959.
- Heil, F., Hemmi, H., Hochrein, H., Ampenberger, F., Akira, S., Lipford, G., et al. (2013). Species-Specific Recognition of Single-Stranded RNA via Toll-like Receptor 7 and 8. *Science* 303, 1526–1529. Available at: papers3://publication/doi/10.1126/science.1093620.
- Heneka, M. T., Kummer, M. P., Stutz, A., Delekate, A., Schwartz, S., Vieira-Saecker, A., et al. (2013). NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. *Nature* 493, 674–678. doi:10.1038/nature11729.
- Herbert, M. K., Hering, S., and Holzer, P. (1995). Interleukin 1β, but not tumor necrosis factor, enhances neurogenic vasodilatation in the rat skin: Involvement of nitic oxide. *Can. J. Physiol. Pharmacol.* 73, 1075–1079. doi:10.1139/y95-153.
- Hernandez-Santana, Y. E., Giannoudaki, E., Leon, G., Lucitt, M. B., and Walsh, P. T. (2019). Current perspectives on the interleukin-1 family as targets for inflammatory disease. *Eur. J. Immunol.* 49, 1306–1320. doi:10.1002/eji.201848056.
- Herster, F., Bittner, Z., Archer, N. K., Dickhöfer, S., Eisel, D., Eigenbrod, T., et al. (2020). Neutrophil extracellular trap-associated RNA and LL37 enable self-amplifying inflammation in psoriasis. *Nat. Commun.* 11. doi:10.1038/s41467-019-13756-4.
- Hirako, I. C., Gallego-Marin, C., Ataide, M. A., Andrade, W. A., Gravina, H., Rocha, B. C., et al. (2015). DNA-Containing immunocomplexes promote inflammasome assembly and release of pyrogenic cytokines by CD14+ CD16+ CD64high CD32low inflammatory monocytes from malaria patients. *MBio* 6. doi:10.1128/mBio.01605-15.
- Hoffman, H. M., and Brydges, S. D. (2011). Genetic and molecular basis of inflammasomemediated disease. *J. Biol. Chem.* 286, 10889–10896. doi:10.1074/jbc.R110.135491.
- Hofmann, M. A., Drury, S., Fu, C., Qu, W., Taguchi, A., Lu, Y., et al. (1999). RAGE mediates a novel proinflammatory axis: A central cell surface receptor for S100/calgranulin polypeptides. *Cell* 97, 889–901. doi:10.1016/S0092-8674(00)80801-6.
- Honap, T. P., Pfister, L. A., Housman, G., Mills, S., Tarara, R. P., Suzuki, K., et al. (2018). Mycobacterium leprae genomes from naturally infected nonhuman primates. *PLoS Negl. Trop. Dis.* 12, 1–17. doi:10.1371/journal.pntd.0006190.
- Hong, L., Imeri, L., Opp, M. R., Postlethwaite, A. E., Seyer, J. M., and Krueger, J. M. (1993). Intercellular adhesion molecule-1 expression induced by interleukin (IL)-1β or an IL-1β fragment is blocked by an IL-1 receptor antagonist and a soluble IL-1 receptor. *J. Neuroimmunol.* 44, 163–170. doi:10.1016/0165-5728(93)90038-Z.
- Horiuchi, T., Mitoma, H., Harashima, S. I., Tsukamoto, H., and Shimoda, T. (2010). Transmembrane TNF-α: Structure, function and interaction with anti-TNF agents. *Rheumatology* 49, 1215–1228. doi:10.1093/rheumatology/keq031.
- Hornung, V., Ablasser, A., Charrel-Dennis, M., Bauernfeind, F., Horvath, G., Caffrey, D. R., et al. (2009). AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. *Nature* 458, 514–518. doi:10.1038/nature07725.
- Hu, B., Elinav, E., Huber, S., Booth, C. J., Strowig, T., Jin, C., et al. (2010). Inflammationinduced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. *Proc. Natl. Acad. Sci. U. S. A.* 107, 21635–21640. doi:10.1073/pnas.1016814108.

- Hu, N., Mora-Jensen, H., Theilgaard-Mönch, K., Doornbos-van Der Meer, B., Huitema, M. G., Stegeman, C. A., et al. (2014). Differential expression of granulopoiesis related genes in neutrophil subsets distinguished by membrane expression of CD177. *PLoS One* 9, e99671. doi:10.1371/journal.pone.0099671.
- Hu, Q., Shi, H., Zeng, T., Liu, H., Su, Y., Cheng, X., et al. (2019). Increased neutrophil extracellular traps activate NLRP3 and inflammatory macrophages in adult-onset Still's disease 11 Medical and Health Sciences 1107 Immunology. *Arthritis Res. Ther.* 21. doi:10.1186/s13075-018-1800-z.
- Huang, H., Chen, H.-W., Evankovich, J., Yan, W., Rosborough, B. R., Nace, G. W., et al. (2013). Histones Activate the NLRP3 Inflammasome in Kupffer Cells during Sterile Inflammatory Liver Injury. *J. Immunol.* 191, 2665–2679. doi:10.4049/jimmunol.1202733.
- Huang, H., Evankovich, J., Yan, W., Nace, G., Zhang, L., Ross, M., et al. (2011). Endogenous histones function as alarmins in sterile inflammatory liver injury through Toll-like receptor 9 in mice. *Hepatology* 54, 999–1008. doi:10.1002/hep.24501.
- Huang, X., Feng, Z., Jiang, Y., Li, J., Xiang, Q., Guo, S., et al. (2019). VSIG4 mediates transcriptional inhibition of nlrp3 and IL-1b in macrophages. *Sci. Adv.* 5, eaau7426.
- Huang, Z., Chen, Y., and Zhang, Y. (2020). Mitochondrial reactive oxygen species cause major oxidative mitochondrial DNA damages and repair pathways. *J. Biosci.* 45. doi:10.1007/s12038-020-00055-0.
- Hummon, A. B., Lim, S. R., Difilippantonio, M. J., and Ried, T. (2007). Isolation and solubilization of proteins after TRIzol extraction of RNA and DNA from patient material following prolonged storage. *Biotechniques* 42, 467–472. doi:10.1016/j.bbamem.2015.02.010.Cationic.
- Hungria, E. M., Bührer-Sékula, S., de Oliveira, R. M., Aderaldo, L. C., Pontes, A. de A., Cruz, R., et al. (2017). Leprosy reactions: The predictive value of Mycobacterium lepraespecific serology evaluated in a Brazilian cohort of leprosy patients (U-MDT/CT-BR). *PLoS Negl. Trop. Dis.* 11. doi:10.1371/journal.pntd.0005396.
- Hunter, S. W., and Brennan, P. J. (1981). A novel phenolic glycolipid from Mycobacterium leprae possibly involved in immunogenicity and pathogenicity. *J. Bacteriol.* 147, 728–735.
- Hunter, S. W., Fujiwara, T., and Brennan, P. J. (1982). Structure and antigenicity of the major specific glycolipid antigen of Mycobacterium leprae. *J. Biol. Chem.* 257, 15072–15078.
- Hwang, I., Yang, J., Hong, S., Lee, E. J., Lee, S.-H., Fernandes-Alnemri, Teresa Alnemri, E.
 S., et al. (2015). Nontranscriptional regulation of NLRP3 inflammasome signaling by IL4. *Immunol. Cell Biol.* 93, 591–599. doi:10.1038/icb.2014.125.Nontranscriptional.
- Hwang, S. M., Kim, H. J., Kim, S. M., Jung, Y., Park, S. W., and Chung, I. Y. (2018). Lysophosphatidylserine receptor P2Y10: A G protein-coupled receptor that mediates eosinophil degranulation. *Clin. Exp. Allergy* 48, 990–999. doi:10.1111/cea.13162.
- Ilhan, N., Susam, S., Gul, H. F., Bardas, R., and Ilhan, N. (2017). Which one is more effective for the treatment of rat sepsis model: Thalidomide or etanercept? *Bratislava Med. J.* 118, 283–287. doi:10.4149/BLL_2017_056.
- Impellizzieri, D., Ridder, F., Raeber, M. E., Egholm, C., Woytschak, J., Kolios, A. G. A., et al. (2019). IL-4 receptor engagement in human neutrophils impairs their migration and extracellular trap formation. *J. Allergy Clin. Immunol.* 144, 267-279.e4. doi:10.1016/j.jaci.2019.01.042.
- Inkeles, M. S., Teles, R. M. B., Pouldar, D., Andrade, P. R., Madigan, C. A., Lopez, D., et al. (2016). Cell-type deconvolution with immune pathways identifies gene networks of host defense and immunopathology in leprosy. *JCI Insight* 1, 547–577.

doi:10.1172/jci.insight.88843.

- Ito, T., Ando, H., Suzuki, T., Ogura, T., Hotta, K., Imamura, Y., et al. (2010). Identification of a primary target of thalidomide teratogenicity. *Science (80-.).* 327, 1345–1350. doi:10.1126/science.1177319.
- Ivanov, I., Kuhn, H., and Heydeck, D. (2015). Structural and functional biology of arachidonic acid 15-lipoxygenase-1 (ALOX15). *Gene* 573, 1–32. doi:10.1016/j.gene.2015.07.073.
- Iyer, A., Hatta, M., Usman, R., Luiten, S., Oskam, L., Faber, W., et al. (2007). Serum levels of interferon-γ, tumour necrosis factor-α, soluble interleukin-6R and soluble cell activation markers for monitoring response to treatment of leprosy reactions. *Clin. Exp. Immunol.* 150, 210–216. doi:10.1111/j.1365-2249.2007.03485.x.
- Iyer, A., van Eijk, M., Silva, E., Hatta, M., Faber, W., Aerts, J. M. F. G., et al. (2009). Increased chitotriosidase activity in serum of leprosy patients: Association with bacillary leprosy. *Clin. Immunol.* 131, 501–509. doi:10.1016/j.clim.2009.02.003.
- Jaillon, S., Peri, G., Delneste, Y., Frémaux, I., Doni, A., Moalli, F., et al. (2007). The humoral pattern recognition receptor PTX3 is stored in neutrophil granules and localizes in extracellular traps. *J. Exp. Med.* 204, 793–804. doi:10.1084/jem.20061301.
- Jiang, W., Zhu, F. G., Bhagat, L., Yu, D., Tang, J. X., Kandimalla, E. R., et al. (2013). A tolllike receptor 7, 8, and 9 antagonist inhibits Th1 and Th17 responses and inflammasome activation in a model of IL-23-induced psoriasis. *J. Invest. Dermatol.* 133, 1777–1784. doi:10.1038/jid.2013.57.
- Jin, S. H., Kim, T. II, Han, D. S., Shin, S. K., and Kim, W. H. (2002). Thalidomide suppresses the interleukin 1β-induced NFkB signaling pathway in colon cancer cells. *Ann. N. Y. Acad. Sci.* 973, 414–418. doi:10.1111/j.1749-6632.2002.tb04674.x.
- Jin, T., Perry, A., Jiang, J., Smith, P., Curry, J. A., Unterholzner, L., et al. (2012). Structures of the HIN Domain: DNA Complexes Reveal Ligand Binding and Activation Mechanisms of the AIM2 Inflammasome and IFI16 Receptor. *Immunity* 36, 561–571. doi:10.1016/j.immuni.2012.02.014.
- Jin, T., Perry, A., Smith, P., Jiang, J., and Xiao, T. S. (2013). Structure of the absent in melanoma 2 (AIM2) pyrin domain provides insights into the mechanisms of AIM2 autoinhibition and inflammasome assembly. *J. Biol. Chem.* 288, 13225–13235. doi:10.1074/jbc.M113.468033.
- Job, C. K., Gude, S., and Macaden, V. P. (1964). Erythema nodosum lepro- sum. A clinicopathologic study. *Int. J. Lepr.* 32, 177–184.
- Juliana, C., Fernandes-Alnemri, T., Kang, S., Farias, A., Qin, F., and Alnemri, E. S. (2012). Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. *J. Biol. Chem.* 287, 36617–36622. doi:10.1074/jbc.M112.407130.
- Kader, M., Alaoui-EL-Azher, M., Vorhauer, J., Kode, B. B., Wells, J. Z., Stolz, D., et al. (2017). *MyD88-dependent inflammasome activation and autophagy inhibition contributes to Ehrlichia-induced liver injury and toxic shock.* doi:10.1371/journal.ppat.1006644.
- Kahawita, I. P., and Lockwood, D. N. J. (2008). Towards understanding the pathology of erythema nodosum leprosum. *Trans. R. Soc. Trop. Med. Hyg.* 102, 329–337. doi:10.1016/j.trstmh.2008.01.004.
- Kahlenberg, J. M., Carmona-Rivera, C., Smith, C. K., and Kaplan, M. J. (2013). Neutrophil Extracellular Trap–Associated Protein Activation of the NLRP3 Inflammasome Is Enhanced in Lupus Macrophages. *J. Immunol.* 190, 1217–1226. doi:10.4049/jimmunol.1202388.

- Kamath, S., Vaccaro, S. A., Rea, T. H., and Ochoa, M. T. (2014). Recognizing and managing the immunologic reactions in leprosy. *J. Am. Acad. Dermatol.* 71, 795–803. doi:10.1016/j.jaad.2014.03.034.
- Kamel, M., Shouman, S., El-Merzebany, M., Kilic, G., Veenstra, T., Saeed, M., et al. (2012). Effect of Tumour Necrosis Factor-Alpha on Estrogen Metabolic Pathways in Breast Cancer Cells. J. Cancer 3, 310–321. doi:10.7150/jca.4584.
- Kaneko, N., Kurata, M., Yamamoto, T., Morikawa, S., and Masumoto, J. (2019). The role of interleukin-1 in general pathology. *Inflamm. Regen.* 39, 1–16. doi:10.1186/s41232-019-0101-5.
- Kang, P. B., Azad, A. K., Torrelles, J. B., Kaufman, T. M., Beharka, A., Tibesar, E., et al. (2005). The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis. *J. Exp. Med.* 202, 987–999. doi:10.1084/jem.20051239.
- Kang, T. J., Lee, G. S., Kim, S. K., Jin, S. H., and Chae, G. T. (2010). Comparison of two mice strains, A/J and C57BL/6, in caspase-1 activity and IL-1β secretion of macrophage to Mycobacterium leprae infection. *Mediators Inflamm.* 2010. doi:10.1155/2010/708713.
- Kangelaris, K. N., Clemens, R., Fang, X., Jauregui, A., Liu, T., Vessel, K., et al. (2021). A neutrophil subset defined by intracellular olfactomedin 4 is associated with mortality in sepsis. *Am. J. Physiol. - Lung Cell. Mol. Physiol.* 320, L892–L902. doi:10.1152/AJPLUNG.00090.2020.
- Kanneganti, M., Kamba, A., and Mizoguchi, E. (2012). Role of chitotriosidase (Chitinase 1) under normal and disease conditions. *J. Epithel. Biol. Pharmacol.* 5, 1–9. doi:10.2174/1875044301205010001.
- Karmakar, M., Katsnelson, M., Malak, H. A., Greene, N. G., Howell, S. J., Hise, A. G., et al. (2015). Neutrophil IL-1β Processing Induced by Pneumolysin Is Mediated by the NLRP3/ASC Inflammasome and Caspase-1 Activation and Is Dependent on K + Efflux . *J. Immunol.* 194, 1763–1775. doi:10.4049/jimmunol.1401624.
- Katschke, K. J., Helmy, K. Y., Steffek, M., Xi, H., Yin, J. P., Lee, W. P., et al. (2007). A novel inhibitor of the alternative pathway of complement reverses inflammation and bone destruction in experimental arthritis. *J. Exp. Med.* 204, 1319–1325. doi:10.1084/jem.20070432.
- Kaur, G., Girdhar, B., Girdhar, A., Malaviya, G. N., Mukherjee, A., Sengupta, U., et al. (1991). A clinical, immunological, and histological study of neuritic leprosy patients. *Int J Lepr Other Mycobact Dis* 59, 385–391.
- Kaur, I., Dogra, S., Narang, T., and De, D. (2009). Comparative efficacy of thalidomide and prednisolone in the treatment of moderate to severe erythema nodosum leprosum: A randomized study. *Australas. J. Dermatol.* 50, 181–185. doi:10.1111/j.1440-0960.2009.00534.x.
- Kaur, S., Kumar, B., and Darshan, H. (1981). Choice of sites for study of slit skin smears. *Lepr. Rev.* 52, 27–33. doi:10.5935/0305-7518.19810005.
- Kawai, T., Watanabe, N., Yokoyama, M., Arai, K., Oana, S., Harayama, S., et al. (2013). Thalidomide attenuates excessive inflammation without interrupting lipopolysaccharidedriven inflammatory cytokine production in chronic granulomatous disease. *Clin. Immunol.* 147, 122–128. doi:10.1016/j.clim.2013.03.004.
- Kayagaki, N., Stowe, I. B., Lee, B. L., O'Rourke, K., Anderson, K., Warming, S., et al. (2015). Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. *Nature* 526, 666–671. doi:10.1038/nature15541.

Kayagaki, N., Warming, S., Lamkanfi, M., Walle, L. Vande, Louie, S., Dong, J., et al. (2011).

Non-canonical inflammasome activation targets caspase-11. *Nature* 479, 117–121. doi:10.1038/nature10558.

- Kayagaki, N., Wong, M. T., Stowe, I. B., Ramani, S. R., Gonzalez, L. C., Akashi-takamura, S., et al. (2013). Noncanonical Inflammasome Activation by Intracellular LPS Independent of TLR4. *Science* 130, 1246–1249. doi:10.5061/dryad.bt51g.
- Keller, M., Sollberger, G., and Beer, H.-D. (2009). Thalidomide inhibits activation of caspase-1. *J. Immunol.* 183, 5593–9. doi:10.4049/jimmunol.0900476.
- Kelly-Scumpia, K. M., Choi, A., Shirazi, R., Bersabe, H., Park, E., Scumpia, P. O., et al. (2020). ER Stress Regulates Immunosuppressive Function of Myeloid Derived Suppressor Cells in Leprosy that Can Be Overcome in the Presence of IFN-γ. *iScience* 23. doi:10.1016/j.isci.2020.101050.
- Kerr, L. R. F. S., Kendall, C., Sousa, C. A. B. de, Frota, C. C., Graham, J., Rodrigues, L., et al. (2015). Human-armadillo interaction in Ceará, Brazil: Potential for transmission of Mycobacterium leprae. Acta Trop. 152, 74–79. doi:10.1016/j.actatropica.2015.07.023.
- Kibbie, J., Teles, R. M. B., Wang, Z., Hong, P., Montoya, D., Krutzik, S., et al. (2016). Jagged1 Instructs Macrophage Differentiation in Leprosy. *PLoS Pathog.* 12, 1–18. doi:10.1371/journal.ppat.1005808.
- Kim, E. W., Teles, R. M. B., Haile, S., Liu, P. T., and Modlin, R. L. (2018a). Vitamin D status contributes to the antimicrobial activity of macrophages against Mycobacterium leprae. *PLoS Negl. Trop. Dis.* 12, 1–15. doi:10.1371/journal.pntd.0006608.
- Kim, M. H., Choi, Y. W., Choi, H. Y., Myung, K. B., and Cho, S. N. (2006). The expression of RAGE and EN-RAGE in leprosy. *Br. J. Dermatol.* 154, 594–601. doi:10.1111/j.1365-2133.2005.07112.x.
- Kim, S. N., Akindehin, S., Kwon, H. J., Son, Y. H., Saha, A., Jung, Y. S., et al. (2018b). Antiinflammatory role of 15-lipoxygenase contributes to the maintenance of skin integrity in mice. *Sci. Rep.* 8, 8856. doi:10.1038/s41598-018-27221-7.
- Kirchheimer, W. F., and Storrs, E. E. (1971). Attempts to establish the armadillo (Dasypus novemcinctus Linn.) as a model for the study of leprosy. I. Report of lepromatoid leprosy in an experimentally infected armadillo. *Int. J. Lepr. other Mycobact. Dis.* 39, 693–702.
- Kirchheimer, W. F., Storrs, E. E., and Binford, C. H. (1972). Attempts to establish the Armadillo (Dasypus novemcinctus linn.) as a model for the study of leprosy. II.
 Histopathologic and bacteriologic post-mortem findings in lepromatoid leprosy in the Armadillo. *Int. J. Lepr. other Mycobact. Dis.* 40, 229–242.
- Kleinnijenhuis, J., Joosten, L. A. B., van de Veerdonk, F. L., Savage, N., van Crevel, R., Kullberg, B. J., et al. (2009). Transcriptional and inflammasome-mediated pathways for the induction of IL-1?? production by Mycobacterium tuberculosis. *Eur. J. Immunol.* 39, 1914–1922. doi:10.1002/eji.200839115.
- Knodler, L. A., Crowley, S. M., Sham, H. P., Yang, H., Wrande, M., Ma, C., et al. (2014). Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens. *Cell Host Microbe* 16, 249–256. doi:10.1016/j.chom.2014.07.002.
- Kofoed, E. M., and Vance, R. E. (2011). Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. *Nature* 477, 592–597. doi:10.1038/nature10394.
- Kolde, R. (2015). pheatmap: Pretty Heatmaps. Available at: https://cran.rproject.org/package=pheatmap.
- Koo, I. C., Wang, C., Raghavan, S., Morisaki, J. H., Cox, J. S., and Brown, E. J. (2008).

ESX-1-dependent cytolysis in lysosome secretion and inflammasome activation during mycobacterial infection. *Cell. Microbiol.* 10, 1866–1878. doi:10.1111/j.1462-5822.2008.01177.x.

- Kouro, T., and Takatsu, K. (2009). IL-5- and eosinophil-mediated inflammation: From discovery to therapy. *Int. Immunol.* 21, 1303–1309. doi:10.1093/intimm/dxp102.
- Kristjánsson, G., Venge, P., Wanders, A., Lööf, L., and Hällgren, R. (2004). Clinical and subclinical intestinal inflammation assessed by the mucosal patch technique: Studies of mucosal neutrophil and eosinophil activation in inflammatory bowel diseases and irritable bowel syndrome. *Gut* 53, 1806–1812. doi:10.1136/gut.2003.036418.
- Krönke, G., Katzenbeisser, J., Uderhardt, S., Zaiss, M. M., Scholtysek, C., Schabbauer, G., et al. (2009). 12/15-Lipoxygenase Counteracts Inflammation and Tissue Damage in Arthritis. J. Immunol. 183, 3383–3389. doi:10.4049/jimmunol.0900327.
- Krönke, J., Udeshi, N. D., Narla, A., Grauman, P., Hurst, S. N., Mcconkey, M., et al. (2014). Lenalidomide Causes Selective Degradation of IKZF1 and IKZF3 in Multiple Myeloma Cells. *Science* 343, 301–305. doi:10.1126/science.1244851.Lenalidomide.
- Krutzik, S. R., Hewison, M., Liu, P. T., Robles, A., Stenger, S., Adams, J. S., et al. (2013). IL-15 Links TLR2/1-Induced Macrophage Differentiation to the Vitamin D-Dependent Antimicrobial Pathway. *J. Immunol.* 181, 7115–7120.
- Krutzik, S. R., Ochoa, M. T., Sieling, P. a, Uematsu, S., Ng, Y. W., Legaspi, A., et al. (2003). Activation and regulation of Toll-like receptors 2 and 1 in human leprosy. *Nat. Med.* 9, 525–532. doi:10.1038/nm864.
- Kubo, M., Yamashita, M., Abe, R., Tada, T., Okumura, K., Ransom, J. T., et al. (1999). CD28 costimulation accelerates IL-4 receptor sensitivity and IL-4- mediated Th2 differentiation. *J. Immunol.* 163, 2432–2442. Available at: http://www.jimmunol.org/content/163/5/2432.
- Kubota, T., Fang, J., Brown, R. A., and Krueger, J. M. (2001). Interleukin-18 promotes sleep in rabbits and rats. *Am. J. Physiol. - Regul. Integr. Comp. Physiol.* 281, 828–838. doi:10.1152/ajpregu.2001.281.3.r828.
- Kumar, A., Girdhar, A., and Girdhar, B. K. (2003). Pattern of bacillary clearance in multibacillary leprosy patients with multidrug therapy. *Acta Leprol.* 12, 123–128. Available at: https://pubmed.ncbi.nlm.nih.gov/15040703/ [Accessed September 18, 2021].
- Kumar, B., Dogra, S., and Kaur, I. (2004). Epidemiological characteristics of leprosy reactions: 15 years experience from north India. *Int J Lepr Other Mycobact Dis* 72, 125– 133.
- Kurtin, S., and List, A. (2009). Durable long-term responses in patients with myelodysplastic syndromes treated with lenalidomide. *Clin. Lymphoma Myeloma* 9, E10–E13. doi:10.3816/CLM.2009.n.053.
- Labzin, L. I., Bottermann, M., Rodriguez-Silvestre, P., Foss, S., Andersen, J. T., Vaysburd, M., et al. (2019). Antibody and DNA sensing pathways converge to activate the inflammasome during primary human macrophage infection. *EMBO J.* 38. doi:10.15252/embj.2018101365.
- Lachowicz-Scroggins, M. E., Dunican, E. M., Charbit, A. R., Raymond, W., Looney, M. R., Peters, M. C., et al. (2019). Extracellular DNA, neutrophil extracellular traps, and inflammasome activation in severe asthma. *Am. J. Respir. Crit. Care Med.* 199, 1076– 1085. doi:10.1164/rccm.201810-1869OC.
- Lamkanfi, M., and Dixit, V. M. (2012). Inflammasomes and Their Roles in Health and Disease. *Annu. Rev. Cell Dev. Biol.* 28, 137–161. doi:10.1146/annurev-cellbio-101011-155745.

- Lan, X., Liu, F., Ma, J., Chang, Y., Lan, X., Xiang, L., et al. (2021). Leukocyte immunoglobulin-like receptor A3 is increased in IBD patients and functions as an antiinflammatory modulator. *Clin. Exp. Immunol.* 203, 286–303. doi:10.1111/cei.13529.
- Lancaster, R. D., Hilson, G. R. F., McDougall, A. C., and Colston, M. J. (1983). Mycobacterium leprae infection in nude mice: Bacteriological and histological responses to primary infection and large inocula. *Infect. Immun.* 39, 865–872.
- Lastória, J. C., and Abreu, M. A. (2014). Leprosy: review of epidemiological, clinical, and etiopathogenic aspects Part1. *An. Bras. Dermatol.* 89, 205–218.
- Latz, E., Schoenemeyer, A., Visintin, A., Fitzgerald, K. A., Monks, B. G., Knetter, C. F., et al. (2004). TLR9 signals after translocating from the ER to CpG DNA in the lysosome. *Nat. Immunol.* 5, 190–198. doi:10.1038/ni1028.
- Leal-Calvo, T., and Moraes, M. O. (2020). Reanalysis and integration of public microarray datasets reveals novel host genes modulated in leprosy. *Mol. Genet. Genomics* 295, 1355–1368. doi:10.1007/s00438-020-01705-6.
- Lee, C., Do, H. T. T., Her, J., Kim, Y., Seo, D., and Rhee, I. (2019). Inflammasome as a promising therapeutic target for cancer. *Life Sci.* 231. doi:10.1016/j.lfs.2019.116593.
- Lee, D. J., Li, H., Ochoa, M. T., Tanaka, M., Carbone, R. J., Damoiseaux, R., et al. (2010). Integrated Pathways for Neutrophil Recruitment and Inflammation in Leprosy. *J. Infect. Dis.* 201, 558–569. doi:10.1086/650318.
- Lee, H.-M., Yuk, J.-M., Kim, K.-H., Jang, J., Kang, G., Park, J. B., et al. (2012). Mycobacterium abscessus activates the NLRP3 inflammasome via Dectin-1-Syk and p62/SQSTM1. *Immunol. Cell Biol.* 90, 601–10. doi:10.1038/icb.2011.72.
- Lee, J. K., Kim, S. H., Lewis, E. C., Azam, T., Reznikov, L. L., and Dinarello, C. A. (2004). Differences in signaling pathways by IL-1β and IL-18. *Proc. Natl. Acad. Sci. U. S. A.* 101, 8815–8820. doi:10.1073/pnas.0402800101.
- Lee, T. H., Horton, C. E., Kyan-Aung, U., Haskard, D., Crea, A. E. G., and Spur, B. W. (1989). Lipoxin A4 and lipoxin B4 inhibit chemotactic responses of human neutrophils stimulated by leukotriene B4 and N-formyl-L-methionyl-L-leucyl-L-phenylalanine. *Clin. Sci.* 77, 195–203. doi:10.1042/cs0770195.
- Leisching, G., Wiid, I., and Baker, B. (2017). The Association of OASL and Type I Interferons in the Pathogenesis and Survival of Intracellular Replicating Bacterial Species. *Front. Cell. Infect. Microbiol.* 7, 3–8. doi:10.3389/fcimb.2017.00196.
- Levy, B. D., Clish, C. B., Schmidt, B., Gronert, K., and Serhan, C. N. (2001). Lipid mediator class switching during acute inflammation: Signals in resolution. *Nat. Immunol.* 2, 612– 619. doi:10.1038/89759.
- Levy, M., Shapiro, H., Thaiss, C. A., and Elinav, E. (2017). NLRP6: A Multifaceted Innate Immune Sensor. *Trends Immunol.* 38, 248–260. doi:10.1016/j.it.2017.01.001.
- Li, J., Diao, B., Guo, S., Huang, X., Yang, C., Feng, Z., et al. (2017). VSIG4 inhibits proinflammatory macrophage activation by reprogramming mitochondrial pyruvate metabolism. *Nat. Commun.* 8. doi:10.1038/s41467-017-01327-4.
- Li, K., Wang, S. W., Li, Y., Martin, R. E., Li, L., Lu, M., et al. (2005). Identification and expression of a new type II transmembrane protein in human mast cells. *Genomics* 86, 68–75. doi:10.1016/j.ygeno.2005.03.006.
- Li, T. H., Huang, C. C., Yang, Y. Y., Lee, K. C., Hsieh, S. L., Hsieh, Y. C., et al. (2016). Thalidomide improves the intestinal mucosal injury and suppresses mesenteric angiogenesis and vasodilatation by down-regulating inflammasomes-related cascades in cirrhotic rats. *PLoS One* 11. doi:10.1371/journal.pone.0147212.

- Li, Y., Lee, P. Y., Kellner, E. S., Paulus, M., Switanek, J., Xu, Y., et al. (2010). Monocyte surface expression of Fcγ receptor RI (CD64), a biomarker reflecting type-I interferon levels in systemic lupus erythematosus. *Arthritis Res. Ther.* 12. doi:10.1186/ar3017.
- Lieberman, L. A., Mizui, M., Nalbandian, A., Bossé, R., Crispín, J. C., and Tsokos, G. C. (2015). Complement receptor of the immunoglobulin superfamily reduces murine lupus nephritis and cutaneous disease. *Clin. Immunol.* 160, 286–291. doi:10.1016/j.clim.2015.05.006.
- Lima-junior, D. S., and Zamboni, D. S. (2015). Inflammasomes in host response to protozoan parasites. *Immunol. Rev.* 265, 156–171.
- Lin, X. Y., Choi, M. S. K., and Porter, A. G. (2000). Expression analysis of the human caspase-1 subfamily reveals specific regulation of the CASP5 gene by lipopolysaccharide and interferon-γ. *J. Biol. Chem.* 275, 39920–39926. doi:10.1074/jbc.M007255200.
- Linch, S. N., Danielson, E. T., Kelly, A. M., Tamakawa, R. A., Lee, J. J., and Gold, J. A. (2012). Interleukin 5 is protective during sepsis in an eosinophil-independent manner. *Am. J. Respir. Crit. Care Med.* 186, 246–254. doi:10.1164/rccm.201201-0134OC.
- Lipsky, P. E., Thompson, P. A., Rosenwasser, L. J., and Dinarello, C. A. (1983). The role of interleukin 1 in human B cell activation: inhibition of B cell proliferation and the generation of immunoglobulin-secreting cells by an antibody against human leukocytic pyrogen. *J. Immunol.* 130.
- Liu, D., Yang, P., Gao, M., Yu, T., Shi, Y., Zhang, M., et al. (2019). NLRP3 activation induced by neutrophil extracellular traps sustains inflammatory response in the diabetic wound. *Clin. Sci.* 133, 565–582. doi:10.1042/CS20180600.
- Liu, J., Berthier, C. C., and Kahlenberg, J. M. (2017). Enhanced Inflammasome Activity in Systemic Lupus Erythematosus Is Mediated via Type I Interferon–Induced Up-Regulation of Interferon Regulatory Factor 1. *Arthritis Rheumatol.* 69, 1840–1849. doi:10.1002/art.40166.
- Liu, P. T., Stenger, S., Tang, D. H., and Modlin, R. L. (2007). Vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. *J. Immunol.* 179, 2060–2063. doi:179/4/2060 [pii].
- Lockwood, D. N., and Saunderson, P. R. (2012). Nerve damage in leprosy: A continuing challenge to scientists, clinicians and service providers. *Int. Health* 4, 77–85. doi:10.1016/j.inhe.2011.09.006.
- Logas, C. M., and Holloway, K. B. (2019). Cutaneous leprosy in Central Florida man with significant armadillo exposure. *BMJ Case Rep.* 12, 10–13. doi:10.1136/bcr-2019-229287.
- Lopez-Girona, A., Mendy, D., Ito, T., Miller, K., Gandhi, A. K., Kang, J., et al. (2012). Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. *Leukemia* 26, 2326–2335. doi:10.1038/leu.2012.119.
- Lopez-Millan, B., Diaz de la Guardia, R., Roca-Ho, H., García-Herrero, C. M., Lavoie, J. R., Rosu-Myles, M., et al. (2017). Therapeutic effect of the immunomodulatory drug lenalidomide, but not pomalidomide, in experimental models of rheumatoid arthritis and inflammatory bowel disease. *Exp. Mol. Med.* 49, e290. doi:10.1038/emm.2016.143.
- Lou, H., Wojciak-Stothard, B., Ruseva, M. M., Cook, H. T., Kelleher, P., Pickering, M. C., et al. (2020). Autoantibody-dependent amplification of inflammation in SLE. *Cell Death Dis.* 11, 729. doi:10.1038/s41419-020-02928-6.

Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and

dispersion for RNA-seq data with DESeq2. *Genome Biol.* 15, 1–21. doi:10.1186/s13059-014-0550-8.

- Lu, G., Middleton, R. E., Sun, H., Naniong, M. V., Ott, C. J., Mitsiades, C. S., et al. (2014). The myeloma drug lenalidomide promotes the cereblon-dependent destruction of ikaros proteins. *Science (80-.).* 343, 305–309. doi:10.1126/science.1244917.
- Lund, J. M., Alexopoulou, L., Sato, A., Karow, M., Adams, N. C., Gale, N. W., et al. (2004). Recognition of single-stranded RNA viruses by Toll-like receptor 7. *Proc. Natl. Acad. Sci. U. S. A.* 101, 5598–5603. doi:10.1073/pnas.0400937101.
- Lyrio, E. C. D., Campos-Souza, I. C., Corrêa, L. C. D., Lechuga, G. C., Verícimo, M., Castro, H. C., et al. (2015). Interaction of Mycobacterium leprae with the HaCaT human keratinocyte cell line: New frontiers in the cellular immunology of leprosy. *Exp. Dermatol.* 24, 536–542. doi:10.1111/exd.12714.
- Mabalay, M. C., Helwig, E. B., Tolentino, J. G., and Binford, C. H. (1965). The histopathology and histochemistry of erythema nodosum leprosum. *Int. J. Lepr.* 33, 28–49.
- Madan, N. K., Agarwal, K., and Chander, R. (2011). Serum cytokine profile in leprosy and its correlation with clinico-histopathological profile. *Lepr. Rev.* 82, 371–82. doi:10.1016/j.expneurol.2016.04.012.
- Mahla, R. S., Reddy, M. C., Vijaya Raghava Prasad, D., and Kumar, H. (2013). Sweeten PAMPs: Role of sugar complexed PAMPs in innate immunity and vaccine biology. *Front. Immunol.* 4. doi:10.3389/fimmu.2013.00248.
- Majumder, S., Rama Chaitanya Sreedhara, S., Banerjee, S., and Chatterjee, S. (2012). TNF α Signaling Beholds Thalidomide Saga: A Review of Mechanistic Role of TNFα Signaling Under Thalidomide. *Curr. Top. Med. Chem.* 12, 1456–1467. doi:10.2174/156802612801784443.
- Malaguarnera, L., Musumeci, M., Di Rosa, M., Scuto, A., and Musumeci, S. (2005). Interferon-gamma, tumor necrosis factor-alpha, and lipopolysaccharide promote chitotriosidase gene expression in human macrophages. *J. Clin. Lab. Anal.* 19, 128– 132. doi:10.1002/jcla.20063.
- Man, S. M., Tourlomousis, P., Hopkins, L., Monie, T. P., Fitzgerald, K. A., and Bryant, C. E. (2013). Salmonella Infection Induces Recruitment of Caspase-8 to the Inflammasome To Modulate IL-1β Production . *J. Immunol.* 191, 5239–5246. doi:10.4049/jimmunol.1301581.
- Manandhar, R., LeMaster, J. W., and Roche, P. W. (1999). Risk factors for erythema nodosum leprosum. *Int. J. Lepr. Other Mycobact. Dis.* 67, 270–8. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10575406.
- Manca, C., Peixoto, B., Malaga, W., Guilhot, C., and Kaplan, G. (2012). Modulation of the cytokine response in human monocytes by Mycobacterium leprae phenolic glycolipid-1. *J. Interf. Cytokine Res.* 32, 27–33. doi:10.1089/jir.2011.0044.
- Manca, C., Tsenova, L., Bergtold, A., Freeman, S., Tovey, M., Musser, J. M., et al. (2001). Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-α/β. *Proc. Natl. Acad. Sci. U. S. A.* 98, 5752–5757. doi:10.1073/pnas.091096998.
- Mangalam, A., and Yadav, R. (2019). Utility of CD64 expression on neutrophils as a marker to differentiate infectious versus noninfectious disease flares in autoimmune disorders. *Indian J. Rheumatol.* 14, 9–11. doi:10.4103/0973-3698.254192.
- Manta, F. S. N., Barbieri, R. R., Moreira, S. J. M., Santos, P. T. S., Nery, J. A. C., Duppre, N. C., et al. (2019). Quantitative PCR for leprosy diagnosis and monitoring in household contacts: A follow-up study, 2011–2018. *Sci. Rep.* 9, 1–8. doi:10.1038/s41598-019-

52640-5.

- Maresco, D. L., Chang, E., Theil, K. S., Francke, U., and Anderson, C. L. (1996). The three genes of the human FCGR1 gene family encoding FcβRI flank the centromere of chromosome 1 at 1p12 and 1q21. *Cytogenet. Genome Res.* 73, 157–163. doi:10.1159/000134330.
- Mariathasan, S., Hewton, K., Monack, D. M., Vucic, D., French, D. M., Lee, W. P., et al. (2004). Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. *Nature* 430, 213–218. doi:10.1038/nature02664.
- Mariathasan, S., Weiss, D. S., Newton, K., McBride, J., O'Rourke, K., Roose-Girma, M., et al. (2006). Cryopyrin activates the inflammasome in response to toxins and ATP. *Nature* 440, 228–232. doi:10.1038/nature04515.
- Marionnet, C., Bernerd, F., Dumas, A., Verrecchia, F., Mollier, K., Compan, D., et al. (2003). Modulation of Gene Expression Induced in Human Epidermis by Environmental Stress In Vivo. *J. Invest. Dermatol.* 121, 1447–1458. doi:10.1111/j.1523-1747.2003.12629.x.
- Martinez, A. N., Britto, C. F. P. C., Nery, J. A. C., Sampaio, E. P., Jardim, M. R., Sarno, E. N., et al. (2006). Evaluation of real-time and conventional PCR targeting complex 85 genes for detection of Mycobacterium leprae DNA in skin biopsy samples from patients diagnosed with leprosy. *J. Clin. Microbiol.* 44, 3154–3159. doi:10.1128/JCM.02250-05.
- Martinez, A. N., Lahiri, R., Pittman, T. L., Scollard, D., Truman, R., Moraes, M. O., et al. (2009). Molecular determination of Mycobacterium leprae viability by use of real-time PCR. J. Clin. Microbiol. 47, 2124–2130. doi:10.1128/JCM.00512-09.
- Martinez, A. N., Talhari, C., Moraes, M. O., and Talhari, S. (2014). PCR-Based Techniques for Leprosy Diagnosis: From the Laboratory to the Clinic. *PLoS Negl. Trop. Dis.* 8, 1–8. doi:10.1371/journal.pntd.0002655.
- Martinon, F., Burns, K., and Tschopp, J. (2002). The Inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-β. *Mol. Cell* 10, 417–426. doi:10.1016/S1097-2765(02)00599-3.
- Martinon, F., Hofmann, K., and Tschopp, J. (2001). The pyrin domain: A possible member of the death domain-fold family implicated in apoptosis and inflammation. *Curr. Biol.* 11, 118–120. doi:10.1016/S0960-9822(01)00056-2.
- Martinon, F., Pétrilli, V., Mayor, A., Tardivel, A., and Tschopp, J. (2006). Gout-associated uric acid crystals activate the NALP3 inflammasome. *Nature* 440, 237–241. doi:10.1038/nature04516.
- Marzano, A. V, Ortega-Loayza, A. G., Heath, M., Morse, D., Genovese, G., and Cugno, M. (2019). Mechanisms of inflammation in neutrophil-mediated skin diseases. *Front. Immunol.* 10, 1059. doi:10.3389/fimmu.2019.01059.
- Mascarenhas, D. P. A., Cerqueira, D. M., Pereira, M. S. F., Castanheira, F. V. S., Fernandes, T. D., Manin, G. Z., et al. (2017). Inhibition of caspase-1 or gasdermin-D enable caspase-8 activation in the Naip5/NLRC4/ASC inflammasome. *PLoS Pathog.* 13, 1–28. doi:10.1371/journal.ppat.1006502.
- Mascarenhas, D. P. A., Pereira, M. S. F., Manin, G. Z., Hori, J. I., and Zamboni, D. S. (2015). Interleukin 1 receptor-driven neutrophil recruitment accounts to MyD88-dependent pulmonary clearance of legionella pneumophila infection in vivo. *J. Infect. Dis.* 211, 322–330. doi:10.1093/infdis/jiu430.
- Mascarenhas, D. P. A., and Zamboni, D. S. (2017). Inflammasome biology taught by Legionella pneumophila . *J. Leukoc. Biol.* 101, 841–849. doi:10.1189/jlb.3mr0916-380r.

Massone, C., Belachew, W. A., and Schettini, A. (2015). Histopathology of the lepromatous

skin biopsy. Clin. Dermatol. 33, 38–45. doi:10.1016/j.clindermatol.2014.10.003.

- Master, S. S., Rampini, S. K., Davis, A. S., Keller, C., Ehlers, S., Springer, B., et al. (2008). Mycobacterium tuberculosis Prevents Inflammasome Activation. *Cell Host Microbe* 3, 224–232. doi:10.1016/j.chom.2008.03.003.
- Matheson, C. D., Vernon, K. K., Lahti, A., Fratpietro, R., Spigelman, M., Gibson, S., et al. (2009). Molecular exploration of the first-century tomb of the shroud in Akeldama, Jerusalem. *PLoS One* 4. doi:10.1371/journal.pone.0008319.
- Mattos, K. A., D'Avila, H., Rodrigues, L. S., Oliveira, V. G. C., Sarno, E. N., Atella, G. C., et al. (2010). Lipid droplet formation in leprosy: Toll-like receptor-regulated organelles involved in eicosanoid formation and Mycobacterium leprae pathogenesis. *J. Leukoc. Biol.* 87, 371–384. doi:10.1189/jlb.0609433.
- Mattos, K. A., Oliveira, V. G. C., D'Avila, H., Rodrigues, L. S., Pinheiro, R. O., Sarno, E. N., et al. (2011). TLR6-Driven Lipid Droplets in Mycobacterium leprae-Infected Schwann Cells: Immunoinflammatory Platforms Associated with Bacterial Persistence. *J. Immunol.* 187, 2548–2558. doi:10.4049/jimmunol.1101344.
- Matyskiela, M. E., Couto, S., Zheng, X., Lu, G., Hui, J., Stamp, K., et al. (2018). SALL4 mediates teratogenicity as a thalidomide-dependent cereblon substrate. *Nat. Chem. Biol.* 14, 981–987. doi:10.1038/s41589-018-0129-x.
- Mayer-Barber, K. D., Barber, D. L., Shenderov, K., White, S. D., Wilson, M. S., Cheever, a., et al. (2010). Cutting Edge: Caspase-1 Independent IL-1 Production Is Critical for Host Resistance to Mycobacterium tuberculosis and Does Not Require TLR Signaling In Vivo. J. Immunol. 184, 3326–3330. doi:10.4049/jimmunol.0904189.
- McElvania Tekippe, E., Allen, I. C., Hulseberg, P. D., Sullivan, J. T., McCann, J. R., Sandor, M., et al. (2010). Granuloma formation and host defense in chronic mycobacterium tuberculosis infection requires PYCARD/ASC but not NLRP3 or caspase-1. *PLoS One* 5. doi:10.1371/journal.pone.0012320.
- McHugh, S. M., Rifkin, I. R., Deighton, J., Wilson, A. B., Lachmann, P. J., Lockwood, C. M., et al. (1995). The immunosuppressive drug thalidomide induces T helper cell type 2 (Th2) and concomitantly inhibits Th1 cytokine production in mitogen- and antigenstimulated human peripheral blood mononuclear cell cultures. *Clin. Exp. Immunol.* 99, 160–167. doi:10.1111/j.1365-2249.1995.tb05527.x.
- Mcnab, F. W., Berry, M. P. R., Graham, C. M., Bloch, S. A. A., Oni, T., Wilkinson, K. A., et al. (2011). Programmed death ligand 1 is over-expressed by neutrophils in the blood of patients with active tuberculosis. *Eur. J. Immunol.* 41, 1941–1947. doi:10.1002/eji.201141421.
- Medeiros, R. C. A., De Vasconcelos Girardi, K. D. C., Cardoso, F. K. L., De Siqueira Mietto, B., De Toledo Pinto, T. G., Gomez, L. S., et al. (2016). Subversion of schwann cell glucose metabolism by Mycobacterium leprae. *J. Biol. Chem.* 291, 21375–21387. doi:10.1074/jbc.M116.725283.
- Meeker, H. C., Schuller-Levis, G., Fusco, F., Giardina-Becket, M. A., Sersen, E., and Levis, W. R. (1990). Sequential monitoring of leprosy patients with serum antibody levels to phenolic glycopipid-I, a synthetic analog of phenolic glycolipid-I, and mycobacterial lipoarabinomannan. *Int. J. Lepr.* 58, 503–511.
- Mellin, G. W., and Katzenstein, M. (1962). The saga of thalidomide. Neuropathy to embryopathy, with case reports of congenital anomalies. *N. Engl. J. Med.* 267. doi:10.1056/NEJM196212062672305.
- Mende, R., Vincent, F. B., Kandane-Rathnayake, R., Koelmeyer, R., Lin, E., Chang, J., et al. (2018). Analysis of serum interleukin (IL)-1β and IL-18 in systemic lupus erythematosus.

Front. Immunol. 9. doi:10.3389/fimmu.2018.01250.

- Mendes, A. L. G., Joaquim, H. D. M., Zamae, M. I. S., Assis, R. M., Peixoto, J. R. de M., de Araújo, M. M. G., et al. (2020). Expression of nlrp3 inflammasome in leprosy indicates immune evasion of mycobacterium leprae. *Mem. Inst. Oswaldo Cruz* 115, 1–7. doi:10.1590/0074-02760190324.
- Mendes, M. A., De Carvalho, D. S., Amadeu, T. P., Silva, B. J. D. A., Prata, R. B. D. S., Da Silva, C. O., et al. (2017). Elevated Pentraxin-3 Concentrations in Patients with Leprosy: Potential Biomarker of Erythema Nodosum Leprosum. *J. Infect. Dis.* 216, 1635–1643. doi:10.1093/infdis/jix267.
- Miao, E. A., Mao, D. P., Yudkovsky, N., Bonneau, R., Lorang, C. G., Warren, S. E., et al. (2010). Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. *Proc. Natl. Acad. Sci. U. S. A.* 107, 3076–3080. doi:10.1073/pnas.0913087107.
- Miao, Q., Hill, M. C., Chen, F., Mo, Q., Ku, A. T., Ramos, C., et al. (2019). SOX11 and SOX4 drive the reactivation of an embryonic gene program during murine wound repair. *Nat. Commun.* 10. doi:10.1038/s41467-019-11880-9.
- Mieras, L. F., Taal, A. T., van Brakel, W. H., Cambau, E., Saunderson, P. R., Smith, W. C. S., et al. (2018). An enhanced regimen as post-exposure chemoprophylaxis for leprosy: PEP++. *BMC Infect. Dis.* 18, 1–8. doi:10.1186/s12879-018-3402-4.
- Milner, C. M., and Day, A. J. (2003). TSG-6: A multifunctional protein associated with inflammation. *J. Cell Sci.* 116, 1863–1873. doi:10.1242/jcs.00407.
- Ministério da Saúde (2021). Nota técnica nº 16/2021-cgde/.dcci/svs/ms. 1–5. Available at: https://www.conass.org.br/wp-content/uploads/2021/07/SEI_MS-0020845770-Nota-Técnica-16.pdf.
- Misch, E. A., Berrington, W. R., Vary Jr., J. C., and Hawn, T. R. (2010). Leprosy and the human genome. *Microbiol Mol Biol Rev* 74, 589–620. doi:10.1128/mmbr.00025-10.
- Mishra, B. B., Moura-Alves, P., Sonawane, A., Hacohen, N., Griffiths, G., Moita, L. F., et al. (2010). Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome. *Cell. Microbiol.* 12, 1046–1063. doi:10.1111/j.1462-5822.2010.01450.x.
- Misra, N., Selvakumar, M., Singh, S., Bharadwaj, M., Ramesh, V., Misra, R. S., et al. (1995). Monocyte derived IL 10 and PGE2 are associated with the absence of Th 1 cells and in vitro T cell suppression in lepromatous leprosy. *Immunol. Lett.* 48, 123–128. doi:10.1016/0165-2478(95)02455-7.
- Miyake, K., Shibata, T., Ohto, U., Shimizu, T., Saitoh, S. I., Fukui, R., et al. (2018). Mechanisms controlling nucleic acid-sensing Toll-like receptors. *Int. Immunol.* 30, 43– 51. doi:10.1093/intimm/dxy016.
- Mjösberg, J., Bernink, J., Golebski, K., Karrich, J. J., Peters, C. P., Blom, B., et al. (2012). The Transcription Factor GATA3 Is Essential for the Function of Human Type 2 Innate Lymphoid Cells. *Immunity* 37, 649–659. doi:10.1016/j.immuni.2012.08.015.
- Mohr, S., and Liew, C.-C. (2007). The peripheral-blood transcriptome: new insights into disease and risk assessment. *Trends Mol. Med.* 13, 422–432. doi:10.1016/J.MOLMED.2007.08.003.
- Molina-Holgado, E., Ortiz, S., Molina-Holgado, F., and Guaza, C. (2000). Induction of COX-2 and PGE2 biosynthesis by IL-1β is mediated by PKC and mitogen-activated protein kinases in murine astrocytes. *Br. J. Pharmacol.* 131, 152–159. doi:10.1038/sj.bjp.0703557.

- Monack, D. M., Navarre, W. W., and Falkow, S. (2001). Salmonella-induced macrophage death: The role of caspase-1 in death and inflammation. *Microbes Infect.* 3, 1201–1212. doi:10.1016/S1286-4579(01)01480-0.
- Monot, M., Honoré, N., Garnier, T., Araoz, R., Coppée, J.-Y., Lacroix, C., et al. (2005). On the origin of leprosy. *Science* 308, 1040–1042. doi:10.1186/1753-6561-2-s1-s6.
- Monot, M., Honore, N., Garnier, T., Zidane, N., Sherafi, D., Paniz-Mondolfi, A., et al. (2009). Comparative genomic and phylogeographic analysis of Mycobacterium leprae. *Nat. Genet.* 41, 1282-U39. doi:10.1038/ng.477.
- Monteiro, R., de Abreu, M. A. M. M., Tiezzi, M. G., Roncada, E. V. M., de Oliveira, C. C. M., and Ortigosa, L. C. M. (2012). Lucio's phenomenon: another case reported in Brazil. *An. Bras. Dermatol.* 87, 296–300. doi:10.1590/S0365-05962012000200017.
- Monticelli, L. A., Buck, M. D., Flamar, A. L., Saenz, S. A., Wojno, E. D. T., Yudanin, N. A., et al. (2016). Arginase 1 is an innate lymphoid-cell-intrinsic metabolic checkpoint controlling type 2 inflammation. *Nat. Immunol.* 17, 656–665. doi:10.1038/ni.3421.
- Montoya, D., Cruz, D., Teles, R. M. B., Lee, D. J., Ochoa, M. T., Krutzik, S. R., et al. (2009). Divergence of Macrophage Phagocytic and Antimicrobial Programs in Leprosy. *Cell Host Microbe* 6, 343–353. doi:10.1016/j.chom.2009.09.002.
- Montoya, D. J., Andrade, P., Silva, B. J. A., Teles, R. M. B., Ma, F., Bryson, B., et al. (2019). Dual RNA-Seq of Human Leprosy Lesions Identifies Bacterial Determinants Linked to Host Immune Response. *Cell Rep.* 26, 3574-3585.e3. doi:10.1016/j.celrep.2019.02.109.
- Moorlag, S. J. C. F. M., Röring, R. J., Joosten, L. A. B., and Netea, M. G. (2018). The role of the interleukin-1 family in trained immunity. *Immunol. Rev.* 281, 28–39. doi:10.1111/imr.12617.
- Moraes, M. O., Sarno, E. N., Almeida, A. S., Saraiva, B. C. C., Nery, J. A. C., Martins, R. C. L., et al. (1999). Cytokine mRNA expression in leprosy: A possible role for interferon-γ and interleukin-12 in reactions (RR and ENL). *Scand. J. Immunol.* 50, 541–549. doi:10.1046/j.1365-3083.1999.00622.x.
- Moraes, M. O., Sarno, E. N., Teles, R. M. B., Almeida, A. S., Saraiva, B. C. C., Nery, J. A. C., et al. (2000). Anti-inflammatory drugs block cytokine mRNA accumulation in the skin and improve the clinical condition of reactional leprosy patients. *J. Invest. Dermatol.* 115, 935–941. doi:10.1046/j.1523-1747.2000.00158.x.
- Moreira, B. A. L., Sampaio, E. P., Zmuidzinas, S. A., Frindt, P., Smith, K. A., and Kaplan, G. (1993). Thalidomide Exerts Its Inhibitory Action on Tumor Necrosis Factor alpha by Enhancing mRNA Degradation. *J. Exp. Med.* 177, 6–11.
- Moreno-Angarita, A., Aragón, C. C., and Tobón, G. J. (2020). Cathelicidin LL-37: A new important molecule in the pathophysiology of systemic lupus erythematosus. *J. Transl. Autoimmun.* 3. doi:10.1016/j.jtauto.2019.100029.
- Moreno-Aspitia, A., Colon-Otero, G., Hoering, A., Tefferi, A., Niedringhaus, R. D., Vukov, A., et al. (2006). Thalidomide therapy in adult patients with myelodysplastic syndrome: A North Central Cancer Treatment Group Phase II trial. *Cancer* 107, 767–772. doi:10.1002/cncr.22047.
- Moreno, C. S. (2020). SOX4: The unappreciated oncogene. *Semin. Cancer Biol.* 67, 57–64. doi:10.1016/j.semcancer.2019.08.027.
- Motta, A. C. F., Furini, R. B., Simão, J. C. L., Ferreira, M. A. N., Komesu, M. C., and Foss, N. T. (2010). The recurrence of leprosy reactional episodes could be associated with oral chronic infections and expression of serum IL-1, TNF-α, IL-6, IFN-γ and IL-10. *Braz. Dent. J.* 21, 158–164. doi:10.1590/S0103-64402010000200012.

- Motta, A. C. F., Pereira, K. J., Tarquínio, D. C., Vieira, M. B., Miyake, K., and Foss, N. T. (2012). Leprosy reactions: coinfections as a possible risk factor. *Clinics (Sao Paulo).* 67, 1145–8. doi:10.6061/clinics/2012(10)05.
- Moubasher, A. E. D. A., Kamel, N. A., Zedan, H., and Raheem, D. E. D. A. (1998a). Cytokines in leprosy, I. Serum cytokine profile in leprosy. *Int. J. Dermatol.* 37, 733–740. doi:10.1046/j.1365-4362.1998.00381.x.
- Moubasher, A. E. D. A., Kamel, N. A., Zedan, H., and Raheem, D. E. D. A. (1998b). Cytokines in leprosy, II. Effect of treatment on serum cytokines in leprosy. *Int. J. Dermatol.* 37, 741–746. doi:10.1046/j.1365-4362.1998.00382.x.
- Moura, R. S. d, Calado, K. L., Oliveira, M. L., BÃ, ¼, hrer-SÃ, et al. (2008). Leprosy serology using PGL-I: a Systematic review. *Rev. Soc. Bras. Med. Trop.* 41, 1. Available at: http://www.scielo.br/scielo.php?script=sci_arttext&%5Cnpid=S0037-8682200800070000%5Cnpid=S0037-86822008000700004&%5Cnlng=en&%5Cnnrm=iso&%5Cntlng=e.
- Muller, W. A. (2009). Mechanisms of transendothelial migration of leukocytes. *Circ. Res.* 105, 223–230. doi:10.1161/CIRCRESAHA.109.200717.
- Muñoz-Planillo, R., Kuffa, P., Martínez-Colón, G., Smith, B. L., Rajendiran, T. M., and Núñez, G. (2013). K+ Efflux Is the Common Trigger of NLRP3 Inflammasome Activation by Bacterial Toxins and Particulate Matter. *Immunity* 38, 1142–1153. doi:10.1016/j.immuni.2013.05.016.
- Murakami, B. Y. N., Sakata, Y., and Watanabe, T. (1990). Central action sites of interleukin-1b for inducing fever in rabbits. *J. Physiol.* 428, 299–312.
- Mvubu, N. E., Pillay, B., McKinnon, L. R., and Pillay, M. (2018). Mycobacterium tuberculosis strains induce strain-specific cytokine and chemokine response in pulmonary epithelial cells. *Cytokine* 104, 53–64. doi:10.1016/j.cyto.2017.09.027.
- Naito, T., Tanaka, H., Naoe, Y., and Taniuchi, I. (2011). Transcriptional control of T-cell development. *Int. Immunol.* 23, 661–668. doi:10.1093/intimm/dxr078.
- Nakanishi, K. (2018). Unique action of Interleukin-18 on T cells and other immune cells. *Front. Immunol.* 9, 763. doi:10.3389/fimmu.2018.00763.
- Nath, I., Vemuri, N., Reddi, A. L., Bharadwaj, M., Brooks, P., Colston, M. J., et al. (2000a). Dysregulation of IL-4 expression in lepromatous leprosy patients with and without erythema nodosum leprosum. *Lepr. Rev.* 71. doi:10.5935/0305-7518.20000084.
- Nath, I., Vemuri, N., Reddi, A. L., Jain, S., Brooks, P., Colston, M. J., et al. (2000b). The effect of antigen presenting cells on the cytokine profiles of stable and reactional lepromatous leprosy patients. *Immunol. Lett.* 75, 69–76. doi:10.1016/S0165-2478(00)00271-6.
- Neelsen, F. (1883). Ein Casuistischer Beitrag zur Lehre von der Tuberkulose. *Cent. für die medizinischen Wissenschaften* 28, 497–501.
- Negera, E., Bobosha, K., Walker, S. L., Endale, B., Howe, R., Aseffa, A., et al. (2017a). New insight into the pathogenesis of erythema nodosum leprosum: The role of activated memory T-cells. *Front. Immunol.* 8, 1–14. doi:10.3389/fimmu.2017.01149.
- Negera, E., Tilahun, M., Bobosha, K., Lambert, S. M., Walker, S. L., Spencer, J., et al. (2018a). The effects of prednisolone treatment on serological responses and lipid profiles in Ethiopian leprosy patients with Erythema Nodosum Leprosum reactions. *PLoS Negl. Trop. Dis.* 12, 1–16. doi:10.1371/journal.pntd.0007035.
- Negera, E., Walker, S. L., Bekele, Y., Dockrell, H. M., and Lockwood, D. N. (2017b). Increased activated memory B-cells in the peripheral blood of patients with erythema

nodosum leprosum reactions. *PLoS Negl. Trop. Dis.* 11, 1–13. doi:10.1371/journal.pntd.0006121.

- Negera, E., Walker, S. L., Bobosha, K., Bekele, Y., Endale, B., Tarekegn, A., et al. (2018b). The effects of prednisolone treatment on cytokine expression in patients with erythema nodosum leprosum reactions. *Front. Immunol.* 9. doi:10.3389/fimmu.2018.00189.
- Negera, E., Walker, S. L., Bobosha, K., Howe, R., Aseffa, A., Dockrell, H. M., et al. (2017c). T-cell regulation in Erythema Nodosum Leprosum. *PLoS Negl. Trop. Dis.* 11, 1–23. doi:10.1371/journal.pntd.0006001.
- Negera, E., Walker, S. L., Lema, T., Aseffa, A., Lockwood, D. N., and Dockrell, H. M. (2018c). Complement C1q expression in Erythema nodosum leprosum. *PLoS Negl. Trop. Dis.* 12, 1–11. doi:10.1371/journal.pntd.0006321.
- Nery, J. A. da C., Perissé, A., Sales, A., Vieira, L. M., Souza, L., Sampaio, E., et al. (2000). The Use of Pentoxifylline in the Treatment of Type 2 Reactional Episodes in Leprosy. *Indian J. Lepr.* 72.
- Netea, M. G., Fantuzzi, G., Kullberg, B. J., Stuyt, R. J. L., Pulido, E. J., McIntyre, R. C., et al. (2000). Neutralization of IL-18 Reduces Neutrophil Tissue Accumulation and Protects Mice Against Lethal Escherichia coli and Salmonella typhimurium Endotoxemia . J. Immunol. 164, 2644–2649. doi:10.4049/jimmunol.164.5.2644.
- Newton, R. A., and Hogg, N. (1998). The human S100 protein MRP-14 is a novel activator of the beta 2 integrin Mac-1 on neutrophils. *J. Immunol.* 160, 1427–35. Available at: http://www.jimmunol.org/content/160/3/http://www.jimmunol.org/content/160/3/1427.full# ref-list-1 [Accessed August 21, 2021].
- Ng, V., Zanazzi, G., Timpl, R., Talts, J. F., Salzer, J. L., Brennan, P. J., et al. (2000). Role of the cell wall phenolic glycolipid-1 in the peripheral nerve predilection of Mycobacterium leprae. *Cell* 103, 511–524. doi:10.1016/S0092-8674(00)00142-2.
- Nichols, R. D., Von Moltke, J., and Vance, R. E. (2017). NAIP/NLRC4 inflammasome activation in MRP8+ cells is sufficient to cause systemic inflammatory disease. *Nat. Commun.* 8. doi:10.1038/s41467-017-02266-w.
- Nigou, J., Zelle-Rieser, C., Gilleron, M., Thurnher, M., and Puzo, G. (2001). Mannosylated Lipoarabinomannans Inhibit IL-12 Production by Human Dendritic Cells: Evidence for a Negative Signal Delivered Through the Mannose Receptor. *J. Immunol.* 166, 7477– 7485. doi:10.4049/jimmunol.166.12.7477.
- Noordeen, S. K. (2016). History of chemotherapy of leprosy. *Clin. Dermatol.* 34, 32–36. doi:10.1016/j.clindermatol.2015.10.016.
- Novick, D., Elbirt, D., Miller, G., Dinarello, C. A., Rubinstein, M., and Sthoeger, Z. M. (2010). High circulating levels of free interleukin-18 in patients with active SLE in the presence of elevated levels of interleukin-18 binding protein. *J. Autoimmun.* 34, 121–126. doi:10.1016/j.jaut.2009.08.002.
- Novick, D., Kim, S. H., Fantuzzi, G., Reznikov, L. L., Dinarello, C. A., and Rubinstein, M. (1999). Interleukin-18 binding protein: A novel modulator of the Th1 cytokine response. *Immunity* 10, 127–136. doi:10.1016/S1074-7613(00)80013-8.
- O'Neill, L. A. (2000). The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. *Sci. STKE* 2000. doi:10.1126/stke.2000.44.re1.
- Ode, Y., Aziz, M., and Wang, P. (2018). CIRP increases ICAM-1 + phenotype of neutrophils exhibiting elevated iNOS and NETs in sepsis. *J. Leukoc. Biol.* 103, 693–707. doi:10.1002/JLB.3A0817-327RR.

- Ohto, U., Shibata, T., Tanji, H., Ishida, H., Krayukhina, E., Uchiyama, S., et al. (2015). Structural basis of CpG and inhibitory DNA recognition by Toll-like receptor 9. *Nature* 520, 702–705. doi:10.1038/nature14138.
- Okamura, H., Tsutsul, H., Komatsu, T., Yutsudo, M., Tanimoto, T., Torigoe, K., et al. (1995). Cloning of a new cytokine that induces IFN-γ production by T cells. *Nature* 378, 88–91. doi:10.1038/378088a0.
- Oliveira, R. B., Moraes, M. O., Oliveira, E. B., Sarno, E. N., Nery, J. A. C., and Sampaio, E. P. (1999). Neutrophils isolated from leprosy patients release TNF-α and exhibit accelerated apoptosis in vitro. *J. Leukoc. Biol.* 65, 364–371. doi:10.1002/jlb.65.3.364.
- Oliveira, R. B., Ochoa, M. T., Sieling, P. A., Rea, T. H., Rambukkana, A., Sarno, E. N., et al. (2003). Expression of toll-like receptor 2 on human schwann cells: A mechanism of nerve damage in leprosy. *Infect. Immun.* 71, 1427–1433. doi:10.1128/IAI.71.3.1427-1433.2003.
- Onderdijk, A. J., Baerveldt, E. M., Kurek, D., Kant, M., Florencia, E. F., Debets, R., et al. (2015). IL-4 Downregulates IL-1β and IL-6 and Induces GATA3 in Psoriatic Epidermal Cells: Route of Action of a Th2 Cytokine. *J. Immunol.* 195, 1744–1752. doi:10.4049/jimmunol.1401740.
- Opal, S. M., and DePalo, V. A. (2000). Anti-inflammatory cytokines. *Chest* 117, 1162–1172. doi:10.1378/chest.117.4.1162.
- Orning, P., Weng, D., Starheim, K., Ratner, D., Best, Z., Lee, B., et al. (2018). Pathogen blockade of TAK1 triggers caspase-8–dependent cleavage of gasdermin D and cell death. *Science (80-.).* 362, 1064–1069. doi:10.1126/science.aau2818.
- Owen, C. A., Hu, Z., Lopez-Otin, C., and Shapiro, S. D. (2004). Membrane-Bound Matrix Metalloproteinase-8 on Activated Polymorphonuclear Cells Is a Potent, Tissue Inhibitor of Metalloproteinase-Resistant Collagenase and Serpinase. *J. Immunol.* 172, 7791– 7803. doi:10.4049/jimmunol.172.12.7791.
- Pacheco, F. S., Prata, R. B. da S., Brandão, S. S., Ferreira, H., Rodrigues, T. F., Brandão dos Santos, J., et al. (2020). Erythema Nodosum Leprosum Neutrophil Subset Expressing IL-10R1 Transmigrates into Skin Lesions and Responds to IL-10. *ImmunoHorizons* 4, 47–56. doi:10.4049/immunohorizons.1900088.
- Pages, F., Berger, A., Lebel-Binay, S., Zinzindohoue, F., Danel, C., Piqueras, B., et al. (2000). Proinflammatory and antitumor properties of interleukin-18 in the gastrointestinal tract. *Immunol. Lett.* 75, 9–14. doi:10.1016/S0165-2478(00)00285-6.
- Panda, S. K., Wigerblad, G., Jiang, L., Jiménez-Andrade, Y., Iyer, V. S., Shen, Y., et al. (2020). IL-4 controls activated neutrophil FcγR2b expression and migration into inflamed joints. *Proc. Natl. Acad. Sci. U. S. A.* 117, 3103–3113. doi:10.1073/pnas.1914186117.
- Parida, S. K., Grau, G. E., Zaheer, S. A., and Mukherjee, R. (1992). Serum tumor necrosis factor and interleukin 1 in leprosy and during lepra reactions. *Clin. Immunol. Immunopathol.* 63, 23–27. doi:10.1016/0090-1229(92)90088-6.
- Park, S. H., Casagrande, F., Das, B. B., Albrecht, L., Chu, M., and Opella, S. J. (2011). Local and global dynamics of the G protein-coupled receptor CXCR1. *Biochemistry* 50, 2371– 2380. doi:10.1021/bi101568j.
- Pascual, V., Allantaz, F., Arce, E., Punaro, M., and Banchereau, J. (2005). Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade. *J. Exp. Med.* 201, 1479–1486. doi:10.1084/jem.20050473.
- Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., and Kingsford, C. (2017). Salmon provides fast and bias-aware quantification of transcript expression. *Nat. Methods* 14, 417–419.

doi:10.1038/nmeth.4197.

- Pattyn, S. R. (1973). The problem of cultivation of Mycobacterium leprae: a review with criteria for evaluating recent experimental work. *Bull. World Health Organ.* 49, 403–410.
- Payvandi, F., Wu, L., Haley, M., Schafer, P. H., Zhang, L. H., Chen, R. S., et al. (2004). Immunomodulatory drugs inhibit expression of cyclooxygenase-2 from TNF-α, IL-1β, and LPS-stimulated human PBMC in a partially IL-10-dependent manner. *Cell. Immunol.* 230, 81–88. doi:10.1016/j.cellimm.2004.09.003.
- Payvandi, F., Wu, L., Naziruddin, S. D., Haley, M., Parton, A., Schafer, P. H., et al. (2005). Immunomodulatory drugs (IMiDs) increase the production of IL-2 from stimulated T cells by increasing PKC-θ activation and enhancing the DNA-binding activity of AP-1 but not NF-κB, OCT-1, or NF-AT. *J. Interf. Cytokine Res.* 25, 604–616. doi:10.1089/jir.2005.25.604.
- Pellagatti, A., Jädersten, M., Forsblom, A. M., Cattan, H., Christensson, B., Emanuelsson, E. K., et al. (2007). Lenalidomide inhibits the malignant clone and up-regulates the SPARC gene mapping to the commonly deleted region in 5q- syndrome patients. *Proc. Natl. Acad. Sci. U. S. A.* 104, 11406–11411. doi:10.1073/pnas.0610477104.
- Penna, G. O., Martelli, C. M. T., Stefani, M. M. A., Macedo, V. O., Maroja, M. de F., and Chaul, A. (2005). Thalidomide in the treatment of erythema nodosum leprosum (ENL): systematic review of clinical trial and prospects of new investigations. *An. Bras. Dermatol.* 80, 511–522. Available at: ht.
- Pereira, M., Chen, T. Di, Buang, N., Olona, A., Ko, J. H., Prendecki, M., et al. (2019). Acute Iron Deprivation Reprograms Human Macrophage Metabolism and Reduces Inflammation In Vivo. *Cell Rep.* 28, 498-511.e5. doi:10.1016/j.celrep.2019.06.039.
- Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. *Nucleic Acids Res.* 29, 2002–2007. doi:10.1093/nar/29.9.e45.
- Pfaltzgraff, R. E., and Ramu, G. P. (1994). "Clinical Leprosy," in *Leprosy* (Edinburgh: Churchill Livingstone), 237–290.
- Pietzsch, J., and Hoppmann, S. (2009). Human S100A12: A novel key player in inflammation? *Amino Acids* 36, 381–389. doi:10.1007/s00726-008-0097-7.
- Pinheiro, R. O., Schmitz, V., de Andrade Silva, B. J., Dias, A. A., de Souza, B. J., de Mattos Barbosa, M. G., et al. (2018). Innate immune responses in leprosy. *Front. Immunol.* 9, 1–15. doi:10.3389/fimmu.2018.00518.
- Pisetsky, D. S. (2016). Anti-DNA antibodies Quintessential biomarkers of SLE. *Nat. Rev. Rheumatol.* 12, 102–110. doi:10.1038/nrrheum.2015.151.
- Pocaterra, L., Jain, S., Reddy, R., Muzaffarullah, S., Torres, O., Suneetha, S., et al. (2006). Clinical course of erythema nodosum leprosum: An 11-year cohort study in Hyderabad, India. *Am. J. Trop. Med. Hyg.* 74, 868–879.
- Polycarpou, A., Walker, S. L., and Lockwood, D. N. J. (2017). A systematic review of immunological studies of erythema nodosum leprosum. *Front. Immunol.* 8. doi:10.3389/fimmu.2017.00233.
- Pontillo, A., Laurentino, W., Crovella, S., and Pereira, A. C. (2013). NLRP1 haplotypes associated with leprosy in Brazilian patients. *Infect. Genet. Evol.* 19, 274–279. doi:10.1016/j.meegid.2013.06.006.
- Pothlichet, J., Meunier, I., Davis, B. K., Ting, J. P. Y., Skamene, E., von Messling, V., et al. (2013). Type I IFN Triggers RIG-I/TLR3/NLRP3-dependent Inflammasome Activation in Influenza A Virus Infected Cells. *PLoS Pathog.* 9. doi:10.1371/journal.ppat.1003256.
- Pradhan, P., Vijayan, V., Gueler, F., and Immenschuh, S. (2020). Interplay of heme with

macrophages in homeostasis and inflammation. *Int. J. Mol. Sci.* 21. doi:10.3390/ijms21030740.

- Praefcke, G. J. K. (2018). Regulation of innate immune functions by guanylate-binding proteins. *Int. J. Med. Microbiol.* 308, 237–245. doi:10.1016/j.ijmm.2017.10.013.
- Pragasam, V., Vasudevan, B., and Moorchung, N. (2020). Cytokine gene polymorphisms in type I and type II reactions in Hansen's disease. *Indian J. Dermatol. Venereol. Leprol.* 0, 0. doi:10.4103/ijdvl.ijdvl_619_18.
- Pritchard, M. A., Baker, E., Whitmore, S. A., Sutherland, G. R., Idzerda, R. L., Park, L. S., et al. (1991). The interleukin-4 receptor gene (IL4R) maps to 16p11.2-16p12.1 in human and to the distal region of mouse chromosome 7. *Genomics* 10, 801–806. doi:10.1016/0888-7543(91)90466-R.
- Proell, M., Gerlic, M., Mace, P. D., Reed, J. C., and Riedl, S. J. (2013). The CARD plays a critical role in ASC foci formation and inflammasome signalling. *Biochem. J.* 449, 613– 621. doi:10.1042/BJ20121198.
- Py, B. F., Kim, M. S., Vakifahmetoglu-Norberg, H., and Yuan, J. (2013). Deubiquitination of NLRP3 by BRCC3 Critically Regulates Inflammasome Activity. *Mol. Cell* 49, 331–338. doi:10.1016/j.molcel.2012.11.009.
- Qu, X., Mei, J., Yu, Z., Zhai, Z., Qiao, H., and Dai, K. (2018). Lenalidomide regulates osteocytes fate and related osteoclastogenesis via IL-1β/NF-κB/RANKL signaling. *Biochem. Biophys. Res. Commun.* 501, 547–555. doi:10.1016/j.bbrc.2018.05.035.
- Quesniaux, V. J., Nicolle, D. M., Torres, D., Kremer, L., Guérardel, Y., Nigou, J., et al. (2004). Toll-Like Receptor 2 (TLR2)-Dependent-Positive and TLR2-Independent-Negative Regulation of Proinflammatory Cytokines by Mycobacterial Lipomannans. J. Immunol. 172, 4425–4434. doi:10.4049/jimmunol.172.7.4425.
- Quigley, J., Hughitt, V. K., Velikovsky, C. A., Mariuzza, R. A., El-Sayed, N. M., and Briken, V. (2017). The Cell Wall Lipid PDIM Contributes to Phagosomal Escape and Host Cell Exit of Mycobacterium tuberculosis. *MBio* 8, e00148-17. doi:10.1128/mBio.00148-17.
- Rajaram, M. V. S., Arnett, E., Azad, A. K., Guirado, E., Ni, B., Gerberick, A. D., et al. (2017). M. tuberculosis-Initiated Human Mannose Receptor Signaling Regulates Macrophage Recognition and Vesicle Trafficking by FcRγ-Chain, Grb2, and SHP-1. *Cell Rep.* 21, 126–140. doi:10.1016/j.celrep.2017.09.034.
- Rajasekaran, S., Kruse, K., Kovey, K., Davis, A. T., Hassan, N. E., Ndika, A. N., et al. (2014). Therapeutic role of anakinra, an interleukin-1 receptor antagonist, in the management of secondary hemophagocytic lymphohistiocytosis/sepsis/multiple organ dysfunction/macrophage activating syndrome in critically III children. *Pediatr. Crit. Care Med.* 15, 401–408. doi:10.1097/PCC.000000000000078.
- Ramakers, C., Ruijter, J. M., Lekanne Deprez, R. H., and Moorman, A. F. M. (2003). Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. *Neurosci. Lett.* 339, 62–66. doi:10.1016/S0304-3940(02)01423-4.
- Rambukkana, A., Zanazzi, G., Tapinos, N., and Salzer, J. L. (2002). Contact-Dependent Demyelination by Mycobacterium leprae in the Absence of Immune Cells. *Science* 296, 927–931. doi:10.1126/science.1067631.
- Ramien, M. L., Wong, A., and Keystone, J. S. (2011). Severe refractory erythema nodosum leprosum successfully treated with the tumor necrosis factor inhibitor etanercept. *Clin. Infect. Dis.* 52, 133–135. doi:10.1093/cid/ciq213.
- Rathinam, V. A. K., Vanaja, S. K., Waggoner, L., Sokolovska, A., Becker, C., Stuart, L. M., et al. (2012). TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. *Cell* 150, 606–619. doi:10.1016/j.cell.2012.07.007.

- Raupach, B., Peuschel, S. K., Monack, D. M., and Zychlinsky, A. (2006). Caspase-1mediated activation of interleukin-1β (IL-1β) and IL-18 contributes to innate immune defenses against Salmonella enterica serovar typhimurium infection. *Infect. Immun.* 74, 4922–4926. doi:10.1128/IAI.00417-06.
- Rayamajhi, M., Zak, D. E., Chavarria-Smith, J., Vance, R. E., and Miao, E. A. (2013). Cutting Edge: Mouse NAIP1 Detects the Type III Secretion System Needle Protein. *J. Immunol.* 191, 3986–3989. doi:10.4049/jimmunol.1301549.
- Raza, A., Meyer, P., Dutt, D., Zorat, F., Lisak, L., Nascimben, F., et al. (2001). Thalidomide produces transfusion independence in long-standing refractory anemias of patients with myelodysplastic syndromes. *Blood* 98, 958–965. doi:10.1182/blood.V98.4.958.
- RCoreTeam (2020). R: A Language and Environment for Statistical Computing. Available at: https://www.r-project.org.
- Reddy, N., Hernandez-Ilizaliturri, F. J., Deeb, G., Roth, M., Vaughn, M., Knight, J., et al. (2008). Immunomodulatory drugs stimulate natural killer-cell function, alter cytokine production by dendritic cells, and inhibit angiogenesis enhancing the anti-tumour activity of rituximab in vivo. *Br. J. Haematol.* 140, 36–45. doi:10.1111/j.1365-2141.2007.06841.x.
- Reibel, F., Cambau, E., and Aubry, A. (2015). Update on the epidemiology, diagnosis, and treatment of leprosy. *Med. Mal. Infect.* 45, 383–393. doi:10.1016/j.medmal.2015.09.002.
- Ribon, M., Seninet, S., Mussard, J., Sebbag, M., Clavel, C., Serre, G., et al. (2019). Neutrophil extracellular traps exert both pro- and anti-inflammatory actions in rheumatoid arthritis that are modulated by C1q and LL-37. *J. Autoimmun.* 98, 122–131. doi:10.1016/j.jaut.2019.01.003.
- Ridley, D. (1955). The bacteriological interpretation of skin smears and biopsies in Leprosy. *Trans. R. Soc. Trop. Med. Hyg.* 49, 449–452.
- Ridley, D. S., and Jopling, W. H. (1966). Classification of leprosy according to immunity. A five-group system. *Int J Lepr Other Mycobact Dis* 34, 255–273.
- Robbins, G., Mushrif Tripathy, V., Misra, V. N., Mohanty, R. K., Shinde, V. S., Gray, K. M., et al. (2009). Ancient skeletal evidence for leprosy in India (2000 B.C.). *PLoS One* 4, 1–8. doi:10.1371/journal.pone.0005669.
- Robinson, K. S., Clements, A., Williams, A. C., Berger, C. N., and Frankel, G. (2011). Bax Inhibitor 1 in apoptosis and disease. *Oncogene* 30, 2391–2400. doi:10.1038/onc.2010.636.
- Rocha, R. H., Emerich, P. S., Diniz, L. M., De Oliveira, M. B. B., Cabral, A. N. F., and Do Amaral, A. C. V. (2016). Lucio's phenomenon: Exuberant case report and review of Brazilian cases. *An. Bras. Dermatol.* 91, 60–63. doi:10.1590/abd1806-4841.20164370.
- Rock, F. L., Hardiman, G., Timans, J. C., Kastelein, R. A., and Bazan, J. F. (1998). A family of human receptors structurally related to Drosophila Toll. *Proc. Natl. Acad. Sci. U. S. A.* 95, 588–593. doi:10.1073/pnas.95.2.588.
- Rodgers, U. R., Kevorkian, L., Surridge, A. K., Waters, J. G., Swingler, T. E., Culley, K., et al. (2009). Expression and function of matrix metalloproteinase (MMP)-28. *Matrix Biol.* 28, 263–272. doi:10.1016/j.matbio.2009.04.006.
- Roers, A., Hiller, B., and Hornung, V. (2016). Recognition of Endogenous Nucleic Acids by the Innate Immune System. *Immunity* 44, 739–754. doi:10.1016/j.immuni.2016.04.002.
- Rohlwink, U. K., Figaji, A., Wilkinson, K. A., Horswell, S., Sesay, A. K., Deffur, A., et al. (2019). Tuberculous meningitis in children is characterized by compartmentalized immune responses and neural excitotoxicity. *Nat. Commun.* 10, 1–8.

doi:10.1038/s41467-019-11783-9.

- Rojas-Rivera, D., Armisén, R., Colombo, A., Martínez, G., Eguiguren, A. L., Díaz, A., et al. (2012). TMBIM3/GRINA is a novel unfolded protein response (UPR) target gene that controls apoptosis through the modulation of ER calcium homeostasis. *Cell Death Differ.* 19, 1013–1026. doi:10.1038/cdd.2011.189.
- Romanish, M. T., Nakamura, H., Lai, B. C., Wang, Y., and Mager, D. L. (2009). A novel protein isoform of the multicopy human NAIP gene derives from intragenic Alu SINE promoters. *PLoS One* 4, 1–12. doi:10.1371/journal.pone.0005761.
- Rothlein, R., Dustin, M. L., Marlin, S. D., and Springer, T. A. (1986). A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1. *J. Immunol.* 137.
- Rousset, F., Garcia, E., and Banchereau, J. (1991). Cytokine-induced proliferation and immunoglobulin production of human B lymphocytes triggered through their CD40 antigen. *J. Exp. Med.* 173, 705–710. doi:10.1084/jem.173.3.705.
- Roy, S., Guler, R., Parihar, S. P., Schmeier, S., Kaczkowski, B., Nishimura, H., et al. (2015). Batf2/Irf1 Induces Inflammatory Responses in Classically Activated Macrophages, Lipopolysaccharides, and Mycobacterial Infection. *J. Immunol.* 194, 6035–6044. doi:10.4049/jimmunol.1402521.
- Rühl, S., and Broz, P. (2015). Caspase-11 activates a canonical NLRP3 inflammasome by promoting K+ efflux. *Eur. J. Immunol.* 45, 2927–2936. doi:10.1002/eji.201545772.
- Ruiz, V. M. R., Ramirez, J., Naseer, N., Palacio, N. M., Siddarthan, I. J., Yan, B. M., et al. (2017). Broad detection of bacterial type III secretion system and flagellin proteins by the human NAIP/NLRC4 inflammasome. *Proc. Natl. Acad. Sci. U. S. A.* 114, 13242– 13247. doi:10.1073/pnas.1710433114.
- Rychkov, D., Neely, J., Oskotsky, T., Yu, S., Perlmutter, N., Nititham, J., et al. (2021). Cross-Tissue Transcriptomic Analysis Leveraging Machine Learning Approaches Identifies New Biomarkers for Rheumatoid Arthritis. *Front. Immunol.* 12, 1–16. doi:10.3389/fimmu.2021.638066.
- Saiga, H., Kitada, S., Shimada, Y., Kamiyama, N., Okuyama, M., Makino, M., et al. (2012). Critical role of AIM2 in Mycobacterium tuberculosis infection. *Int. Immunol.* 24, 637–644. doi:10.1093/intimm/dxs062.
- Saini, C., Ramesh, V., and Nath, I. (2013). CD4+ Th17 Cells Discriminate Clinical Types and Constitute a Third Subset of Non Th1, Non Th2 T Cells in Human Leprosy. *PLoS Negl. Trop. Dis.* 7. doi:10.1371/journal.pntd.0002338.
- Sakharkar, K. R., Kumar Dhar, P., and Chow, V. V. T. K. (2004). Genome reduction in prokaryotic obligatory intracellular parasites of humans: A comparative analysis. *Int. J. Syst. Evol. Microbiol.* 54, 1937–1941. doi:10.1099/ijs.0.63090-0.
- Sales, A. M., de Matos, H. J., Nery, J. A. C., Duppre, N. C., Sampaio, E. P., and Sarno, E. N. (2007). Double-blind trial of the efficacy of pentoxifylline vs thalidomide for the treatment of type II reaction in leprosy. *Brazilian J. Med. Biol. Res.* 40, 243–248. doi:10.1590/S0100-879X2007000200011.
- Salgame, P., Yamamura, M., Bloom, B., and Modlin, R. (1992). Evidence for functional subsets of CD4+ and CD8+ T cells in human disease: lymphokine patterns in leprosy. *Chem. Immunol.* 54, 44–59.
- Sallam, M. A., Attia, E. A. S., and Soliman, M. S. E. (2014). Assessment of serum level of interleukin-1?? and interleukin-12 in leprosy: Impact of previous Bacillus Calmitte Guerin vaccination. *Arch. Dermatol. Res.* 306, 189–195. doi:10.1007/s00403-013-1411-0.

Sampaio, E. P., Hernandez, M. O., Carvalho, D. S., and Sarno, E. N. (2002). Management of

erythema nodosum leprosum by thalidomide: Thalidomide analogues inhibit M. lepraeinduced TNFα production in vitro. *Biomed. Pharmacother.* 56, 13–19. doi:10.1016/S0753-3322(01)00147-0.

- Sampaio, E. P., Kaplan, G., Miranda, A., Nery, J. A. C., Miguel, C. P., Viana, S. M., et al. (1993). The Influence of Thalidomide on the Clinical and Immunologic Manifestation of Erythema Nodosum Leprosum. *J. Infect. Dis.* 168, 408–414. doi:10.1093/infdis/168.2.408.
- Sampaio, E. P., Moraes, M. O., Nery, J. A. C., Santos, A. R., Matos, H. C., and Sarno, E. N. (1998). Pentoxifylline decreases in vivo and in vitro tumour necrosis factor- alpha (TNFα) production in lepromatous leprosy patients with erythema nodosum leprosum (ENL). *Clin. Exp. Immunol.* 111, 300–308. doi:10.1046/j.1365-2249.1998.00510.x.
- Sampaio, E. P., Sarno, E. N., Galilly, R., Cohn, Z. A., and Kaplan, G. (1991). Thalidomide selectively inhibits tumor necrosis factor alpha production by stimulated human monocytes. *J. Exp. Med.* 173, 699–703. doi:10.1084/jem.173.3.699.
- Sanchez-Garrido, J., Slater, S. L., Clements, A., Shenoy, A. R., and Gad Frankel, | (2020). Vying for the control of inflammasomes: The cytosolic frontier of enteric bacterial pathogen-host interactions. *Cell. Microbiol.* 22, e13184. doi:10.1111/cmi.13184.
- Santos, D., Campos, T. M., Saldanha, M., Oliveira, S. C., Nascimento, M., Zamboni, D. S., et al. (2018). IL-1β Production by Intermediate Monocytes Is Associated with Immunopathology in Cutaneous Leishmaniasis. *J. Invest. Dermatol.* 138, 1107–1115. doi:10.1016/j.jid.2017.11.029.
- Santos, J. R. S., Vendramini, D. L., Nery, J. A. da C., and Avelleira, J. C. R. (2017). Etanercept in erythema nodosum leprosum. *An. Bras. Dermatol.* 92, 575–577. doi:10.1590/abd1806-4841.20175471.
- Sarhan, J., Liu, B. C., Muendlein, H. I., Li, P., Nilson, R., Tang, A. Y., et al. (2018). Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. *Proc. Natl. Acad. Sci. U. S. A.* 115, E10888–E10897. doi:10.1073/pnas.1809548115.
- Sarno, E. N., Grau, G. E., Vieira, L. M., and Nery, J. a (1991). Serum levels of tumour necrosis factor-alpha and interleukin-1 beta during leprosy reactional states. *Clin. Exp. Immunol.* 84, 103–108. doi:10.1111/j.1365-2249.1991.tb08131.x.
- Saúde, M. da (2019). Casos novos de nanseníase por estados e regiões. Available at: https://www.saude.gov.br/images/pdf/2019/julho/17/Casos-novos-de-hansen--ase-porestados-e-regi--es--Brasil--1990-a-2018.pdf.
- Schenk, M., Fabri, M., Krutzik, S. R., Lee, D. J., Vu, D. M., Sieling, P. A., et al. (2014). Interleukin-1β triggers the differentiation of macrophages with enhanced capacity to present mycobacterial antigen to T cells. *Immunology* 141, 174–180. doi:10.1111/imm.12167.
- Schenk, M., Krutzik, S. R., Sieling, P. A., Lee, D. J., Rosane, M. B., Ochoa, M. T., et al. (2012). NOD2 triggers an interleukin-32–dependent human dendritic cell program in leprosy. *Nat. Med.* 18, 555–563. doi:10.1038/nm.2650.NOD2.
- Schenk, M., Mahapatra, S., Le, P., Kim, H. J., Choi, A. W., Brennan, P. J., et al. (2016). Human NOD2 recognizes structurally unique muramyl dipeptides from Mycobacterium leprae. *Infect. Immun.* 84, 2429–2438. doi:10.1128/IAI.00334-16.
- Schenten, D., Nish, S. A., Yu, S., Yan, X., Lee, H. K., Brodsky, I., et al. (2014). Signaling through the adaptor molecule MyD88 in CD4+ T cells is required to overcome suppression by regulatory T cells. *Immunity* 40, 78–90. doi:10.1016/j.immuni.2013.10.023.

Schifferli, J. A., Ng, Y. C., and Peters, D. K. (1986). The Role of Complement and Its

Receptor in the Elimination of Immune Complexes. *N. Engl. J. Med.* 315, 488–495. doi:10.1056/NEJM198608213150805.

- Schmid-Burgk, J. L., Gaidt, M. M., Schmidt, T., Ebert, T. S., Bartok, E., and Hornung, V. (2015). Caspase-4 mediates non-canonical activation of the NLRP3 inflammasome in human myeloid cells. *Eur. J. Immunol.* 45, 2911–2917. doi:10.1002/eji.201545523.
- Schmitz, J., Owyang, A., Oldham, E., Song, Y., Murphy, E., McClanahan, T. K., et al. (2005). IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. *Immunity* 23, 479–490. doi:10.1016/j.immuni.2005.09.015.
- Schmitz, V., Prata, R. B. da S., Barbosa, M. G. de M., Mendes, M. A., Brandão, S. S., Amadeu, T. P., et al. (2016). Expression of CD64 on Circulating Neutrophils Favoring Systemic Inflammatory Status in Erythema Nodosum Leprosum. *PLoS Negl. Trop. Dis.* 10, 1–18. doi:10.1371/journal.pntd.0004955.
- Schnappauf, O., Chae, J. J., Kastner, D. L., and Aksentijevich, I. (2019). The Pyrin Inflammasome in Health and Disease. *Front. Immunol.* 10, 1745. doi:10.3389/fimmu.2019.01745.
- Schuenemann, V. J., Singh, P., Mendum, T. A., Krause-Kyora, B., Jager, G., Bos, K. I. ., et al. (2013). Genome-Wide Comparison of Medieval and Modern Mycobacterium leprae. *Science* 341, 179–184. doi:10.1126/science.1238286.
- Schwab, J. M., Chiang, N., Arita, M., and Serhan, C. N. (2007). Resolvin E1 and protectin D1 activate inflammation-resolution programmes. *Nature* 447, 869–874. doi:10.1038/nature05877.
- Scollard, D. M., Adams, L. B., Gillis, T. P., Krahenbuhl, J. L., Truman, R. W., and Williams, D. L. (2006). The continuing challenges of leprosy. *Clin. Microbiol. Rev.* 19, 338–381. doi:10.1128/CMR.19.2.338-381.2006.
- Scollard, D. M., Smith, T., Bhoopat, L., Theetranont, C., Rangdaeng, S., and Morens, D. (1994). Epidemiologic characteristics of leprosy reactions. *Int J Lepr Other Mycobact Dis* 62, 559–567.
- Scollard, D. M., Truman, R. W., and Ebenezer, G. J. (2015). Mechanisms of nerve injury in leprosy. *Clin. Dermatol.* 33, 46–54. doi:10.1016/j.clindermatol.2014.07.008.
- Scott, N. R., Swanson, R. V., Al-Hammadi, N., Domingo-Gonzalez, R., Rangel-Moreno, J., Kriel, B. A., et al. (2020). S100A8/A9 regulates CD11b expression and neutrophil recruitment during chronic tuberculosis. *J. Clin. Invest.* 130, 3098–3112. doi:10.1172/JCI130546.
- Sehgal, V., Gautam, R., Koranne, R., and Beohar, P. (1986). The histopathology of type I (lepra) and type II (ENL) reactions in leprosy. *Indian J Lepr* 58, 240–243.
- Shah, S., Bohsali, A., Ahlbrand, S. E., Srinivasan, L., Rathinam, V. a K., Vogel, S. N., et al. (2013). Cutting edge: Mycobacterium tuberculosis but not nonvirulent mycobacteria inhibits IFN-β and AIM2 inflammasome-dependent IL-1β production via its ESX-1 secretion system. *J. Immunol.* 191, 3514–8. doi:10.4049/jimmunol.1301331.
- Shannon, E., Noveck, R., Sandoval, F., and Kamath, B. (2008). Thalidomide suppressed IL-1β while enhancing TNF-α and IL-10, when cells in whole blood were stimulated with lipopolysaccharide. *Immunopharmacol. Immunotoxicol.* 30, 447–457. doi:10.1080/08923970802135161.
- Shao, S., Fang, H., Zhang, J., Jiang, M., Xue, K., Ma, J., et al. (2019). Neutrophil exosomes enhance the skin autoinflammation in generalized pustular psoriasis via activating keratinocytes. *FASEB J.* 33, 6813–6828. doi:10.1096/fj.201802090RR.

- Shapouri-Moghaddam, A., Mohammadian, S., Vazini, H., Taghadosi, M., Esmaeili, S. A., Mardani, F., et al. (2018). *Macrophage plasticity, polarization, and function in health and disease*. doi:10.1002/jcp.26429.
- Sharma, D., and Kanneganti, T. D. (2016). The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation. *J. Cell Biol.* 213, 617–629. doi:10.1083/jcb.201602089.
- Sharma, R., Lahiri, R., Scollard, D. M., Pena, M., Williams, D. L., Adams, L. B., et al. (2013). The armadillo: a model for the neuropathy of leprosy and potentially other neurodegenerative diseases. *Dis Model Mech* 6, 19–24. doi:10.1242/dmm.010215.
- Sharma, R., Singh, P., Loughry, W. J., Lockhart, J. M., Inman, W. B., Duthie, M. S., et al. (2015). Zoonotic leprosy in the southeastern United States. *Emerg. Infect. Dis.* 21, 2127–2134. doi:10.3201/eid2112.150501.

Shepard, C. C. (1960a). Acid-fast bacilli in nasal excretions in leprosy, and results of inoculation of mice. Am. J. Epidemiol. 71, 147–157. doi:https://doi.org/10.1093/oxfordjournals.aje.a120098.

- Shepard, C. C. (1960b). the Experimental Disease That Follows the Injection of Human Leprosy Bacilli Into Foot-Pads of Mice. J. Exp. Med. 112, 445–54. doi:10.1016/j.infsof.2008.09.005.
- Shepard, C. C., and McRae, D. H. (1967). A Method for Counting Acid-fast Bacteria. Int. J. Lepr. 36.
- Sheskin, J. (1965). Thalidomide in the treatment of lepra reactions. *Clin. Pharmacol. Ther.* 6, 303–306. doi:10.1002/cpt196563303.
- Sheskin, J. (1980). The Treatment of Lepra Reaction In Lepromatous Leprosy: Fifteen Years' Experience with Thalidomide. *Int. J. Dermatol.* 19, 318–322. doi:10.1111/j.1365-4362.1980.tb00342.x.
- Shi, J., Zhao, Y., Wang, K., Shi, X., Wang, Y., Huang, H., et al. (2015). Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. *Nature* 526, 660–665. doi:10.1038/nature15514.
- Shi, J., Zhao, Y., Wang, Y., Gao, W., Ding, J., Li, P., et al. (2014). Inflammatory caspases are innate immune receptors for intracellular LPS. *Nature* 514, 187–192. doi:10.1038/nature13683.
- Shin, H., Shannon, C. P., Fishbane, N., Ruan, J., Zhou, M., Balshaw, R., et al. (2014). Variation in RNA-Seq transcriptome profiles of peripheral whole blood from healthy individuals with and without globin depletion. *PLoS One* 9, e91041. doi:10.1371/journal.pone.0091041.
- Siegmund, B., Fantuzzi, G., Rieder, F., Gamboni-Robertson, F., Lehr, H. A., Hartmann, G., et al. (2001). Neutralization of interleukin-18 reduces severity in murine colitis and intestinal IFN-γ and TNF-α production. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* 281. doi:10.1152/ajpregu.2001.281.4.r1264.
- Silva, B. J. de A., Barbosa, M. G. de M., Andrade, P. R., Ferreira, H., Nery, J. A. da C., Côrte-Real, S., et al. (2017). Autophagy Is an Innate Mechanism Associated with Leprosy Polarization. *PLoS Pathog.* 13, 1–29. doi:10.1371/journal.ppat.1006103.
- Silva, L. M., de Sousa, J. R., Hirai, K. E., Dias, L. B., Furlaneto, I. P., Carneiro, F. R. O., et al. (2018). The inflammasome in leprosy skin lesions: An immunohistochemical evaluation. *Infect. Drug Resist.* 11, 2231–2240. doi:10.2147/IDR.S172806.
- Silva, P. H. L., Santos, L. N., Mendes, M. A., Nery, J. A. C., Sarno, E. N., and Esquenazi, D. (2019). Involvement of TNF-Producing CD8+ effector memory T Cells with

immunopathogenesis of erythema nodosum leprosum in leprosy patients. *Am. J. Trop. Med. Hyg.* 100, 377–385. doi:10.4269/ajtmh.18-0517.

- Sims, J. E., and Smith, D. E. (2010). The IL-1 family: Regulators of immunity. *Nat. Rev. Immunol.* 10, 89–102. doi:10.1038/nri2691.
- Singhal, S., Mehta, J., Desikan, R., Ayers, D., Roberson, P., Eddlemon, P., et al. (1999). Antitumor activity of thalidomide in refractory multiple myeloma. *N. Engl. J. Med.* 341, 1565–1571. doi:10.1056/NEJM199911183412102.
- Sinsimer, D., Fallows, D., Peixoto, B., Krahenbuhl, J., Kaplan, G., and Manca, C. (2010). Mycobacterium leprae Actively Modulates the Cytokine Response in Naïve Human Monocytes □. Infect. Immun. 78, 293–300. doi:10.1128/IAI.00816-09.
- Smerdová, L., Šmerdová, J., Kabátková, M., Kohoutek, J., Blažek, D., Machala, M., et al. (2014). Upregulation of CYP1B1 expression by inflammatory cytokines is mediated by the p38 MAP kinase signal transduction pathway. *Carcinogenesis* 35, 2534–2543. doi:10.1093/carcin/bgu190.
- Smith, W. C. S., and Aerts, A. (2014). Role of contact tracing and prevention strategies in the interruption of leprosy transmission. *Lepr. Rev.* 85, 2–17. doi:10.1055/s-0035-1548759.
- Sollberger, G., Choidas, A., Burn, G. L., Habenberger, P., Lucrezia, R. Di, Kordes, S., et al. (2018). Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. *Sci. Immunol.* 3. doi:10.1126/sciimmunol.aar6689.
- Soneson, C., Love, M. I., and Robinson, M. D. (2016). Differential analyses for RNA-seq: Transcript-level estimates improve gene-level inferences. *F1000Research* 4, 1521. doi:10.12688/F1000RESEARCH.7563.2.
- Song, F., Qian, Y., Peng, X., Li, X., Xing, P., Ye, D., et al. (2017). The frontline of immune response in peripheral blood. *PLoS One* 12. doi:10.1371/journal.pone.0182294.
- Song, T., Ma, X., Gu, K., Yang, Y., Yang, L., Ma, P., et al. (2016). Thalidomide represses inflammatory response and reduces radiculopathic pain by inhibiting IRAK-1 and NFκB/p38/JNK signaling. *J. Neuroimmunol.* 290, 1–8. doi:10.1016/j.jneuroim.2015.11.007.
- Sousa, A. L. M., Fava, V. M., Sampaio, L. H., Martelli, C. M. T., Costa, M. B., Mira, M. T., et al. (2012). Genetic and immunological evidence implicates interleukin 6 as a susceptibility gene for leprosy type 2 reaction. *J. Infect. Dis.* 205, 1417–1424. doi:10.1093/infdis/jis208.
- Sousa, J., Cá, B., Maceiras, A. R., Simões-Costa, L., Fonseca, K. L., Fernandes, A. I., et al. (2020). Mycobacterium tuberculosis associated with severe tuberculosis evades cytosolic surveillance systems and modulates IL-1β production. *Nat. Commun.* 11, 1–14. doi:10.1038/s41467-020-15832-6.
- Souza, C. D. F. de, Santos, F. G. B., Leal, T. C., and Paiva, J. P. S. de (2019). Trend of leprosy detection rate in Brazil, 1990 to 2016. *An. Bras. Dermatol.* 94, 603–607. doi:10.1016/j.abd.2018.10.003.
- Spicer, A. P., Joo, A., and Bowling, R. A. (2003). A hyaluronan binding link protein gene family whose members are physically linked adjacent to chrondroitin sulfate proteoglycan core protein genes. The missing links. *J. Biol. Chem.* 278, 21083–21091. doi:10.1074/jbc.M213100200.
- Stefani, M. M., Guerra, J. G., Sousa, A. L. M., Costa, M. B., Oliveira, M. L. W., Martelli, C. T., et al. (2009). Potential plasma markers of type 1 and type 2 leprosy reactions: A preliminary report. *BMC Infect. Dis.* 9, 6–13. doi:10.1186/1471-2334-9-75.
- Stephens, M. (2017). False discovery rates: A new deal. *Biostatistics* 18, 275–294. doi:10.1093/biostatistics/kxw041.

- Strupp, C., Hildebrandt, B., Germing, U., Haas, R., and Gattermann, N. (2003). Cytogenetic response to thalidomide treatment in three patients with myelodysplastic syndrome. *Leukemia* 17, 1200–1202. doi:10.1038/sj.leu.2402894.
- Subbarao, S., Sanchez-Garrido, J., Krishnan, N., Shenoy, A. R., and Robertson, B. D. (2020). Genetic and pharmacological inhibition of inflammasomes reduces the survival of Mycobacterium tuberculosis strains in macrophages. *Sci. Rep.* 10, 1–11. doi:10.1038/s41598-020-60560-y.
- Sullivan, L., Sano, S., Pirmez, C., Salgame, P., Mueller, C., Hofman, F., et al. (1991). Expression of adhesion molecules in leprosy lesions. *Infect. Immun.* 59, 4154–4160. doi:10.1128/iai.59.11.4154-4160.1991.
- Sunderkötter, C. H., Tomimori-Yamashita, J., Nix, V., Maeda, S. M., Sindrilaru, A., Mariano, M., et al. (2004). High expression of myeloid-related proteins 8 and 14 characterizes an inflammatorily active but ineffective response of macrophages during leprosy. *Immunology* 111, 472–480. doi:10.1111/j.0019-2805.2004.01836.x.
- Sweet, L., Singh, P. P., Azad, A. K., Rajaram, M. V. S., Schlesinger, L. S., and Schorey, J. S. (2010). Mannose receptor-dependent delay in phagosome maturation by Mycobacterium avium glycopeptidolipids. *Infect. Immun.* 78, 518–526. doi:10.1128/IAI.00257-09.
- Takai, S., Kasama, M., Yamada, K., Kai, N., Hirayama, N., Namiki, H., et al. (1994). Human high-affinity Fc / RI (CD64) gene by fluorescence in situ hybridization. *Hum. Genet.* 93, 13–15.
- Tamm, A., and Schmidt, R. E. (1997). IgG binding sites on human Fcγ receptors. *Int. Rev. Immunol.* 16, 57–85. doi:10.3109/08830189709045703.
- Tan, H. T. T., Hagner, S., Ruchti, F., Radzikowska, U., Tan, G., Altunbulakli, C., et al. (2019). Tight junction, mucin, and inflammasome-related molecules are differentially expressed in eosinophilic, mixed, and neutrophilic experimental asthma in mice. *Allergy Eur. J. Allergy Clin. Immunol.* 74, 294–307. doi:10.1111/all.13619.
- Tang, K. W., Lin, Z. C., Wang, P. W., Alalaiwe, A., Tseng, C. H., and Fang, J. Y. (2020). Facile skin targeting of a thalidomide analog containing benzyl chloride moiety alleviates experimental psoriasis via the suppression of MAPK/NF-κB/AP-1 phosphorylation in keratinocytes. *J. Dermatol. Sci.* 99, 90–99. doi:10.1016/j.jdermsci.2020.05.013.
- Tanji, H., Ohto, U., Shibata, T., Taoka, M., Yamauchi, Y., Isobe, T., et al. (2015). Toll-like receptor 8 senses degradation products of single-stranded RNA. *Nat. Struct. Mol. Biol.* 22, 109–116. doi:10.1038/nsmb.2943.
- Tavares, I. F., dos Santos, J. B., Pacheco, F. dos S., Gandini, M., Mariante, R. M., Rodrigues, T. F., et al. (2021). Mycobacterium leprae Induces Neutrophilic Degranulation and Low-density Neutrophil Generation During Erythema Nodosum Leprosum. Frontiers doi:10.3389/FMED.2021.711623.
- Teles, R. M. B., Graeber, T. G., Krutzik, S. R., Montoya, D., Lee, D. J., Komisopoulou, E., et al. (2014). Type I Interferon Suppresses Type II Interferon–Triggered Human Anti-Mycobacterial Responses. *Science (80-.).* 339, 1448–1453. doi:10.1126/science.1233665.Type.
- Teles, R. M. B., Lu, J., Tió-Coma, M., Goulart, I. M. B., Banu, S., Hagge, D., et al. (2019). Identification of a systemic interferon-γ inducible antimicrobial gene signature in leprosy patients undergoing reversal reaction. *PLoS Negl. Trop. Dis.* 13. doi:10.1371/journal.pntd.0007764.
- Teng, X., Zhang, H., Snead, C., and Catravas, A. J. D. (2002). Molecular mechanisms of iNOS induction by IL-1β and IFN-γ in rat aortic smooth muscle cells. *Am. J. Physiol.* -

Cell Physiol. 282, 144–152. doi:10.1152/ajpcell.2002.282.1.c144.

- Thada, S., Horvath, G. L., Müller, M. M., Dittrich, N., Conrad, M. L., Sur, S., et al. (2021). Interaction of TLR4 and TLR8 in the innate immune response against mycobacterium tuberculosis. *Int. J. Mol. Sci.* 22, 1–23. doi:10.3390/ijms22041560.
- Theilgaard-Mönch, K., Jacobsen, L. C., Nielsen, M. J., Rasmussen, T., Udby, L., Gharib, M., et al. (2006). Haptoglobin is synthesized during granulocyte differentiation, stored in specific granules, and released by neutrophils in response to activation. *Blood* 108, 353–361. doi:10.1182/blood-2005-09-3890.
- Thornberry, N. A., Bull, H. G., Calaycay, J. R., Chapman, K. T., Howard, A. D., Kostura, M. J., et al. (1992). A novel heterodimeric cysteine protease is required for interleukin-1βprocessing in monocytes. *Nature* 356, 768–774. doi:10.1038/356768a0.
- Tió-Coma, M., van Hooij, A., Bobosha, K., van der Ploeg-van Schip, J. J., Banu, S., Khadge, S., et al. (2019). Whole blood RNA signatures in leprosy patients identify reversal reactions before clinical onset: a prospective, multicenter study. *Sci. Rep.* 9, 1–12. doi:10.1038/s41598-019-54213-y.
- Tomura, M., Zhou, X. Y., Maruo, S., Ahn, H. J., Hamaoka, T., Okamura, H., et al. (1998). A critical role for IL-18 in the proliferation and activation of NK1.1+ CD3- cells. *J. Immunol.* 160, 4738–46. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9590219.
- Tornhamre, S., Elmqvist, A., and Lindgren, J. Å. (2000). 15-Lipoxygenation of leukotriene A4 studies of 12- and 15-lipoxygenase efficiency to catalyze lipoxin formation. *Biochim. Biophys. Acta Mol. Cell Biol. Lipids* 1484, 298–306. doi:10.1016/S1388-1981(00)00017-2.
- Tosi, M. F., Stark, J. M., Smith, C. W., Hamedani, A., Gruenert, D. C., and Infeld, M. D. (1992). Induction of ICAM-1 expression on human airway epithelial cells by inflammatory cytokines: effects on neutrophil-epithelial cell adhesion. *Am. J. Respir. Cell Mol. Biol.* 7, 214–221. doi:10.1165/ajrcmb/7.2.214.

Truman, R. (2005). Leprosy in Wild Armadillos. Lepr. Rev. 76, 198–208.

- Truman, R. W., Ebenezer, G. J., Pena, M. T., Sharma, R., Balamayooran, G., Gillingwater, T. H., et al. (2014). The Armadillo as a Model for Peripheral Neuropathy in Leprosy. *ILAR J.* 54, 304–314. doi:10.1093/ilar/ilt050.
- Truman, R. W., and Krahenbuhl, J. L. (2001). Viable M. leprae as a research reagent. *Int J Lepr Mycobact Dis Off Organ Int Lepr Assoc* 69, 1–12.
- Truman, R. W., Singh, P., Sharma, R., Busso, P., Rougemont, J., Paniz-Mondolfi, A., et al. (2011). Probable Zoonotic Leprosy in the Southern United States. *N. Engl. J. Med.* 364, 1626–1633. doi:10.1056/NEJMoa1010536.
- Tsutsui, H., Nakanishi, K., Matsui, K., Higashino, K., Okamura, H., Miyazawa, Y., et al. (1996). IFN-gamma-inducing factor up-regulates Fas ligand-mediated cytotoxic activity of murine natural killer cell clones. *J. Immunol.* 157.
- Tsutsumi, N., Kimura, T., Arita, K., Ariyoshi, M., Ohnishi, H., Yamamoto, T., et al. (2014). The structural basis for receptor recognition of human interleukin-18. *Nat. Commun.* 5, 1–13. doi:10.1038/ncomms6340.
- Turankar, R. P., Pandey, S., Lavania, M., Singh, I., Nigam, A., Darlong, J., et al. (2015). Comparative evaluation of PCR amplification of RLEP, 16S rRNA, rpoT and Sod A gene targets for detection of M. leprae DNA from clinical and environmental samples. *Int. J. Mycobacteriology* 4, 54–59. doi:10.1016/j.ijmyco.2014.11.062.
- Uchiyama, R., Yonehara, S., Taniguchi, S., Ishido, S., Ishii, K. J., and Tsutsui, H. (2017). Inflammasome and Fas-Mediated IL-1β Contributes to Th17/Th1 Cell Induction in

Pathogenic Bacterial Infection In Vivo. *J. Immunol.* 199, 1122–1130. doi:10.4049/jimmunol.1601373.

- Urrutia, P. J., Mena, N. P., and Núñez, M. T. (2014). The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. *Front. Pharmacol.* 5 MAR. doi:10.3389/fphar.2014.00038.
- Van Zoelen, M. A. D., Achouiti, A., and Van Der Poll, T. (2011). RAGE during infectious diseases. *Front. Biosci. Sch.* 3 S, 1119–1132. doi:10.2741/s215.
- Vargesson, N. (2015). Thalidomide-induced teratogenesis: History and mechanisms. *Birth Defects Res. Part C Embryo Today Rev.* 105, n/a-n/a. doi:10.1002/bdrc.21096.
- Veber, D., Mutti, E., Tacchini, L., Gammella, E., Tredici, G., and Scalabrino, G. (2008). Indirect down-regulation of nuclear NF-κB levels by cobalamin in the spinal cord and liver of the rat. *J. Neurosci. Res.* 86, 1380–1387. doi:10.1002/jnr.21599.
- Verhagen, C., Faber, W., Klatser, P., Buffing, A., Naafs, B., and Das, P. (1999).
 Immunohistological analysis of in situ expression of mycobacterial antigens in skin lesions of leprosy patients across the histopathological spectrum: Association of Mycobacterial lipoarabinomannan (LAM) and Mycobacterium leprae phenolic glycolipid-I (PGL. Am. J. Pathol. 154, 1793–1804. doi:10.1016/S0002-9440(10)65435-1.
- Verma, D., Fekri, S. Z., Sigurdardottir, G., Bivik Eding, C., Sandin, C., and Enerbäck, C. (2021). Enhanced Inflammasome Activity in Patients with Psoriasis Promotes Systemic Inflammation. J. Invest. Dermatol. 141, 586-595.e5. doi:10.1016/j.jid.2020.07.012.
- Vidal-Vanaclocha, F., Fantuzzi, G., Mendoza, L., Fuentes, A. M., Anasagasti, M. J., Martin, J., et al. (2000). IL-18 regulates IL-1β-dependent hepatic melanoma metastasis via vascular cell adhesion molecule-1. *Proc. Natl. Acad. Sci. U. S. A.* 97, 734–739. doi:10.1073/pnas.97.2.734.
- Vig, M., and Kinet, J. P. (2009). Calcium signaling in immune cells. *Nat. Immunol.* 10, 21–27. doi:10.1038/ni.f.220.
- Viganò, E., Diamond, C. E., Spreafico, R., Balachander, A., Sobota, R. M., and Mortellaro, A. (2015). Human caspase-4 and caspase-5 regulate the one-step non-canonical inflammasome activation in monocytes. *Nat. Commun.* 6, 1–13. doi:10.1038/ncomms9761.
- Vincent, J. B., Skaug, J., and Scherer, S. W. (2000). The human homologue of flamingo, EGFL2, encodes a brain-expressed large cadherin-like protein with epidermal growth factor-like domains, and maps to chromosome 1p13.3-p21.1. *DNA Res.* 7, 233–235. doi:10.1093/dnares/7.3.233.
- Vogl, T., Eisenblätter, M., Völler, T., Zenker, S., Hermann, S., Van Lent, P., et al. (2014). Alarmin S100A8/S100A9 as a biomarker for molecular imaging of local inflammatory activity. *Nat. Commun.* 5, 4593. doi:10.1038/ncomms5593.
- Vogl, T., Tenbrock, K., Ludwig, S., Leukert, N., Ehrhardt, C., Van Zoelen, M. A. D., et al. (2007). Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. *Nat. Med.* 13, 1042–1049. doi:10.1038/nm1638.
- Vollmer, J., Tluk, S., Schmitz, C., Hamm, S., Jurk, M., Forsbach, A., et al. (2005). Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8. J. Exp. Med. 202, 1575–1585. doi:10.1084/jem.20051696.
- Walker, S. L., Balagon, M., Darlong, J., Doni, S. N., Hagge, D. A., Halwai, V., et al. (2015). ENLIST 1: An International Multi-centre Cross-sectional Study of the Clinical Features of Erythema Nodosum Leprosum. *PLoS Negl. Trop. Dis.* 9, e0004065. doi:10.1371/journal.pntd.0004065.
- Walker, S. L., Lebas, E., Doni, S. N., Lockwood, D. N. J., and Lambert, S. M. (2014). The Mortality Associated with Erythema Nodosum Leprosum in Ethiopia: A Retrospective Hospital-Based Study. *PLoS Negl. Trop. Dis.* 8. doi:10.1371/journal.pntd.0002690.
- Walker, S. L., and Lockwood, D. N. (2015). Erythema Nodosum Leprosum International Study Group: 3rd ENLIST Meeting Report, Mumbai, 7th-9th April 2015. *Lepr. Rev.* 86, 407–411.
- Walker, S. L., Sales, A. M., Butlin, C. R., Shah, M., Maghanoy, A., Lambert, S. M., et al. (2017). A leprosy clinical severity scale for erythema nodosum leprosum: An international, multicentre validation study of the ENLIST ENL Severity Scale. *PLoS Negl. Trop. Dis.* 11, 1–14. doi:10.1371/journal.pntd.0005716.
- Walker, S., Saunderson, P., Kahawita, I., and DN, L. (2012). International workshop on erythema nodosum leprosum (ENL)--consensus report; the formation of ENLIST, the ENL international study group. *Lepr. Rev.* 83, 396–407.
- Wallach, D., Cottenot, F., and Bach, M. (1982). Imbalances in T cell subpopulations in lepromatous leprosy. *Int. J. Lepr. other Mycobact. Dis.* 50, 282–290.
- Walter, K., Hölscher, C., Tschopp, J., and Ehlers, S. (2010). NALP3 is not necessary for early protection against experimental tuberculosis. *Immunobiology* 215, 804–811. doi:10.1016/j.imbio.2010.05.015.
- Wang, C., Zhang, R., Wei, X., Lv, M., and Jiang, Z. (2020). *Metalloimmunology: The metal ion-controlled immunity*. 1st ed. Elsevier Inc. doi:10.1016/bs.ai.2019.11.007.
- Wang, M., Liu, M., Jia, J., Shi, H., Teng, J., Liu, H., et al. (2021). Association of the Leukocyte Immunoglobulin-like Receptor A3 Gene With Neutrophil Activation and Disease Susceptibility in Adult-Onset Still's Disease. *Arthritis Rheumatol.* 73, 1033– 1043. doi:10.1002/art.41635.
- Wang, S., Miura, M., Jung, Y. K., Zhu, H., Li, E., and Yuan, J. (1998). Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. *Cell* 92, 501–509. doi:10.1016/S0092-8674(00)80943-5.
- Wang, X., Feuerstein, G. Z., Gu, J. L., Lysko, P. G., and Yue, T. L. (1995). Interleukin-1β induces expression of adhesion molecules in human vascular smooth muscle cells and enhances adhesion of leukocytes to smooth muscle cells. *Atherosclerosis* 115, 89–98. doi:10.1016/0021-9150(94)05503-B.
- Wang, Y., Ning, X., Gao, P., Wu, S., Sha, M., Lv, M., et al. (2017). Inflammasome Activation Triggers Caspase-1-Mediated Cleavage of cGAS to Regulate Responses to DNA Virus Infection. *Immunity* 46, 393–404. doi:10.1016/j.immuni.2017.02.011.
- Warnatsch, A., Ioannou, M., Wang, Q., and Papayannopoulos, V. (2015). Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. *Science* 349, 316–320.
- Wassermann, R., Gulen, M. F., Sala, C., Perin, S. G., Lou, Y., Rybniker, J., et al. (2015). Mycobacterium tuberculosis Differentially Activates cGAS- and Inflammasome-Dependent Intracellular Immune Responses through ESX-1. *Cell Host Microbe* 17, 799– 810. doi:10.1016/j.chom.2015.05.003.
- Weider, M., and Wegner, M. (2017). SoxE factors: Transcriptional regulators of neural differentiation and nervous system development. *Semin. Cell Dev. Biol.* 63, 35–42. doi:10.1016/j.semcdb.2016.08.013.
- Weinberg, J. B., Chen, Y., Jiang, N., Beasley, B. E., Salerno, J. C., and Ghosh, D. K. (2009). Inhibition of nitric oxide synthase by cobalamins and cobinamides. *Free Radic. Biol. Med.* 46, 1626–1632. doi:10.1016/j.freeradbiomed.2009.03.017.

- Welin, A., Amirbeagi, F., Christenson, K., Björkman, L., Björnsdottir, H., Forsman, H., et al. (2013). The Human Neutrophil Subsets Defined by the Presence or Absence of OLFM4 Both Transmigrate into Tissue In Vivo and Give Rise to Distinct NETs In Vitro. *PLoS One* 8, e69575. doi:10.1371/journal.pone.
- Wemambu, S. N. C., and Turk, J. L. (1969). Erythema Nodosum Leprosum: a Clinical Manifestation of the Arthus Phenomenon. *Lancet* 294, 933–935.
- WHO (1998). Expert Committee on Leprosy. Seventh Report. Geneva.
- WHO (2018). *Guidelines for the Diagnosis, Treatment and Prevention of Leprosy.* Available at: https://apps.who.int/iris/handle/10665/274127.
- WHO (2020). World Health Organization. Global leprosy (Hansen disease) update, 2019: time to step-up prevention initiatives. *Wkly. Epidemiol. Rec.* 95, 417–440. Available at: http://www.who.int/wer.
- Wilcox, R. A., Feldman, A. L., Wada, D. A., Yang, Z. Z., Comfere, N. I., Dong, H., et al. (2009). B7-H1 (PD-L1, CD274) suppresses host immunity in T-cell lymphoproliferative disorders. *Blood* 114, 2149–2158. doi:10.1182/blood-2009-04-216671.
- Wilder-smith, E. (2002). Diagnosis of pure neuritic leprosy. *Neurol J Southeast Asia* 7, 61–63.
- Wines, N. Y., Cooper, A. J., and Wines, M. (2002). Thalidomide in dermatology: Revisited. *Australas. J. Dermatol.* 43, 229–240. doi:10.4103/0019-5154.152580.
- Wohlfert, E. A., Grainger, J. R., Bouladoux, N., Konkel, J. E., Oldenhove, G., Ribeiro, C. H., et al. (2011). GATA3 controls Foxp3+ regulatory T cell fate during inflammation in mice. *J. Clin. Invest.* 121, 4503–4515. doi:10.1172/JCI57456.
- Wong, K. W., and Jacobs, W. R. (2011). Critical role for NLRP3 in necrotic death triggered by Mycobacterium tuberculosis. *Cell. Microbiol.* 13, 1371–1384. doi:10.1111/j.1462-5822.2011.01625.x.
- Wright, E. K., Goodart, S. A., Growney, J. D., Hadinoto, V., Endrizzi, M. G., Long, E. M., et al. (2003). Naip5 affects host susceptibility to the intracellular pathogen Legionella pneumophila. *Curr. Biol.* 13, 27–36. doi:10.1016/S0960-9822(02)01359-3.
- Wright, H. L., Cox, T., Moots, R. J., and Edwards, S. W. (2017). Neutrophil biomarkers predict response to therapy with tumor necrosis factor inhibitors in rheumatoid arthritis. *J. Leukoc. Biol.* 101, 785–795. doi:10.1189/jlb.5a0616-258r.
- Wu, B., Wu, Y., and Tang, W. (2019). Heme Catabolic Pathway in Inflammation and Immune Disorders. *Front. Pharmacol.* 10, 825. doi:10.3389/fphar.2019.00825.
- Wu, J. J., Huang, D. B., Pang, K. R., Hsu, S., and Tyring, S. K. (2005). Thalidomide: Dermatological indications, mechanisms of action and side-effects. *Br. J. Dermatol.* 153, 254–273. doi:10.1111/j.1365-2133.2005.06747.x.
- Wu, K., Wong, K. W., Deng, W. L., Zhang, H., Li, J., Lowrie, D. B., et al. (2017). The Numerical Predominance and Large Transcriptome Differences of Neutrophils in Peripheral Blood Together Inevitably Account for a Reported Pulmonary Tuberculosis Signature. *Int. J. Genomics* 2017, 1–8. doi:10.1155/2017/5830971.
- Xie, X., Shi, Q., Wu, P., Zhang, X., Kambara, H., Su, J., et al. (2021). Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection. *Nat. Immunol.* 21, 1119–1133. doi:10.1038/s41590-020-0736-z.Single-cell.
- Xu, S., Sun, Z., Li, L., Liu, J., He, J., Song, D., et al. (2010). Induction of T cells suppression by dendritic cells transfected with VSIG4 recombinant adenovirus. *Immunol. Lett.* 128, 46–50. doi:10.1016/j.imlet.2009.11.003.

- Yamamura, M., Uyemura, K., Deans, R. J., Weinberg, K., Rea, T. H., Bloom, B. R., et al. (1991). Defining protective responses to pathogens: Cytokine profiles in leprosy lesions. *Science (80-.).* 254, 277–279. doi:10.1126/science.1925582.
- Yanagita, M. (2005). BMP antagonists: Their roles in development and involvement in pathophysiology. *Cytokine Growth Factor Rev.* 16, 309–317. doi:10.1016/j.cytogfr.2005.02.007.
- Yang, J., Zhao, Y., and Shao, F. (2015). Non-canonical activation of inflammatory caspases by cytosolic LPS in innate immunity. *Curr. Opin. Immunol.* 32, 78–83. doi:10.1016/j.coi.2015.01.007.
- Yang, J., Zhao, Y., Shi, J., and Shao, F. (2013a). Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation. *Proc. Natl. Acad. Sci. U. S. A.* 110, 14408–14413. doi:10.1073/pnas.1306376110.
- Yang, Y., Wang, H., Kouadir, M., Song, H., and Shi, F. (2019). Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. *Cell Death Dis.* 10. doi:10.1038/s41419-019-1413-8.
- Yang, Y., Zhou, X., Kouadir, M., Shi, F., Ding, T., Liu, C., et al. (2013b). The AIM2 inflammasome is involved in macrophage activation during infectionwith virulent mycobacterium bovis strain. J. Infect. Dis. 208, 1849–1858. doi:10.1093/infdis/jit347.
- Yang, Z., Cao, J., Yu, C., Yang, Q., Zhang, Y., and Han, L. (2016). Caspase-1 mediated interleukin-18 activation in neutrophils promotes the activity of rheumatoid arthritis in a NLRP3 inflammasome independent manner. *Jt. Bone Spine* 83, 282–289. doi:10.1016/j.jbspin.2015.07.006.
- Yasui, K., Kobayashi, N., Yamazaki, T., and Agematsu, K. (2005). Thalidomide as an Immunotherapeutic Agent: The Effects on Neutrophil- Mediated Inflammation. *Curr. Pharm. Des.* 11, 395–401. doi:10.2174/1381612053382179.
- Yoneyama, M., Kikuchi, M., Natsukawa, T., Shinobu, N., Imaizumi, T., Miyagishi, M., et al. (2004). The RNA helicase RIG-I has an essential function in double-stranded RNAinduced innate antiviral responses. *Nat. Immunol.* 5, 730–737. doi:10.1038/ni1087.
- Yoshie, O., and Matsushima, K. (2015). CCR4 and its ligands: From bench to bedside. *Int. Immunol.* 27, 11–20. doi:10.1093/intimm/dxu079.
- Yoshikawa, Y., Satoh, T., Tamura, T., Wei, P., Bilasy, S. E., Edamatsu, H., et al. (2007). The M-Ras-RA-GEF-2-Rap1 pathway mediates tumor necrosis factor-α-dependent regulation of integrin activation in splenocytes. *Mol. Biol. Cell* 18, 2949–2959. doi:10.1091/mbc.E07-03-0250.
- Young, L. C., and Rodriguez-Viciana, P. (2018). Mras: A close but understudied member of the ras family. *Cold Spring Harb. Perspect. Med.* 8. doi:10.1101/CSHPERSPECT.A033621.
- Yu, G., Wang, L. G., Han, Y., and He, Q. Y. (2012a). ClusterProfiler: An R package for comparing biological themes among gene clusters. *Omi. A J. Integr. Biol.* 16, 284–287. doi:10.1089/omi.2011.0118.
- Yu, J., Tran, V., Li, M., Huang, X., Niu, C., Wang, D., et al. (2012b). Both phthiocerol dimycocerosates and phenolic glycolipids are required for virulence of Mycobacterium marinum. *Infect. Immun.* 80, 1381–1389. doi:10.1128/IAI.06370-11.
- Yu, T., Liang, L., Zhao, X., and Yin, Y. (2018). Structural and biochemical studies of the extracellular domain of Myelin protein zero-like protein 1. *Biochem. Biophys. Res. Commun.* 506, 883–890. doi:10.1016/j.bbrc.2018.10.161.

Zaidan, N., and Ottersbach, K. (2018). The multi-faceted role of Gata3 in developmental

haematopoiesis. Open Biol. 8. doi:10.1098/rsob.180152.

- Zamboni, D. S., and Cunha, L. D. (2013). Subversion of inflammasome activation and pyroptosis by pathogenic bacteria. *Front. Cell. Infect. Microbiol.* 4, 1–14. doi:10.3389/fcimb.2013.00076.
- Zamboni, D. S., Kobayashi, K. S., Kohlsdorf, T., Ogura, Y., Long, E. M., Vance, R. E., et al. (2006). The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. *Nat. Immunol.* 7, 318–325. doi:10.1038/ni1305.
- Zanetti, M. (2004). Cathelicidins, multifunctional peptides of the innate immunity. *J. Leukoc. Biol.* 75, 39–48. doi:10.1189/jlb.0403147.
- Zhang, D. H., Yang, L., and Ray, A. (1998). Differential responsiveness of the IL-5 and IL-4 genes to transcription factor GATA-3. *J. Immunol.* 161, 3817–21. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9780145.
- Zhang, G., Liu, X., Wang, C., Qu, L., Deng, J., Wang, H., et al. (2013a). Resolution of PMA-Induced skin inflammation involves interaction of IFN- γ and ALOX15. *Mediators Inflamm.* 2013, 11. doi:10.1155/2013/930124.
- Zhang, H., Fu, R., Guo, C., Huang, Y., Wang, H., Wang, S., et al. (2016a). Anti-dsDNA antibodies bind to TLR4 and activate NLRP3 inflammasome in lupus monocytes/macrophages. *J. Transl. Med.* 14, 1–12. doi:10.1186/s12967-016-0911-z.
- Zhang, J., Xu, R., Wu, L., and Jiang, J. (2019). Expression and function of Toll-like receptors in peripheral blood mononuclear cells in patients with ankylosing spondylitis. *Mol. Med. Rep.* 20, 3565–3572. doi:10.3892/mmr.2019.10631.
- Zhang, W., Cai, Y., Xu, W., Yin, Z., Gao, X., and Xiong, S. (2013b). AIM2 facilitates the apoptotic DNA-induced systemic lupus erythematosus via arbitrating macrophage functional maturation. *J. Clin. Immunol.* 33, 925–937. doi:10.1007/s10875-013-9881-6.
- Zhang, X., Oglęcka, K., Sandgren, S., Belting, M., Esbjörner, E. K., Nordén, B., et al. (2010). Dual functions of the human antimicrobial peptide LL-37-Target membrane perturbation and host cell cargo delivery. *Biochim. Biophys. Acta - Biomembr.* 1798, 2201–2208. doi:10.1016/j.bbamem.2009.12.011.
- Zhang, Z., Ohto, U., Shibata, T., Krayukhina, E., Taoka, M., Yamauchi, Y., et al. (2016b). Structural Analysis Reveals that Toll-like Receptor 7 Is a Dual Receptor for Guanosine and Single-Stranded RNA. *Immunity* 45, 737–748. doi:10.1016/j.immuni.2016.09.011.
- Zhao, Y. J., Yi, W. J., Wan, X. J., Wang, J., Tao, T. Z., Li, J. B., et al. (2014). Blockade of ICAM-1 improves the outcome of polymicrobial sepsis via modulating neutrophil migration and reversing immunosuppression. *Mediators Inflamm.* 2014, 1–10. doi:10.1155/2014/195290.
- Zhao, Y., Yang, J., Shi, J., Gong, Y. N., Lu, Q., Xu, H., et al. (2011). The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. *Nature* 477, 596–602. doi:10.1038/nature10510.
- Zheng, D., Kern, L., and Elinav, E. (2021). The NLRP6 inflammasome. *Immunology* 162, 281–289. doi:10.1111/imm.13293.
- Zheng, H., Fletcher, D., Kozak, W., Jiang, M., Hofmann, K. J., Corn, C. A., et al. (1995). Resistance to fever induction and impaired acute-phase response in interleukin-1βdeficient mice. *Immunity* 3, 9–19. doi:10.1016/1074-7613(95)90154-X.
- Zheng, W., and Flavell, R. A. (1997). The Transcription Factor GATA-3 Is Necessary and Sufficient for Th2 Cytokine Gene Expression in CD4 T Cells. *Cell* 89, 587–596. doi:10.1016/s0030-6657(08)70226-9.

- Zhou, Y., Shah, S. Z. A., Yang, L., Zhang, Z., Zhou, X., and Zhao, D. (2016). Virulent Mycobacterium bovis Beijing strain activates the NLRP7 inflammasome in THP-1 macrophages. *PLoS One* 11, 1–13. doi:10.1371/journal.pone.0152853.
- Zhou, Y., Zhao, D., Yue, R., Khan, S. H., Shah, S. Z. A., Yin, X., et al. (2015). Inflammasomes-dependent regulation of IL-1β secretion induced by the virulent Mycobacterium bovis Beijing strain in THP-1 macrophages. *Antonie van Leeuwenhoek, Int. J. Gen. Mol. Microbiol.* 108, 163–171. doi:10.1007/s10482-015-0475-6.
- Zhu, F. G., Jiang, W., Bhagat, L., Wang, D., Yu, D., Tang, J. X., et al. (2013). A novel antagonist of Toll-like receptors 7, 8 and 9 suppresses lupus disease-associated parameters in NZBW/F1 mice. *Autoimmunity* 46, 419–428. doi:10.3109/08916934.2013.798651.
- Zhu, Y. X., Braggio, E., Shi, C. X., Bruins, L. A., Schmidt, J. E., Van Wier, S., et al. (2011). Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide. in *Blood* (Blood), 4771–4779. doi:10.1182/blood-2011-05-356063.
- Ziehl, F. (1883). Ueber die Färbung des Tuberclebacillus. *Dtsch. Med Wochenschr.* 9, 247–249.
- Zurawska-Płaksej, E., Ługowska, A., Hetmañczyk, K., Knapik-Kordecka, M., and Piwowar, A. (2015). Neutrophils as a source of chitinases and chitinase-like proteins in type 2 diabetes. *PLoS One* 10, 1–11. doi:10.1371/journal.pone.0141730.

Anexos

Anexo 1 : Listagem dos pacientes incluídos no estudo. ID-Identificação do paciente; IB – Índice baciloscópico; ILB – Índice baciloscópico da lesão; T- Terminada; P – pele; S- Soro; ST – Sangue total. ND – Não descrito.

ID	Idade	Gênero	IB	ILB	Dose da	Grupo de	Forma	Amostra clínica	Método de	identificação
1	23	M	157	3.8	T (37 meses	ENH	cinica	analisada	analise	no KNAseq
1	23	IVI	4,57	5,6	pós PQT)			р		
2	33	M	5,25	5,9 (BL/LL); 2,85 (ENH)	0 (BL/LL) ; 7ª (ENH)	BL/LL;ENH	LL	р	IF, qRT- PCR	
3	24	F	5	5,85 (BL/LL); 3,5 (ENH)	0 (BL/LL) ; 5ª (ENH)	BL/LL;ENH	LL	P,S	IF, ELISA	
4	20	М	4,57	5,85 (BL/LL); 5,6 (ENH) ; 4,85 (TAL)	0 (BL/LL); 10ª (ENH)	BL/LL;ENH;TAL	LL	Ρ	WB, qRT- PCR	
5	47	М	5	5,9 (BL/LL); 3,6 (ENH) ; 3,6 (TAL)	0 (BL/LL); T (5 meses pós PQT) (ENH)	BL/LL;ENH;TAL	LL	P, S	WB, qRT- PCR, ELISA	
6	17	М	4,75	5,8 (BL/LL); 3,6 (ENH) ; 2,5 (TAL)	0 (BL/LL); T (20 meses pós PQT) (ENH)	BL/LL;ENH;TAL	LL	Ρ	WB, qRT- PCR	
7	48	F	5	4,9 (BL/LL); 2,85 (ENH) ; 4,85 (TAL)	0 (BL/LL); 11ª (ENH)	BL/LL;ENH;TAL	LL	P,S, ST	WB, qRT- PCR, ELISA, RNAseq	ENH TAL 12
8	38	Μ	5	5,85 (BL/LL); 5,9 (ENH) ; 3,5 (TAL)	0 (BL/LL); T (11 meses pós PQT) (ENH)	BL/LL;ENH;TAL	LL	P,S, ST	WB, qRT- PCR, ELISA, RNAseq	ENH 10 / ENH TAL 10
9	27	М	ND	2,7 (ENH); 1,3 (TAL)	т	ENH;TAL	LL	Р	WB	
10	27	М	5	2,5 (ENH); 1,5 (TAL)	T (34 meses pós PQT)	ENH;TAL	LL	Р	WB	
11	37	М	5	2,5 (ENH); 3,3 (TAL)	T (30 meses pós PQT)	ENH;TAL	LL	P,S	WB, qRT- PCR, ELISA	
12	34	М	5,5	3,9 (ENH); 4,8 (TAL)	0	ENH;TAL	LL	P,ST	WB, qRT- PCR, RNA- seq	ENH 9/ ENH TAL 9
13	38	М	5	5,7 (BL/LL); 3,5 (ENH)	0 (BL/LL) ; terminada (42 meses pós PQT)	BL/LL;ENH	LL	P,S, ST	WB, qRT- PCR, ELISA, RNAseq	LL8/ ENH 14
14	22	М	4,75	5,9	0	BL/LL	LL	P, ST	WB, qRT- PCR, RNA- seq	LL 3
15	50	М	4,5	4,5	0	BL/LL	LL	Р	WB, qRT- PCR	
16	44	F	5	5,8	0	BL/LL	LL	P, ST	WB, qRT- PCR, RNA- seq	LL 7
17	30	М	5	5,8 (BL/LL); 3,7 (ENH)	0 (BL/LL) ; 7ª (ENH)	BL/LL;ENH	LL	P, S	qRT-PCR, ELISA	
18	37	Μ	2,75	3,85	0	BL/LL	LL	Р	qRT-PCR	
19	32	М	5,75	5,85	0	BL/LL	LL	Р	qRT-PCR	
20	62	Μ	4,75	5,85	0	BL/LL	LL	Р	qRT-PCR	
21	64	Μ	5,25	4,6	0	BL/LL	LL	Р	qRT-PCR	
22	60	M	4	4,7	0	BL/LL	BL	Р	qRT-PCR	
23	29	Μ	3,25	4	0	BL/LL	BL	Р	qRT-PCR	
24	32	M	5,75	5,95	0	BL/LL	LL	Р	qRT-PCR	
25	70	M	5,5	nd	1ª	ENH	LL	Р	qRT-PCR	
26	55	M	4,25	4,2	T (20 meses pós PQT)	ENH	LL	Р	qRT-PCR	
27	35	М	4,25	nd	7ª	ENH	LL	Р	qRT-PCR	
28	64	F	3,25	2,5	0	BL/LL	BL	ST	qRT-PCR	
29	53	Μ	5	3,5	0	BL/LL	BL	ST	qRT-PCR	

30	32	Μ	4,75	4,9	0	BL/LL	LL	ST	qRT-PCR, RNA-seq	LL 4
31	17	М	5,5	5,95	0	BL/LL	LL	S,ST	ELISA, RNAseq	LL 6
32	59	М	2,25	2,6	0	BL/LL	BL	ST	qRT-PCR	
33	76	F	4,5	3,8	T (12 meses pós PQT)	ENH	LL	ST	qRT-PCR, RNA-seg	ENH 13
34	38	М	5	2,5 (ENH); 3,3 (TAL)	T (79 meses pós PQT)	ENH;TAL	LL	S,ST	qRT-PCR, ELISA, RNA-seq	ENH 11/ ENH TAL 11
35	47	М	5	4,5	0	BL/LL	LL	ST	qRT-PCR	
36	62	М	3,75	4,6	0	BL/LL	BL	ST	qRT-PCR	
37	30	F	4	3,85	0	BL/LL	BL	ST	qRT-PCR	
38	33	F	3	5,95	0	BL/LL	LL	ST	qRT-PCR	
39	41	М	4,8	2,85	1ª	ENH	LL	ST	qRT-PCR	
40	26	М	4,5	4,7	12ª	ENH	BL	ST	qRT-PCR	
41	69	F	4,75	3,7	T (12 meses pós PQT)	ENH	LL	P, ST	WB, qRT- PCR	
42	31	F	3,75	3,7	0	ENH	LL	ST	qRT-PCR	
43	41	F	5	2,5	I	ENH	LL	Р	WB, qRT- PCR	
44	41	М	5	3,6	0	ENH	LL	Р	WB, qRT- PCR	
45	27	М	4	nd	T (40 meses pós PQT)	ENH	LL	Р	WB, qRT- PCR	
46	30	М	2,75	2,6	T (43 meses pós PQT)	ENH	BL	Р	WB, qRT- PCR	
47	44	М	5	4,9 (BL/LL); 2,5 (ENH) ; nd (TAL)	0 (BL/LL); T (31 meses pós PQT) (ENH)	BL/LL;ENH;TAL	LL	P, S	WB, qRT- PCR, ELISA	
48	34	М	4	2,6	T (33 meses pós PQT)	ENH	BL	Р	WB, qRT- PCR	
49	41	М	4	4,9	0	ENH	LL	Р	WB, qRT- PCR	
50	30	М	5	3,7	0	ENH	LL	Р	WB, qRT- PCR	
51	55	М	4,5	3,7	0	ENH	LL	Р	WB, qRT- PCR	
52	31	М	4,25	4,5	0	ENH	LL	Р	WB, qRT- PCR	
53	22	F	3,66	4,7	0	BL/LL	LL	Р	WB, qRT- PCR	
54	54	F	ND	5,85	0	BL/LL		Р	WB, qRT- PCR	
55	44	М	5	5,95	0	BL/LL	LL	ST	qRT-PCR, RNA-seq	LL 1
56	62	М	5,25	nd	0	BL/LL	LL	ST	qRT-PCR, RNA-seq	LL 2
57	54	М	6	6	0	BL/LL	LL	ST	qRT-PCR, RNA-seq	LL 5
58	28	М	5,75	4,85	0	BL/LL	LL	ST	qRT-PCR, RNA-seq	LL 9
59	34	М	4,5	nd	6ª	ENH;TAL	LL	ST	qRT-PCR, RNA-seq	ENH 1/ ENH TAL 1
60	32	М	5,5	3,8 (ENH); 5,8 (TAL)	7ª	ENH;TAL	LL	ST	qRT-PCR, RNA-seq	ENH 2/ ENH TAL 2
61	22	М	5	3,8	T (8 meses pós PQT)	ENH	LL	ST	qRT-PCR, RNA-seq	ENH 3
62	45	М	5,5	4,6 (ENH); nd (TAL)	2ª	ENH;TAL	LL	ST	qRT-PCR, RNA-seq	ENH 4/ ENH TAL 4
63	78	F	4,75	nd	T (145 meses pós PQT)	ENH;TAL	LL	ST	qRT-PCR, RNA-seq	ENH 5/ ENH TAL 5
64	39	М	4	nd	2ª	ENH;TAL	LL	ST	qRT-PCR,	ENH 6/ ENH
65	36	F	5,5	nd (ENH);	T (18 meses	ENH;TAL	LL	ST	qRT-PCR,	ENH 7/ ENH
				4,6 (TAL)	pós PQT)				RNA-seq	TAL 7

66	69	М	5	nd (ENH); 1.7 (TAL)	T (24 meses pós POT)	ENH;TAL	LL	ST	qRT-PCR, RNA-seg	ENH 8/ ENH TAL 8
67	47	М	5	nd	0	ENH	LL	ST	qRT-PCR, RNA-seq	ENH 12
68	38	М	5	2,8 (ENH); nd (TAL)	T (62 meses pós PQT)	ENH;TAL	LL	S, ST	qRT-PCR, ELISA, RNA-seq	ENH 15
69	40	М	5	nd	T (21 meses pós PQT)	TAL	LL	ST	qRT-PCR, RNA-seq	ENH TAL 13
70	53	М	0,66	3,6	0	BL/LL	BL	Р	qRT-PCR	
71	24	М	4,66	5,9	0	BL/LL	LL	Р	qRT-PCR	
72	29	М	3,16	4,6	0	BL/LL	BL	Р	qRT-PCR	
73	55	М	3,75	3,5	0	BL/LL	BL	Р	qRT-PCR	
74	41	М	4,75	4,8	0	BL/LL	LL	Р	qRT-PCR	
75	25	М	5	5,8	0	BL/LL	LL	S	ELISA	
76	68	М	5,5	5,6	0	BL/LL	LL	S	ELISA	
77	48	М	5,5	5,85	0	BL/LL	LL	S	ELISA	
78	35	F	4,5	4,5	0	BL/LL	BL	S	ELISA	
79	49	М	3,75	3,85	0	ENH	LL	S	ELISA	
80	48	М	2,75	4,85	5ª	ENH	LL	S	ELISA	
81	27	М	5	2,7	T (24 meses pós PQT)	ENH	LL	S	ELISA	
82	46	М	5	1,5	T (15 meses pós PQT)	ENH	LL	S	ELISA	
83	54	F	5	3,7 (ENH); 3,8 (TAL)	0	ENH;TAL	LL	S	ELISA	
84	34	М	4,5	3,5	6ª	TAL	LL	S	ELISA	
85	59	F	5,5	4,85	T (29 meses pós PQT)	TAL	LL	S	ELISA	

Anexo 2: Genes diferencialmente expressos em ENH x LL. Genes *upregulados* estão destacados em verde na coluna de Log₂*foldchange*, que apresenta os níveis de expressão gênica. Basemean – média das contagens normalizadas de todas as amostras. IfcSE – log do erro padrão de *fold change*. padj – *p value* ajustado.

Símbolo	ENTREZ ID	Nome do gene	baseMean	log2 foldchange	lfcSE	pvalue	padj
CD177	57126	CD177 molecule	828,9543	2,959232	0,876476	1,26E-07	0,000291
SOCS3	9021	suppressor of cytokine signaling 3	1002,609	2,049282	0,546635	8,58E-07	0,001322
FCGR1A	2209	Fc fragment of IgG receptor la	1547,509	1,971539	0,703817	4,28E-06	0,003042
AC139495.2				1852,697	1,939977	0,415209	9,48E-08
FCGR1B	2210	Fc fragment of IgG receptor Ib	647,3251	1,8951	0,517179	1,19E-06	0,001375
НР	3240	haptoglobin	401,8575	1,864906	0,895219	1,15E-05	0,004563
MCEMP1	199675	mast cell expressed membrane protein 1	770,3254	1,818891	0,643004	5,1E-06	0,003042
KREMEN1	83999	transmembrane protein 1	1416,333	1,556058	0,639935	1,18E-05	0,004563
CD274	29126	CD274 molecule	409,0447	1,498934	0,893327	3,54E-05	0,01023
TLR5	7100	toll like receptor 5	402,3507	1,483621	0,456749	2,78E-06	0,002574
ANKRD22	118932	ankyrin repeat domain 22	331,2065	1,441848	1,005942	4,65E-05	0,012626
LRG1	116844	leucine rich alpha-2- glycoprotein 1	1699,066	1,340849	0,46783	5,27E-06	0,003042
MMP8	4317	matrix metallopeptidase 8	445,9731	1,255762	1,092978	7,17E-05	0,015146
TMBIM6	7009	transmembrane BAX inhibitor motif containing 6	303,3504	1,127581	0,815572	9,54E-05	0,017627
CDK5RAP2	55755	CDK5 regulatory subunit associated protein 2	561.356	1.045282	0.767052	0.000111	0.017927
0140000	0004	SWI/SNF related, matrix associated, actin dependent regulator of chromatin,	455.0505	4.044040	0.447504	4.405.05	0.004500
SMARCD3	6604	LHFPL tetraspan subfamily	400,3005	1,041249	0,447524	1,18E-05	0,004563
LHFPL2	10184	member 2	215,4245	1,011172	0,638508	7,23E-05	0,015146
BATF2	116071	transcription factor 2	438,2043	1,009261	0,925698	0,00016	0,021176
DSC2	1824	desmocollin 2	391,7119	0,914732	0,664004	0,000123	0,018224
ST3GAL4	6484	S13 beta-galactoside alpha- 2,3-sialyltransferase 4	376,8064	0,887191	0,568109	7,87E-05	0,015146
OLFM4	10562	olfactomedin 4	418,0209	0,878043	1,020484	0,000192	0,021902
HCAR3	8843	hydroxycarboxylic acid receptor 3	1200,407	0,851563	0,587849	0,000107	0,017927
PGS1	9489	synthase 1	758,8558	0,845535	0,506143	5,81E-05	0,014912
VPS9D1	9605	VPS9 domain containing 1	541,3291	0,800432	0,556028	0,000113	0,017927
CYSTM1	84418	cysteine rich transmembrane module containing 1	493 6313	0 7864	0 677592	0 000233	0.0236
	4001	lamin B1	278 2535	0 75392	0.639986	0.000235	0.0236
NAIP	4671	NLR family apoptosis inhibitory protein	2700,956	0,743035	0,597815	0,000202	0,022233
KCNJ15	3772	potassium voltage-gated channel subfamily J member 15	3214,212	0,739477	0,523702	0,000126	0,018224
NFE2	4778	nuclear factor, ervthroid 2	3371.818	0.663513	0.416614	7.65E-05	0.015146
		6-phosphofructo-2-		-,	-,	,	
PFKFB3	5209	biphosphatase 3	1058,813	0,650521	0,540155	0,000254	0,024437
HCAR2	338442	hydroxycarboxylic acid receptor 2	879,3364	0,645134	0,507286	0,000211	0,022657
S100A9	6280	S100 calcium binding protein	36683,93	0,621173	0,493184	0,000227	0,0236
GRINA	2907	glutamate ionotropic receptor NMDA type subunit associated protein 1	3163.126	0.616423	0.45222	0,000168	0,021522
S100412	6283	S100 calcium binding protein	1500 895	0.601042	0 614820	0 000/00	0 036567
JUURIE	0200	/ \ / L	1000,000	0,001042	0,014028	0,000433	0,000001

Anexo 3: Vias enriquecidas dos genes *upregulados* pela análise de ORA em ENH x LL. IDidentificação da via no *gene ontology. Gene ratio* – número de genes associado a via / total de genes significativos. BgRatio – número total de genes associado a via / número total de genes identificados no RNAseq. padj – *p value* ajustado. *qvalue* – *pvalue* ajustado pela taxa de falsa descoberta (*false discovery rate* – *FDR*). *GeneID* – descrição dos genes associados com a via. # de genes – Número de genes associados com a via.

ID	Descrição	Gene Ratio	Bg Ratio	pvalue	p.adjust	qvalue	genelD	# de genes	Odd Ratio
GO:00 43312	neutrophil degranulation	9/32	457/11693	2,47E-06	0,000678	0,000607	CD177/LRG1/MC EMP1/HP/MMP8/ OLFM4/CYSTM1/ S100A9/S100A12	9	7,196184
GO:00	neutrophil activation involved in immune						CD177/LRG1/MC EMP1/HP/MMP8/ OLFM4/CYSTM1/		
02283	response	9/32	460/11693	2,61E-06	0,000678	0,000607	S100A9/S100A12	9	7,149253
GO:00 02446	neutrophil mediated immunity	9/32	467/11693	2,96E-06	0,000678	0,000607	EMP1/HP/MMP8/ OLFM4/CYSTM1/ S100A9/S100A12	9	7,04209
GO:00	neutrophil	9/32	469/11693	3.06E-06	0 000678	0 000607	CD177/LRG1/MC EMP1/HP/MMP8/ OLFM4/CYSTM1/ S10049/S100412	Q	7 01206
GO:00	granulocyte	0/22	475/11602	3 4E 06	0,000678	0,000607	CD177/LRG1/MC EMP1/HP/MMP8/ OLFM4/CYSTM1/ \$10040/\$100412	0	6 002497
36230	activation	9/32	475/11693	3,4E-06	0,000678	0,000607	CD177/LRG1/MC	9	6,923487
GO:00 43299	leukocyte degranulation	9/32	494/11693	4,69E-06	0,000779	0,000697	EMP1/HP/MMP8/ OLFM4/CYSTM1/ S100A9/S100A12	9	6,657199
GO:00 42742	defense response to bacterium	4/32	126/11693	0,000366	0,052169	0,046661	TLR5/HP/S100A9/ S100A12	4	11,6002
GO:19	neutrophil	3/32	57/11693	0 000493	0 059535	0 05325	CD177/S100A9/S	з	19 23191
00200	mgradon	0/02	01/11000	0,000 100	0,000000	0,00020	TLR5/CD274/MM		10,20101
GO:00 09306	protein secretion	6/32	385/11693	0,000537	0,059535	0,05325	P8/TMBIM6/HCAR 2/S100A12	6	5,694643
GO:00 02790	peptide secretion	6/32	404/11693	0,000692	0,059994	0,053659	TLR5/CD274/MM P8/TMBIM6/HCAR 2/S100A12	6	5,426825
GO:00 06337	nucleosome disassembly	2/32	15/11693	0 000745	0 059994	0 053659	SMARCD3/NEE2	2	48 72083
GO:00	negative regulation of interleukin-10	2/02	10/11000	0,000140	0,000004	0,000000			40,72000
32693 GO:00	graduction	2/32	15/11693	0,000745	0,059994	0,053659	CD274/MMP8	2	48,72083
97530	migration	3/32	71/11693	0,000938	0,059994	0,053659	100A12	3	15,4397
GO:00 31498	chromatin disassembly	2/32	17/11693	0,000962	0,059994	0,053659	SMARCD3/NFE2	2	42,98897
GO:00 32986	protein-DNA complex disassembly	2/32	17/11693	0,000962	0,059994	0,053659	SMARCD3/NFE2	2	42,98897
	negative regulation of endoplasmic reticulum stress-induced intrinsic apoptotic								
GO:19	signaling	2/22	17/11603	0 000062	0 05000/	0 053650		2	12 08807
GO:00	cytokine	2/32 A/32	160/11602	0,000902	0.06/821	0,000009	TLR5/CD274/MM	Z	8 648660
50005	interferon- gamma- mediated	4/02	109/11093	0,001104	0,004021	0,037978	1 0/0 TUUA12	4	0,040009
GO:00	signaling						SOCS3/FCGR1B/		
60333	pathway	3/32	80/11693	0,001326	0,070285	0,062864	FCGR1A	3	13,70273

GO:00	endoplasmic reticulum calcium ion								
32469	homeostasis	2/32	21/11693	0,001475	0,070285	0,062864	TMBIM6/GRINA	2	34,8006
GO:20	positive regulation of leukocyte apoptotic								
00108	process	2/32	21/11693	0,001475	0,070285	0,062864	CD274/HCAR2	2	34,8006
GO:19 03530	regulation of secretion by cell	6/32	472/11693	0.001552	0.070285	0.062864	CD177/TLR5/CD2 74/MMP8/TMBIM6 /HCAR2	6	4.644995
GO:00	regulation of protein	5/20	047/44000	0.004505	0.070205	0.000004	TLR5/CD274/MM P8/TMBIM6/HCAR		5 702500
<u> </u>	secretion antimicrobial humoral immune response mediated by antimicrobial	5/32	317/11693	0,001565	0,070285	0,062864	2	5	5,763506
61844	peptide	2/32	22/11693	0,00162	0,070285	0,062864	S100A9/S100A12	2	33,21875
GO:00 98542	defense response to other organism	5/32	323/11693	0,0017	0,070703	0,063238	TLR5/HP/BATF2/ S100A9/S100A12	5	5,656443
GO:00 02791	regulation of peptide secretion	5/32	332/11693	0,001919	0,076594	0,068507	TLR5/CD274/MM P8/TMBIM6/HCAR 2	5	5,503106
GO:00 50832	defense response to fungus	2/32	25/11693	0,002093	0,080334	0,071853	S100A9/S100A12	2	29,2325
GO:19	regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling pathway	2/32	28/11602	0.002624	0.006075	0.086726		2	26 100/5
02235	ранічаў	2/32	20/11093	0,002624	0,096975	0,006736	I IVIDIIVIO/GRIINA	2	20,10043

Anexo 4: Genes diferencialmente expressos na reanálise de ENH x LL – Genes *upregulados* estão destacados em verde e genes *downregulados* estão destacados em vermelho na coluna de Log₂foldchange, que apresenta os níveis de expressão gênica. Basemean – média das contagens normalizadas de todas as amostras. IfcSE – log do erro padrão de *fold change*. padj – *p value* ajustado.

Símbolo	ENTREZ ID	Nome do gene	baseMean	log2 foldchange	lfcSE	pvalue	padj
CD177	57126	CD177 molecule	988,4760087	3,923791	0,817695	3,61E-11	1,05E-07
ZDHHC19	131540	zinc finger DHHC-type containing 19	49,0219483	2,690277	0,931276	6,03E-07	0,000174
FCGR1A	2209	Fc fragment of IgG	1802,621705	2,66674	0,445344	3,61E-11	1,05E-07
AC007325.1			58,00322397	2,591353	0,430401	3,71E-11	1,05E-07
NAIPP1			171,2955123	2,591187	0,496061	1,96E-09	2,51E-06
PDCD1LG2	80380	programmed cell death 1	37,96438542	2,521257	0,611339	9,2E-08	6,18E-05
SOCS3	9021	suppressor of cytokine signaling 3	1152,650469	2,509002	0,443242	3E-10	5,56E-07
HP	3240	haptoglobin	472,7048031	2,484678	0,644439	1,89E-07	7,59E-05
ANKRD22	118932	ankyrin repeat domain 22	389,8417553	2,444462	0,639143	2,16E-07	8E-05
CD274	29126	CD274 molecule	474,0512856	2,397972	0,513847	2,13E-08	2E-05
FCGR1B	2210	Fc fragment of IgG receptor Ib	751,4903663	2,39556	0,383602	1,5E-11	1,05E-07
MCEMP1	199675	mast cell expressed membrane protein 1	902,9140934	2,389209	0,43572	8,22E-10	1,16E-06
AC138409.1			16,05485941	2,349476	0,567625	1,09E-07	6,24E-05
AC139495.2			2112,755077	2,303319	0,362149	8,31E-12	1,05E-07
FCGR1CP	1E+08	Fc fragment of IgG receptor Ic, pseudogene	172,148602	2,236525	0,579805	2,42E-07	8,75E-05
GBP6	163351	guanylate binding protein family member 6	48,95892951	2,100088	0,597422	5,81E-07	0,000172
BATF2	116071	basic leucine zipper ATF- like transcription factor 2	511,6503444	2,094868	0,664348	1,34E-06	0,00029
KREMEN1	83999	kringle containing transmembrane protein 1	1624,857197	2,087284	0,434871	1,17E-08	1,27E-05
EFCAB2	84288	EF-hand calcium binding domain 2	124,9832503	2,083672	0,472599	4,55E-08	3,56E-05
GPR84	53831	G protein-coupled receptor 84	89,54089784	2,03567	0,607372	8,66E-07	0,000214
ANXA3	306	annexin A3	126,5580938	1,985657	0,489145	1,2E-07	6,24E-05
TMBIM6	7009	transmembrane BAX inhibitor motif containing 6	352,4445814	1,976154	0,56229	5,62E-07	0,000172
MMP8	4317	matrix metallopeptidase 8	522,5149609	1,948398	0,977652	1,15E-05	0,001077
TLR5	7100	toll like receptor 5	454,5770297	1,88814	0,331065	1,26E-10	2,96E-07
OSM	5008	oncostatin M	101,7023443	1,824478	0,477342	1,86E-07	7,59E-05
P2RY14	9934	purinergic receptor P2Y14	328,389613	1,786027	0,636375	3,23E-06	0,000503
CDK5RAP2	55755	CDK5 regulatory subunit associated protein 2	637,2031462	1,779598	0,575591	1,52E-06	0,00032
MGAM2	93432	maltase-glucoamylase 2 (putative)	116,6939258	1,73677	0,448932	1,29E-07	6,25E-05
DSC2	1824	desmocollin 2	454,4551464	1,734206	0,406811	3,09E-08	2,73E-05
LRG1	116844	leucine rich alpha-2- glycoprotein 1	1888,166977	1,719104	0,332302	6,35E-10	9,95E-07
AC139495.1			74,14104734	1,703806	0,565063	1,77E-06	0,000347
CHIT1	1118	chitinase 1	127,2491376	1,70215	0,802959	1,61E-05	0,001372
RETN	56729	resistin	190,7499289	1,673718	0,619505	4,18E-06	0,000585
PLB1	151056	phospholipase B1	210,096498	1,639418	0,430402	1,19E-07	6,24E-05
LHFPL2	10184	LHFPL tetraspan subfamily member 2	237,8160616	1,633839	0,426207	1,07E-07	6,24E-05
AC131392.1			130,406632	1,626469	0,609439	4,52E-06	0,000623
GYG1	2992	glycogenin 1	64,34733874	1,614044	0,490276	6,71E-07	0,000185
FGF13	2258	fibroblast growth factor 13	23,03594688	1,563999	1,018884	4,45E-05	0,002656
NAIP	4671	NLR family apoptosis inhibitory protein	3087,203617	1,563127	0,388634	4,07E-08	3,38E-05
SLC26A8	116369	solute carrier family 26 member 8	188,8693575	1,559	0,420546	1,36E-07	6,26E-05

CASP5	838	caspase 5	150,5320204	1,541358	0,688631	1,45E-05	0,00127
S100A12	6283	S100 calcium binding	1742,91331	1,538114	0,477924	7,53E-07	0,000194
METTL7B	196410	methyltransferase like 7B	12,00693997	1,536417	1,083843	4,67E-05	0,002754
DDX10P1	1E+08	DEAD-box helicase 10	7,86853749	1,531478	0,722535	1,96E-05	0,001577
LMNB1	4001	lamin B1	314,4727219	1,510613	0,470488	7,38E-07	0,000194
CYSTM1	84418	cysteine rich transmembrane module containing 1	562,289954	1,501221	0,543597	3,25E-06	0,000503
SEPTIN4	5414	septin 4	92,05380336	1,499927	0,95585	5,35E-05	0,002942
TDRD9	122402	tudor domain containing 9	67,81442327	1,495247	0,467775	7,57E-07	0,000194
AIM2	9447	absent in melanoma 2	170,7757548	1,455034	0,561553	5,45E-06	0,000689
ST3GAL4	6484	ST3 beta-galactoside alpha-2,3-sialyltransferase 4	422,2853615	1,450747	0,395002	1,15E-07	6,24E-05
SMARCD3	6604	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily d, member 3	512,887483	1,448097	0,291737	3,15E-10	5,56E-07
KCNJ15	3772	potassium voltage-gated channel subfamily J member 15	3659,626922	1,436379	0,3224	3,62E-09	4,25E-06
AL445524.2			62,86704059	1,412746	0,570041	7,72E-06	0,00085
GK	2710	glycerol kinase	1789,273191	1,392172	0,476169	1,76E-06	0,000347
OLFM4	10562	olfactomedin 4	489,1549126	1,363596	1,016895	8,53E-05	0,004009
VPS9D1	9605	VPS9 domain containing 1	607,2703824	1,361685	0,408639	3,73E-07	0,000128
HCAR3	8843	hydroxycarboxylic acid receptor 3	1323,899776	1,343498	0,467475	2,05E-06	0,000385
PGST	5200	hate synthase 1	1194 572644	1,330689	0,351616	5,5E-08	4,08E-05
	5209	kinase/fructose-2,6- biphosphatase 3	1184,973044	1,303240	0,411143	0,592-07	0,000185
CICP18	646070	capicua transcriptional repressor pseudogene 18	58,99118361	1,283624	0,473728	3,68E-06	0,00054
TIFA	92610	TRAF interacting protein with forkhead associated domain	363,8033499	1,268237	0,606148	2,72E-05	0,001899
S100A9	6280	S100 calcium binding protein A9	41608,962	1,262226	0,356178	1,46E-07	6,26E-05
GBP5	115362	guanylate binding protein 5	6423,390158	1,247411	0,632286	3,93E-05	0,002493
ZNF438	220929	zinc finger protein 438	286,1317939	1,22268	0,341307	1,25E-07	6,25E-05
C4BPA	722	complement component 4 binding protein alpha	117,8792479	1,204828	1,072476	0,000118	0,004903
FAM20A	54757	FAM20A golgi associated secretory pathway pseudokinase	63,59733863	1,173932	0,838259	0,000156	0,005976
AC105052.3			84,80662931	1,169666	0,783965	0,000139	0,005543
AGO2	27161	argonaute RISC catalytic component 2	126,1672224	1,160001	0,852197	0,000169	0,00635
CD59	966	CD59 molecule (CD59 blood group)	1205,63653	1,154101	0,547407	3,09E-05	0,002076
TGFA	7039	transforming growth factor alpha	10,03968903	1,151887	0,717553	0,000117	0,004903
	1432	kinase 14	3064,892732	1,146/12	0,36981	1,01E-06	0,00024
	26873	5-0xoprolinase, ATP- hydrolysing	135,8750221	1,142618	0,552/13	3,58E-05	0,002313
	8291		5144,103888	1,138191	0,326331	2,10E-07	8E-05
	604	repressor	1004,598206	1,133674	0.044507	1,31E-07	0,000194
GRINA	2907	giutamate ionotropic receptor NMDA type subunit associated protein 1	3550,729266	1,133666	0,341507	4,37E-07	0,000143
ALPL	249	alkaline phosphatase, biomineralization associated	5425,471058	1,122801	0,535072	3,4E-05	0,002239

HCAR2	338442	hydroxycarboxylic acid	963,5899471	1,12016	0,416241	4,9E-06	0,000645
LIMK2	3985	LIM domain kinase 2	3399,882076	1,100431	0,366329	1,65E-06	0,000333
CA4	762	carbonic anhydrase 4	305,6618245	1,086122	0,470384	1,94E-05	0,001568
SECTM1	6398	secreted and	4634,304791	1,077317	0,372019	2,67E-06	0,000444
SIPA1L2	57568	signal induced proliferation associated 1 like 2	422,0017688	1,073773	0,488747	2,84E-05	0,001955
SMIM5	643008	small integral membrane	169,498609	1,059422	0,693953	0,000175	0,006472
NECTIN2	5819	nectin cell adhesion molecule 2	120,0229584	1,05891	0,708904	0,000187	0,006772
LILRA5	353514	leukocyte immunoglobulin like receptor A5	2547,236908	1,057898	0,288443	1,39E-07	6,26E-05
SEPTIN14	346288	septin 14	121,3245683	1,049713	0,424947	1,29E-05	0,001177
NFE2	4778	nuclear factor, erythroid 2	3713,703329	1,047902	0,291421	1,99E-07	7,78E-05
SLC22A4	6583	solute carrier family 22 member 4	344,2363452	1,04678	0,382729	5,31E-06	0,000687
CACNA1E	777	calcium voltage-gated channel subunit alpha1 E	157,4892587	1,044435	0,610596	0,00012	0,004974
НКЗ	3101	hexokinase 3	778,1696653	1,026738	0,353951	3,23E-06	0,000503
FLOT2	2319	flotillin 2	7260,026054	1,026138	0,339884	2,11E-06	0,000387
RAB20	55647	RAB20, member RAS oncogene family	233,6278155	1,023701	0,492519	4,72E-05	0,002761
ACSL1	2180	acyl-CoA synthetase long chain family member 1	12589,495	1,021884	0,345189	2,67E-06	0,000444
GAS7	8522	growth arrest specific 7	1887,002799	1,018378	0,336884	2,17E-06	0,000392
VAMP5	10791	vesicle associated membrane protein 5	302,7428942	1,014219	0,444435	2,66E-05	0,001872
STOM	2040	stomatin	1322,517395	1,010925	0,332276	2,1E-06	0,000387
LCN2	3934	lipocalin 2	1017,281136	1,00803	0,748075	0,000278	0,008936
PADI2	11240	peptidyl arginine deiminase 2	3225,873197	0,996659	0,312298	1,32E-06	0,00029
MARCO	8685	macrophage receptor with collagenous structure	181,8995041	0,994962	0,383344	1,07E-05	0,001015
DHRS13	147015	dehydrogenase/reductase 13	505,043694	0,99313	0,359353	6,14E-06	0,000734
FFAR2	2867	free fatty acid receptor 2	3735,969969	0,988198	0,286617	5,23E-07	0,000168
TMEM176A	55365	transmembrane protein 176A	185,8658391	0,985181	0,680896	0,000255	0,008397
PLIN4	729359	perilipin 4	248,6143876	0,97727	0,411661	2,33E-05	0,001723
MCTP2	55784	multiple C2 and transmembrane domain containing 2	1149,030914	0,975303	0,326185	3,11E-06	0,000498
KCNJ2	3759	potassium voltage-gated channel subfamily J	1257,328751	0,973297	0,372806	1,13E-05	0,001069
MKNK1	8569	MAPK interacting serine/threonine kinase 1	1498,237866	0,972655	0,327103	3,35E-06	0,000513
CCRL2	9034	C-C motif chemokine receptor like 2	68,05816333	0,971402	0,444141	4,19E-05	0,002572
TRIM25	7706	tripartite motif containing 25	3742,457579	0,97068	0,28833	8,09E-07	0,000204
PTGES3P1	284672	prostaglandin E synthase 3 pseudogene 1	62,6850269	0,965041	0,414397	2,83E-05	0,001955
AC018755.2			632,39849	0,963039	0,366908	1,14E-05	0,001072
LTA4H	4048	leukotriene A4 hydrolase	3246,497079	0,962251	0,26252	2,68E-07	9,46E-05
IL1B	3553	interleukin 1 beta	692,1719219	0,95819	0,395256	2,19E-05	0,001672
FFAR3	2865	free fatty acid receptor 3	29,84917104	0,956446	0,679782	0,000301	0,009236
SH3GLB1	51100	SH3 domain containing GRB2 like, endophilin B1	1760,425687	0,952166	0,321038	3,91E-06	0,000567
AQP9	366	aquaporin 9	10184,46889	0,941707	0,348902	1,02E-05	0,000981
IL18R1	8809	interleukin 18 receptor 1	455,6249469	0,936941	0,521926	0,000139	0,005543
CREB3L2	64764	cAMP responsive element binding protein 3 like 2	49,30531142	0,93517	0,57709	0,000211	0,007431
NUCB1	4924	nucleobindin 1	3009,289972	0,933664	0,342764	9,86E-06	0,00097
C4A	720	complement C4A (Rodgers blood group)	71,17701821	0,929485	0,648475	0,000316	0,009473

LILRB3	11025	leukocyte immunoglobulin	3358,386247	0,925906	0,329288	7,81E-06	0,000853
AL669831.3			119,6010767	0,925019	0,441229	6,67E-05	0,003381
ERLIN1	10613	ER lipid raft associated 1	386,6577427	0,922456	0,409331	4,36E-05	0,002639
RGL4	266747	ral guanine nucleotide dissociation stimulator like 4	293,0270849	0,92212	0,416672	4,9E-05	0,00284
NAMPT	10135	nicotinamide phosphoribosyltransferase	22738,34296	0,918451	0,365852	2,1E-05	0,00163
CST7	8530	cystatin F	1823,151665	0,915692	0,524857	0,000171	0,006399
PSTPIP2	9050	proline-serine-threonine phosphatase interacting protein 2	1038,644409	0,895694	0,401319	5,36E-05	0,002942
CAMP	820	cathelicidin antimicrobial peptide	558,8472224	0,894139	0,604299	0,000331	0,009796
GADD45B	4616	growth arrest and DNA damage inducible beta	726,9552394	0,892271	0,26626	1,61E-06	0,00033
C3orf86	1,03E+0 8	chromosome 3 open reading frame 86	208,7931199	0,89204	0,395878	5,16E-05	0,002891
IFITM1	8519	interferon induced transmembrane protein 1	6491,983632	0,886348	0,391656	5,2E-05	0,002897
FLOT1	10211	flotillin 1	2665,00966	0,885669	0,274147	2,62E-06	0,000444
UPP1	7378	uridine phosphorylase 1	795,8138244	0,87528	0,29796	7,6E-06	0,00085
PPP1R3B	79660	protein phosphatase 1 regulatory subunit 3B	1540,708365	0,874174	0,283176	4,71E-06	0,000626
NEDD4L	23327	NEDD4 like E3 ubiquitin protein ligase	127,15938	0,873873	0,581247	0,000343	0,009963
MBOAT2	129642	membrane bound O- acyltransferase domain containing 2	623,5475506	0,872935	0,318038	1,41E-05	0,001254
B4GALT5	9334	beta-1,4- galactosyltransferase 5	1676,927888	0,870088	0,260431	2,05E-06	0,000385
TNFAIP6	7130	TNF alpha induced protein	395,0266216	0,866458	0,501606	0,000221	0,007736
IL4R	3566	interleukin 4 receptor	2784,420888	0,863866	0,297346	9,25E-06	0,000945
NLRC4	58484	NLR family CARD domain containing 4	577,1284132	0,862585	0,288907	7,24E-06	0,00083
GBP1	2633	guanylate binding protein 1	3045,445791	0,861716	0,505206	0,000237	0,008061
SBNO2	22904	strawberry notch homolog 2	3903,357958	0,859034	0,260059	2,59E-06	0,000444
ADGRG3	222487	adhesion G protein- coupled receptor G3	2894,147673	0,855621	0,281409	6,45E-06	0,000751
MYL9	10398	myosin light chain 9	476,2711072	0,851741	0,561698	0,000367	0,010417
COL17A1	1308	collagen type XVII alpha 1 chain	32,92503175	0,845585	0,675514	0,000572	0,013364
F5	2153	coagulation factor V	500,6007461	0,844642	0,383675	7,94E-05	0,003859
MILR1	284021	mast cell immunoglobulin like receptor 1	195,2344442	0,842512	0,23239	9,61E-07	0,000234
CASP4	837	caspase 4	2540,431417	0,840584	0,260342	3,98E-06	0,000567
SERPINB1	1992	serpin family B member 1	2757,927909	0,839013	0,304916	1,82E-05	0,001514
SCARF1	8578	scavenger receptor class F member 1	1226,832291	0,835268	0,421587	0,000145	0,005672
AC068547.1			13,14294725	0,831351	0,883362	0,000517	0,012507
PSMB9	5698	proteasome subunit beta 9	2838,550665	0,830333	0,24886	3,05E-06	0,000495
SEPTIN14P1 9	1,07E+0 8	septin 14 pseudogene 19	7,811526808	0,830214	0,581333	0,000474	0,011938
LILRB4	11006	leukocyte immunoglobulin like receptor B4	394,0425026	0,828385	0,176863	1,3E-08	1,3E-05
TAP1	6890	transporter 1, ATP binding cassette subfamily B member	5224,647621	0,826616	0,27576	9,61E-06	0,000961
ICAM1	3383	intercellular adhesion molecule 1	747,6701818	0,826431	0,300759	2,05E-05	0,001611
JAK3	3718	Janus kinase 3	3324,865331	0,825723	0,199112	1,47E-07	6,26E-05
GNG10	2790	G protein subunit gamma	807,038088	0,825296	0,412458	0,000147	0,005722
ACKR1	2532	atypical chemokine receptor 1 (Duffy blood group)	34,26787947	0,824877	0,828309	0,000623	0,014057

MSRB1	51734	methionine sulfoxide	4087,524094	0,824563	0,272171	8,86E-06	0,000918
CLEC4G	339390	reductase B1 C-type lectin domain family	8,58751073	0,820123	0,655464	0,000638	0,014307
APOL1	8542	apolipoprotein L1	1068,898197	0,817629	0,342043	5,9E-05	0,003102
FAXDC2	10826	fatty acid hydroxylase domain containing 2	48,10784051	0,816425	0,579643	0,000522	0,012569
IL27	246778	interleukin 27	11,7553127	0,808942	0,598036	0,000589	0,013577
CRYBG1	202	crystallin beta-gamma domain containing 1	71,88135998	0,80835	0,689536	0,000721	0,015586
SLPI	6590	secretory leukocyte	197,8422542	0,808033	0,548875	0,000487	0,012137
TRPM4	54795	transient receptor potential cation channel subfamily M member 4	18,87224186	0,806625	0,351885	8,24E-05	0,003951
CSF2RB	1439	colony stimulating factor 2 receptor beta common subunit	9170,942831	0,805322	0,224065	1,59E-06	0,00033
ARG1	383	arginase 1	209,7124372	0,801204	0,5532	0,000525	0,012613
ITGAM	3684	integrin subunit alpha M	3269,22126	0,797927	0,185156	1E-07	6,24E-05
SERPING1	710	serpin family G member 1	1196,651308	0,797589	0,625876	0,000688	0,01505
GBGT1	26301	globoside alpha-1,3-N- acetylgalactosaminyltransf erase 1 (FORS blood group)	234,5258094	0,793287	0,203693	5,85E-07	0,000172
GYPC	2995	glycophorin C (Gerbich blood group)	10116,3738	0,792837	0,499168	0,000426	0,011386
AC099489.1			815,1317134	0,787743	0,318847	6,09E-05	0,003147
HSD17B10	3028	hydroxysteroid 17-beta dehydrogenase 10	9,428567621	0,787554	0,646208	0,000765	0,016197
PYGL	5836	glycogen phosphorylase L	4331,171586	0,785619	0,243072	6,81E-06	0,000786
COPB2	9276	coatomer protein complex subunit beta 2	161,545641	0,782173	0,38299	0,000178	0,006559
ALPK1	80216	alpha kinase 1	865,2068738	0,781948	0,194463	4,01E-07	0,000134
SLC25A37	51312	solute carrier family 25 member 37	26761,23813	0,78187	0,472416	0,000399	0,011018
LTBP2	4053	latent transforming growth factor beta binding protein 2	59,45595007	0,781278	0,477349	0,000415	0,011204
INSL3	3640	insulin like 3	25,13826562	0,780339	0,350051	0,000118	0,004903
FPR2	2358	formyl peptide receptor 2	2954,847047	0,780321	0,249168	9,9E-06	0,00097
SORT1	6272	sortilin 1	809,0399014	0,778253	0,336137	9,73E-05	0,004338
FCER1G	2207	Fc fragment of IgE receptor Ig	3189,6378	0,777134	0,31557	6,81E-05	0,00344
FBXL5	26234	F-box and leucine rich repeat protein 5	3445,999534	0,774814	0,235472	6,29E-06	0,000745
PLSCR1	5359	phospholipid scramblase 1	1037,687256	0,772916	0,397782	0,000236	0,008056
FCGR2A	2212	Fc fragment of IgG receptor IIa	2026,355745	0,772839	0,25404	1,41E-05	0,001254
CLU	1191	clusterin	1205,942915	0,771127	0,43783	0,000347	0,009985
USB1	79650	U6 snRNA biogenesis phosphodiesterase 1	1302,816205	0,770348	0,253734	1,47E-05	0,001273
DHRS12	79758	dehydrogenase/reductase 12	295,6936651	0,769383	0,302086	5,87E-05	0,003101
CTSA	5476	cathepsin A	2067,831434	0,767579	0,210771	2,01E-06	0,000385
OLR1	4973	oxidized low density lipoprotein receptor 1	40,46106533	0,767522	0,642966	0,00086	0,01729
RAB3IL1	5866	RAB3A interacting protein like 1	65,85539692	0,766828	0,588148	0,000769	0,016199
RILP	83547	Rab interacting lysosomal protein	653,6743867	0,765222	0,417655	0,000313	0,009446
FCGR3B	2215	Fc fragment of IgG receptor IIIb	32551,80216	0,764987	0,284785	4,23E-05	0,002582
GADD45A	1647	growth arrest and DNA damage inducible alpha	134,8049648	0,761835	0,401789	0,000281	0,008959
PPBP	5473	pro-platelet basic protein	775,5034192	0,761036	0,419945	0,000335	0,009846
NME8	51314	NME/NM23 family member 8	57,74508558	0,760024	0,422966	0,000347	0,009985
TLCD4			55,72940619	0,759644	0,681138	0,000933	0,017969

ELF3	1999	E74 like ETS transcription	10,10398795	0,758363	0,704096	0,000942	0,018112
MXD3	83463	MAX dimerization protein 3	475,2732439	0,758356	0,246048	1,45E-05	0,00127
NCF4	4689	neutrophil cytosolic factor	1295,989452	0,756782	0,229855	7,55E-06	0,00085
NIBAN1	116496	niban apoptosis regulator	5422,188551	0,754773	0,30274	7,68E-05	0,003774
GCA	25801	grancalcin	6123,304362	0,753036	0,321755	0,000113	0,004782
HAUS4	54930	HAUS augmin like	567,3805715	0,749623	0,273911	4,28E-05	0,002598
СЕВРВ	1051	CCAAT enhancer binding	4344,703818	0,74656	0,249262	2,12E-05	0,001632
S100A8	6279	S100 calcium binding protein A8	6634,006989	0,744983	0,461978	0,000537	0,012819
RAB13	5872	RAB13, member RAS oncogene family	63,98107233	0,742269	0,36403	0,000242	0,008135
TSPO2	222642	translocator protein 2	18,10577341	0,740266	0,751592	0,000977	0,018505
H2AC19			706,1227077	0,738731	0,334235	0,000172	0,006427
GBP2	2634	guanylate binding protein 2	5748,312553	0,736575	0,271062	5,12E-05	0,002891
LSMEM1	286006	leucine rich single-pass membrane protein 1	72,36314342	0,734131	0,30427	0,000113	0,004782
ALAS2	212	5'-aminolevulinate	28525,85551	0,733557	0,727726	0,001041	0,019276
TMEM158	25907	transmembrane protein	158,043881	0,732504	0,684132	0,001077	0,019736
SYN2	6854	synapsin II	7,772111862	0,729313	0,600909	0,001025	0,019109
RAB5IF	55969	RAB5 interacting factor	1453,048245	0,727387	0,187091	1,23E-06	0,00028
ASPRV1	151516	aspartic peptidase retroviral like 1	157,0779889	0,727052	0,325873	0,000182	0,006665
MFSD14B	84641	major facilitator superfamily domain containing 14B	1143,655563	0,727039	0,218768	9,34E-06	0,000947
TSPO	706	translocator protein	2053,085865	0,725217	0,243711	2,79E-05	0,001941
SIGLEC7	27036	sialic acid binding Ig like lectin 7	31,86008883	0,724682	0,262721	5,16E-05	0,002891
LTBR	4055	lymphotoxin beta receptor	872,6376877	0,721958	0,185234	1,26E-06	0,000281
ATP9A	10079	ATPase phospholipid transporting 9A (putative)	64,91530145	0,72109	0,36973	0,000341	0,009962
CMTM5	116173	CKLF like MARVEL transmembrane domain containing 5	90,31699169	0,719411	0,439374	0,000607	0,013899
PLIN5	440503	perilipin 5	291,8798028	0,719306	0,312255	0,000166	0,006263
NTSR1	4923	neurotensin receptor 1	21,5033793	0,719282	0,574703	0,001043	0,019276
GRB10	2887	growth factor receptor bound protein 10	302,9948963	0,71883	0,548564	0,000981	0,018539
FAM157A	728262	family with sequence similarity 157 member A	11197,55125	0,716786	0,278705	9,04E-05	0,004115
H2BC21			512,5571039	0,716659	0,295108	0,000128	0,005214
IRAG1			815,4882118	0,715189	0,256011	5,17E-05	0,002891
CD63	967	CD63 molecule	2539,264783	0,71517	0,203616	5,59E-06	0,000689
NABP1	64859	nucleic acid binding protein 1	2225,262595	0,713767	0,273756	8,53E-05	0,004009
GUK1	2987	guanylate kinase 1	6917,776574	0,713104	0,45267	0,0007	0,015255
SEMA4A	64218	semaphorin 4A	1783,032231	0,712479	0,231896	2,4E-05	0,001741
DMTN	2039	dematin actin binding protein	7893,800662	0,712314	0,503907	0,000893	0,01766
HRH2	3274	histamine receptor H2	2265,891473	0,709421	0,244573	4,08E-05	0,002557
GNG11	2791	G protein subunit gamma 11	147,3396997	0,70765	0,339535	0,000293	0,009161
IL18RAP	8807	interleukin 18 receptor accessory protein	1145,693336	0,705651	0,3929	0,000511	0,012504
CR1L	1379	complement C3b/C4b receptor 1 like	21,31002228	0,705288	0,691004	0,001229	0,02125
UBE2F	140739	ubiquitin conjugating enzyme E2 F (putative)	425,6447701	0,703347	0,371204	0,000436	0,011494
IFITM2	10581	interferon induced transmembrane protein 2	28460,85811	0,69949	0,293912	0,000169	0,006335

SFRP2	6423	secreted frizzled related	58,54377584	0,698144	0,626796	0,001288	0,021815
CCDC71L	168455	coiled-coil domain	372,0738417	0,697562	0,325134	0,000283	0,008969
SIGLEC9	27180	sialic acid binding Ig like	799,8759562	0,696732	0,204061	9,52E-06	0,000958
SLC6A12	6539	solute carrier family 6 member 12	51,55629695	0,69564	0,322145	0,00028	0,008952
LYRM1	57149	LYR motif containing 1	195,6862134	0,695183	0,243836	5,43E-05	0,002955
SELL	6402	selectin L	19936,05645	0,69485	0,198769	7,35E-06	0,000835
TRIB1	10221	tribbles pseudokinase 1	445,4929938	0,693333	0,2406	5,08E-05	0,002891
ITGA2B	3674	integrin subunit alpha 2b	788,1797318	0,692144	0,510048	0,001084	0,0198
PROK2	60675	prokineticin 2	2156,086731	0,691921	0,352615	0,000424	0,011329
HSPA1B	3304	heat shock protein family A (Hsp70) member 1B	553,0030063	0,690484	0,387486	0,000588	0,013577
SMOX	54498	spermine oxidase	367,579063	0,690461	0,591775	0,00131	0,021896
SCN1B	6324	sodium voltage-gated channel beta subunit 1	47,67819294	0,689565	0,356119	0,000453	0,01175
CREB5	9586	cAMP responsive element binding protein 5	1957,378356	0,687603	0,30091	0,000232	0,007971
AGFG1	3267	ArfGAP with FG repeats 1	453,1558947	0,682432	0,238846	6,09E-05	0,003147
FRAT2	23401	FRAT regulator of WNT signaling pathway 2	4016,010434	0,682157	0,205315	1,51E-05	0,001294
PHTF1	10745	putative homeodomain transcription factor 1	198,5782973	0,681535	0,321035	0,000342	0,009963
AC092299.1			2212,701382	0,681129	0,310227	0,000298	0,009185
BASP1	10409	brain abundant membrane attached signal protein 1	6011,629883	0,680984	0,303223	0,000269	0,008751
YIPF1	54432	Yip1 domain family member 1	396,2729191	0,680065	0,212113	2,24E-05	0,001685
PITPNA	5306	phosphatidylinositol transfer protein alpha	1088,001383	0,677505	0,217782	3,08E-05	0,002076
TNFRSF1A	7132	TNF receptor superfamily member 1A	4965,990274	0,677422	0,195942	1,01E-05	0,000979
PIM3	415116	Pim-3 proto-oncogene, serine/threonine kinase	1222,46329	0,676619	0,2476	9,03E-05	0,004115
IGF2BP3	10643	insulin like growth factor 2 mRNA binding protein 3	41,93825521	0,676368	0,373416	0,000627	0,014111
DDX60L	91351	DExD/H-box 60 like	818,9354347	0,675167	0,298466	0,000275	0,008863
PGLYRP1	8993	peptidoglycan recognition protein 1	662,1817311	0,673359	0,345037	0,000507	0,012461
QPCT	25797	glutaminyl-peptide cyclotransferase	1465,785391	0,67274	0,231885	5,97E-05	0,003129
SLC38A5	92745	solute carrier family 38 member 5	606,0413459	0,672708	0,469132	0,001117	0,020012
GRAMD1A	57655	GRAM domain containing 1A	1955,497946	0,672522	0,229426	5,5E-05	0,002969
НСК	3055	HCK proto-oncogene, Src family tyrosine kinase	5791,392329	0,672168	0,219141	3,72E-05	0,002382
BST1	683	bone marrow stromal cell antigen 1	1078,655603	0,67146	0,208727	2,36E-05	0,001733
AP5B1	91056	adaptor related protein complex 5 subunit beta 1	2002,39209	0,671164	0,240917	8,31E-05	0,003971
FAM160A2	84067	family with sequence similarity 160 member A2	608,3548042	0,670137	0,142396	6,4E-08	4,51E-05
CFAP58	159686	cilia and flagella associated protein 58	23,16119766	0,669054	0,348725	0,000557	0,013173
SLC4A1	6521	solute carrier family 4 member 1 (Diego blood group)	1317,995775	0,668711	0,667199	0,001501	0,023859
FURIN	5045	furin, paired basic amino acid cleaving enzyme	3008,469508	0,668459	0,237695	7,97E-05	0,003859
SIRPA	140885	signal regulatory protein alpha	3868,370475	0,667174	0,200778	1,76E-05	0,001484
AGTRAP	57085	angiotensin II receptor associated protein	562,8327663	0,666993	0,228795	6,1E-05	0,003147
JUNB	3726	JunB proto-oncogene, AP- 1 transcription factor subunit	3493,363249	0,665274	0,243747	0,000102	0,00452
DDIAS	220042	DNA damage induced	57,33695574	0,665093	0,392184	0,000823	0,016863
CD300A	11314	CD300a molecule	2440,495613	0,664954	0,194855	1,33E-05	0,001206

TAL1	6886	TAL bHLH transcription factor 1, erythroid differentiation factor	362,8943462	0,664842	0,514656	0,001377	0,022733
INSYN2B	1E+08	inhibitory synaptic factor family member 2B	4,645762978	0,664019	0,593818	0,001561	0,024374
GABARAP	11337	GABA type A receptor- associated protein	4289,065037	0,663991	0,188004	8,93E-06	0,000919
RAB32	10981	RAB32, member RAS oncogene family	404,2128581	0,66388	0,178834	4,65E-06	0,000625
G0S2	50486	G0/G1 switch 2	48,52766669	0,663561	0,457327	0,001164	0,020437
C1QA	712	complement C1q A chain	125,101143	0,663355	0,404573	0,000906	0,017786
NARF	26502	nuclear prelamin A recognition factor	1056,146667	0,663321	0,207312	2,72E-05	0,001899
TLR8	51311	toll like receptor 8	1853,89095	0,660977	0,222528	5,55E-05	0,002979
PCSK6	5046	proprotein convertase subtilisin/kexin type 6	82,43679164	0,660409	0,412361	0,000978	0,018505
LYVE1	10894	lymphatic vessel endothelial hyaluronan receptor 1	11,49408588	0,659932	0,400082	0,000917	0,017842
F2RL1	2150	F2R like trypsin receptor 1	319,3801203	0,658652	0,307487	0,000409	0,011136
LTB4R	1241	leukotriene B4 receptor	1361,090745	0,657297	0,215103	4,49E-05	0,002662
DUSP3	1845	dual specificity phosphatase 3	464,702456	0,65673	0,218963	5,34E-05	0,002942
NBEAL2	23218	neurobeachin like 2	7024,134713	0,655809	0,177781	5,51E-06	0,000689
TLR1	7096	toll like receptor 1	1495,189224	0,655573	0,231215	8,56E-05	0,00401
LRP10	26020	LDL receptor related protein 10	8356,485754	0,655472	0,212407	4,19E-05	0,002572
CEACAM3	1084	carcinoembryonic antigen related cell adhesion molecule 3	1285,236768	0,655172	0,196423	1,91E-05	0,001556
DOCK4	9732	dedicator of cytokinesis 4	258,9690402	0,654554	0,412485	0,001043	0,019276
SERPINA1	5265	serpin family A member 1	14665,3442	0,654404	0,214577	4,72E-05	0,002761
DDAH2	23564	dimethylarginine dimethylaminohydrolase 2	295,5690932	0,653865	0,320073	0,000514	0,012504
HSPA6	3310	heat shock protein family A (Hsp70) member 6	2174,586964	0,652546	0,229432	8,63E-05	0,004027
TIMP2	7077	TIMP metallopeptidase inhibitor 2	121,7589715	0,651665	0,35645	0,000751	0,016002
CASP1	834	caspase 1	2006,089571	0,651395	0,187118	1,21E-05	0,001124
TXN	7295	thioredoxin	305,0200852	0,64919	0,256335	0,000197	0,007017
ALOX5	240	arachidonate 5- lipoxygenase	4263,221905	0,648677	0,242165	0,000139	0,005543
PHF21A	51317	PHD finger protein 21A	881,2118459	0,647865	0,213448	5,27E-05	0,002924
ATP6V1C1	528	ATPase H+ transporting V1 subunit C1	497,318607	0,647485	0,277391	0,000311	0,009443
ERI1	90459	exoribonuclease 1	158,670534	0,647327	0,294142	0,000408	0,011136
KLHL2	11275	kelch like family member 2	211,4823946	0,645844	0,332734	0,00066	0,014675
NEDD8	4738	NEDD8 ubiquitin like modifier	54,59771501	0,645836	0,207131	4,2E-05	0,002572
FKBP5	2289	FKBP prolyl isomerase 5	2448,035965	0,645066	0,386353	0,001004	0,01885
H2BC5		75000 1 //	131,9458888	0,644266	0,35727	0,000833	0,016968
ZFP36	/538	ZFP36 ring finger protein	3098,502945	0,644141	0,227167	9,64E-05	0,004314
CYBC1	79415	cytochrome b-245 chaperone 1	2554,580095	0,643914	0,195215	2,42E-05	0,001741
FPR1	2357	formyl peptide receptor 1	13090,93526	0,64284	0,233792	0,000123	0,005062
KIAA0040	9674	KIAA0040	1677,238214	0,64185	0,238764	0,000145	0,005672
SRGN	5552	sergiycin	12747,38106	0,64154	0,248775	0,000191	0,006868
TLR2	7097	toll like receptor 2	3517,284146	0,640833	0,282767	0,000382	0,010754
STXBP2	6813	syntaxin binding protein 2	877,7937518	0,640453	0,188862	1,84E-05	0,00152
UBE2L6	9246	ubiquitin conjugating enzyme E2 L6	2524,918974	0,639824	0,289122	0,000429	0,011402
SNX3	8724	sorting nexin 3	499,0720663	0,639704	0,319611	0,000631	0,014173
BPI	671	bactericidal permeability increasing protein	461,3448487	0,638575	0,559	0,001806	0,026652
BCAP31	10134	b cell receptor associated protein 31	630,2219722	0,638044	0,292064	0,000461	0,011842

UBE2D1	7321	ubiquitin conjugating	943,1038637	0,637852	0,253095	0,000228	0,007901
CLEC2B	9976	C-type lectin domain family 2 member B	157,7655599	0,637326	0,238843	0,00016	0,006099
ATP6V0E1	8992	ATPase H+ transporting	1357,234991	0,636317	0,161438	2,53E-06	0,000444
NATD1	256302	N-acetyltransferase	1604,482547	0,636014	0,289219	0,000458	0,011788
WSB2	55884	WD repeat and SOCS box containing 2	541,6077159	0,634139	0,216317	8,2E-05	0,003945
ETV7	51513	ETS variant 7	188,9200894	0,63409	0,516841	0,001771	0,026414
PTPRJ	5795	protein tyrosine phosphatase receptor type J	2825,161431	0,633655	0,16831	5,17E-06	0,000674
IL10RB	3588	interleukin 10 receptor subunit beta	1325,356386	0,632719	0,173298	7,97E-06	0,000865
THOC5	8563	THO complex 5	592,9369364	0,632385	0,152822	1,18E-06	0,000272
DHRS9	10170	dehydrogenase/reductase 9	351,5166939	0,63234	0,312259	0,000651	0,014516
NAPRT	93100	nicotinate phosphoribosyltransferase	566,6339886	0,631764	0,173686	8,46E-06	0,000897
S100A11	6282	S100 calcium binding protein A11	7179,98557	0,631168	0,253721	0,000263	0,008637
IER3	8870	immediate early response 3	196,548552	0,630813	0,250148	0,000244	0,008147
MMP25	64386	matrix metallopeptidase 25	8867,578751	0,630669	0,238453	0,000182	0,006665
LRRC70	1E+08	leucine rich repeat containing 70	11,2595822	0,629406	0,530172	0,001873	0,02718
BCL3	602	BCL3 transcription coactivator	117,367258	0,629066	0,265206	0,000346	0,009985
SLC6A9	6536	solute carrier family 6 member 9	56,88049584	0,628766	0,614777	0,001936	0,027844
C19orf38	255809	chromosome 19 open reading frame 38	931,525758	0,627012	0,190495	2,94E-05	0,001993
ZC3H3	23144	zinc finger CCCH-type containing 3	476,2023058	0,626357	0,270116	0,000398	0,011001
SLC25A44	9673	solute carrier family 25 member 44	1114,646548	0,625541	0,222886	0,000127	0,005184
WDFY3	23001	WD repeat and FYVE domain containing 3	879,9613232	0,624832	0,261168	0,000346	0,009985
CR1	1378	complement C3b/C4b receptor 1 (Knops blood group)	1802,866496	0,624531	0,280587	0,000488	0,012137
PSMB3	5691	proteasome subunit beta 3	1183,186215	0,62451	0,183898	2,13E-05	0,001632
CEACAM1	634	carcinoembryonic antigen related cell adhesion molecule 1	148,4786538	0,623957	0,403296	0,001395	0,02286
MKLN1	4289	muskelin 1	33,86537081	0,623393	0,340833	0,000967	0,018412
CSF3R	1441	colony stimulating factor 3 receptor	40164,99206	0,622426	0,221139	0,000128	0,005214
IL15RA	3601	interleukin 15 receptor subunit alpha	94,89775496	0,621025	0,242068	0,000244	0,008147
BRI3	25798	brain protein I3	2147,081185	0,620061	0,182443	2,21E-05	0,001672
CLEC1B	51266	C-type lectin domain family 1 member B	5,440617356	0,618797	0,708184	0,001691	0,025633
CALHM6	441168	calcium homeostasis modulator family member 6	205,0547	0,616589	0,386441	0,0014	0,022914
FOSL2	2355	FOS like 2, AP-1 transcription factor subunit	2200,586571	0,615613	0,211706	0,000106	0,00459
NANS	54187	N-acetylneuraminate synthase	210,8256072	0,615573	0,160172	4,55E-06	0,000623
GALK1	2584	galactokinase 1	230,5949292	0,614881	0,209389	9,86E-05	0,004377
DENND1A	57706	DENN domain containing 1A	499,5002442	0,613381	0,193531	4,99E-05	0,002869
PPIAP29	134997	peptidylprolyl isomerase A pseudogene 29	8,104852474	0,612884	0,581214	0,002158	0,029567
PINK1	65018	PTEN induced kinase 1	2317,140942	0,609898	0,351719	0,001248	0,021428
SOD2	6648	superoxide dismutase 2	23223,6778	0,609844	0,250176	0,000367	0,010417
RAB24	53917	RAB24, member RAS oncogene family	1415,656297	0,609519	0,152828	2,71E-06	0,000444

ELF4	2000	E74 like ETS transcription factor 4	507,8356693	0,608536	0,269544	0,000541	0,012877
TP53I3	9540	tumor protein p53 inducible protein 3	51,76510775	0,608026	0,261036	0,000471	0,011876
PPP1R3D	5509	protein phosphatase 1 regulatory subunit 3D	404,0455063	0,607547	0,204253	9,53E-05	0,004278
AC011498.4			51,6203648	0,60647	0,271758	0,000581	0,01356
SLC12A9	56996	solute carrier family 12 member 9	2786,769082	0,605714	0,207527	0,000114	0,004794
NAMPTP1	646309	nicotinamide phosphoribosyltransferase pseudogene 1	1426,177802	0,604571	0,402574	0,001718	0,025867
PFKFB2	5208	6-phosphofructo-2- kinase/fructose-2,6- biphosphatase 2	331,3107824	0,604528	0,419126	0,001823	0,026727
TLR9	54106	toll like receptor 9	93,99448355	0,604328	0,257057	0,000468	0,011858
TGM2	7052	transglutaminase 2	157,2945072	0,603733	0,456388	0,002038	0,028518
HTRA1	5654	HtrA serine peptidase 1	12,66446492	0,603413	0,419972	0,001849	0,026959
UBAP1	51271	ubiquitin associated protein 1	1159,690946	0,603394	0,232727	0,000275	0,008863
AP006222.1			213,5065024	0,602095	0,322252	0,001117	0,020012
ARRB2	409	arrestin beta 2	7583,203167	0,601649	0,196656	7,87E-05	0,003838
SLC9A8	23315	solute carrier family 9 member A8	822,571837	0,601201	0,208494	0,000132	0,005321
ROPN1L	83853	rhophilin associated tail protein 1 like	161,1927172	0,600563	0,258597	0,000516	0,012504
TSHZ3	57616	teashirt zinc finger homeobox 3	180,6244178	0,600486	0,282376	0,00075	0,015999
NRN1	51299	neuritin 1	25,96137306	0,600314	0,63208	0,002211	0,029858
RHBDF2	79651	rhomboid 5 homolog 2	1284,133812	0,600203	0,256294	0,000498	0,012292
NMI	9111	N-myc and STAT interactor	893,3873543	0,599436	0,217284	0,000188	0,006802
TREML2	79865	triggering receptor expressed on myeloid cells like 2	1221,180881	0,599168	0,246874	0,00042	0,011288
DYNLT1	6993	dynein light chain Tctex- type 1	525,8764056	0,599097	0,209345	0,000143	0,005646
CYTH4	27128	cytohesin 4	1139,383509	0,599031	0,230313	0,000282	0,008959
MIIP	60672	migration and invasion inhibitory protein	450,769974	0,598366	0,177016	2,91E-05	0,001979
TBKBP1	9755	TBK1 binding protein 1	493,5661179	0,597554	0,261092	0,00057	0,013351
FZD5	7855	frizzled class receptor 5	24,20898323	0,597494	0,399285	0,001832	0,026782
DOK3	79930	docking protein 3	1533,41908	0,597408	0,226887	0,000265	0,008642
IRF1	3659	interferon regulatory factor 1	7989,639208	0,596527	0,243621	0,000412	0,011143
LIN7A	8825	lin-7 homolog A, crumbs cell polarity complex component	398,8680852	0,596469	0,25647	0,000535	0,012809
AL669831.1			8426,393806	0,596341	0,217591	0,000204	0,007216
SMPD5	392275	sphingomyelin phosphodiesterase 5	6,409022433	0,596111	0,626498	0,00228	0,030404
GBA	2629	glucosylceramidase beta	730,2293993	0,594964	0,172132	2,31E-05	0,00172
IL1R2	7850	interleukin 1 receptor type 2	1183,949594	0,59422	0,429846	0,002089	0,029097
FES	2242	FES proto-oncogene, tyrosine kinase	1361,323653	0,594031	0,189051	6,59E-05	0,003353
APOL6	80830	apolipoprotein L6	2136,174673	0,59392	0,294803	0,000969	0,01844
FBXO6	26270	F-box protein 6	260,5661525	0,593281	0,289316	0,00092	0,017863
ORMDL2	29095	ORMDL sphingolipid biosynthesis regulator 2	77,42704098	0,59253	0,192316	8,07E-05	0,003898
EIF4E3	317649	eukaryotic translation initiation factor 4E family member 3	1159,581879	0,591595	0,218555	0,000234	0,00799
BLOC1S1	2647	biogenesis of lysosomal organelles complex 1 subunit 1	421,9619925	0,591523	0,157661	8,12E-06	0,000874
TMEM63B	55362	transmembrane protein 63B	64,50653405	0,590845	0,38236	0,001845	0,026926

BATF	10538	basic leucine zipper ATF-	132,7655702	0,590826	0,286329	0,000924	0,017871
CLIC1	1192	chloride intracellular channel 1	3791,60082	0,590652	0,19244	8,53E-05	0,004009
AOAH	313	acyloxyacyl hydrolase	1368,793848	0,58953	0,201275	0,00013	0,005282
FAM89A	375061	family with sequence	21,44935809	0,589491	0,284548	0,000924	0,017871
TMEM272	283521	transmembrane protein 272	122,4048227	0,588495	0,35912	0,001704	0,025752
LILRA6	79168	leukocyte immunoglobulin	2630,005822	0,587008	0,224845	0,000312	0,009446
LGALS8	3964	galectin 8	822,4519096	0,585523	0,239545	0,000466	0,011858
CRISP3	10321	cysteine rich secretory protein 3	166,7782115	0,585214	0,485208	0,002517	0,032372
CXCR1	3577	C-X-C motif chemokine receptor 1	9224,788542	0,585168	0,22701	0,000344	0,00998
UNC5CL	222643	unc-5 family C-terminal like	27,32864235	-0,58585	0,232859	0,000395	0,010984
ALS2CL	259173	ALS2 C-terminal like	62,69678011	-0,58603	0,336358	0,001544	0,024232
FCMR	9214	Fc fragment of IgM receptor	995,7162556	-0,58838	0,220324	0,000265	0,008642
CCR7	1236	C-C motif chemokine receptor 7	693,737092	-0,58854	0,242344	0,000468	0,011858
TOX2	84969	TOX high mobility group box family member 2	14,65401947	-0,58859	0,322528	0,001353	0,022468
NDRG2	57447	NDRG family member 2	49,23072744	-0,59096	0,237818	0,000402	0,011032
PIK3IP1	113791	phosphoinositide-3-kinase interacting protein 1	693,696463	-0,59153	0,213683	0,000199	0,007067
CACNA1F	778	calcium voltage-gated channel subunit alpha1 F	6,092365412	-0,5927	0,510241	0,00243	0,031744
TRAV17	28666	T cell receptor alpha variable 17	16,6394597	-0,59389	0,33438	0,001372	0,022692
BACH2	60468	BTB domain and CNC homolog 2	138,9322033	-0,59456	0,232965	0,000332	0,009801
NSUN6	221078	NOP2/Sun RNA methyltransferase 6	44,28470879	-0,59671	0,181645	4,06E-05	0,002555
ETS1	2113	ETS proto-oncogene 1, transcription factor	2215,081592	-0,5989	0,186932	5,17E-05	0,002891
BCL11B	64919	BAF chromatin remodeling complex subunit BCL11B	395,0480217	-0,59931	0,210276	0,000147	0,005722
PKD1P6	353511	polycystin 1, transient receptor potential channel interacting pseudogene 6	95,4929475	-0,59958	0,218033	0,000192	0,006898
IFT80	57560	intraflagellar transport 80	33,4808835	-0,60017	0,415925	0,001887	0,027282
ZXDB	158586	zinc finger X-linked duplicated B	55,06499608	-0,60113	0,19171	6,26E-05	0,003223
TMEM263	90488	transmembrane protein 263	89,85033538	-0,60152	0,167183	1,31E-05	0,001192
IGHD	3495	immunoglobulin heavy constant delta	397,5019182	-0,60163	0,3588	0,001446	0,023328
SDK2	54549	sidekick cell adhesion molecule 2	38,51195201	-0,60395	0,492203	0,002175	0,029609
ZC3H6	376940	zinc finger CCCH-type containing 6	134,8939146	-0,60625	0,24711	0,000368	0,010417
GPR183	1880	G protein-coupled receptor 183	166,9106005	-0,60888	0,296619	0,000783	0,016311
ZNF419	79744	zinc finger protein 419	43,99544951	-0,61306	0,287871	0,000656	0,014614
SUN1	23353	Sad1 and UNC84 domain containing 1	225,756971	-0,61494	0,180483	2,25E-05	0,00169
IL5RA	3568	interleukin 5 receptor subunit alpha	100,2307769	-0,61593	0,554757	0,002108	0,029205
TRABD2A	129293	TraB domain containing 2A	232,4811821	-0,61629	0,242963	0,000274	0,008863
APBB1	322	amyloid beta precursor protein binding family B member 1	68,16021459	-0,61652	0,313306	0,000834	0,016968
GATM	2628	glycine amidinotransferase	11,21615158	-0,61735	0,454081	0,001786	0,026522
GATA3	2625	GATA binding protein 3	164,2152938	-0,61763	0,253672	0,000341	0,00996
TRBV12-3	28577	T cell receptor beta variable 12-3	18,92029692	-0,61798	0,388066	0,001389	0,022786
RBM19	9904	RNA binding motif protein	107,1638609	-0,61867	0,198679	5,61E-05	0,002998

PAX5	5079	paired box 5	145,2870961	-0,61906	0,378381	0,001305	0,021867
NT5C3B	115024	5'-nucleotidase, cytosolic	35,38409523	-0,61979	0,249249	0,000297	0,009185
CUTALP	253039	cutA divalent cation tolerance homolog-like, pseudogene	229,5512449	-0,62116	0,271895	0,00045	0,011718
APOBEC3D	140564	apolipoprotein B mRNA editing enzyme catalytic subunit 3D	30,25255423	-0,62264	0,455192	0,001705	0,025752
TUBG2	27175	tubulin gamma 2	24,64633572	-0,62316	0,241798	0,000232	0,007971
CDHR3	222256	cadherin related family	7,585804798	-0,62532	0,50953	0,001877	0,02719
PMS2	5395	PMS1 homolog 2, mismatch repair system	24,90128269	-0,63198	0,200741	4,41E-05	0,002653
SOX8	30812	SRY-box 8	7,808149516	-0,63232	0,446064	0,001511	0,023905
GSTA4	2941	glutathione S-transferase	5,378628996	-0,63327	0,504658	0,001745	0,026162
SYT17	51760	synaptotagmin 17	18,89799181	-0,63389	0,411521	0,001299	0,021867
TRIB2	28951	tribbles pseudokinase 2	307,0776549	-0,64361	0,211688	5,42E-05	0,002955
KLF8	11279	Kruppel like factor 8	39,85907908	-0,64488	0,325167	0,00062	0,014037
EGLN3	112399	egl-9 family hypoxia	19,13375282	-0,64491	0,407086	0,001128	0,0201
ZNF154	7710	zinc finger protein 154	37.22832721	-0.64697	0.25434	0.000196	0.007012
AHRR	57491	aryl-hydrocarbon receptor	8,334906327	-0,64801	0,584876	0,001724	0,02593
ESF1	51575	repressor ESF1 nucleolar pre-rRNA processing protein	50,52682912	-0,65218	0,235584	0,000106	0,00459
PPM1K	152926	protein phosphatase, Mg2+/Mn2+ dependent 1K	344,1433054	-0,65347	0,188181	1,22E-05	0,001127
CROCCP3	114819	CROCC pseudogene 3	60,4885856	-0,65412	0,208896	3,7E-05	0,00238
ZNF600	162966	zinc finger protein 600	87,84244219	-0,65852	0,232429	8,35E-05	0,003977
TPH1	7166	tryptophan hydroxylase 1	5,410780709	-0,66081	0,42319	0,00103	0,019172
ENOSF1	55556	enolase superfamily member 1	108,7058268	-0,66124	0,245947	0,000119	0,004918
CD28	940	CD28 molecule	248,1827101	-0,66463	0,219206	4,47E-05	0,002656
POLH	5429	DNA polymerase eta	74,46707619	-0,67088	0,177785	3,44E-06	0,000516
MRTFB	57496	myocardin related transcription factor B	40,26463483	-0,67092	0,30116	0,000307	0,00935
ZNF880	400713	zinc finger protein 880	23,15070413	-0,67129	0,276113	0,000198	0,00705
SPIB	6689	Spi-B transcription factor	132,0630451	-0,67746	0,319477	0,000357	0,010213
SLC17A9	63910	solute carrier family 17 member 9	60,130503	-0,67995	0,206324	1,68E-05	0,001429
NT5E	4907	5'-nucleotidase ecto	40,07811066	-0,68298	0,334893	0,000397	0,010984
ZCCHC14	23174	zinc finger CCHC-type	72,47756468	-0,69204	0,214223	1,83E-05	0,001514
ZBTB25	7597	zinc finger and BTB domain containing 25	180,1928882	-0,69841	0,178329	1,49E-06	0,000319
FPR3	2359	formyl peptide receptor 3	18,8858612	-0,70094	0,398532	0,000565	0,013244
OXNAD1	92106	oxidoreductase NAD binding domain containing 1	68,56026326	-0,70153	0,275919	0,000113	0,004782
AC124944.2			41,46373402	-0,70602	0,252024	5,56E-05	0,002979
CCDC191	57577	coiled-coil domain containing 191	36,95527734	-0,70921	0,229155	2,32E-05	0,00172
LEF1	51176	lymphoid enhancer binding factor 1	501,52192	-0,71376	0,254136	5,04E-05	0,002886
KLHL3	26249	kelch like family member 3	49,8119217	-0,71543	0,287498	0,000112	0,004782
TRAV8-4	28682	T cell receptor alpha variable 8-4	10,02924724	-0,71667	0,392794	0,000447	0,011714
FAM102A	399665	family with sequence similarity 102 member A	674,4109861	-0,71693	0,277568	8,79E-05	0,00407
GBAP1	2630	glucosylceramidase beta pseudogene 1	23,34149331	-0,71898	0,288215	0,000107	0,004611
DCHS1	8642	dachsous cadherin-related 1	31,57776827	-0,72777	0,269523	5,84E-05	0,003097

ERCC6	2074	ERCC excision repair 6, chromatin remodeling factor	44,35665558	-0,73027	0,247647	2,87E-05	0,001963
AL358113.1			13,30580367	-0,748	0,523541	0,000712	0,015475
TNFRSF13C	115650	TNF receptor superfamily member 13C	145,4656931	-0,74969	0,316419	0,000109	0,004662
GPR15	2838	G protein-coupled receptor 15	43,76485165	-0,75529	0,549276	0,000741	0,01585
PATJ	10207	PATJ crumbs cell polarity complex component	87,96641888	-0,76209	0,218329	3,65E-06	0,00054
TRBV12-4	28576	T cell receptor beta variable 12-4	17,1052058	-0,76357	0,404357	0,000282	0,008959
CA5B	11238	carbonic anhydrase 5B	191,4110506	-0,76531	0,229882	6,11E-06	0,000734
ADAM22	53616	ADAM metallopeptidase domain 22	13,22887663	-0,77398	0,341566	0,000113	0,004782
ZNF860	344787	zinc finger protein 860	6,21480036	-0,77675	0,595645	0,000732	0,015731
ELAPOR2			20,6111901	-0,77946	0,43784	0,000317	0,009482
NOG	9241	noggin	29,35129032	-0,78082	0,433638	0,000301	0,009236
MAGED1	9500	MAGE family member D1	92,03272403	-0,7818	0,371988	0,000156	0,005976
WNT7A	7476	Wnt family member 7A	10,9995024	-0,79204	0,471384	0,000359	0,010243
VPS4B	9525	vacuolar protein sorting 4 homolog B	15,47162369	-0,79314	0,514995	0,000465	0,011858
GALNT12	79695	polypeptide N- acetylgalactosaminyltransf erase 12	25,65485417	-0,80703	0,323923	4,92E-05	0,00284
RCAN3	11123	RCAN family member 3	373,9826151	-0,83668	0,22063	5,43E-07	0,00017
TAMALIN			34,21544971	-0,84479	0,271393	5,62E-06	0,000689
CHD5	26038	chromodomain helicase DNA binding protein 5	6,007231254	-0,84933	0,866134	0,000525	0,012613
P2RY10	27334	P2Y receptor family member 10	195,8951399	-0,85022	0,265358	3,95E-06	0,000567
PLAAT5	117245	phospholipase A and acyltransferase 5	7,058357257	-0,87104	0,649051	0,000458	0,011788
EHBP1	23301	EH domain binding protein 1	52,57725809	-0,88246	0,273204	2,7E-06	0,000444
DUSP4	1846	dual specificity phosphatase 4	12,90709817	-0,89921	0,321255	9,81E-06	0,00097
CCDC144CP	348254	coiled-coil domain containing 144C, pseudogene	4,957541063	-0,96609	0,693176	0,000298	0,009185
CCR4	1233	C-C motif chemokine receptor 4	146,6334373	-0,97375	0,349837	6,38E-06	0,000749
ZNF285	26974	zinc finger protein 285	9,863946515	-0,98554	0,405907	1,9E-05	0,001556
MROH7- TTC4	1,01E+0 8	MROH7-TTC4 readthrough (NMD candidate)	5,179583259	-0,9865	0,892025	0,000328	0,009749
C14orf132	56967	chromosome 14 open reading frame 132	16,11365436	-1,00706	0,454554	3,34E-05	0,002209
ZDHHC11B	653082	zinc finger DHHC-type containing 11B	11,41005052	-1,01445	0,603829	0,000141	0,005612
PTPRK	5796	protein tyrosine phosphatase receptor type K	16,72916093	-1,11785	0,504977	2,42E-05	0,001741
FCGBP	8857	Fc fragment of IgG binding protein	62,73294277	-1,12348	0,495421	2,01E-05	0,001599
PCBD2	84105	pterin-4 alpha- carbinolamine dehydratase 2	33,88285939	-1,20225	0,427419	2,71E-06	0,000444
MMP28	79148	matrix metallopeptidase 28	6,280309716	-1,34662	0,682021	3,42E-05	0,002244
HS3ST1	9957	heparan sulfate- glucosamine 3- sulfotransferase 1	9,201054908	-1,45728	0,598877	8,78E-06	0,000917

Anexo 5: Vias enriquecidas dos genes regulados positivamente pela análise de ORA na reanálise de ENH x LL. ID- identificação da via no gene ontology. Gene ratio – número de genes associado a via / total de genes significativos. BgRatio – número total de genes associado a via / número total de genes identificados no RNAseq. padj – p value ajustado. qvalue – pvalue ajustado pela taxa de falsa descoberta (false discovery rate – FDR). GeneID – descrição dos genes associados com a via. Contagem – Número de genes associados com a via.

ID	Descrição	Gene Ratio	Bg Ratio	pvalue	p. adjust	qvalue	genelD	# de genes	Odd Ratio
GO:004 3299	leukocyte degranulation	75/354	494/11693	1,4E- 32	5E-29	4E-29	CD177/LRG1/MCEMP1/AN XA3/ITGAM/S100A9/HP/LT A4H/GYG1/S100A12/GPR 84/MILR1/MAPK14/PADI2/ CTSA/STOM/RAB24/CYST M1/HK3/RETN/PTPRJ/CD6 3/NBEAL2/ADGRG3/PYGL /SELL/LILRB3/NAPRT/IL4 R/SIGLEC9/FPR2/MMP8/C D300A/FCGR2A/CHIT1/SI RPA/SERPINB1/STXBP2/ CEACAM3/BRI3/BST1/CD 59/HCK/FCGR3B/SERPIN A1/QPCT/FES/FCER1G/0 LFM4/HSPA6/GCA/FPR1/A LOX5/DYNLT1/MMP25/TN FAIP6/S100A11/DOK3/LC N2/CAMP/PPBP/CXCR1/T LR2/F2RL1/SLPI/CR1/PGL YRP1/ARG1/S100A8/HSP A1B/TIMP2/OLR1/CEACA M1/BPI/CRISP3	75	5,014 839
GO:004 2119	neutrophil activation	72/354	469/11693	1,4E- 31	3E-28	2E-28	CD177/LRG1/MCEMP1/AN XA3/ITGAM/S100A9/HP/LT A4H/GYG1/S100A9/HP/LT A4H/GYG1/S100A12/GPR 84/MAPK14/PAD12/CTSA/ STOM/RAB24/CYSTM1/HK 3/RETN/PTPRJ/CD63/NBE AL2/ADGRG3/PYGL/SELL/ LILRB3/NAPRT/SIGLEC9/ FPR2/MMP8/CD300A/FCG R2A/CHIT1/SIRPA/SERPI NB1/STXBP2/CEACAM3/B R13/BST1/CD59/FCGR3B/ SERPINA1/QPCT/FCER1G /OLFM4/HSPA6/GCA/FPR 1/ALOX5/DYNLT1/MMP25/ TNFAIP6/S100A11/DOK3/L CN2/CAMP/PPBP/CXCR1/ TLR2/F2RL1/SLP1/CR1/PG LYRP1/IL18RAP/ARG1/S1 00A8/HSPA1B/TIMP2/OLR 1/CEACAM1/BP1/CRISP3	72	5,070 868
GO:003 6230	granulocyte activation	72/354	475/11693	3,3E- 31	4E-28	3E-28	CD177/LRG1/MCEMP1/AN XA3/ITGAM/S100A9/HP/LT A4H/GYG1/S100A12/GPR 84/MAPK14/PADI2/CTSA/ STOM/RAB24/CYSTM1/HK 3/RETN/PTPRJ/CD63/NBE AL2/ADGRG3/PYGL/SELL/ LILRB3/NAPRT/SIGLEC9/ FPR2/MMP8/CD300A/FCG R2A/CHIT1/SIRPA/SERPI NB1/STXBP2/CEACAM3/B RI3/BST1/CD59/FCGR3B/ SERPINA1/QPCT/FCER1G /OLFM4/HSPA6/GCA/FPR 1/ALOX5/DYNLT1/MMP25/ TNFAIP6/S100A11/DOK3/L CN2/CAMP/PPBP/CXCR1/ TLR2/F2RL1/SLPI/CR1/PG LYRP1/IL18RAP/ARG1/S1 00A8/HSPA1B/TIMP2/OLR 1/CEACAM1/BPI/CRISP3	72	5,006 815

GO:000 2446	neutrophil mediated immunity	71/354	467/11693	7,6E- 31	7E-28	6E-28	CD177/LRG1/MCEMP1/AN XA3/ITGAM/S100A9/HP/LT A4H/GYG1/S100A12/GPR 84/MAPK14/PADI2/CTSA/ STOM/RAB24/CYSTM1/HK 3/RETN/PTPRJ/CD63/NBE AL2/ADGRG3/PYGL/SELL/ LILRB3/NAPRT/SIGLEC9/ FPR2/MMP8/CD300A/FCG R2A/CHIT1/SIRPA/SERPI NB1/STXBP2/CEACAM3/B RI3/BST1/CD59/FCGR3B/ SERPINA1/QPCT/FCER1G /OLFM4/HSPA6/GCA/FPR 1/ALOX5/DYNLT1/MMP25/ TNFAIP6/S100A11/DOK3/L CN2/CAMP/PPBP/CXCR1/ TLR2/F2RL1/SLPI/CR1/PG LYRP1/ARG1/S100A8/HSP A1B/TIMP2/OLR1/CEACA M1/BPI/CRISP3	71	5,021 855
GO:004 3312	neutrophil degranulation	70/354	457/11693	1,3E- 30	1E-27	8E-28	CD177/LRG1/MCEMP1/AN XA3/ITGAM/S100A9/HP/LT A4H/GYG1/S100A12/GPR 84/MAPK14/PAD12/CTSA/ STOM/RAB24/CYSTM1/HK 3/RETN/PTPRJ/CD63/NBE AL2/ADGRG3/PYGL/SELL/ LILRB3/NAPRT/SIGLEC9/ FPR2/MMP8/CD300A/FCG R2A/CHIT1/SIRPA/SERPI NB1/STXBP2/CEACAM3/B R13/BST1/CD59/FCGR3B/ SERPINA1/QPCT/FCER1G /OLFM4/HSPA6/GCA/FPR 1/ALOX5/DYNLT1/MMP25/ TNFAIP6/S100A11/DOK3/L CN2/CAMP/PPBP/CXCR1/ TLR2/SLPI/CR1/PGLYRP1/ ARG1/S100A8/HSPA1B/TI MP2/OLR1/CEACAM1/BPI/ CRISP3	70	5,059 464
GO:000 2283	neutrophil activation involved in immune response	70/354	460/11693	2E-30	1E-27	1E-27	CD177/LRG1/MCEMP1/AN XA3/ITGAM/S100A9/HP/LT A4H/GYG1/S100A12/GPR 84/MAPK14/PAD12/CTSA/ STOM/RAB24/CYSTM1/HK 3/RETN/PTPRJ/CD63/NBE AL2/ADGRG3/PYGL/SELL/ LILRB3/NAPRT/SIGLEC9/ FPR2/MMP8/CD300A/FCG R2A/CHIT1/SIRPA/SERPI NB1/STXBP2/CEACAM3/B R13/BST1/CD59/FCGR3B/ SERPINA1/QPCT/FCER1G /OLFM4/HSPA6/GCA/FPR 1/ALOX5/DYNLT1/MMP25/ TNFAIP6/S100A11/DOK3/L CN2/CAMP/PPBP/CXCR1/ TLR2/SLPI/CR1/PGLYRP1/ ARG1/S100A8/HSPA1B/TI MP2/OLR1/CEACAM1/BPI/ CRISP3	70	5,026 468
GO:000 9617	response to bacterium	44/354	390/11693	2,9E- 14	2E-11	1E-11	TLR5/LRG1/ANXA3/S100A 9/HP/GBP6/S100A12/MAP K14/CSF2RB/SBNO2/PYG L/NLRC4/FPR2/TNFRSF1 A/CASP1/CHIT1/SIRPA/IC AM1/CEBPB/IL1B/TSPO/A LPL/HCK/GBP5/TRIB1/TL R1/ZFP36/FAM20A/LCN2/ CAMP/PPBP/BCL3/TLR2/F 2RL1/TLR9/SLPI/PGLYRP 1/ARG1/S100A8/IL27/SNX 3/FKBP5/BPI/FZD5	44	3,726 583

GO:003 1349	positive regulation of defense response	42/354	400/11693	1,4E- 12	6E-10	5E-10	TLR5/ITGAM/LILRA5/S100 A9/OSM/ALPK1/FFAR2/S1 00A12/FLOT1/PSMB9/AIM 2/NLRC4/FPR2/TNFRSF1 A/MARCO/MMP8/CD300A/ CEBPB/PSMB3/IL1B/TIFA/ HCK/GBP5/TLR8/FCER1G /ARRB2/TLR1/NECTIN2/U BE2D1/PLSCR1/FFAR3/TL R2/F2RL1/IRF1/TLR9/PGL YRP1/IL18RAP/ARG1/S10 0A8/HSPA1B/C1QA/TGM2	42	3,468 263
GO:005 0727	regulation of inflammatory response	37/354	323/11693	2,4E- 12	1E-09	8E-10	SOCS3/ITGAM/LILRA5/S1 00A9/OSM/FFAR2/S100A1 2/MAPK14/SBNO2/FPR2/T NFRSF1A/MMP8/SIRPA/C EBPB/IL1B/GBA/BST1/CD 59/HCK/GBP5/FCER1G/C4 BPA/CST7/TNFAIP6/FFAR 3/C4A/CLU/TLR2/TLR9/CR 1/PGLYRP1/S100A8/SERP ING1/C1QA/CR1L/TGM2/IL 1R2	37	3,783 745
GO:009 8542	defense response to other organism	36/354	323/11693	1,1E- 11	4E-09	3E-09	TLR5/ANXA3/S100A9/HP/ GBP6/S100A12/TRIM25/B ATF2/AIM2/NLRC4/IL10RB /IL4R/FPR2/TNFRSF1A/CE BPB/IL1B/TLR8/PLSCR1/G BP1/LCN2/CAMP/PPBP/B CL3/TLR2/F2RL1/IRF1/LG ALS8/TLR9/SLPI/PGLYRP 1/ARG1/S100A8/IL27/BAT F/BPI/HTRA1	36	3,681 482
GO:005 0663	cytokine secretion	25/354	169/11693	4,3E- 11	1E-08	1E-08	TLR5/CD274/LILRA5/OSM/ DYSF/FFAR2/S100A12/MA PK14/AIM2/NLRC4/IL4R/M MP8/CASP1/SERPINB1/IL 1B/GBP5/TLR8/TLR1/SRG N/GBP1/TLR2/F2RL1/TLR 9/FZD5/IL1R2	25	4,886 253
GO:000 2697	regulation of immune effector process	37/354	363/11693	7,8E- 11	2E-08	2E-08	CD177/ITGAM/JAK3/FFAR 2/TMBIM6/BCL6/MAPK14/ PTPRJ/AIM2/IL4R/CD300A /STXBP2/IL18/CD59/FES/ FCER1G/ARRB2/TRPM4/C 4BPA/IL18R1/NECTIN2/FF AR3/C4A/CLU/F2RL1/TLR 9/CR1/IL18RAP/ARG1/IL27 /CLEC4G/SERPING1/C1Q A/CR1L/CEACAM1/FZD5/ HTRA1	37	3,366 804
GO:004 5088	regulation of innate immune response	37/354	365/11693	9,2E- 11	3E-08	2E-08	TLR5/SOCS3/ITGAM/S100 A9/ALPK1/FFAR2/FLOT1/ PSMB9/AIM2/NLRC4/FPR 2/MARCO/CD300A/PSMB3 /TIFA/HCK/GBP5/TLR8/FC ER1G/ARRB2/TLR1/NECTI N2/NMI/UBE2D1/PLSCR1/ TLR2/F2RL1/IRF1/TLR9/C R1/PGLYRP1/IL18RAP/AR G1/S100A8/HSPA1B/SER PING1/CEACAM1	37	3,348 355
GO:004 2742	defense response to bacterium	21/354	126/11693	1,7E- 10	4E-08	4E-08	TLR5/ANXA3/S100A9/HP/ GBP6/S100A12/NLRC4/FP R2/TNFRSF1A/CEBPB/LC N2/CAMP/PPBP/BCL3/TLR 2/F2RL1/TLR9/SLPI/PGLY RP1/S100A8/BPI	21	5,505 179
GO:000 2683	negative regulation of immune system process	35/354	343/11693	2,5E- 10	6E-08	5E-08	LILRB4/CD274/PDCD1LG2 /JAK3/TMBIM6/BCL6/MILR 1/PADI2/PTPRJ/LILRB3/IL 4R/CD300A/CEBPB/CD59/ TRIB1/DUSP3/FCER1G/A RRB2/ZFP36/C4BPA/CST7 /NMI/GBP1/TMEM176A/F2 RL1/IRF1/TLR9/CR1/ARG1 /CLEC4G/SERPING1/TAL1 /CEACAM1/BPI/HTRA1	35	3,370 518

GO:000 1818	negative regulation of cytokine production	26/354	213/11693	1,3E- 09	3E-07	2E-07	CD274/PDCD1LG2/JAK3/L ILRA5/BCL6/TRIM25/MMP 8/SIRPA/SERPINB1/GBA/T SPO/TLR8/ARRB2/FURIN/ ZFP36/NMI/SRGN/GBP1/B CL3/F2RL1/UBE2L6/TLR9/ ARG1/CEACAM1/BPI/IL1R 2	26	4,031 962
GO:005 0729	positive regulation of inflammatory response	18/354	104/11693	1,8E- 09	4E-07	3E-07	ITGAM/LILRA5/S100A9/OS M/FFAR2/S100A12/TNFRS F1A/MMP8/CEBPB/IL1B/G BP5/FCER1G/FFAR3/TLR 2/TLR9/S100A8/C1QA/TG M2	18	5,716 917
GO:005 0707	regulation of cytokine secretion	21/354	146/11693	2,7E- 09	6E-07	5E-07	TLR5/CD274/LILRA5/OSM/ FFAR2/MAPK14/AIM2/IL4 R/MMP8/CASP1/SERPINB 1/IL1B/TLR8/TLR1/SRGN/ GBP1/TLR2/F2RL1/TLR9/F ZD5/IL1R2	21	4,751 045
GO:190 3530	regulation of secretion by cell	40/354	472/11693	3,3E- 09	6E-07	5E-07	CD177/TLR5/CD274/ITGA M/LILRA5/OSM/FFAR2/TM BIM6/MAPK14/RETN/HCA R2/AIM2/IL4R/TNFRSF1A/ MMP8/CASP1/CD300A/SE RPINB1/STXBP2/IL1B/TLR 8/FES/FCER1G/TRPM4/TL R1/PIM3/CACNA1E/SRGN/ GBP1/FFAR3/TLR2/F2RL1 /TLR9/RHBDF2/NTSR1/PI NK1/CEACAM1/PFKFB2/F ZD5/IL1R2	40	2,799 244
GO:000 2703	regulation of leukocyte mediated immunity	22/354	163/11693	3,8E- 09	7E-07	6E-07	CD177/ITGAM/JAK3/BCL6/ IL4R/CD300A/STXBP2/IL1 B/FES/FCER1G/ARRB2/T RPM4/C4BPA/IL18R1/NEC TIN2/F2RL1/CR1/IL18RAP/ ARG1/CLEC4G/CEACAM1 /FZD5	22	4,458 182
GO:004 5089	positive regulation of innate immune response	31/354	311/11693	5E-09	9E-07	7E-07	TLR5/ITGAM/S100A9/ALP K1/FFAR2/FLOT1/PSMB9/ AIM2/NLRC4/FPR2/MARC O/CD300A/PSMB3/TIFA/H CK/GBP5/TLR8/FCER1G/A RRB2/TLR1/NECTIN2/UBE 2D1/PLSCR1/TLR2/F2RL1/ IRF1/TLR9/PGLYRP1/IL18 RAP/S100A8/HSPA1B	31	3,292 486
GO:000 2790	peptide secretion	36/354	404/11693	5,7E- 09	1E-06	8E-07	TLR5/CD274/LILRA5/OSM/ DYSF/FFAR2/TMBIM6/S10 0A12/MAPK14/HCAR2/AIM 2/NLRC4/IL4R/MMP8/CAS P1/SERPINB1/IL1B/GBP5/ TLR8/TRPM4/TLR1/PIM3/ CACNA1E/SRGN/GBP1/FF AR3/TLR2/F2RL1/LTBP2/T LR9/RHBDF2/S100A8/DM TN/PFKFB2/FZD5/IL1R2	36	2,943 363
GO:003 4341	response to interferon- gamma	20/354	147/11693	1,7E- 08	3E-06	2E-06	FCGR1A/FCGR1B/SOCS3/ GBP6/TRIM25/CASP1/SIR PA/STXBP2/ICAM1/HCK/G BP5/RAB20/GBP2/IFITM1/I FITM2/NMI/GBP1/TLR2/IR F1/ARG1	20	4,494 024
GO:000 9306	protein secretion	34/354	385/11693	1,9E- 08	3E-06	2E-06	TLR5/CD274/LILRA5/OSM/ DYSF/FFAR2/TMBIM6/S10 0A12/MAPK14/HCAR2/AIM 2/NLRC4/IL4R/MMP8/CAS P1/SERPINB1/IL1B/GBP5/ TLR8/TRPM4/TLR1/PIM3/ CACNA1E/SRGN/GBP1/TL R2/F2RL1/LTBP2/TLR9/RH BDF2/DMTN/PFKFB2/FZD 5/IL1R2	34	2,917 03

GO:004 2116	macrophage activation	14/354	71/11693	2,1E- 08	3E-06	3E-06	ITGAM/DYSF/SBNO2/IL4R /FPR2/MMP8/NAMPT/TLR 8/TLR1/CST7/CLU/TLR2/C 1QA/BPI	14	6,513 169
GO:003 2103	positive regulation of response to external stimulus	24/354	216/11693	3,7E- 08	5E-06	4E-06	ITGAM/LILRA5/S100A9/OS M/DYSF/FFAR2/S100A12/ MAPK14/FPR2/TNFRSF1A /MMP8/CEBPB/IL1B/GBP5 /FCER1G/SCARF1/FFAR3/ TLR2/F2RL1/TLR9/ARG1/ S100A8/C1QA/TGM2	24	3,670 119
GO:000 2460	neg. reg. of adaptive immune resp. based on somatic recomb.	26/354	255/11693	5,8E- 08	8E-06	7E-06	CD274/JAK3/BCL6/IL4R/IC AM1/IL1B/SEMA4A/TLR8/F CER1G/TRPM4/C4BPA/IL1 8R1/NECTIN2/C4A/BCL3/ CLU/CR1/IL18RAP/ARG1/I L27/CLEC4G/SERPING1/C 1QA/BATF/CEACAM1/FZD 5	26	3,367 874
GO:000 2791	regulation of peptide secretion	30/354	332/11693	8,4E- 08	1E-05	9E-06	TLR5/CD274/LILRA5/OSM/ FFAR2/TMBIM6/MAPK14/ HCAR2/AIM2/IL4R/MMP8/ CASP1/SERPINB1/IL1B/TL R8/TRPM4/TLR1/PIM3/CA CNA1E/SRGN/GBP1/FFAR 3/TLR2/F2RL1/TLR9/RHB DF2/S100A8/PFKFB2/FZD 5/IL1R2	30	2,984 736
GO:007 1346	cellular response to interferon- gamma	18/354	132/11693	8,8E- 08	1E-05	9E-06	FCGR1A/FCGR1B/SOCS3/ GBP6/TRIM25/CASP1/SIR PA/STXBP2/ICAM1/HCK/G BP5/RAB20/GBP2/NMI/GB P1/TLR2/IRF1/ARG1	18	4,504 237
GO:003 2612	interleukin-1 production	14/354	80/11693	1E-07	1E-05	1E-05	LILRA5/AIM2/NLRC4/CAS P1/SIRPA/SERPINB1/IL1B/ GBP5/TLR8/ARRB2/F2RL1 /CEACAM1/FZD5/IL1R2	14	5,780 438
GO:000 2526	acute inflammatory response	19/354	151/11693	1,4E- 07	2E-05	1E-05	HP/OSM/FFAR2/ICAM1/C EBPB/IL1B/CD59/SERPIN A1/FCER1G/C4BPA/PLSC R1/FFAR3/C4A/CLU/CR1/ S100A8/SERPING1/C1QA/ CR1L	19	4,156 228
GO:003 0099	myeloid cell differentiation	29/354	321/11693	1,4E- 07	2E-05	1E-05	LILRB4/NFE2/BCL6/MAPK 14/THOC5/LTBR/BATF2/S BN02/NBEAL2/LILRB3/CE BPB/TRIB1/FES/FCER1G/ ZFP36/JUNB/CSF3R/MYL9 /TLR2/F2RL1/HSPA1B/DM TN/BATF/ALAS2/ITGA2B/T AL1/CEACAM1/SLC4A1/C LEC1B	29	2,984 116
GO:005 0764	regulation of phagocytosis	13/354	71/11693	1,7E- 07	2E-05	2E-05	DYSF/PTPRJ/FPR2/CD300 A/SIRPA/IL1B/HCK/C4BPA /IL15RA/C4A/TLR2/F2RL1/ SNX3	13	6,047 943
GO:000 2218	activation of innate immune response	26/354	269/11693	1,7E- 07	2E-05	2E-05	TLR5/ITGAM/S100A9/ALP K1/FFAR2/FLOT1/PSMB9/ AIM2/NLRC4/MARCO/CD3 00A/PSMB3/TIFA/HCK/TL R8/FCER1G/ARRB2/TLR1/ UBE2D1/TLR2/F2RL1/IRF1 /TLR9/PGLYRP1/S100A8/ HSPA1B	26	3,192 594
GO:000 2221	pattern recognition receptor signaling pathway	20/354	169/11693	1,8E- 07	2E-05	2E-05	TLR5/ITGAM/S100A9/ALP K1/FFAR2/FLOT1/MARCO/ CD300A/TIFA/TLR8/ARRB 2/TLR1/UBE2D1/TLR2/F2R L1/IRF1/TLR9/PGLYRP1/S 100A8/HSPA1B	20	3,909 003
GO:006 1900	glial cell activation	10/354	40/11693	2,1E- 07	2E-05	2E-05	ITGAM/FPR2/MMP8/NAMP T/IL1B/TLR8/CST7/CLU/TL R2/C1QA	10	8,257 768

GO:000 2367	cytokine production involved in immune response	14/354	85/11693	2,3E- 07	2E-05	2E-05	JAK3/FFAR2/BCL6/MAPK1 4/IL1B/FCER1G/TRPM4/IL 18R1/FFAR3/TLR2/F2RL1/ IL18RAP/ARG1/FZD5	14	5,440 412
GO:005 0715	positive regulation of cytokine secretion	15/354	100/11693	3E-07	3E-05	2E-05	CD274/LILRA5/OSM/FFAR 2/MAPK14/AIM2/IL4R/MM P8/CASP1/IL1B/TLR8/TLR 1/TLR2/F2RL1/FZD5	15	4,954 661
GO:005 0708	regulation of protein secretion	28/354	317/11693	3,7E- 07	3E-05	3E-05	TLR5/CD274/LILRA5/OSM/ FFAR2/TMBIM6/MAPK14/ HCAR2/AIM2/IL4R/MMP8/ CASP1/SERPINB1/IL1B/TL R8/TRPM4/TLR1/PIM3/CA CNA1E/SRGN/GBP1/TLR2 /F2RL1/TLR9/RHBDF2/PF KFB2/FZD5/IL1R2	28	2,917 571
GO:000 1819	positive regulation of cytokine production	30/354	356/11693	3,8E- 07	4E-05	3E-05	TLR5/CD274/LILRA5/OSM/ FFAR2/MAPK14/FLOT1/PT PRJ/AIM2/IL4R/MMP8/CA SP1/CEBPB/IL1B/GBP5/TL R8/FCER1G/FURIN/TLR1/I L18R1/FFAR3/BCL3/CLU/T LR2/F2RL1/IRF1/TLR9/HS PA1B/IL27/FZD5	30	2,783 517
GO:000 1774	microglial cell activation	9/354	34/11693	5,2E- 07	4E-05	4E-05	ITGAM/FPR2/MMP8/NAMP T/TLR8/CST7/CLU/TLR2/C 1QA	9	8,743 519
GO:000 2269	leukocyte activation involved in inflammatory response	9/354	34/11693	5,2E- 07	4E-05	4E-05	ITGAM/FPR2/MMP8/NAMP T/TLR8/CST7/CLU/TLR2/C 1QA	9	8,743 519
GO:000 2699	positive regulation of immune effector process	19/354	164/11693	5,2E- 07	4E-05	4E-05	CD177/ITGAM/FFAR2/MA PK14/PTPRJ/IL4R/CD300A /STXBP2/IL1B/FES/FCER1 G/IL18R1/NECTIN2/FFAR3 /F2RL1/TLR9/IL18RAP/AR G1/FZD5	19	3,826 771
GO:003 2613	interleukin-10 production	10/354	44/11693	5,6E- 07	5E-05	4E-05	CD274/PDCD1LG2/JAK3/L ILRA5/MMP8/FCER1G/BC L3/TLR2/F2RL1/TLR9	10	7,507 062
GO:000 2822	neg. reg. of adaptive immune resp. based on somatic recomb.	16/354	119/11693	5,6E- 07	5E-05	4E-05	CD274/JAK3/BCL6/IL4R/IL 1B/FCER1G/TRPM4/C4BP A/IL18R1/NECTIN2/CR1/A RG1/IL27/CLEC4G/CEACA M1/FZD5	16	4,441 153
GO:000 2819	regulation of adaptive immune response	17/354	134/11693	5,8E- 07	5E-05	4E-05	CD274/JAK3/BCL6/IL4R/IL 1B/FCER1G/TRPM4/C4BP A/IL18R1/NECTIN2/IRF1/C R1/ARG1/IL27/CLEC4G/C EACAM1/FZD5	17	4,190 509
GO:000 2758	innate immune response- activating signal transduction	24/354	250/11693	5,8E- 07	5E-05	4E-05	TLR5/ITGAM/S100A9/ALP K1/FFAR2/FLOT1/PSMB9/ MARCO/CD300A/PSMB3/T IFA/HCK/TLR8/FCER1G/A RRB2/TLR1/UBE2D1/TLR2 /F2RL1/IRF1/TLR9/PGLYR P1/S100A8/HSPA1B	24	3,170 983
GO:003 2677	regulation of interleukin-8 production	11/354	56/11693	7,4E- 07	6E-05	5E-05	TLR5/FFAR2/IL1B/TLR8/T LR1/BCL3/TLR2/F2RL1/TL R9/HSPA1B/BPI	11	6,488 247
GO:005 0865	regulation of cell activation	33/354	428/11693	7,6E- 07	6E-05	5E-05	CD177/LILRB4/CD274/PD CD1LG2/ITGAM/JAK3/LIL RA5/BCL6/MILR1/FLOT2/I L4R/MMP8/CD300A/STXB P2/CEBPB/IL1B/DUSP3/F ES/FCER1G/CST7/NECTI N2/PLSCR1/F2RL1/IRF1/T LR9/CR1/ARG1/IL27/CLEC 4G/DMTN/C1QA/CEACAM 1/BPI	33	2,546 788

GO:003 2611	interleukin-1 beta production	12/354	68/11693	7,8E- 07	6E-05	5E-05	LILRA5/AIM2/NLRC4/CAS P1/SIRPA/SERPINB1/IL1B/ GBP5/TLR8/ARRB2/F2RL1 /FZD5	12	5,829 013
GO:190 3555	regulation of tumor necrosis factor superfamily cytokine production	16/354	122/11693	7,9E- 07	6E-05	5E-05	CD274/LILRA5/PTPRJ/MM P8/SIRPA/TSPO/FCER1G/ ARRB2/TLR1/ZFP36/BCL3 /CLU/TLR2/TLR9/BPI/FZD 5	16	4,331 944
GO:000 1906	cell killing	15/354	108/11693	8,3E- 07	6E-05	5E-05	ITGAM/S100A12/STXBP2/I CAM1/CD59/APOL1/ARRB 2/NECTIN2/CAMP/F2RL1/ PGLYRP1/IL18RAP/ARG1/ CR1L/CEACAM1	15	4,587 649
GO:200 0377	regulation of reactive oxygen species metabolic process	17/354	139/11693	9,7E- 07	7E-05	6E-05	CD177/ITGAM/HP/MAPK1 4/FPR2/MMP8/SIRPA/ICA M1/IL1B/BST1/TSPO/PLIN 5/GADD45A/CLU/F2RL1/D DAH2/PINK1	17	4,039 772
GO:015 0076	neuroinflamm atory response	10/354	47/11693	1,1E- 06	7E-05	6E-05	ITGAM/FPR2/MMP8/NAMP T/IL1B/TLR8/CST7/CLU/TL R2/C1QA	10	7,027 888
GO:000 2718	regulation of cytokine production involved in immune response	12/354	71/11693	1,3E- 06	8E-05	7E-05	JAK3/FFAR2/BCL6/MAPK1 4/IL1B/FCER1G/TRPM4/IL 18R1/FFAR3/F2RL1/ARG1 /FZD5	12	5,582 717
GO:200 0379	positive regulation of reactive oxygen species metabolic process	12/354	71/11693	1,3E- 06	8E-05	7E-05	CD177/ITGAM/MAPK14/FP R2/MMP8/ICAM1/IL1B/TSP O/GADD45A/CLU/F2RL1/D DAH2	12	5,582 717
GO:003 2635	interleukin-6 production	15/354	112/11693	1,3E- 06	9E-05	7E-05	LILRA5/MMP8/SIRPA/CEB PB/IL1B/GBA/TLR8/FCER1 G/ARRB2/TLR1/TLR2/F2R L1/TLR9/IL18RAP/BPI	15	4,423 804
GO:000 2698	negative regulation of immune effector process	14/354	98/11693	1,4E- 06	9E-05	7E-05	JAK3/TMBIM6/BCL6/IL4R/ CD300A/CD59/ARRB2/C4 BPA/CR1/ARG1/CLEC4G/ SERPING1/CEACAM1/HT RA1	14	4,718 725
GO:007 1706	tumor necrosis factor superfamily cytokine production	16/354	127/11693	1,4E- 06	9E-05	7E-05	CD274/LILRA5/PTPRJ/MM P8/SIRPA/TSPO/FCER1G/ ARRB2/TLR1/ZFP36/BCL3 /CLU/TLR2/TLR9/BPI/FZD 5	16	4,161 395
GO:003 2637	interleukin-8 production	11/354	60/11693	1,5E- 06	9E-05	8E-05	TLR5/FFAR2/IL1B/TLR8/T LR1/BCL3/TLR2/F2RL1/TL R9/HSPA1B/BPI	11	6,055 697
GO:001 9730	antimicrobial humoral response	10/354	49/11693	1,6E- 06	9E-05	8E-05	S100A9/S100A12/LCN2/C AMP/BCL3/CLU/SLPI/PGL YRP1/S100A8/BPI	10	6,741 035
GO:000 6959	humoral immune response	19/354	176/11693	1,6E- 06	9E-05	8E-05	S100A9/S100A12/IL1B/BS T1/CD59/C4BPA/LCN2/C4 A/CAMP/BCL3/CLU/SLPI/C R1/PGLYRP1/S100A8/SER PING1/C1QA/CR1L/BPI	19	3,565 855
GO:005 1047	positive regulation of secretion	25/354	283/11693	1,6E- 06	9E-05	8E-05	CD177/CD274/ITGAM/LILR A5/OSM/FFAR2/MAPK14/ RETN/HCAR2/AIM2/IL4R/ MMP8/CASP1/IL1B/TLR8/ FCER1G/TRPM4/TLR1/TL R2/F2RL1/S100A8/NTSR1/ PINK1/PFKFB2/FZD5	25	2,917 939

GO:000 2694	regulation of leukocyte activation	31/354	401/11693	1,6E- 06	9E-05	8E-05	CD177/LILRB4/CD274/PD CD1LG2/ITGAM/JAK3/BCL 6/MILR1/FLOT2/IL4R/MMP 8/CD300A/STXBP2/CEBP B/IL1B/DUSP3/FES/FCER 1G/CST7/NECTIN2/PLSCR 1/F2RL1/IRF1/TLR9/CR1/A RG1/IL27/CLEC4G/C1QA/ CEACAM1/BPI	31	2,553 524
GO:000 2700	regulation of production of molecular mediator of immune response	15/354	114/11693	1,7E- 06	1E-04	8E-05	JAK3/FFAR2/TMBIM6/BCL 6/MAPK14/IL4R/IL1B/FCE R1G/TRPM4/IL18R1/FFAR 3/F2RL1/TLR9/ARG1/FZD5	15	4,346 194
GO:003 2757	positive regulation of interleukin-8 production	9/354	39/11693	1,8E- 06	1E-04	8E-05	TLR5/FFAR2/IL1B/TLR8/T LR1/TLR2/F2RL1/TLR9/HS PA1B	9	7,622 555
GO:004 3300	regulation of leukocyte degranulation	9/354	39/11693	1,8E- 06	1E-04	8E-05	CD177/ITGAM/IL4R/CD300 A/STXBP2/FES/FCER1G/F 2RL1/CEACAM1	9	7,622 555
GO:000 2440	production of molecular mediator of immune response	18/354	161/11693	1,8E- 06	1E-04	8E-05	JAK3/FFAR2/TMBIM6/BCL 6/MAPK14/IL4R/IL1B/FCE R1G/TRPM4/IL18R1/FFAR 3/TLR2/F2RL1/TLR9/IL18R AP/ARG1/BATF/FZD5	18	3,692 915
GO:003 0100	regulation of endocytosis	20/354	195/11693	1,8E- 06	1E-04	8E-05	CD177/DYSF/FLOT1/PTP RJ/CD63/FPR2/CD300A/SI RPA/IL1B/HCK/ARRB2/C4 BPA/IL15RA/C4A/NEDD4L/ CLU/TLR2/F2RL1/SNX3/M KLN1	20	3,387 802
GO:000 2521	leukocyte differentiation	31/354	404/11693	1,8E- 06	1E-04	8E-05	LILRB4/JAK3/BCL6/MAPK 14/THOC5/LTBR/BATF2/S BNO2/PTPRJ/ADGRG3/LIL RB3/IL4R/CEBPB/SEMA4A /TRIB1/FES/FCER1G/JUN B/IL18R1/TMEM176A/BCL 3/TLR2/F2RL1/IRF1/TLR9/ CR1/IL27/BATF/TAL1/CEA CAM1/FZD5	31	2,534 563
GO:000 2449	lymphocyte mediated immunity	23/354	249/11693	1,9E- 06	1E-04	8E-05	BCL6/IL4R/ICAM1/IL1B/TL R8/FCER1G/ARRB2/TRPM 4/C4BPA/IL18R1/NECTIN2 /C4A/BCL3/CLU/CR1/IL18 RAP/ARG1/CLEC4G/SERP ING1/C1QA/BATF/CEACA M1/FZD5	23	3,051 063
GO:190 3532	positive regulation of secretion by cell	24/354	267/11693	1,9E- 06	1E-04	8E-05	CD177/CD274/ITGAM/LILR A5/OSM/FFAR2/MAPK14/ RETN/HCAR2/AIM2/IL4R/ MMP8/CASP1/IL1B/TLR8/ FCER1G/TRPM4/TLR1/TL R2/F2RL1/NTSR1/PINK1/P FKFB2/FZD5	24	2,969 085
GO:005 0701	interleukin-1 secretion	10/354	50/11693	2E-06	1E-04	8E-05	LILRA5/AIM2/NLRC4/CAS P1/SERPINB1/GBP5/TLR8 /F2RL1/FZD5/IL1R2	10	6,606 215
GO:003 2675	regulation of interleukin-6 production	14/354	104/11693	2,8E- 06	1E-04	0,0001	LILRA5/MMP8/SIRPA/CEB PB/IL1B/GBA/TLR8/FCER1 G/ARRB2/TLR1/TLR2/F2R L1/TLR9/BPI	14	4,446 491
GO:005 1092	positive regulation of NF-kappaB transcription factor activity	16/354	134/11693	2,8E- 06	1E-04	0,0001	S100A9/S100A12/TRIM25/ FLOT2/FLOT1/AIM2/NLRC 4/ICAM1/IL1B/IL18R1/CLU/ TLR2/TLR9/IL18RAP/S100 A8/HSPA1B	16	3,944 009
GO:000 2704	negative regulation of leukocyte mediated immunity	9/354	41/11693	2,9E- 06	1E-04	0,0001	JAK3/BCL6/CD300A/ARRB 2/C4BPA/CR1/ARG1/CLEC 4G/CEACAM1	9	7,250 723

GO:003 2653	regulation of interleukin-10 production	9/354	41/11693	2,9E- 06	1E-04	0,0001	CD274/PDCD1LG2/JAK3/L ILRA5/MMP8/FCER1G/BC L3/TLR2/TLR9	9	7,250 723
GO:003 2680	regulation of tumor necrosis factor production	15/354	119/11693	2,9E- 06	1E-04	0,0001	LILRA5/PTPRJ/MMP8/SIR PA/TSPO/FCER1G/ARRB2 /TLR1/ZFP36/BCL3/CLU/T LR2/TLR9/BPI/FZD5	15	4,163 581
GO:003 1341	regulation of cell killing	11/354	65/11693	3,5E- 06	2E-04	0,0001	ITGAM/ICAM1/CD59/ARR B2/NECTIN2/F2RL1/PGLY RP1/IL18RAP/ARG1/CR1L/ CEACAM1	11	5,589 874
GO:003 3003	regulation of mast cell activation	8/354	32/11693	3,6E- 06	2E-04	0,0001	MILR1/IL4R/CD300A/STXB P2/FES/FCER1G/NECTIN2 /PLSCR1	8	8,257 768
GO:005 0702	interleukin-1 beta secretion	9/354	43/11693	4,4E- 06	2E-04	0,0002	LILRA5/AIM2/NLRC4/CAS P1/SERPINB1/GBP5/TLR8 /F2RL1/FZD5	9	6,913 48
GO:003 2640	tumor necrosis factor production	15/354	123/11693	4,4E- 06	2E-04	0,0002	LILRA5/PTPRJ/MMP8/SIR PA/TSPO/FCER1G/ARRB2 /TLR1/ZFP36/BCL3/CLU/T LR2/TLR9/BPI/FZD5	15	4,028 18
GO:005 1051	negative regulation of transport	26/354	322/11693	5,2E- 06	2E-04	0,0002	LILRA5/OSM/DYSF/TMBIM 6/TNFRSF1A/CD300A/SIR PA/SERPINB1/ICAM1/IL1B /TLR8/PIM3/SRGN/TXN/G BP1/NEDD4L/TLR2/F2RL1 /TLR9/RHBDF2/SNX3/DMT N/GRB10/NTSR1/CEACA M1/IL1R2	26	2,667 105
GO:007 2593	reactive oxygen species metabolic process	19/354	191/11693	5,3E- 06	2E-04	0,0002	CD177/ITGAM/HP/MAPK1 4/FPR2/MMP8/SIRPA/ICA M1/IL1B/BST1/TSPO/PLIN 5/GADD45A/CLU/SOD2/TL R2/F2RL1/DDAH2/PINK1	19	3,285 814
GO:000 2250	adaptive immune response	33/354	468/11693	5,4E- 06	2E-04	0,0002	FCGR1B/LILRB4/CD274/P DCD1LG2/JAK3/BCL6/LIL RB3/IL4R/TAP1/ICAM1/IL1 B/SEMA4A/TLR8/FCER1G/ TRPM4/C4BPA/IL18R1/NE CTIN2/LILRA6/C4A/BCL3/ CLU/IRF1/CR1/IL18RAP/A RG1/IL27/CLEC4G/SERPI NG1/C1QA/BATF/CEACA M1/FZD5	33	2,329 114
GO:000 2823	neg. reg. of adaptive immune resp. based on somatic recomb.	8/354	34/11693	5,9E- 06	3E-04	0,0002	JAK3/BCL6/IL4R/C4BPA/C R1/ARG1/CLEC4G/CEACA M1	8	7,772 017
GO:000 2793	positive regulation of peptide secretion	19/354	194/11693	6,6E- 06	3E-04	0,0002	CD274/LILRA5/OSM/FFAR 2/MAPK14/HCAR2/AIM2/IL 4R/MMP8/CASP1/IL1B/TL R8/TRPM4/TLR1/TLR2/F2 RL1/S100A8/PFKFB2/FZD 5	19	3,235 002
GO:000 2573	myeloid leukocyte differentiation	17/354	160/11693	6,9E- 06	3E-04	0,0002	LILRB4/MAPK14/THOC5/L TBR/BATF2/SBNO2/LILRB 3/CEBPB/TRIB1/FES/FCE R1G/JUNB/TLR2/F2RL1/B ATF/TAL1/CEACAM1	17	3,509 552
GO:005 0868	negative regulation of T cell activation	12/354	84/11693	7,8E- 06	3E-04	0,0003	CD274/PDCD1LG2/JAK3/B CL6/IL4R/CD300A/CEBPB/ DUSP3/IRF1/ARG1/CLEC4 G/CEACAM1	12	4,718 725
GO:004 5576	mast cell activation	9/354	46/11693	7,9E- 06	3E-04	0,0003	S100A12/MILR1/IL4R/CD3 00A/STXBP2/FES/FCER1 G/NECTIN2/PLSCR1	9	6,462 601

GO:003 2609	interferon- gamma production	12/354	85/11693	8,9E- 06	4E-04	0,0003	CD274/PDCD1LG2/SIRPA/ IL1B/TLR8/IL18R1/BCL3/F 2RL1/TLR9/IL18RAP/IL27/ FZD5	12	4,663 21
GO:004 2088	T-helper 1 type immune response	8/354	36/11693	9,4E- 06	4E-04	0,0003	JAK3/IL4R/IL1B/SEMA4A/I L18R1/BCL3/IL18RAP/IL27	8	7,340 239
GO:000 2886	regulation of myeloid leukocyte mediated immunity	9/354	47/11693	9,5E- 06	4E-04	0,0003	CD177/ITGAM/IL4R/CD300 A/STXBP2/FES/FCER1G/F 2RL1/ARG1	9	6,325 099
GO:000 2695	negative regulation of leukocyte activation	15/354	131/11693	9,6E- 06	4E-04	0,0003	CD274/PDCD1LG2/JAK3/B CL6/MILR1/IL4R/CD300A/ CEBPB/DUSP3/CST7/IRF1 /ARG1/CLEC4G/CEACAM 1/BPI	15	3,782 184
GO:190 3531	negative regulation of secretion by cell	15/354	131/11693	9,6E- 06	4E-04	0,0003	LILRA5/OSM/TMBIM6/TNF RSF1A/CD300A/SERPINB 1/IL1B/TLR8/PIM3/SRGN/ GBP1/F2RL1/RHBDF2/CE ACAM1/IL1R2	15	3,782 184
GO:000 2237	response to molecule of bacterial origin	21/354	237/11693	1E-05	4E-04	0,0003	MAPK14/CSF2RB/SBNO2/ CASP1/SIRPA/ICAM1/CEB PB/IL1B/TSPO/ALPL/HCK/ TRIB1/TLR1/ZFP36/LCN2/ TLR2/TLR9/SLPI/ARG1/S1 00A8/FZD5	21	2,926 804
GO:006 0627	regulation of vesicle- mediated transport	27/354	356/11693	1,1E- 05	4E-04	0,0003	CD177/ITGAM/DYSF/FLOT 1/PTPRJ/CD63/IL4R/FPR2/ CD300A/SIRPA/STXBP2/IL 1B/HCK/FES/FCER1G/AR RB2/C4BPA/IL15RA/C4A/N EDD4L/CLU/TLR2/F2RL1/ SNX3/MKLN1/PINK1/CEA CAM1	27	2,505 166
GO:007 1219	cellular response to molecule of bacterial origin	16/354	150/11693	1,2E- 05	5E-04	0,0004	MAPK14/SBNO2/CASP1/S IRPA/ICAM1/CEBPB/IL1B/ TSPO/HCK/TRIB1/TLR1/Z FP36/LCN2/TLR2/ARG1/F ZD5	16	3,523 315
GO:005 0714	positive regulation of protein secretion	18/354	185/11693	1,3E- 05	5E-04	0,0004	CD274/LILRA5/OSM/FFAR 2/MAPK14/HCAR2/AIM2/IL 4R/MMP8/CASP1/IL1B/TL R8/TRPM4/TLR1/TLR2/F2 RL1/PFKFB2/FZD5	18	3,213 834
GO:000 2706	regulation of lymphocyte mediated immunity	14/354	119/11693	1,4E- 05	5E-04	0,0004	BCL6/IL1B/FCER1G/ARRB 2/TRPM4/C4BPA/IL18R1/N ECTIN2/CR1/IL18RAP/AR G1/CLEC4G/CEACAM1/FZ D5	14	3,886 009
GO:003 1348	negative regulation of defense response	16/354	153/11693	1,6E- 05	6E-04	0,0005	SOCS3/FPR2/TNFRSF1A/ SIRPA/GBA/ARRB2/CST7/ NMI/TNFAIP6/CR1/PGLYR P1/ARG1/SERPING1/CEA CAM1/HTRA1/IL1R2	16	3,454 23
GO:000 2820	negative regulation of adaptive immune response	8/354	39/11693	1,8E- 05	6E-04	0,0005	JAK3/BCL6/IL4R/C4BPA/C R1/ARG1/CLEC4G/CEACA M1	8	6,775 605
GO:190 3038	negative regulation of leukocyte cell- cell adhesion	12/354	91/11693	1,8E- 05	6E-04	0,0005	CD274/PDCD1LG2/JAK3/B CL6/IL4R/CD300A/CEBPB/ DUSP3/IRF1/ARG1/CLEC4 G/CEACAM1	12	4,355 746
GO:000 6909	phagocytosis	22/354	266/11693	1,9E- 05	7E-04	0,0006	FCGR1A/ANXA3/ITGAM/D YSF/PTPRJ/NCF4/FPR2/M ARCO/CD300A/FCGR2A/S IRPA/IL1B/HCK/RAB20/FC ER1G/C4BPA/IL15RA/C4A /TLR2/F2RL1/SNX3/TGM2	22	2,731 893
GO:003 2602	chemokine production	10/354	64/11693	2E-05	7E-04	0,0006	S100A9/FFAR2/IL4R/SIRP A/IL1B/FFAR3/TLR2/F2RL 1/TLR9/S100A8	10	5,161 105

GO:000 2286	T cell activation involved in immune response	11/354	78/11693	2,1E- 05	7E-04	0,0006	JAK3/BCL6/IL4R/ICAM1/S EMA4A/IL18R1/BCL3/F2R L1/IL27/BATF/CEACAM1	11	4,658 228
GO:005 0777	negative regulation of immune response	13/354	109/11693	2,4E- 05	8E-04	0,0007	JAK3/BCL6/IL4R/CD300A/ CD59/ARRB2/C4BPA/NMI/ CR1/ARG1/CLEC4G/SERP ING1/CEACAM1	13	3,939 486
GO:007 1260	cellular response to mechanical stimulus	10/354	66/11693	2,7E- 05	9E-04	0,0007	TLR5/LTBR/TNFRSF1A/K CNJ2/CASP1/CASP5/IL1B/ TLR8/GADD45A/IRF1	10	5,004 708
GO:006 0333	interferon- gamma- mediated signaling pathway	11/354	80/11693	2,7E- 05	9E-04	0,0008	FCGR1A/FCGR1B/SOCS3/ TRIM25/ICAM1/HCK/GBP2 /NMI/GBP1/IRF1/ARG1	11	4,541 773
GO:005 0866	negative regulation of cell activation	15/354	143/11693	2,8E- 05	9E-04	0,0008	CD274/PDCD1LG2/JAK3/B CL6/MILR1/IL4R/CD300A/ CEBPB/DUSP3/CST7/IRF1 /ARG1/CLEC4G/CEACAM 1/BPI	15	3,464 798
GO:000 2224	toll-like receptor signaling pathway	14/354	127/11693	2,9E- 05	1E-03	0,0008	TLR5/ITGAM/S100A9/FLO T1/CD300A/TLR8/ARRB2/ TLR1/UBE2D1/TLR2/F2RL 1/IRF1/TLR9/S100A8	14	3,641 221
GO:005 0900	leukocyte migration	26/354	355/11693	2,9E- 05	1E-03	0,0008	CD177/ITGAM/S100A9/DY SF/FFAR2/S100A12/MAPK 14/PADI2/SELL/FPR2/CD3 00A/SIRPA/CEACAM3/ICA M1/BST1/HCK/FCER1G/T RPM4/CSF3R/CXCR1/F2R L1/GYPC/S100A8/OLR1/IT GA2B/CEACAM1	26	2,419 177
GO:005 1048	negative regulation of secretion	15/354	146/11693	3,5E- 05	0,001	0,001	LILRA5/OSM/TMBIM6/TNF RSF1A/CD300A/SERPINB 1/IL1B/TLR8/PIM3/SRGN/ GBP1/F2RL1/RHBDF2/CE ACAM1/IL1R2	15	3,393 603
GO:003 4123	positive regulation of toll-like receptor signaling pathway	6/354	22/11693	3,7E- 05	0,001	0,001	TLR5/FLOT1/TLR1/TLR2/F 2RL1/TLR9	6	9,008 475
GO:004 2035	regulation of cytokine biosynthetic process	11/354	83/11693	3,8E- 05	0,001	0,001	CEBPB/IL1B/TLR8/TLR1/Z FP36/NMI/BCL3/IRF1/TLR 9/IL27/IGF2BP3	11	4,377 612
GO:003 2652	regulation of interleukin-1 production	10/354	69/11693	3,9E- 05	0,001	0,001	LILRA5/AIM2/CASP1/SIRP A/SERPINB1/TLR8/ARRB2 /CEACAM1/FZD5/IL1R2	10	4,787 112
GO:000 2673	regulation of acute inflammatory response	13/354	115/11693	4,3E- 05	0,001	0,0011	OSM/FFAR2/IL1B/CD59/F CER1G/C4BPA/FFAR3/C4 A/CLU/CR1/SERPING1/C1 QA/CR1L	13	3,733 947
GO:005 1091	positive regulation of DNA-binding transcription factor activity	18/354	203/11693	4,4E- 05	0,001	0,0011	ANXA3/S100A9/S100A12/ TRIM25/FLOT2/FLOT1/AI M2/NLRC4/ICAM1/IL1B/IL1 8R1/CLU/TLR2/TLR9/IL18 RAP/S100A8/HSPA1B/PIN K1	18	2,928 864
GO:000 2707	negative regulation of lymphocyte mediated immunity	7/354	33/11693	4,8E- 05	0,001	0,0012	BCL6/ARRB2/C4BPA/CR1/ ARG1/CLEC4G/CEACAM1	7	7,006 591
GO:005 1224	negative regulation of protein transport	14/354	134/11693	5,4E- 05	0,002	0,0014	LILRA5/TMBIM6/SERPINB 1/IL1B/TLR8/PIM3/SRGN/T XN/GBP1/F2RL1/RHBDF2/ SNX3/DMTN/IL1R2	14	3,451 008
GO:000 2576	platelet degranulation	12/354	102/11693	5,7E- 05	0,002	0,0014	LHFPL2/CD63/STXBP2/SE RPINA1/FCER1G/F5/SRG N/PPBP/CLU/SERPING1/D MTN/ITGA2B	12	3,886 009
----------------	--	--------	-----------	-------------	-------	--------	---	----	--------------
GO:007 1216	cellular response to biotic stimulus	16/354	172/11693	6,6E- 05	0,002	0,0017	MAPK14/SBNO2/CASP1/S IRPA/ICAM1/CEBPB/IL1B/ TSPO/HCK/TRIB1/TLR1/Z FP36/LCN2/TLR2/ARG1/F ZD5	16	3,072 658
GO:000 2755	MyD88- dependent toll-like receptor signaling pathway	7/354	35/11693	7,1E- 05	0,002	0,0018	TLR5/CD300A/TLR8/TLR1/ TLR2/IRF1/TLR9	7	6,606 215
GO:000 2720	positive regulation of cytokine production involved in immune response	8/354	47/11693	7,3E- 05	0,002	0,0018	FFAR2/MAPK14/IL1B/FCE R1G/IL18R1/FFAR3/F2RL1 /FZD5	8	5,622 31
GO:003 2655	regulation of interleukin-12 production	8/354	47/11693	7,3E- 05	0,002	0,0018	JAK3/LILRA5/MAPK14/TL R8/ARRB2/TLR2/IRF1/TLR 9	8	5,622 31
GO:190 4950	negative regulation of establishment of protein localization	14/354	138/11693	7,4E- 05	0,002	0,0018	LILRA5/TMBIM6/SERPINB 1/IL1B/TLR8/PIM3/SRGN/T XN/GBP1/F2RL1/RHBDF2/ SNX3/DMTN/IL1R2	14	3,350 978
GO:003 2649	regulation of interferon- gamma production	10/354	75/11693	8,2E- 05	0,002	0,0019	CD274/PDCD1LG2/SIRPA/ IL1B/TLR8/IL18R1/BCL3/T LR9/IL27/FZD5	10	4,404 143
GO:006 0326	cell chemotaxis	16/354	175/11693	8,2E- 05	0,002	0,0019	S100A9/DYSF/FFAR2/S10 0A12/MAPK14/PADI2/FPR 2/BST1/ARRB2/TRPM4/CS F3R/RAB13/CXCR1/F2RL1 /S100A8/DOCK4	16	3,019 984
GO:003 2615	interleukin-12 production	8/354	48/11693	8,5E- 05	0,002	0,002	JAK3/LILRA5/MAPK14/TL R8/ARRB2/TLR2/IRF1/TLR 9	8	5,505 179
GO:004 2110	T cell activation	26/354	379/11693	8,7E- 05	0,002	0,002	LILRB4/CD274/PDCD1LG2 /JAK3/BCL6/FLOT2/IL4R/C D300A/ICAM1/CEBPB/IL1 B/SEMA4A/DUSP3/IL18R1 /BCL3/F2RL1/IRF1/TREML 2/CR1/ARG1/ELF4/IL27/CL EC4G/BATF/CEACAM1/FZ D5	26	2,265 984
GO:005 1222	positive regulation of protein transport	23/354	315/11693	8,8E- 05	0,002	0,002	CD274/ITGAM/LILRA5/OS M/FFAR2/MAPK14/STOM/ SH3GLB1/HCAR2/AIM2/IL 4R/MMP8/CASP1/IL1B/TL R8/TRPM4/TLR1/TLR2/F2 RL1/BCAP31/PINK1/PFKF B2/FZD5	23	2,411 793
GO:004 2089	cytokine biosynthetic process	11/354	91/11693	9,1E- 05	0,003	0,0021	CEBPB/IL1B/TLR8/TLR1/Z FP36/NMI/BCL3/IRF1/TLR 9/IL27/IGF2BP3	11	3,992 767
GO:000 2456	T cell mediated immunity	10/354	76/11693	9,2E- 05	0,003	0,0021	ICAM1/IL1B/TRPM4/IL18R 1/NECTIN2/IL18RAP/ARG 1/CLEC4G/CEACAM1/FZD 5	10	4,346 194
GO:005 0858	negative regulation of antigen receptor- mediated signaling pathway	6/354	26/11693	0,0001	0,003	0,0023	LILRB4/PTPRJ/CD300A/D USP3/GBP1/CEACAM1	6	7,622 555

GO:004 2107	cytokine metabolic process	11/354	92/11693	0,0001	0,003	0,0023	CEBPB/IL1B/TLR8/TLR1/Z FP36/NMI/BCL3/IRF1/TLR 9/IL27/IGF2BP3	11	3,949 367
GO:005 0709	negative regulation of protein secretion	11/354	92/11693	0,0001	0,003	0,0023	LILRA5/TMBIM6/SERPINB 1/IL1B/TLR8/PIM3/SRGN/ GBP1/F2RL1/RHBDF2/IL1 R2	11	3,949 367
GO:004 5063	T-helper 1 cell differentiation	5/354	17/11693	0,0001 1	0,003	0,0025	JAK3/IL4R/SEMA4A/IL18R 1/IL27	5	9,715 022
GO:003 4121	regulation of toll-like receptor signaling pathway	9/354	63/11693	0,0001 1	0,003	0,0024	TLR5/FLOT1/CD300A/ARR B2/TLR1/TLR2/F2RL1/IRF 1/TLR9	9	4,718 725
GO:000 2702	positive regulation of production of molecular mediator of immune response	10/354	78/11693	0,0001 1	0,003	0,0025	FFAR2/MAPK14/IL4R/IL1B /FCER1G/IL18R1/FFAR3/F 2RL1/TLR9/FZD5	10	4,234 753
GO:005 1250	negative regulation of lymphocyte activation	12/354	109/11693	0,0001 1	0,003	0,0024	CD274/PDCD1LG2/JAK3/B CL6/IL4R/CD300A/CEBPB/ DUSP3/IRF1/ARG1/CLEC4 G/CEACAM1	12	3,636 448
GO:000 7596	blood coagulation	19/354	237/11693	0,0001 1	0,003	0,0024	CD177/NFE2/CD59/SERPI NA1/PHF21A/FCER1G/AR RB2/F5/CLIC1/PLSCR1/M YL9/F2RL1/IRF1/SERPING 1/DMTN/ITGA2B/CEACAM 1/SLC4A1/CLEC1B	19	2,648 061
GO:005 0817	coagulation	19/354	238/11693	0,0001 1	0,003	0,0025	CD177/NFE2/CD59/SERPI NA1/PHF21A/FCER1G/AR RB2/F5/CLIC1/PLSCR1/M YL9/F2RL1/IRF1/SERPING 1/DMTN/ITGA2B/CEACAM 1/SLC4A1/CLEC1B	19	2,636 934
GO:005 0856	regulation of T cell receptor signaling pathway	7/354	38/11693	0,0001 2	0,003	0,0026	LILRB4/PTPRJ/CD300A/D USP3/NECTIN2/GBP1/CE ACAM1	7	6,084 671
GO:000 2792	negative regulation of peptide secretion	11/354	94/11693	0,0001 2	0,003	0,0026	LILRA5/TMBIM6/SERPINB 1/IL1B/TLR8/PIM3/SRGN/ GBP1/F2RL1/RHBDF2/IL1 R2	11	3,865 338
GO:007 1222	cellular response to lipopolysacch aride	14/354	144/11693	0,0001 2	0,003	0,0025	MAPK14/SBNO2/CASP1/S IRPA/ICAM1/CEBPB/IL1B/ TSPO/HCK/TRIB1/ZFP36/L CN2/TLR2/ARG1	14	3,211 354
GO:000 2888	positive regulation of myeloid leukocyte mediated immunity	6/354	27/11693	0,0001 3	0,003	0,0026	CD177/ITGAM/IL4R/FCER 1G/F2RL1/ARG1	6	7,340 239
GO:001 0955	negative regulation of protein processing	6/354	27/11693	0,0001 3	0,003	0,0026	CD59/C4BPA/CST7/CR1/S ERPING1/IL1R2	6	7,340 239
GO:003 2733	positive regulation of interleukin-10 production	6/354	27/11693	0,0001 3	0,003	0,0026	CD274/LILRA5/FCER1G/B CL3/TLR2/TLR9	6	7,340 239
GO:190 3318	negative regulation of protein maturation	6/354	27/11693	0,0001 3	0,003	0,0026	CD59/C4BPA/CST7/CR1/S ERPING1/IL1R2	6	7,340 239
GO:004 2093	T-helper cell differentiation	8/354	51/11693	0,0001 3	0,003	0,0027	JAK3/BCL6/IL4R/SEMA4A/ IL18R1/BCL3/IL27/BATF	8	5,181 345

GO:000 7599	hemostasis	19/354	241/11693	0,0001 3	0,003	0,0027	CD177/NFE2/CD59/SERPI NA1/PHF21A/FCER1G/AR RB2/F5/CLIC1/PLSCR1/M YL9/F2RL1/IRF1/SERPING 1/DMTN/ITGA2B/CEACAM 1/SLC4A1/CLEC1B	19	2,604 11
GO:190 3706	regulation of hemopoiesis	25/354	366/11693	0,0001 3	0,003	0,0026	LILRB4/JAK3/OSM/NFE2/B CL6/MAPK14/PSMB9/LILR B3/IL4R/CEBPB/PSMB3/T RIB1/FES/ZFP36/CSF3R/T MEM176A/MYL9/IRF1/TLR 9/CR1/HSPA1B/IL27/ITGA 2B/TAL1/CEACAM1	25	2,256 221
GO:003 2755	positive regulation of interleukin-6 production	9/354	65/11693	0,0001 4	0,003	0,0027	LILRA5/MMP8/IL1B/TLR8/ FCER1G/TLR1/TLR2/F2RL 1/TLR9	9	4,573 533
GO:000 1562	response to protozoan	5/354	18/11693	0,0001 5	0,004	0,0029	BATF2/IL4R/BCL3/ARG1/B ATF	5	9,175 298
GO:004 2832	defense response to protozoan	5/354	18/11693	0,0001 5	0,004	0,0029	BATF2/IL4R/BCL3/ARG1/B ATF	5	9,175 298
GO:005 0765	negative regulation of phagocytosis	5/354	18/11693	0,0001 5	0,004	0,0029	DYSF/CD300A/SIRPA/TLR 2/SNX3	5	9,175 298
GO:000 2294	CD4-positive, alpha-beta T cell differentiation involved in immune response	8/354	52/11693	0,0001 5	0,004	0,0029	JAK3/BCL6/IL4R/SEMA4A/ IL18R1/BCL3/IL27/BATF	8	5,081 704
GO:007 1496	cellular response to external stimulus	20/354	263/11693	0,0001 5	0,004	0,0029	TLR5/DSC2/LTBR/SH3GL B1/UPP1/TNFRSF1A/KCN J2/CASP1/CASP5/ICAM1/ NAMPT/IL1B/GBA/TLR8/F ES/TRPM4/LCN2/GADD45 A/IRF1/SFRP2	20	2,511 869
GO:000 7159	leukocyte cell- cell adhesion	20/354	264/11693	0,0001 5	0,004	0,003	CD177/LILRB4/CD274/PD CD1LG2/JAK3/S100A9/BC L6/FLOT2/SELL/IL4R/CD3 00A/ICAM1/CEBPB/IL1B/D USP3/IRF1/ARG1/S100A8/ CLEC4G/CEACAM1	20	2,502 354
GO:003 2496	response to lipopolysacch aride	18/354	225/11693	0,0001 7	0,004	0,0032	MAPK14/CSF2RB/SBNO2/ CASP1/SIRPA/ICAM1/CEB PB/IL1B/TSPO/ALPL/HCK/ TRIB1/ZFP36/LCN2/TLR2/ SLPI/ARG1/S100A8	18	2,642 486
GO:000 2287	alpha-beta T cell activation involved in immune response	8/354	53/11693	0,0001 8	0,004	0,0033	JAK3/BCL6/IL4R/SEMA4A/ IL18R1/BCL3/IL27/BATF	8	4,985 822
GO:000 2293	alpha-beta T cell differentiation involved in immune response	8/354	53/11693	0,0001 8	0,004	0,0033	JAK3/BCL6/IL4R/SEMA4A/ IL18R1/BCL3/IL27/BATF	8	4,985 822
GO:000 2709	regulation of T cell mediated immunity	8/354	53/11693	0,0001 8	0,004	0,0033	IL1B/TRPM4/IL18R1/NECT IN2/ARG1/CLEC4G/CEAC AM1/FZD5	8	4,985 822
GO:004 6631	alpha-beta T cell activation	12/354	115/11693	0,0001 8	0,004	0,0034	CD274/JAK3/BCL6/IL4R/C D300A/SEMA4A/IL18R1/B CL3/IRF1/ELF4/IL27/BATF	12	3,446 721

GO:005 1090	regulation of DNA-binding transcription factor activity	23/354	331/11693	0,0001 8	0,004	0,0034	ANXA3/S100A9/S100A12/ TRIM25/MAPK14/FLOT2/F LOT1/AIM2/ADGRG3/NLR C4/ICAM1/IL1B/HCK/TRIB 1/ARRB2/IL18R1/CLU/TLR 2/TLR9/IL18RAP/S100A8/ HSPA1B/PINK1	23	2,295 211
GO:004 3408	regulation of MAPK cascade	30/354	489/11693	0,0001 9	0,004	0,0034	LILRA5/OSM/S100A12/MA PK14/LTBR/GADD45B/PT PRJ/FPR2/MARCO/MMP8/ CD300A/SIRPA/ICAM1/IL1 B/GBA/TRIB1/DUSP3/ARR B2/TGFA/FPR1/GBP1/GA DD45A/F2RL1/PROK2/TLR 9/TIMP2/PINK1/SFRP2/CE ACAM1/FZD5	30	2,026 446
GO:005 0860	negative regulation of T cell receptor signaling pathway	5/354	19/11693	0,0002	0,004	0,0036	LILRB4/PTPRJ/DUSP3/GB P1/CEACAM1	5	8,692 388
GO:000 1910	regulation of leukocyte mediated cytotoxicity	8/354	54/11693	0,0002	0,004	0,0036	ITGAM/ICAM1/ARRB2/NE CTIN2/F2RL1/IL18RAP/AR G1/CEACAM1	8	4,893 492
GO:003 2760	positive regulation of tumor necrosis factor production	9/354	68/11693	0,0002	0,004	0,0036	LILRA5/PTPRJ/MMP8/FCE R1G/TLR1/CLU/TLR2/TLR 9/FZD5	9	4,371 76
GO:000 9611	response to wounding	29/354	467/11693	0,0002	0,004	0,0036	CD177/KREMEN1/NFE2/D YSF/TSPO/CD59/SERPIN A1/PHF21A/FCER1G/ARR B2/F5/CLIC1/ZFP36/INSL3 /SCARF1/CREB3L2/PLSC R1/MYL9/F2RL1/IRF1/ARG 1/S100A8/SERPING1/DMT N/LYVE1/ITGA2B/CEACA M1/SLC4A1/CLEC1B	29	2,051 18
GO:003 0595	leukocyte chemotaxis	13/354	135/11693	0,0002 3	0,005	0,004	S100A9/DYSF/FFAR2/S10 0A12/MAPK14/PADI2/FPR 2/BST1/TRPM4/CSF3R/CX CR1/F2RL1/S100A8	13	3,180 77
GO:003 1640	killing of cells of other organism	6/354	30/11693	0,0002 4	0,005	0,0042	S100A12/APOL1/CAMP/F2 RL1/PGLYRP1/ARG1	6	6,606 215
GO:004 4364	disruption of cells of other organism	6/354	30/11693	0,0002 4	0,005	0,0042	S100A12/APOL1/CAMP/F2 RL1/PGLYRP1/ARG1	6	6,606 215
GO:005 0704	regulation of interleukin-1 secretion	7/354	42/11693	0,0002 4	0,005	0,0042	LILRA5/AIM2/CASP1/SER PINB1/TLR8/FZD5/IL1R2	7	5,505 179
GO:190 3557	positive regulation of tumor necrosis factor superfamily cytokine production	9/354	70/11693	0,0002 5	0,005	0,0043	LILRA5/PTPRJ/MMP8/FCE R1G/TLR1/CLU/TLR2/TLR 9/FZD5	9	4,246 852
GO:004 3302	positive regulation of leukocyte degranulation	5/354	20/11693	0,0002 6	0,006	0,0046	CD177/ITGAM/IL4R/FCER 1G/F2RL1	5	8,257 768
GO:009 7530	granulocyte migration	9/354	71/11693	0,0002 7	0,006	0,0047	CD177/S100A9/DYSF/S10 0A12/MAPK14/CD300A/BS T1/CSF3R/S100A8	9	4,187 037

GO:000 2292	T cell differentiation involved in immune response	8/354	57/11693	0,0002 9	0,006	0,005	JAK3/BCL6/IL4R/SEMA4A/ IL18R1/BCL3/IL27/BATF	8	4,635 94
GO:004 6209	nitric oxide metabolic process	8/354	57/11693	0,0002 9	0,006	0,005	MMP8/SIRPA/ICAM1/IL1B/ TSPO/CLU/TLR2/DDAH2	8	4,635 94
GO:000 2705	positive regulation of leukocyte mediated immunity	11/354	104/11693	0,0003	0,006	0,0051	CD177/ITGAM/IL4R/IL1B/F CER1G/IL18R1/NECTIN2/ F2RL1/IL18RAP/ARG1/FZ D5	11	3,493 671
GO:004 5428	regulation of nitric oxide biosynthetic process	7/354	44/11693	0,0003 2	0,007	0,0054	MMP8/SIRPA/ICAM1/IL1B/ TSPO/CLU/DDAH2	7	5,254 944
GO:003 2642	regulation of chemokine production	8/354	58/11693	0,0003 3	0,007	0,0055	FFAR2/IL4R/SIRPA/IL1B/F FAR3/TLR2/F2RL1/TLR9	8	4,556 01
GO:003 2651	regulation of interleukin-1 beta production	8/354	58/11693	0,0003 3	0,007	0,0055	LILRA5/AIM2/CASP1/SIRP A/SERPINB1/TLR8/ARRB2 /FZD5	8	4,556 01
GO:200 1057	reactive nitrogen species metabolic process	8/354	58/11693	0,0003 3	0,007	0,0055	MMP8/SIRPA/ICAM1/IL1B/ TSPO/CLU/TLR2/DDAH2	8	4,556 01
GO:009 8581	detection of external biotic stimulus	4/354	12/11693	0,0003 4	0,007	0,0055	NLRC4/TLR1/TLR2/PGLY RP1	4	11,01 036
GO:200 1044	regulation of integrin- mediated signaling pathway	4/354	12/11693	0,0003 4	0,007	0,0055	CD177/CD63/BST1/DMTN	4	11,01 036
GO:000 0272	polysaccharid e catabolic process	5/354	21/11693	0,0003 4	0,007	0,0055	PPP1R3B/PYGL/CHIT1/PP P1R3D/AOAH	5	7,864 541
GO:000 2825	regulation of T-helper 1 type immune response	5/354	21/11693	0,0003 4	0,007	0,0055	JAK3/IL4R/IL1B/IL18R1/IL2 7	5	7,864 541
GO:009 8900	regulation of action potential	6/354	32/11693	0,0003 4	0,007	0,0055	DSC2/KCNJ2/GBA/FGF13/ TRPM4/NTSR1	6	6,193 326
GO:190 3707	negative regulation of hemopoiesis	11/354	107/11693	0,0003 9	0,008	0,0062	LILRB4/JAK3/BCL6/LILRB 3/IL4R/TRIB1/ZFP36/TME M176A/IRF1/TAL1/CEACA M1	11	3,395 718
GO:002 2408	negative regulation of cell-cell adhesion	12/354	125/11693	0,0004	0,008	0,0064	CD274/PDCD1LG2/JAK3/B CL6/IL4R/CD300A/CEBPB/ DUSP3/IRF1/ARG1/CLEC4 G/CEACAM1	12	3,170 983
GO:000 2675	positive regulation of acute inflammatory response	5/354	22/11693	0,0004 3	0,008	0,0067	OSM/FFAR2/IL1B/FCER1 G/FFAR3	5	7,507 062
GO:190 4951	positive regulation of establishment of protein localization	23/354	351/11693	0,0004 3	0,008	0,0067	CD274/ITGAM/LILRA5/OS M/FFAR2/MAPK14/STOM/ SH3GLB1/HCAR2/AIM2/IL 4R/MMP8/CASP1/IL1B/TL R8/TRPM4/TLR1/TLR2/F2 RL1/BCAP31/PINK1/PFKF B2/FZD5	23	2,164 429

GO:004 5807	positive regulation of endocytosis	11/354	109/11693	0,0004 5	0,009	0,0071	FLOT1/PTPRJ/CD63/FPR2 /IL1B/ARRB2/IL15RA/C4A/ NEDD4L/CLU/F2RL1	11	3,333 411
GO:190 2106	negative regulation of leukocyte differentiation	9/354	76/11693	0,0004 6	0,009	0,0071	LILRB4/JAK3/BCL6/LILRB 3/IL4R/TRIB1/TMEM176A/I RF1/CEACAM1	9	3,911 574
GO:005 0730	regulation of peptidyl- tyrosine phosphorylati on	14/354	164/11693	0,0004 6	0,009	0,0071	FCGR1A/SOCS3/LILRA5/ OSM/PTPRJ/TNFRSF1A/C D300A/ICAM1/BST1/ARRB 2/TGFA/DMTN/SFRP2/TAL 1	14	2,819 726
GO:004 3900	regulation of multi- organism process	22/354	331/11693	0,0004 7	0,009	0,0072	LHFPL2/PLB1/TRIM25/ST OM/AIM2/IL1B/TRIB1/IFIT M1/ZFP36/DYNLT1/IFITM2 /AGO2/NECTIN2/PLSCR1/ CAMP/F2RL1/SLPI/PGLYR P1/ARG1/IL27/SNX3/HTRA 1	22	2,195 419
GO:000 2369	T cell cytokine production	6/354	34/11693	0,0004 8	0,009	0,0074	IL1B/TRPM4/IL18R1/IL18R AP/ARG1/FZD5	6	5,829 013
GO:004 3303	mast cell degranulation	6/354	34/11693	0,0004 8	0,009	0,0074	MILR1/IL4R/CD300A/STXB P2/FES/FCER1G	6	5,829 013
GO:009 7028	dendritic cell differentiation	6/354	34/11693	0,0004 8	0,009	0,0074	LTBR/BATF2/CEBPB/TME M176A/F2RL1/BATF	6	5,829 013
GO:003 5710	CD4-positive, alpha-beta T cell activation	9/354	77/11693	0,0005 1	0,009	0,0077	CD274/JAK3/BCL6/IL4R/S EMA4A/IL18R1/BCL3/IL27/ BATF	9	3,860 775
GO:001 6064	immunoglobul in mediated immune response	13/354	147/11693	0,0005 2	0,009	0,0078	BCL6/IL4R/TLR8/FCER1G/ C4BPA/NECTIN2/C4A/BCL 3/CLU/CR1/SERPING1/C1 QA/BATF	13	2,921 115
GO:004 3304	regulation of mast cell degranulation	5/354	23/11693	0,0005 3	0,01	0,0079	IL4R/CD300A/STXBP2/FE S/FCER1G	5	7,180 668
GO:004 6596	regulation of viral entry into host cell	5/354	23/11693	0,0005 3	0,01	0,0079	TRIM25/IFITM1/IFITM2/NE CTIN2/SNX3	5	7,180 668
GO:004 3367	CD4-positive, alpha-beta T cell differentiation	8/354	62/11693	0,0005 3	0,01	0,0079	JAK3/BCL6/IL4R/SEMA4A/ IL18R1/BCL3/IL27/BATF	8	4,262 074
GO:003 2648	regulation of interferon- beta production	7/354	48/11693	0,0005 5	0,01	0,0082	FLOT1/SIRPA/TLR8/NMI/T LR2/IRF1/TLR9	7	4,817 032
GO:001 9724	B cell mediated immunity	13/354	149/11693	0,0005 9	0,01	0,0086	BCL6/IL4R/TLR8/FCER1G/ C4BPA/NECTIN2/C4A/BCL 3/CLU/CR1/SERPING1/C1 QA/BATF	13	2,881 906
GO:000 7229	integrin- mediated signaling pathway	9/354	79/11693	0,0006 1	0,011	0,009	CD177/ITGAM/CD63/BST1 /HCK/FCER1G/DMTN/ITG A2B/CEACAM1	9	3,763 034
GO:003 2608	interferon- beta production	7/354	49/11693	0,0006 3	0,011	0,0091	FLOT1/SIRPA/TLR8/NMI/T LR2/IRF1/TLR9	7	4,718 725
GO:005 0710	negative regulation of cytokine secretion	7/354	49/11693	0,0006 3	0,011	0,0091	LILRA5/SERPINB1/TLR8/S RGN/GBP1/F2RL1/IL1R2	7	4,718 725

GO:004 6718	viral entry into host cell	10/354	96/11693	0,0006 4	0,011	0,0092	TRIM25/ICAM1/IFITM1/DY NLT1/IFITM2/NECTIN2/CR 1/HSPA1B/SNX3/CLEC4G	10	3,440 737
GO:003 2930	positive regulation of superoxide anion generation	4/354	14/11693	0,0006 5	0,011	0,0092	CD177/ITGAM/FPR2/F2RL 1	4	9,437 45
GO:004 5064	T-helper 2 cell differentiation	4/354	14/11693	0,0006 5	0,011	0,0092	BCL6/IL4R/BCL3/BATF	4	9,437 45
GO:015 0078	positive regulation of neuroinflamm atory response	4/354	14/11693	0,0006 5	0,011	0,0092	ITGAM/MMP8/IL1B/C1QA	4	9,437 45
GO:200 0484	positive regulation of interleukin-8 secretion	4/354	14/11693	0,0006 5	0,011	0,0092	FFAR2/TLR1/TLR2/F2RL1	4	9,437 45
GO:000 6953	acute-phase response	5/354	24/11693	0,0006 5	0,011	0,0092	HP/CEBPB/IL1B/SERPINA 1/PLSCR1	5	6,881 474
GO:003 5456	response to interferon- beta	5/354	24/11693	0,0006 5	0,011	0,0092	AIM2/IFITM1/IFITM2/PLSC R1/IRF1	5	6,881 474
GO:009 7190	apoptotic signaling pathway	28/354	479/11693	0,0006 6	0,011	0,0092	ITGAM/S100A9/GRINA/TM BIM6/LTBR/CASP4/GABA RAP/TNFRSF1A/CASP1/C ASP5/ICAM1/CEBPB/IL1B/ SEPTIN4/ARRB2/SORT1/S RGN/LCN2/BCL3/CLU/SO D2/BCAP31/S100A8/HSPA 1B/DDIAS/G0S2/PINK1/SF RP2	28	1,930 835
GO:000 2279	mast cell activation involved in immune response	6/354	36/11693	0,0006 7	0,011	0,0092	MILR1/IL4R/CD300A/STXB P2/FES/FCER1G	6	5,505 179
GO:000 2448	mast cell mediated immunity	6/354	36/11693	0,0006 7	0,011	0,0092	MILR1/IL4R/CD300A/STXB P2/FES/FCER1G	6	5,505 179
GO:005 0706	regulation of interleukin-1 beta secretion	6/354	36/11693	0,0006 7	0,011	0,0092	LILRA5/AIM2/CASP1/SER PINB1/TLR8/FZD5	6	5,505 179
GO:000 1909	leukocyte mediated cytotoxicity	9/354	80/11693	0,0006 7	0,011	0,0092	ITGAM/STXBP2/ICAM1/AR RB2/NECTIN2/F2RL1/IL18 RAP/ARG1/CEACAM1	9	3,715 996
GO:005 2547	regulation of peptidase activity	19/354	274/11693	0,0006 8	0,011	0,0092	NAIP/S100A9/MAPK14/PS MB9/AIM2/NLRC4/CASP1/ SERPINB1/ARRB2/FURIN/ CST7/C4A/BCAP31/SLPI/C R1/S100A8/TIMP2/PINK1/ SFRP2	19	2,290 476
GO:001 6485	protein processing	16/354	211/11693	0,0006 9	0,011	0,0093	CASP1/IL1B/CD59/FURIN/ C4BPA/CST7/ASPRV1/SR GN/C4A/CLU/CR1/SERPIN G1/C1QA/PCSK6/CR1L/IL 1R2	16	2,504 726
GO:000 7249	I-kappaB kinase/NF- kappaB signaling	17/354	232/11693	0,0007	0,011	0,0094	ALPK1/S100A12/TRIM25/L TBR/SECTM1/TNFRSF1A/ CASP1/SIRPA/IL1B/TIFA/T LR8/BCL3/TLR2/F2RL1/TL R9/PINK1/TGM2	17	2,420 38

GO:000 2532	production of molecular mediator involved in inflammatory response	7/354	50/11693	0,0007 1	0,012	0,0096	MAPK14/IL4R/SIRPA/GBP 5/FCER1G/ALOX5/IL1R2	7	4,624 35
GO:005 1899	membrane depolarization	7/354	50/11693	0,0007 1	0,012	0,0096	KCNJ2/TSPO/TRPM4/CAC NA1E/NEDD4L/SCN1B/NT SR1	7	4,624 35
GO:007 1356	cellular response to tumor necrosis factor	16/354	212/11693	0,0007 2	0,012	0,0096	MAPK14/LTBR/PSMB9/CA SP4/AIM2/TNFRSF1A/CAS P1/ICAM1/PSMB3/GBA/GB P2/ZFP36/GBP1/LCN2/F2 RL1/HSPA1B	16	2,492 911
GO:000 6935	chemotaxis	23/354	365/11693	0,0007 3	0,012	0,0097	S100A9/DYSF/FFAR2/S10 0A12/MAPK14/PADI2/PTP RJ/FPR2/BST1/DUSP3/AR RB2/TRPM4/FPR1/CSF3R/ RAB13/CXCR1/F2RL1/PR OK2/SCN1B/S100A8/CMT M5/GRB10/DOCK4	23	2,081 41
GO:000 6911	phagocytosis, engulfment	6/354	37/11693	0,0007 8	0,012	0,0103	FCGR1A/ITGAM/MARCO/ CD300A/FCER1G/F2RL1	6	5,356 39
GO:004 2330	taxis	23/354	367/11693	0,0007 9	0,013	0,0104	S100A9/DYSF/FFAR2/S10 0A12/MAPK14/PADI2/PTP RJ/FPR2/BST1/DUSP3/AR RB2/TRPM4/FPR1/CSF3R/ RAB13/CXCR1/F2RL1/PR OK2/SCN1B/S100A8/CMT M5/GRB10/DOCK4	23	2,070 067
GO:003 3006	regulation of mast cell activation involved in immune response	5/354	25/11693	0,0008	0,013	0,0104	IL4R/CD300A/STXBP2/FE S/FCER1G	5	6,606 215
GO:005 0718	positive regulation of interleukin-1 beta secretion	5/354	25/11693	0,0008	0,013	0,0104	LILRA5/AIM2/CASP1/TLR8 /FZD5	5	6,606 215
GO:001 0876	lipid localization	17/354	235/11693	0,0008	0,013	0,0104	DYSF/FFAR2/ACSL1/RET N/AQP9/IL1B/TSPO/PITPN A/LRP10/GRAMD1A/APOL 1/PLIN5/ATP9A/CLU/APOL 6/NTSR1/CEACAM1	17	2,389 482
GO:000 8015	blood circulation	20/354	300/11693	0,0008 1	0,013	0,0105	DSC2/NFE2/PTPRJ/KCNJ 2/ICAM1/NAMPT/HRH2/A GTRAP/F5/TRPM4/FFAR3/ NEDD4L/SOD2/F2RL1/SC N1B/SERPING1/OLR1/DO CK4/NTSR1/CEACAM1	20	2,202 072
GO:003 2102	negative regulation of response to external stimulus	16/354	215/11693	0,0008 4	0,013	0,0108	SOCS3/KREMEN1/PADI2/ FPR2/TNFRSF1A/SIRPA/G BA/TRIB1/DUSP3/CST7/T NFAIP6/PGLYRP1/SERPI NG1/CEACAM1/HTRA1/IL 1R2	16	2,458 126
GO:003 2693	negative regulation of interleukin-10 production	4/354	15/11693	0,0008 7	0,013	0,011	CD274/PDCD1LG2/JAK3/ MMP8	4	8,808 286
GO:003 5743	CD4-positive, alpha-beta T cell cytokine production	4/354	15/11693	0,0008 7	0,013	0,011	IL1B/IL18R1/IL18RAP/ARG 1	4	8,808 286
GO:004 6597	negative regulation of viral entry into host cell	4/354	15/11693	0,0008 7	0,013	0,011	TRIM25/IFITM1/IFITM2/SN X3	4	8,808 286

GO:004 6632	alpha-beta T cell differentiation	9/354	83/11693	0,0008 8	0,014	0,0112	JAK3/BCL6/IL4R/SEMA4A/ IL18R1/BCL3/IRF1/IL27/BA TF	9	3,581 683
GO:000 6809	nitric oxide biosynthetic process	7/354	52/11693	0,0009 1	0,014	0,0114	MMP8/SIRPA/ICAM1/IL1B/ TSPO/CLU/DDAH2	7	4,446 491
GO:003 2729	positive regulation of interferon- gamma production	7/354	52/11693	0,0009 1	0,014	0,0114	IL1B/TLR8/IL18R1/BCL3/T LR9/IL27/FZD5	7	4,446 491
GO:009 7529	myeloid leukocyte migration	11/354	119/11693	0,0009 5	0,014	0,0119	CD177/S100A9/DYSF/S10 0A12/MAPK14/FPR2/CD30 0A/SIRPA/BST1/CSF3R/S1 00A8	11	3,053 293
GO:000 9615	response to virus	18/354	261/11693	0,0009 9	0,015	0,0123	TRIM25/MAPK14/AIM2/IL1 0RB/IL1B/IFITM1/TLR8/IFI TM2/PLSCR1/GBP1/LCN2/ BCL3/CLU/F2RL1/IRF1/LG ALS8/IL27/HTRA1	18	2,278 005
GO:005 1260	protein homooligomer ization	18/354	261/11693	0,0009 9	0,015	0,0123	STOM/FLOT1/NLRC4/KCN J2/GBA/TIFA/GBP5/SEPTI N4/FCER1G/TRPM4/OLFM 4/GBP1/LCN2/CLU/SOD2/ ARG1/HSD17B10/TGM2	18	2,278 005
GO:004 2108	positive regulation of cytokine biosynthetic process	7/354	53/11693	0,0010 2	0,015	0,0126	IL1B/TLR8/TLR1/BCL3/IRF 1/TLR9/IL27	7	4,362 595
GO:003 1343	positive regulation of cell killing	6/354	39/11693	0,0010 3	0,015	0,0127	ITGAM/NECTIN2/F2RL1/P GLYRP1/IL18RAP/ARG1	6	5,081 704
GO:004 5600	positive regulation of fat cell differentiation	6/354	39/11693	0,0010 3	0,015	0,0127	MAPK14/CEBPB/TRPM4/Z FP36/CCDC71L/SFRP2	6	5,081 704
GO:000 3013	circulatory system process	20/354	307/11693	0,0010 7	0,016	0,0131	DSC2/NFE2/PTPRJ/KCNJ 2/ICAM1/NAMPT/HRH2/A GTRAP/F5/TRPM4/FFAR3/ NEDD4L/SOD2/F2RL1/SC N1B/SERPING1/OLR1/DO CK4/NTSR1/CEACAM1	20	2,151 861
GO:000 9595	detection of biotic stimulus	4/354	16/11693	0,0011 3	0,017	0,0136	NLRC4/TLR1/TLR2/PGLY RP1	4	8,257 768
GO:003 2695	negative regulation of interleukin-12 production	4/354	16/11693	0,0011 3	0,017	0,0136	JAK3/LILRA5/TLR8/ARRB2	4	8,257 768
GO:001 0324	membrane invagination	7/354	54/11693	0,0011 4	0,017	0,0137	FCGR1A/ITGAM/MARCO/ CD300A/FCER1G/F2RL1/S NX3	7	4,281 806
GO:009 0322	regulation of superoxide metabolic process	5/354	27/11693	0,0011 5	0,017	0,0137	CD177/ITGAM/FPR2/BST1 /F2RL1	5	6,116 865
GO:015 0077	regulation of neuroinflamm atory response	5/354	27/11693	0,0011 5	0,017	0,0137	ITGAM/MMP8/IL1B/CST7/ C1QA	5	6,116 865
GO:004 5637	regulation of myeloid cell differentiation	14/354	180/11693	0,0011 5	0,017	0,0137	LILRB4/NFE2/MAPK14/LIL RB3/CEBPB/TRIB1/FES/Z FP36/CSF3R/MYL9/HSPA 1B/ITGA2B/TAL1/CEACAM 1	14	2,569 083

GO:000 9612	response to mechanical stimulus	12/354	141/11693	0,0011 8	0,017	0,014	TLR5/MAPK14/LTBR/RET N/TNFRSF1A/KCNJ2/CAS P1/CASP5/IL1B/TLR8/GAD D45A/IRF1	12	2,811 155
GO:005 0878	regulation of body fluid levels	21/354	333/11693	0,0012 2	0,018	0,0145	CD177/NFE2/SLC22A4/GB A/CD59/SERPINA1/PHF21 A/FCER1G/ARRB2/F5/CLI C1/PLSCR1/MYL9/F2RL1/I RF1/SERPING1/DMTN/ITG A2B/CEACAM1/SLC4A1/C LEC1B	21	2,083 041
GO:003 0449	regulation of complement activation	9/354	87/11693	0,0012 4	0,018	0,0145	IL1B/CD59/C4BPA/C4A/CL U/CR1/SERPING1/C1QA/C R1L	9	3,417 008
GO:200 0257	regulation of protein activation cascade	9/354	87/11693	0,0012 4	0,018	0,0145	IL1B/CD59/C4BPA/C4A/CL U/CR1/SERPING1/C1QA/C R1L	9	3,417 008
GO:004 6328	regulation of JNK cascade	12/354	142/11693	0,0012 5	0,018	0,0147	LTBR/GADD45B/MMP8/SI RPA/IL1B/DUSP3/GADD45 A/F2RL1/TLR9/PINK1/SFR P2/FZD5	12	2,791 358
GO:001 8108	peptidyl- tyrosine phosphorylati on	17/354	245/11693	0,0012 7	0,018	0,0148	FCGR1A/SOCS3/JAK3/LIL RA5/OSM/PTPRJ/TNFRSF 1A/CD300A/ICAM1/BST1/ HCK/FES/ARRB2/TGFA/D MTN/SFRP2/TAL1	17	2,291 952
GO:000 1508	action potential	8/354	71/11693	0,0013 2	0,019	0,0153	DSC2/KCNJ2/GBA/FGF13/ TRPM4/NEDD4L/SCN1B/N TSR1	8	3,721 811
GO:000 2724	regulation of T cell cytokine production	5/354	28/11693	0,0013 7	0,019	0,0158	IL1B/TRPM4/IL18R1/ARG1 /FZD5	5	5,898 406
GO:000 6898	receptor- mediated endocytosis	16/354	226/11693	0,0014 2	0,02	0,0164	FCGR1A/FCGR1B/ITGAM/ HP/FLOT1/CD63/FPR2/MA RCO/APOL1/FCER1G/AR RB2/SCARF1/CXCR1/CLU /MKLN1/CEACAM1	16	2,338 483
GO:003 2928	regulation of superoxide anion generation	4/354	17/11693	0,0014 4	0,02	0,0165	CD177/ITGAM/FPR2/F2RL 1	4	7,772 017
GO:001 8212	peptidyl- tyrosine modification	17/354	248/11693	0,0014 5	0,02	0,0166	FCGR1A/SOCS3/JAK3/LIL RA5/OSM/PTPRJ/TNFRSF 1A/CD300A/ICAM1/BST1/ HCK/FES/ARRB2/TGFA/D MTN/SFRP2/TAL1	17	2,264 227
GO:003 0260	entry into host cell	10/354	107/11693	0,0014 8	0,02	0,0167	TRIM25/ICAM1/IFITM1/DY NLT1/IFITM2/NECTIN2/CR 1/HSPA1B/SNX3/CLEC4G	10	3,087 016
GO:004 4409	entry into host	10/354	107/11693	0,0014 8	0,02	0,0167	TRIM25/ICAM1/IFITM1/DY NLT1/IFITM2/NECTIN2/CR 1/HSPA1B/SNX3/CLEC4G	10	3,087 016
GO:005 1806	entry into cell of other organism involved in symbiotic interaction	10/354	107/11693	0,0014 8	0,02	0,0167	TRIM25/ICAM1/IFITM1/DY NLT1/IFITM2/NECTIN2/CR 1/HSPA1B/SNX3/CLEC4G	10	3,087 016
GO:005 1828	entry into other organism involved in symbiotic interaction	10/354	107/11693	0,0014 8	0,02	0,0167	TRIM25/ICAM1/IFITM1/DY NLT1/IFITM2/NECTIN2/CR 1/HSPA1B/SNX3/CLEC4G	10	3,087 016
GO:003 4612	response to tumor necrosis factor	16/354	227/11693	0,0014 9	0,02	0,0167	MAPK14/LTBR/PSMB9/CA SP4/AIM2/TNFRSF1A/CAS P1/ICAM1/PSMB3/GBA/GB	16	2,328 181

							P2/ZFP36/GBP1/LCN2/F2 RL1/HSPA1B		
GO:003 2418	lysosome localization	7/354	57/11693	0,0015 8	0,021	0,0176	MILR1/BLOC1S1/IL4R/CD 300A/STXBP2/FES/FCER1 G	7	4,056 448
GO:199 0266	neutrophil migration	7/354	57/11693	0,0015 8	0,021	0,0176	CD177/S100A9/DYSF/S10 0A12/BST1/CSF3R/S100A 8	7	4,056 448
GO:000 3254	regulation of membrane depolarization	5/354	29/11693	0,0016 1	0,022	0,0178	TSPO/TRPM4/NEDD4L/SC N1B/NTSR1	5	5,695 013
GO:004 2092	type 2 immune response	5/354	29/11693	0,0016 1	0,022	0,0178	BCL6/IL4R/BCL3/ARG1/BA TF	5	5,695 013
GO:005 0716	positive regulation of interleukin-1 secretion	5/354	29/11693	0,0016 1	0,022	0,0178	LILRA5/AIM2/CASP1/TLR8 /FZD5	5	5,695 013
GO:007 0613	regulation of protein processing	11/354	127/11693	0,0016 2	0,022	0,0178	IL1B/CD59/C4BPA/CST7/C 4A/CLU/CR1/SERPING1/C 1QA/CR1L/IL1R2	11	2,860 959
GO:003 2722	positive regulation of chemokine production	6/354	43/11693	0,0017 5	0,023	0,0191	FFAR2/IL4R/IL1B/FFAR3/T LR2/TLR9	6	4,608 987
GO:007 1621	granulocyte chemotaxis	7/354	58/11693	0,0017 5	0,023	0,0191	S100A9/DYSF/S100A12/M APK14/BST1/CSF3R/S100 A8	7	3,986 509
GO:000 6956	complement activation	9/354	92/11693	0,0018 4	0,024	0,0199	IL1B/CD59/C4BPA/C4A/CL U/CR1/SERPING1/C1QA/C R1L	9	3,231 301
GO:190 3317	regulation of protein maturation	11/354	129/11693	0,0018 4	0,024	0,0199	IL1B/CD59/C4BPA/CST7/C 4A/CLU/CR1/SERPING1/C 1QA/CR1L/IL1R2	11	2,816 603
GO:000 7254	JNK cascade	13/354	169/11693	0,0018 8	0,025	0,0202	LTBR/GADD45B/MMP8/SI RPA/IL1B/TRIB1/DUSP3/G ADD45A/F2RL1/TLR9/PIN K1/SFRP2/FZD5	13	2,540 852
GO:005 0863	regulation of T cell activation	17/354	254/11693	0,0018 8	0,025	0,0202	LILRB4/CD274/PDCD1LG2 /JAK3/BCL6/FLOT2/IL4R/C D300A/CEBPB/IL1B/DUSP 3/IRF1/CR1/ARG1/IL27/CL EC4G/CEACAM1	17	2,210 741
GO:003 2728	positive regulation of interferon- beta production	5/354	30/11693	0,0018 9	0,025	0,0202	FLOT1/TLR8/TLR2/IRF1/T LR9	5	5,505 179
GO:004 3030	regulation of macrophage activation	6/354	44/11693	0,0019 7	0,025	0,021	ITGAM/IL4R/MMP8/CST7/ C1QA/BPI	6	4,504 237
GO:004 5824	negative regulation of innate immune response	6/354	44/11693	0,0019 7	0,025	0,021	ARRB2/NMI/CR1/ARG1/SE RPING1/CEACAM1	6	4,504 237
GO:002 2407	regulation of cell-cell adhesion	19/354	302/11693	0,0021 2	0,027	0,0225	LILRB4/CD274/PDCD1LG2 /JAK3/BCL6/MAPK14/FLO T2/FLOT1/IL4R/CD300A/IC AM1/CEBPB/IL1B/DUSP3/I RF1/ARG1/CLEC4G/DMTN /CEACAM1	19	2,078 114

GO:003 0155	regulation of cell adhesion	27/354	493/11693	0,0021 3	0,027	0,0225	LILRB4/CD274/PDCD1LG2 /JAK3/DYSF/BCL6/MAPK1 4/FLOT2/FLOT1/PTPRJ/IL 4R/CD300A/ICAM1/CEBPB /IL1B/BST1/DUSP3/FES/O LFM4/GBP1/IRF1/ARG1/C LEC4G/DMTN/SFRP2/CEA CAM1/TGM2	27	1,809 004
GO:005 0854	regulation of antigen receptor- mediated signaling pathway	7/354	60/11693	0,0021 4	0,027	0,0225	LILRB4/PTPRJ/CD300A/D USP3/NECTIN2/GBP1/CE ACAM1	7	3,853 625
GO:004 5429	positive regulation of nitric oxide biosynthetic process	5/354	31/11693	0,0022	0,028	0,0229	MMP8/ICAM1/IL1B/CLU/D DAH2	5	5,327 592
GO:008 6002	cardiac muscle cell action potential involved in contraction	5/354	31/11693	0,0022	0,028	0,0229	DSC2/KCNJ2/TRPM4/NED D4L/SCN1B	5	5,327 592
GO:005 0867	positive regulation of cell activation	17/354	258/11693	0,0022 1	0,028	0,0229	CD177/LILRB4/CD274/PD CD1LG2/ITGAM/LILRA5/B CL6/FLOT2/IL4R/MMP8/IL 1B/FCER1G/NECTIN2/F2R L1/TLR9/DMTN/C1QA	17	2,176 466
GO:008 6001	cardiac muscle cell action potential	6/354	45/11693	0,0022 2	0,028	0,0229	DSC2/KCNJ2/FGF13/TRP M4/NEDD4L/SCN1B	6	4,404 143
GO:000 7162	negative regulation of cell adhesion	14/354	193/11693	0,0022 2	0,028	0,0229	CD274/PDCD1LG2/JAK3/B CL6/IL4R/CD300A/CEBPB/ DUSP3/GBP1/IRF1/ARG1/ CLEC4G/DMTN/CEACAM1	14	2,396 036
GO:190 3037	regulation of leukocyte cell- cell adhesion	16/354	236/11693	0,0022 2	0,028	0,0229	LILRB4/CD274/PDCD1LG2 /JAK3/BCL6/FLOT2/IL4R/C D300A/ICAM1/CEBPB/IL1 B/DUSP3/IRF1/ARG1/CLE C4G/CEACAM1	16	2,239 395
GO:190 3978	regulation of microglial cell activation	4/354	19/11693	0,0022 3	0,028	0,0229	ITGAM/MMP8/CST7/C1QA	4	6,953 91
GO:004 3410	positive regulation of MAPK cascade	21/354	351/11693	0,0023 3	0,029	0,0239	LILRA5/OSM/S100A12/MA PK14/LTBR/GADD45B/PT PRJ/FPR2/MARCO/MMP8/ ICAM1/IL1B/ARRB2/TGFA/ FPR1/GADD45A/F2RL1/P ROK2/TLR9/TIMP2/FZD5	21	1,976 218
GO:190 2105	regulation of leukocyte differentiation	15/354	216/11693	0,0024	0,03	0,0245	LILRB4/JAK3/BCL6/LILRB 3/IL4R/CEBPB/TRIB1/FES/ TMEM176A/IRF1/TLR9/CR 1/IL27/TAL1/CEACAM1	15	2,293 825
GO:005 0728	negative regulation of inflammatory response	9/354	96/11693	0,0024 7	0,03	0,0251	SOCS3/FPR2/TNFRSF1A/ SIRPA/GBA/CST7/TNFAIP 6/PGLYRP1/IL1R2	9	3,096 663
GO:003 0593	neutrophil chemotaxis	6/354	46/11693	0,0024 9	0,03	0,0251	S100A9/DYSF/S100A12/B ST1/CSF3R/S100A8	6	4,308 401
GO:009 9024	plasma membrane invagination	6/354	46/11693	0,0024 9	0,03	0,0251	FCGR1A/ITGAM/MARCO/ CD300A/FCER1G/F2RL1	6	4,308 401
GO:004 4275	cellular carbohydrate catabolic process	5/354	32/11693	0,0025 4	0,031	0,0252	GK/PPP1R3B/PYGL/PPP1 R3D/AOAH	5	5,161 105

GO:004 6329	negative regulation of JNK cascade	5/354	32/11693	0,0025 4	0,031	0,0252	SIRPA/DUSP3/F2RL1/PIN K1/SFRP2	5	5,161 105
GO:004 6636	negative regulation of alpha-beta T cell activation	5/354	32/11693	0,0025 4	0,031	0,0252	CD274/JAK3/BCL6/IL4R/C D300A	5	5,161 105
GO:190 4407	positive regulation of nitric oxide metabolic process	5/354	32/11693	0,0025 4	0,031	0,0252	MMP8/ICAM1/IL1B/CLU/D DAH2	5	5,161 105
GO:005 0731	positive regulation of peptidyl- tyrosine phosphorylati on	10/354	115/11693	0,0025 4	0,031	0,0252	FCGR1A/SOCS3/LILRA5/ OSM/PTPRJ/TNFRSF1A/I CAM1/ARRB2/TGFA/TAL1	10	2,872 267
GO:005 1403	stress- activated MAPK cascade	15/354	218/11693	0,0026 2	0,031	0,0259	MAPK14/LTBR/GADD45B/ MMP8/SIRPA/IL1B/TRIB1/ DUSP3/ZFP36/GADD45A/ F2RL1/TLR9/PINK1/SFRP 2/FZD5	15	2,272 78
GO:000 2920	regulation of humoral immune response	9/354	97/11693	0,0026 5	0,032	0,0261	IL1B/CD59/C4BPA/C4A/CL U/CR1/SERPING1/C1QA/C R1L	9	3,064 739
GO:004 3032	positive regulation of macrophage activation	4/354	20/11693	0,0027 2	0,032	0,0266	ITGAM/IL4R/MMP8/C1QA	4	6,606 215
GO:004 4247	cellular polysaccharid e catabolic process	4/354	20/11693	0,0027 2	0,032	0,0266	PPP1R3B/PYGL/PPP1R3D /AOAH	4	6,606 215
GO:004 6835	carbohydrate phosphorylati on	4/354	20/11693	0,0027 2	0,032	0,0266	PFKFB3/HK3/GALK1/PFKF B2	4	6,606 215
GO:005 0766	positive regulation of phagocytosis	6/354	47/11693	0,0027 8	0,033	0,0268	PTPRJ/FPR2/IL1B/IL15RA/ C4A/F2RL1	6	4,216 733
GO:000 2523	leukocyte migration involved in inflammatory response	3/354	10/11693	0,0028 2	0,033	0,0268	S100A9/FFAR2/S100A8	3	9,909 322
GO:000 7350	blastoderm segmentation	3/354	10/11693	0,0028 2	0,033	0,0268	BASP1/PCSK6/FZD5	3	9,909 322
GO:004 5078	positive regulation of interferon- gamma biosynthetic process	3/354	10/11693	0,0028 2	0,033	0,0268	TLR8/TLR9/IL27	3	9,909 322
GO:004 5351	type I interferon biosynthetic process	3/354	10/11693	0,0028 2	0,033	0,0268	TLR8/NMI/TLR9	3	9,909 322
GO:004 6007	negative regulation of activated T cell proliferation	3/354	10/11693	0,0028	0,033	0,0268	CD274/PDCD1LG2/ARG1	3	9,909 322
GO:007 0486	leukocyte aggregation	3/354	10/11693	0,0028 2	0,033	0,0268	S100A9/IL1B/S100A8	3	9,909 322

GO:190 3265	positive regulation of tumor necrosis factor- mediated signaling pathway	3/354	10/11693	0,0028 2	0,033	0,0268	CASP4/CASP1/HSPA1B	3	9,909 322
GO:190 3980	positive regulation of microglial cell activation	3/354	10/11693	0,0028 2	0,033	0,0268	ITGAM/MMP8/C1QA	3	9,909 322
GO:004 2136	neurotransmitt er biosynthetic process	7/354	63/11693	0,0028 3	0,033	0,0268	MMP8/SIRPA/ICAM1/IL1B/ TSPO/CLU/DDAH2	7	3,670 119
GO:000 1912	positive regulation of leukocyte mediated cytotoxicity	5/354	33/11693	0,0029 2	0,033	0,0276	ITGAM/NECTIN2/F2RL1/IL 18RAP/ARG1	5	5,004 708
GO:004 2060	wound healing	22/354	382/11693	0,0029 6	0,034	0,0278	CD177/NFE2/DYSF/CD59/ SERPINA1/PHF21A/FCER 1G/ARRB2/F5/CLIC1/INSL 3/PLSCR1/MYL9/F2RL1/IR F1/S100A8/SERPING1/DM TN/ITGA2B/CEACAM1/SL C4A1/CLEC1B	22	1,902 313
GO:000 6801	superoxide metabolic process	6/354	48/11693	0,0031	0,035	0,029	CD177/ITGAM/FPR2/BST1 /SOD2/F2RL1	6	4,128 884
GO:190 3556	negative regulation of tumor necrosis factor superfamily cytokine production	6/354	48/11693	0,0031	0,035	0,029	CD274/SIRPA/TSPO/ARR B2/BCL3/BPI	6	4,128 884
GO:000 7186	G protein- coupled receptor signaling pathway	26/354	482/11693	0,0031 5	0,036	0,0294	FFAR2/GPR84/HCAR3/P2 RY14/HCAR2/ADGRG3/FP R2/MARCO/HRH2/CCRL2/ LTB4R/AGTRAP/ARRB2/S ORT1/INSL3/FPR1/DYNLT 1/FFAR3/PPBP/CXCR1/F2 RL1/PROK2/ACKR1/NTSR 1/FZD5/TGM2	26	1,781 759
GO:190 3305	regulation of regulated secretory pathway	9/354	100/11693	0,0032 6	0,037	0,0302	CD177/ITGAM/IL4R/CD300 A/STXBP2/FES/FCER1G/F 2RL1/CEACAM1	9	2,972 797
GO:003 2469	endoplasmic reticulum calcium ion homeostasis	4/354	21/11693	0,0032 9	0,037	0,0302	GRINA/TMBIM6/BCAP31/T GM2	4	6,291 633
GO:004 4060	regulation of endocrine process	4/354	21/11693	0,0032 9	0,037	0,0302	RETN/HCAR2/IL1B/F2RL1	4	6,291 633
GO:008 6091	regulation of heart rate by cardiac conduction	4/354	21/11693	0,0032 9	0,037	0,0302	DSC2/KCNJ2/TRPM4/SCN 1B	4	6,291 633
GO:200 0482	regulation of interleukin-8 secretion	4/354	21/11693	0,0032 9	0,037	0,0302	FFAR2/TLR1/TLR2/F2RL1	4	6,291 633
GO:001 6050	vesicle organization	16/354	246/11693	0,0033 6	0,037	0,0307	FAM160A2/DYSF/RAB32/B LOC1S1/TAP1/CD59/RAB2 0/SERPINA1/AGFG1/F5/S ORT1/TGFA/NECTIN2/SR GN/RILP/SNX3	16	2,148 363

GO:190 3426	regulation of reactive oxygen species biosynthetic process	7/354	65/11693	0,0033 8	0,037	0,0309	MMP8/SIRPA/ICAM1/IL1B/ TSPO/CLU/DDAH2	7	3,557 193
GO:003 1098	stress- activated protein kinase signaling cascade	15/354	224/11693	0,0033 9	0,037	0,0309	MAPK14/LTBR/GADD45B/ MMP8/SIRPA/IL1B/TRIB1/ DUSP3/ZFP36/GADD45A/ F2RL1/TLR9/PINK1/SFRP 2/FZD5	15	2,211 902
GO:000 2831	regulation of response to biotic stimulus	10/354	120/11693	0,0034 6	0,038	0,0314	CD274/AIM2/IL1B/TRIB1/N ECTIN2/F2RL1/ARG1/IL27/ CEACAM1/HTRA1	10	2,752 589
GO:006 0759	regulation of response to cytokine stimulus	11/354	140/11693	0,0035	0,038	0,0316	SOCS3/PADI2/CASP4/TNF RSF1A/CASP1/TLR2/F2RL 1/ARG1/HSPA1B/LRRC70/ IL1R2	11	2,595 299
GO:004 3123	positive regulation of I- kappaB kinase/NF- kappaB signaling	12/354	161/11693	0,0036	0,039	0,0325	ALPK1/S100A12/TRIM25/L TBR/SECTM1/TNFRSF1A/ CASP1/TIFA/F2RL1/TLR9/ PINK1/TGM2	12	2,461 943
GO:002 2010	central nervous system myelination	3/354	11/11693	0,0037 9	0,041	0,0335	B4GALT5/CLU/TLR2	3	9,008 475
GO:003 2291	axon ensheathment in central nervous system	3/354	11/11693	0,0037 9	0,041	0,0335	B4GALT5/CLU/TLR2	3	9,008 475
GO:005 1004	regulation of lipoprotein lipase activity	3/354	11/11693	0,0037 9	0,041	0,0335	FURIN/SORT1/PCSK6	3	9,008 475
GO:005 1852	disruption by host of symbiont cells	3/354	11/11693	0,0037 9	0,041	0,0335	CAMP/F2RL1/ARG1	3	9,008 475
GO:005 1883	killing of cells in other organism involved in symbiotic interaction	3/354	11/11693	0,0037 9	0,041	0,0335	CAMP/F2RL1/ARG1	3	9,008 475
GO:008 6012	membrane depolarization during cardiac muscle cell action potential	3/354	11/11693	0,0037 9	0,041	0,0335	KCNJ2/TRPM4/SCN1B	3	9,008 475
GO:190 2563	regulation of neutrophil activation	3/354	11/11693	0,0037 9	0,041	0,0335	CD177/ITGAM/CD300A	3	9,008 475
GO:001 5837	amine transport	5/354	35/11693	0,0038	0,041	0,0335	AQP9/FFAR3/ARG1/NTSR 1/PINK1	5	4,718 725
GO:004 3122	regulation of I- kappaB kinase/NF- kappaB signaling	14/354	205/11693	0,0038 4	0,041	0,0338	ALPK1/S100A12/TRIM25/L TBR/SECTM1/TNFRSF1A/ CASP1/SIRPA/IL1B/TIFA/F 2RL1/TLR9/PINK1/TGM2	14	2,255 781
GO:000 2285	lymphocyte activation involved in immune response	11/354	142/11693	0,0039	0,041	0,0341	JAK3/BCL6/IL4R/ICAM1/S EMA4A/IL18R1/BCL3/F2R L1/IL27/BATF/CEACAM1	11	2,558 745

GO:200 1242	regulation of intrinsic apoptotic signaling pathway	11/354	142/11693	0,0039	0,041	0,0341	S100A9/GRINA/TMBIM6/S EPTIN4/CLU/SOD2/BCAP3 1/S100A8/DDIAS/PINK1/S FRP2	11	2,558 745
GO:003 2692	negative regulation of interleukin-1 production	4/354	22/11693	0,0039 2	0,041	0,0341	SERPINB1/ARRB2/CEACA M1/IL1R2	4	6,005 65
GO:006 1844	antimicrobial humoral immune response mediated by antimicrobial peptide	4/354	22/11693	0,0039 2	0,041	0,0341	S100A9/S100A12/CAMP/P GLYRP1	4	6,005 65
GO:005 0801	ion homeostasis	24/354	441/11693	0,0040 2	0,042	0,0348	S100A9/GRINA/TMBIM6/A TP6V0E1/FBXL5/KCNJ2/T SP0/NEDD8/RAB20/TRPM 4/FAM20A/LCN2/ATP6V1C 1/NEDD4L/SLC25A37/F2R L1/PROK2/SCN1B/BCAP3 1/S100A8/ALAS2/NTSR1/S LC4A1/TGM2	24	1,797 609
GO:007 2376	protein activation cascade	9/354	104/11693	0,0042 4	0,044	0,0366	IL1B/CD59/C4BPA/C4A/CL U/CR1/SERPING1/C1QA/C R1L	9	2,858 458
GO:003 2731	positive regulation of interleukin-1 beta production	5/354	36/11693	0,0043 1	0,045	0,037	LILRA5/AIM2/CASP1/TLR8 /FZD5	5	4,587 649
GO:003 8066	p38MAPK cascade	5/354	36/11693	0,0043 1	0,045	0,037	MAPK14/GADD45B/IL1B/Z FP36/GADD45A	5	4,587 649
GO:005 5080	cation homeostasis	22/354	395/11693	0,0044 1	0,046	0,0378	S100A9/GRINA/TMBIM6/A TP6V0E1/FBXL5/KCNJ2/N EDD8/RAB20/TRPM4/FAM 20A/LCN2/ATP6V1C1/NED D4L/SLC25A37/F2RL1/PR OK2/BCAP31/S100A8/ALA S2/NTSR1/SLC4A1/TGM2	22	1,839 705
GO:000 6869	lipid transport	14/354	209/11693	0,0045 6	0,047	0,0389	ACSL1/RETN/AQP9/IL1B/T SPO/PITPNA/LRP10/GRA MD1A/APOL1/ATP9A/CLU/ APOL6/NTSR1/CEACAM1	14	2,212 608
GO:005 2548	regulation of endopeptidas e activity	16/354	254/11693	0,0045 8	0,047	0,039	NAIP/S100A9/PSMB9/AIM 2/NLRC4/CASP1/SERPINB 1/ARRB2/FURIN/CST7/C4 A/BCAP31/SLPI/CR1/S100 A8/SFRP2	16	2,080 698
GO:004 4057	regulation of system process	19/354	324/11693	0,0045 9	0,047	0,039	DSC2/RETN/HCAR2/TNFR SF1A/KCNJ2/ICAM1/IL1B/ GBA/HRH2/FGF13/TRPM4 /CST7/MYL9/F2RL1/PROK 2/SCN1B/TSHZ3/DOCK4/N TSR1	19	1,937 007
GO:004 2554	superoxide anion generation	4/354	23/11693	0,0046 4	0,048	0,0392	CD177/ITGAM/FPR2/F2RL 1	4	5,744 535
GO:007 2606	interleukin-8 secretion	4/354	23/11693	0,0046 4	0,048	0,0392	FFAR2/TLR1/TLR2/F2RL1	4	5,744 535
GO:004 3405	regulation of MAP kinase activity	16/354	255/11693	0,0047 5	0,049	0,04	S100A12/MAPK14/GADD4 5B/PTPRJ/CD300A/IL1B/G BA/TRIB1/DUSP3/TGFA/F PR1/GADD45A/PROK2/TL R9/SFRP2/FZD5	16	2,072 538

GO:000 7259	JAK-STAT cascade	8/354	87/11693	0,0047 6	0,049	0,04	SOCS3/JAK3/OSM/IL10RB /TNFRSF1A/CD300A/NMI/ BCL3	8	3,037 34
GO:003 2715	negative regulation of interleukin-6 production	5/354	37/11693	0,0048 6	0,049	0,0407	SIRPA/GBA/ARRB2/TLR9/ BPI	5	4,463 659
GO:000 2834	regulation of response to tumor cell	3/354	12/11693	0,0049 4	0,05	0,041	CD274/NECTIN2/CEACAM 1	3	8,257 768
GO:000 2837	regulation of immune response to tumor cell	3/354	12/11693	0,0049 4	0,05	0,041	CD274/NECTIN2/CEACAM 1	3	8,257 768
GO:004 5907	positive regulation of vasoconstricti on	3/354	12/11693	0,0049 4	0,05	0,041	ICAM1/HRH2/TRPM4	3	8,257 768
GO:003 2945	negative regulation of mononuclear cell proliferation	6/354	53/11693	0,0051 1	0,051	0,0422	CD274/PDCD1LG2/CD300 A/CEBPB/ARG1/CLEC4G	6	3,739 367
GO:005 0672	negative regulation of lymphocyte proliferation	6/354	53/11693	0,0051 1	0,051	0,0422	CD274/PDCD1LG2/CD300 A/CEBPB/ARG1/CLEC4G	6	3,739 367
GO:009 8771	inorganic ion homeostasis	22/354	402/11693	0,0054 1	0,054	0,0443	S100A9/GRINA/TMBIM6/A TP6V0E1/FBXL5/KCNJ2/N EDD8/RAB20/TRPM4/FAM 20A/LCN2/ATP6V1C1/NED D4L/SLC25A37/F2RL1/PR OK2/BCAP31/S100A8/ALA S2/NTSR1/SLC4A1/TGM2	22	1,807 671
GO:008 6004	regulation of cardiac muscle cell contraction	4/354	24/11693	0,0054 3	0,054	0,0443	DSC2/KCNJ2/FGF13/TRP M4	4	5,505 179
GO:200 0778	positive regulation of interleukin-6 secretion	4/354	24/11693	0,0054 3	0,054	0,0443	LILRA5/IL1B/TLR8/F2RL1	4	5,505 179
GO:005 1926	negative regulation of calcium ion transport	5/354	38/11693	0,0054 6	0,054	0,0443	DYSF/TMBIM6/ICAM1/TLR 9/NTSR1	5	4,346 194
GO:008 6003	cardiac muscle cell contraction	5/354	38/11693	0,0054 6	0,054	0,0443	DSC2/KCNJ2/TRPM4/NED D4L/SCN1B	5	4,346 194
GO:190 3428	positive regulation of reactive oxygen species biosynthetic process	5/354	38/11693	0,0054 6	0,054	0,0443	MMP8/ICAM1/IL1B/CLU/D DAH2	5	4,346 194
GO:009 7696	STAT cascade	8/354	89/11693	0,0054 6	0,054	0,0443	SOCS3/JAK3/OSM/IL10RB /TNFRSF1A/CD300A/NMI/ BCL3	8	2,969 085
GO:004 5833	negative regulation of lipid metabolic process	6/354	54/11693	0,0056	0,055	0,0453	HCAR2/IL1B/ERLIN1/ORM DL2/PLIN5/CEACAM1	6	3,670 119
GO:000 6873	cellular ion homeostasis	20/354	355/11693	0,0057 3	0,056	0,0462	S100A9/GRINA/TMBIM6/A TP6V0E1/FBXL5/KCNJ2/N EDD8/RAB20/TRPM4/LCN 2/ATP6V1C1/NEDD4L/F2R L1/PROK2/BCAP31/S100A	20	1,860 906

							8/ALAS2/NTSR1/SLC4A1/ TGM2		
GO:000 3018	vascular process in circulatory system	8/354	90/11693	0,0058 4	0,057	0,0469	PTPRJ/ICAM1/HRH2/TRP M4/SOD2/F2RL1/DOCK4/ CEACAM1	8	2,936 095
GO:004 5861	negative regulation of proteolysis	14/354	215/11693	0,0058 4	0,057	0,0469	NAIP/SERPINB1/CD59/AR RB2/FURIN/C4BPA/CST7/ C4A/SLPI/CR1/SERPING1/ TIMP2/SFRP2/IL1R2	14	2,150 861
GO:003 2873	negative regulation of stress- activated MAPK cascade	5/354	39/11693	0,0061 1	0,059	0,0486	SIRPA/DUSP3/F2RL1/PIN K1/SFRP2	5	4,234 753
GO:007 0303	negative regulation of stress- activated protein kinase signaling cascade	5/354	39/11693	0,0061 1	0,059	0,0486	SIRPA/DUSP3/F2RL1/PIN K1/SFRP2	5	4,234 753
GO:190 3307	positive regulation of regulated secretory pathway	5/354	39/11693	0,0061 1	0,059	0,0486	CD177/ITGAM/IL4R/FCER 1G/F2RL1	5	4,234 753
GO:001 6052	carbohydrate catabolic process	11/354	151/11693	0,0061 8	0,059	0,0488	PFKFB3/GK/HK3/PPP1R3 B/PYGL/CHIT1/PPP1R3D/ GALK1/AOAH/SLC4A1/PF KFB2	11	2,406 237
GO:000 1963	synaptic transmission, dopaminergic	3/354	13/11693	0,0062 8	0,059	0,0488	FLOT1/ARRB2/PINK1	3	7,622 555
GO:001 9400	alditol metabolic process	3/354	13/11693	0,0062 8	0,059	0,0488	DYSF/GK/GALK1	3	7,622 555
GO:003 3005	positive regulation of mast cell activation	3/354	13/11693	0,0062 8	0,059	0,0488	IL4R/FCER1G/NECTIN2	3	7,622 555
GO:004 3011	myeloid dendritic cell differentiation	3/354	13/11693	0,0062 8	0,059	0,0488	LTBR/BATF2/BATF	3	7,622 555
GO:004 3628	ncRNA 3'-end processing	3/354	13/11693	0,0062 8	0,059	0,0488	USB1/ERI1/HSD17B10	3	7,622 555
GO:004 5072	regulation of interferon- gamma biosynthetic process	3/354	13/11693	0,0062 8	0,059	0,0488	TLR8/TLR9/IL27	3	7,622 555
GO:005 1770	positive regulation of nitric-oxide synthase biosynthetic process	3/354	13/11693	0,0062 8	0,059	0,0488	NAMPT/TLR2/TLR9	3	7,622 555
GO:005 1818	disruption of cells of other organism involved in symbiotic interaction	3/354	13/11693	0,0062 8	0,059	0,0488	CAMP/F2RL1/ARG1	3	7,622 555

GO:005 0832	defense response to fungus	4/354	25/11693	0,0063 1	0,059	0,049	S100A9/S100A12/ARG1/S 100A8	4	5,284 972
GO:003 2872	regulation of stress- activated MAPK cascade	12/354	173/11693	0,0063 7	0,06	0,0492	LTBR/GADD45B/MMP8/SI RPA/IL1B/DUSP3/GADD45 A/F2RL1/TLR9/PINK1/SFR P2/FZD5	12	2,291 173
GO:004 4262	cellular carbohydrate metabolic process	13/354	195/11693	0,0064	0,06	0,0492	DYSF/GYG1/PFKFB3/GK/ B4GALT5/HK3/PPP1R3B/P YGL/PPP1R3D/GALK1/AO AH/NTSR1/PFKFB2	13	2,202 072
GO:000 2262	myeloid cell homeostasis	10/354	131/11693	0,0064 3	0,06	0,0492	BCL6/MAPK14/HCAR2/FC ER1G/ZFP36/HSPA1B/DM TN/ALAS2/TAL1/SLC4A1	10	2,521 456
GO:000 5976	polysaccharid e metabolic process	7/354	73/11693	0,0064 5	0,06	0,0492	GYG1/B4GALT5/PPP1R3B /PYGL/CHIT1/PPP1R3D/A OAH	7	3,167 363
GO:003 1623	receptor internalization	7/354	73/11693	0,0064 5	0,06	0,0492	FLOT1/CD63/FCER1G/AR RB2/CXCR1/MKLN1/CEAC AM1	7	3,167 363
GO:004 6425	regulation of JAK-STAT cascade	7/354	73/11693	0,0064 5	0,06	0,0492	SOCS3/JAK3/OSM/IL10RB /TNFRSF1A/CD300A/BCL3	7	3,167 363
GO:190 3533	regulation of protein targeting	7/354	73/11693	0,0064 5	0,06	0,0492	ITGAM/STOM/SH3GLB1/N UCB1/DMTN/PINK1/FZD5	7	3,167 363
GO:007 0661	leukocyte proliferation	14/354	218/11693	0,0065 8	0,061	0,05	CD274/PDCD1LG2/BCL6/ CD300A/CEBPB/IL1B/CLU/ F2RL1/IRF1/TLR9/ARG1/E LF4/IL27/CLEC4G	14	2,121 262
GO:004 3409	negative regulation of MAPK cascade	10/354	132/11693	0,0067 7	0,062	0,0513	PTPRJ/CD300A/SIRPA/IL1 B/GBA/DUSP3/GBP1/F2RL 1/PINK1/SFRP2	10	2,502 354
GO:005 1604	protein maturation	16/354	265/11693	0,0068 3	0,063	0,0517	CASP1/IL1B/CD59/FURIN/ C4BPA/CST7/ASPRV1/SR GN/C4A/CLU/CR1/SERPIN G1/C1QA/PCSK6/CR1L/IL 1R2	16	1,994 329
GO:009 7193	intrinsic apoptotic signaling pathway	15/354	242/11693	0,0068 8	0,063	0,0519	S100A9/GRINA/TMBIM6/C ASP4/TNFRSF1A/CEBPB/ SEPTIN4/BCL3/CLU/SOD2 /BCAP31/S100A8/DDIAS/P INK1/SFRP2	15	2,047 381
GO:003 0316	osteoclast differentiation	7/354	74/11693	0,0069 5	0,063	0,0523	LILRB4/MAPK14/SBNO2/LI LRB3/CEBPB/FCER1G/JU NB	7	3,124 561
GO:007 0302	regulation of stress- activated protein kinase signaling cascade	12/354	175/11693	0,0069 6	0,063	0,0523	LTBR/GADD45B/MMP8/SI RPA/IL1B/DUSP3/GADD45 A/F2RL1/TLR9/PINK1/SFR P2/FZD5	12	2,264 988
GO:001 0466	negative regulation of peptidase activity	10/354	133/11693	0,0071 3	0,065	0,0534	NAIP/SERPINB1/ARRB2/F URIN/CST7/C4A/SLPI/CR1 /TIMP2/SFRP2	10	2,483 539
GO:001 9229	regulation of vasoconstricti on	4/354	26/11693	0,0072 9	0,066	0,054	ICAM1/HRH2/TRPM4/DOC K4	4	5,081 704
GO:190 3115	regulation of actin filament- based movement	4/354	26/11693	0,0072 9	0,066	0,054	DSC2/KCNJ2/FGF13/TRP M4	4	5,081 704

GO:200 0515	negative regulation of CD4-positive, alpha-beta T cell activation	4/354	26/11693	0,0072 9	0,066	0,054	CD274/JAK3/BCL6/IL4R	4	5,081 704
GO:003 4109	homotypic cell-cell adhesion	6/354	57/11693	0,0073	0,066	0,054	DSC2/CLIC1/MYL9/DMTN/ ITGA2B/CEACAM1	6	3,476 955
GO:004 3407	negative regulation of MAP kinase activity	6/354	57/11693	0,0073	0,066	0,054	PTPRJ/CD300A/IL1B/GBA/ DUSP3/SFRP2	6	3,476 955
GO:002 1782	glial cell development	7/354	75/11693	0,0074 7	0,067	0,0549	B4GALT5/FPR2/IL1B/CLU/ TLR2/S100A8/C1QA	7	3,082 9
GO:190 4892	regulation of STAT cascade	7/354	75/11693	0,0074 7	0,067	0,0549	SOCS3/JAK3/OSM/IL10RB /TNFRSF1A/CD300A/BCL3	7	3,082 9
GO:004 5444	fat cell differentiation	11/354	155/11693	0,0074 8	0,067	0,0549	LRG1/DYSF/FFAR2/MAPK 14/RETN/CEBPB/TRPM4/Z FP36/SORT1/CCDC71L/S FRP2	11	2,344 141
GO:004 2133	neurotransmitt er metabolic process	8/354	94/11693	0,0075 6	0,067	0,0554	MMP8/SIRPA/ICAM1/IL1B/ TSPO/CLU/TLR2/DDAH2	8	2,811 155
GO:000 7218	neuropeptide signaling pathway	3/354	14/11693	0,0078 1	0,069	0,0566	SORT1/PROK2/NTSR1	3	7,078 087
GO:003 4134	toll-like receptor 2 signaling pathway	3/354	14/11693	0,0078 1	0,069	0,0566	TLR1/TLR2/F2RL1	3	7,078 087
GO:004 2095	interferon- gamma biosynthetic process	3/354	14/11693	0,0078 1	0,069	0,0566	TLR8/TLR9/IL27	3	7,078 087
GO:008 6010	membrane depolarization during action potential	3/354	14/11693	0,0078 1	0,069	0,0566	KCNJ2/TRPM4/SCN1B	3	7,078 087
GO:190 1741	positive regulation of myoblast fusion	3/354	14/11693	0,0078 1	0,069	0,0566	MAPK14/FLOT1/IL4R	3	7,078 087
GO:004 3903	regulation of symbiosis, encompassin g mutualism through parasitism	13/354	200/11693	0,0078 6	0,069	0,0568	TRIM25/STOM/IFITM1/ZFP 36/DYNLT1/IFITM2/NECTI N2/PLSCR1/CAMP/F2RL1/ SLPI/ARG1/SNX3	13	2,147 02
GO:004 5596	negative regulation of cell differentiation	23/354	441/11693	0,0079 3	0,069	0,0569	KREMEN1/LILRB4/JAK3/B CL6/CDK5RAP2/LILRB3/IL 4R/IL1B/TSPO/FGF13/TRI B1/TRPM4/ZFP36/SORT1/ DYNLT1/GBP1/TMEM176A /IRF1/CMTM5/DMTN/SFR P2/TAL1/CEACAM1	23	1,722 709
GO:007 0664	negative regulation of leukocyte proliferation	6/354	58/11693	0,0079 4	0,069	0,0569	CD274/PDCD1LG2/CD300 A/CEBPB/ARG1/CLEC4G	6	3,417 008
GO:007 1214	cellular response to abiotic stimulus	15/354	246/11693	0,0079 5	0,069	0,0569	TLR5/DYSF/MAPK14/LTB R/TNFRSF1A/KCNJ2/CAS P1/CASP5/NAMPT/IL1B/T SPO/TLR8/GADD45A/IRF1 /SFRP2	15	2,014 09

GO:010 4004	cellular response to environmental stimulus	15/354	246/11693	0,0079 5	0,069	0,0569	TLR5/DYSF/MAPK14/LTB R/TNFRSF1A/KCNJ2/CAS P1/CASP5/NAMPT/IL1B/T SPO/TLR8/GADD45A/IRF1 /SFRP2	15	2,014 09
GO:000 1933	negative regulation of protein phosphorylati on	18/354	318/11693	0,0081 6	0,071	0,0582	SOCS3/GADD45B/PTPRJ/ CD300A/SIRPA/IL1B/GBA/ TRIB1/DUSP3/NIBAN1/AR RB2/GBP1/GADD45A/F2R L1/DMTN/PINK1/SFRP2/C EACAM1	18	1,869 683
GO:000 2696	positive regulation of leukocyte activation	15/354	247/11693	0,0082 4	0,071	0,0587	CD177/LILRB4/CD274/PD CD1LG2/ITGAM/BCL6/FLO T2/IL4R/MMP8/IL1B/FCER 1G/NECTIN2/F2RL1/TLR9/ C1QA	15	2,005 936
GO:007 1347	cellular response to interleukin-1	10/354	136/11693	0,0083	0,072	0,059	PSMB9/SIRPA/ICAM1/CEB PB/PSMB3/IL1B/GBP2/GB P1/LCN2/IL1R2	10	2,428 755
GO:000 2701	negative regulation of production of molecular mediator of immune response	4/354	27/11693	0,0083 5	0,072	0,059	JAK3/TMBIM6/BCL6/ARG1	4	4,893 492
GO:003 3363	secretory granule organization	4/354	27/11693	0,0083 5	0,072	0,059	BLOC1S1/AGFG1/NECTIN 2/SRGN	4	4,893 492
GO:003 2732	positive regulation of interleukin-1 production	5/354	42/11693	0,0083 8	0,072	0,059	LILRA5/AIM2/CASP1/TLR8 /FZD5	5	3,932 271
GO:200 0378	negative regulation of reactive oxygen species metabolic process	5/354	42/11693	0,0083 8	0,072	0,059	HP/SIRPA/TSPO/PLIN5/PI NK1	5	3,932 271
GO:003 2479	regulation of type I interferon production	9/354	116/11693	0,0085 8	0,073	0,0601	TRIM25/FLOT1/SIRPA/TL R8/NMI/TLR2/IRF1/UBE2L 6/TLR9	9	2,562 756
GO:003 5821	modification of morphology or physiology of other organism	9/354	116/11693	0,0085 8	0,073	0,0601	S100A9/S100A12/STOM/A POL1/CAMP/F2RL1/SLPI/ PGLYRP1/ARG1	9	2,562 756
GO:005 1149	positive regulation of muscle cell differentiation	6/354	59/11693	0,0086 2	0,073	0,0602	SMARCD3/MAPK14/FLOT 1/IL4R/ARRB2/SOD2	6	3,359 092
GO:003 3674	positive regulation of kinase activity	22/354	419/11693	0,0086 4	0,073	0,0603	FCGR1A/LILRA5/S100A12/ MAPK14/GADD45B/ACSL1 /FPR2/CD300A/IL1B/FGF1 3/TGFA/FPR1/FAM20A/TX N/GADD45A/CLU/PROK2/ TLR9/PINK1/TAL1/PFKFB2 /FZD5	22	1,734 328
GO:005 0670	regulation of lymphocyte proliferation	11/354	159/11693	0,0089 8	0,076	0,0625	CD274/PDCD1LG2/BCL6/ CD300A/CEBPB/IL1B/IRF1 /TLR9/ARG1/IL27/CLEC4G	11	2,285 169
GO:004 6634	regulation of alpha-beta T cell activation	7/354	78/11693	0,0092 1	0,078	0,0639	CD274/JAK3/BCL6/IL4R/C D300A/IRF1/IL27	7	2,964 327
GO:003 0003	cellular cation homeostasis	19/354	347/11693	0,0093 5	0,079	0,0648	S100A9/GRINA/TMBIM6/A TP6V0E1/FBXL5/KCNJ2/N EDD8/RAB20/TRPM4/LCN 2/ATP6V1C1/NEDD4L/F2R	19	1,808 618

							L1/PROK2/BCAP31/S100A 8/ALAS2/NTSR1/TGM2		
GO:003 2944	regulation of mononuclear cell proliferation	11/354	160/11693	0,0093 9	0,079	0,0649	CD274/PDCD1LG2/BCL6/ CD300A/CEBPB/IL1B/IRF1 /TLR9/ARG1/IL27/CLEC4G	11	2,270 886
GO:004 3269	regulation of ion transport	20/354	372/11693	0,0094 1	0,079	0,0649	KCNJ15/LILRA5/DYSF/TM BIM6/STOM/CD63/KCNJ2/I CAM1/CEBPB/IL1B/TSPO/ ARRB2/CLIC1/CACNA1E/ NEDD4L/SCN1B/TLR9/AR G1/NTSR1/PINK1	20	1,775 864
GO:001 4002	astrocyte development	4/354	28/11693	0,0095 2	0,079	0,0649	FPR2/IL1B/S100A8/C1QA	4	4,718 725
GO:003 2735	positive regulation of interleukin-12 production	4/354	28/11693	0,0095 2	0,079	0,0649	MAPK14/TLR2/IRF1/TLR9	4	4,718 725
GO:004 5589	regulation of regulatory T cell differentiation	4/354	28/11693	0,0095 2	0,079	0,0649	LILRB4/BCL6/IRF1/CR1	4	4,718 725
GO:000 2374	cytokine secretion involved in immune response	3/354	15/11693	0,0095 5	0,079	0,0649	MAPK14/TLR2/F2RL1	3	6,606 215
GO:000 2418	immune response to tumor cell	3/354	15/11693	0,0095 5	0,079	0,0649	CD274/NECTIN2/CEACAM 1	3	6,606 215
GO:004 5623	negative regulation of T-helper cell differentiation	3/354	15/11693	0,0095 5	0,079	0,0649	JAK3/BCL6/IL4R	3	6,606 215
GO:003 2606	type I interferon production	9/354	118/11693	0,0095 5	0,079	0,0649	TRIM25/FLOT1/SIRPA/TL R8/NMI/TLR2/IRF1/UBE2L 6/TLR9	9	2,519 319
GO:190 3409	reactive oxygen species biosynthetic process	7/354	79/11693	0,0098 5	0,081	0,0667	MMP8/SIRPA/ICAM1/IL1B/ TSPO/CLU/DDAH2	7	2,926 804
GO:001 9058	viral life cycle	16/354	276/11693	0,0099	0,081	0,0669	TRIM25/STOM/ICAM1/IFIT M1/FURIN/DYNLT1/IFITM2 /NECTIN2/PLSCR1/UBAP1 /NEDD4L/SLPI/CR1/HSPA 1B/SNX3/CLEC4G	16	1,914 845
GO:004 3901	negative regulation of multi- organism process	10/354	140/11693	0,0100 8	0,083	0,068	TRIM25/TRIB1/IFITM1/ZFP 36/IFITM2/PLSCR1/CAMP/ SLPI/SNX3/HTRA1	10	2,359 362
GO:004 2130	negative regulation of T cell proliferation	5/354	44/11693	0,0101 9	0,083	0,0686	CD274/PDCD1LG2/CEBPB /ARG1/CLEC4G	5	3,753 531
GO:004 5066	regulatory T cell differentiation	4/354	29/11693	0,0107 8	0,088	0,0721	LILRB4/BCL6/IRF1/CR1	4	4,556 01
GO:004 5622	regulation of T-helper cell differentiation	4/354	29/11693	0,0107 8	0,088	0,0721	JAK3/BCL6/IL4R/IL27	4	4,556 01

GO:190 0015	regulation of cytokine production involved in inflammatory response	4/354	29/11693	0,0107 8	0,088	0,0721	MAPK14/SIRPA/GBP5/IL1 R2	4	4,556 01
GO:000 6821	chloride transport	5/354	45/11693	0,0111 9	0,09	0,0744	SLC26A8/TSPO/APOL1/CL IC1/SLC4A1	5	3,670 119
GO:004 5806	negative regulation of endocytosis	5/354	45/11693	0,0111 9	0,09	0,0744	DYSF/CD300A/SIRPA/TLR 2/SNX3	5	3,670 119
GO:004 8525	negative regulation of viral process	7/354	81/11693	0,0112 2	0,09	0,0744	TRIM25/IFITM1/ZFP36/IFIT M2/PLSCR1/SLPI/SNX3	7	2,854 537
GO:200 1243	negative regulation of intrinsic apoptotic signaling pathway	7/354	81/11693	0,0112 2	0,09	0,0744	GRINA/TMBIM6/CLU/SOD 2/DDIAS/PINK1/SFRP2	7	2,854 537
GO:000 2385	mucosal immune response	3/354	16/11693	0,0114 9	0,091	0,0752	FFAR2/FFAR3/CAMP	3	6,193 326
GO:000 2710	negative regulation of T cell mediated immunity	3/354	16/11693	0,0114 9	0,091	0,0752	ARG1/CLEC4G/CEACAM1	3	6,193 326
GO:004 8143	astrocyte activation	3/354	16/11693	0,0114 9	0,091	0,0752	FPR2/IL1B/C1QA	3	6,193 326
GO:005 0995	negative regulation of lipid catabolic process	3/354	16/11693	0,0114 9	0,091	0,0752	HCAR2/IL1B/PLIN5	3	6,193 326
GO:190 1739	regulation of myoblast fusion	3/354	16/11693	0,0114 9	0,091	0,0752	MAPK14/FLOT1/IL4R	3	6,193 326
GO:190 4469	positive regulation of tumor necrosis factor secretion	3/354	16/11693	0,0114 9	0,091	0,0752	LILRA5/MMP8/FZD5	3	6,193 326
GO:001 0952	positive regulation of peptidase activity	10/354	143/11693	0,0116	0,092	0,0757	S100A9/MAPK14/AIM2/NL RC4/CASP1/BCAP31/CR1/ S100A8/PINK1/SFRP2	10	2,309 865
GO:000 6820	anion transport	18/354	331/11693	0,0120 1	0,095	0,0782	SLC26A8/ACSL1/AQP9/CA 4/CEBPB/IL1B/TSPO/PITP NA/APOL1/CLIC1/SLC6A1 2/ATP9A/ARG1/NTSR1/SL C38A5/CEACAM1/SLC4A1 /SLC6A9	18	1,796 252
GO:003 0218	erythrocyte differentiation	8/354	102/11693	0,0121 2	0,096	0,0787	BCL6/MAPK14/ZFP36/HSP A1B/DMTN/ALAS2/TAL1/S LC4A1	8	2,590 672
GO:004 8821	erythrocyte development	4/354	30/11693	0,0121 5	0,096	0,0788	BCL6/DMTN/TAL1/SLC4A1	4	4,404 143
GO:003 2720	negative regulation of tumor necrosis factor production	5/354	46/11693	0,0122 5	0,096	0,0789	SIRPA/TSPO/ARRB2/BCL 3/BPI	5	3,590 334

GO:004 6427	positive regulation of JAK-STAT cascade	5/354	46/11693	0,0122 5	0,096	0,0789	SOCS3/OSM/IL10RB/TNF RSF1A/CD300A	5	3,590 334
GO:007 0527	platelet aggregation	5/354	46/11693	0,0122 5	0,096	0,0789	CLIC1/MYL9/DMTN/ITGA2 B/CEACAM1	5	3,590 334
GO:004 5638	negative regulation of myeloid cell differentiation	6/354	64/11693	0,0126 5	0,099	0,0813	LILRB4/LILRB3/TRIB1/ZFP 36/TAL1/CEACAM1	6	3,096 663
GO:000 9895	negative regulation of catabolic process	14/354	236/11693	0,0127 1	0,099	0,0816	HP/DYSF/MAPK14/CTSA/ HCAR2/NAMPT/IL1B/TSP O/FURIN/ZFP36/PLIN5/RIL P/SNX3/PINK1	14	1,959 47

Anexo 6: Vias enriquecidas dos genes regulados negativamente pela análise de ORA na reanálise de ENH x LL. ID- identificação da via no gene ontology. Gene ratio – número de genes associado a via / total de genes significativos. BgRatio – número total de genes associado a via / número total de genes identificados no RNAseq. padj – p value ajustado. qvalue – pvalue ajustado pela taxa de falsa descoberta (*false discovery rate – FDR*). GeneID – descrição dos genes associados com a via. Contagem – Número de genes associados com a via.

GO:007 2078 nephron tubule morphogenesis 6/85 37/11693 2,4E-07 0,000192 0,000173 DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8 6 22,30 GO:006 1333 renal tubule morphogenesis 6/85 39/11693 3,32E- 07 0,000192 0,000173 DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8 6 21,11 GO:007 2088 nephron epithelium morphogenesis 6/85 39/11693 3,32E- 07 0,000192 0,000173 DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8 6 21,11 GO:007 2028 nephron epithelium morphogenesis 6/85 41/11693 4,53E- 07 0,000196 0,000177 DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8 6 20,13 GO:007 2028 nephron morphogenesis 6/85 49/11693 1,34E- 06 0,000389 0,000351 DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8 6 16,84/ 16,84/ MAGED1/NOG/ GATA3/SOX8 GO:006 nephron tubule development 6/85 49/11693 1,34E- 06 0,000389 0,000351 DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8 6 16,84/ 42,33/ MAGED1/NOG/ GATA3/SOX8 GO:006 positive mesonephros development 4	d tio	# de genes	geneID	qvalue	p.adjust	pvalue	Bg Ratio	Gene Ratio	Descrição	ID
GO:006 renal tubule morphogenesis 6/85 39/11693 3,32E- 07 0,000192 0,000173 DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8 6 21,11 GO:007 nephron epithelium morphogenesis 6/85 39/11693 3,32E- 07 0,000192 0,000173 DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8 6 21,11 GO:007 nephron epithelium morphogenesis 6/85 41/11693 4,53E- 07 0,000196 0,000177 DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8 6 20,133 GO:007 nephron morphogenesis 6/85 41/11693 1,34E- 06 0,000389 0,000351 DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8 6 16,844 GO:007 nephron tubule development 6/85 49/11693 1,34E- 06 0,000389 0,000351 DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8 6 16,844 GO:006 positive regulation of mesonephros development 4/85 13/11693 1,77E- 06 0,000438 0,000396 MAGED1/NOG/ GATA3/SOX8 4 42,32 GO:006 kidney morphogenesis 6/85 54/11693 2,41E- 06 0,000475	2,30779	6	DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8	0,000173	0,000192	2,4E-07	37/11693	6/85	nephron tubule morphogenesis	GO:007 2078
GO:007 2088 nephron epithelium morphogenesis 6/85 39/11693 3,32E- 07 0,000192 0,000173 DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8 6 21,11 GO:007 2028 nephron morphogenesis 6/85 41/11693 4,53E- 07 0,000196 0,000177 DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8 6 20,13' GO:006 renal tubule development 6/85 49/11693 1,34E- 06 0,000389 0,000351 DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8 6 16,84' GO:007 nephron tubule development 6/85 49/11693 1,34E- 06 0,000389 0,000351 DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8 6 16,84' GO:007 nephron tubule development 6/85 49/11693 1,34E- 06 0,000389 0,000351 DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8 6 16,84' GO:006 positive regulation of mesonephros development 4/85 13/11693 1,77E- 06 0,000438 0,000396 MAGED1/NOG/ GATA3/SOX8 4 42,3' GO:006 kidney morphogenesis 6/85 54/11693 2,41E- 06 0,000475 <th>1,1638</th> <th>6</th> <th>DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8</th> <th>0,000173</th> <th>0,000192</th> <th>3,32E- 07</th> <th>39/11693</th> <th>6/85</th> <th>renal tubule morphogenesis</th> <th>GO:006 1333</th>	1,1638	6	DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8	0,000173	0,000192	3,32E- 07	39/11693	6/85	renal tubule morphogenesis	GO:006 1333
GO:007 2028 nephron morphogenesis 6/85 41/11693 4,53E- 07 0,000196 0,000177 DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8 6 20,13 GO:006 1326 renal tubule development 6/85 49/11693 1,34E- 06 0,000389 0,000351 DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8 6 16,84 GO:007 2080 nephron tubule development 6/85 49/11693 1,34E- 06 0,000389 0,000351 DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8 6 16,84 GO:007 2080 nephron tubule development 6/85 49/11693 1,34E- 06 0,000389 0,000351 DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8 6 16,84 GO:006 1213 positive regulation of mesonephros development 6/85 13/11693 1,77E- 06 0,000438 0,000396 MAGED1/NOG/ GATA3/SOX8 4 42,32 GO:006 0993 positive morphogenesis 6/85 54/11693 2,41E- 06 0,000475 0,000429 DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8 6 15,284	1,1638	6	DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8	0,000173	0,000192	3,32E- 07	39/11693	6/85	nephron epithelium morphogenesis	GO:007 2088
GO:006 1326 renal tubule development 6/85 49/11693 1,34E- 06 0,000389 0,000351 DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8 6 16,84 GO:007 2080 nephron tubule development 6/85 49/11693 1,34E- 06 0,000389 0,000351 DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8 6 16,84 GO:007 2080 nephron tubule development 6/85 49/11693 1,34E- 06 0,000389 0,000351 DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8 6 16,84 GO:006 regulation of mesonephros development 4/85 13/11693 1,77E- 06 0,000438 0,000396 MAGED1/NOG/ GATA3/SOX8 4 42,32 GO:006 welopment kidney morphogenesis 6/85 54/11693 2,41E- 06 0,000475 0,000429 DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8 6 15,284),13142	6	DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8	0,000177	0,000196	4,53E- 07	41/11693	6/85	nephron morphogenesis	GO:007 2028
GO:007 2080 nephron tubule development 6/85 49/11693 1,34E- 06 0,000389 0,000351 DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8 6 16,84 GO:006 1213 positive regulation of mesonephros development 4/85 13/11693 1,77E- 06 0,000438 0,000396 MAGED1/NOG/ GATA3/SOX8 4 42,33 GO:006 welopment 6/85 54/11693 2,41E- 06 0,000475 0,000429 DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8 6 15,284	3,84466	6	DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8	0,000351	0,000389	1,34E- 06	49/11693	6/85	renal tubule development	GO:006 1326
GO:006 1213 positive regulation of mesonephros development 4/85 13/11693 1,77E- 06 0,000438 0,000396 MAGED1/NOG/ GATA3/SOX8 4 42,33 GO:006 0993 kidney morphogenesis 6/85 54/11693 2,41E- 06 0,000475 0,000429 DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8 6 15,284	3,84466	6	DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8	0,000351	0,000389	1,34E- 06	49/11693	6/85	nephron tubule development	GO:007 2080
GO:006 kidney 6/85 54/11693 2,41E- 0,000475 0,000429 DCHS1/KLHL3/ 6 15,284 0993 morphogenesis 06 06 MAGED1/NOG/ GATA3/SOX8 6 15,284	2,3276	4	MAGED1/NOG/ GATA3/SOX8	0,000396	0,000438	1,77E- 06	13/11693	4/85	positive regulation of mesonephros development	GO:006 1213
	i,28497	6	DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8	0,000429	0,000475	2,41E- 06	54/11693	6/85	kidney morphogenesis	GO:006 0993
GO:006 regulation of mesonephros development 4/85 14/11693 2,46E- 06 0,000475 0,000429 MAGED1/NOG/ 4 39,30	9,3042	4	MAGED1/NOG/ GATA3/SOX8	0,000429	0,000475	2,46E- 06	14/11693	4/85	regulation of mesonephros development	GO:006 1217
GO:007 nephron 6/85 57/11693 3,33E- 0,000578 0,000522 DCHS1/KLHL3/ 6 14,48 2009 epithelium development 06 MAGED1/NOG/ GATA3/SOX8 6 14,48	4,4805	6	DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8	0,000522	0,000578	3,33E- 06	57/11693	6/85	nephron epithelium development	GO:007 2009
GO:006 ureteric bud 5/85 34/11693 4,25E- 0,000614 0,000555 DCHS1/MAGED 5 20,23 0675 morphogenesis 06 06 1/NOG/GATA3/ SOX8 5 20,23	20,2301	5	DCHS1/MAGED 1/NOG/GATA3/ SOX8	0,000555	0,000614	4,25E- 06	34/11693	5/85	ureteric bud morphogenesis	GO:006 0675
GO:007 mesonephric 5/85 34/11693 4,25E- 0,000614 0,000555 DCHS1/MAGED 5 20,23 2171 tubule morphogenesis 06 06 1/NOG/GATA3/ SOX8 5 20,23	20,2301	5	DCHS1/MAGED 1/NOG/GATA3/ SOX8	0,000555	0,000614	4,25E- 06	34/11693	5/85	mesonephric tubule morphogenesis	GO:007 2171
GO:190 positive 4/85 22/11693 1,72E- 0,002298 0,002074 MAGED1/NOG/ 4 25,01* 5332 regulation of morphogenesis of an epithelium 05 05 GATA3/SOX8 4 25,01*	i,01176	4	MAGED1/NOG/ GATA3/SOX8	0,002074	0,002298	1,72E- 05	22/11693	4/85	positive regulation of morphogenesis of an epithelium	GO:190 5332
GO:007 kidney 6/85 78/11693 2,09E- 0,002586 0,002335 DCHS1/KLHL3/ 6 10,58 2073 epithelium development 05 05 MAGED1/NOG/ GATA3/SOX8 6 10,58	0,5819	6	DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8	0,002335	0,002586	2,09E- 05	78/11693	6/85	kidney epithelium development	GO:007 2073
GO:007 nephron 6/85 81/11693 2,59E- 0,002997 0,002706 DCHS1/KLHL3/ 6 10,189 2006 development 05 05 MAGED1/NOG/ GATA3/SOX8 6 10,189),18998	6	DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8	0,002706	0,002997	2,59E- 05	81/11693	6/85	nephron development	GO:007 2006

GO:009 0184	positive regulation of kidney development	4/85	25/11693	2,93E- 05	0,003175	0,002866	MAGED1/NOG/ GATA3/SOX8	4	22,01035
GO:000 1657	ureteric bud development	5/85	54/11693	4,31E- 05	0,004304	0,003885	DCHS1/MAGED 1/NOG/GATA3/ SOX8	5	12,73747
GO:007 2163	mesonephric epithelium development	5/85	55/11693	4,71E- 05	0,004304	0,003885	DCHS1/MAGED 1/NOG/GATA3/ SOX8	5	12,50588
GO:007 2164	mesonephric tubule development	5/85	55/11693	4,71E- 05	0,004304	0,003885	DCHS1/MAGED 1/NOG/GATA3/ SOX8	5	12,50588
GO:000 1823	mesonephros development	5/85	56/11693	5,15E- 05	0,004464	0,00403	DCHS1/MAGED 1/NOG/GATA3/ SOX8	5	12,28256
GO:009 0190	positive regulation of branching involved in ureteric bud morphogenesis	3/85	11/11693	5,87E- 05	0,004846	0,004375	MAGED1/NOG/ SOX8	3	37,51765
GO:000 1658	branching involved in ureteric bud morphogenesis	4/85	30/11693	6,17E- 05	0,004866	0,004393	DCHS1/MAGED 1/NOG/SOX8	4	18,34196
GO:003 2634	interleukin-5 production	3/85	12/11693	7,78E- 05	0,005399	0,004874	LEF1/GATA3/IL 5RA	3	34,39118
GO:003 2674	regulation of interleukin-5 production	3/85	12/11693	7,78E- 05	0,005399	0,004874	LEF1/GATA3/IL 5RA	3	34,39118
GO:009 0189	regulation of branching involved in ureteric bud morphogenesis	3/85	12/11693	7,78E- 05	0,005399	0,004874	MAGED1/NOG/ SOX8	3	34,39118
GO:000 2437	inflammatory response to antigenic stimulus	4/85	35/11693	0,00011 5	0,007369	0,006652	CD28/GATA3/C CR7/IL5RA	4	15,72168
GO:009 0183	regulation of kidney development	4/85	35/11693	0,00011 5	0,007369	0,006652	MAGED1/NOG/ GATA3/SOX8	4	15,72168
GO:004 5058	T cell selection	4/85	39/11693	0,00017 6	0,010918	0,009856	CD28/BCL11B/ GATA3/CCR7	4	14,1092
GO:004 5061	thymic T cell selection	3/85	16/11693	0,00019 4	0,0116	0,010472	CD28/GATA3/C CR7	3	25,79338
GO:011 0110	positive regulation of animal organ morphogenesis	4/85	43/11693	0,00025 9	0,014955	0,013501	MAGED1/NOG/ GATA3/SOX8	4	12,79672
GO:003 2673	regulation of interleukin-4 production	3/85	23/11693	0,00059 1	0,033081	0,029864	CD28/LEF1/GA TA3	3	17,94322
GO:003 3077	T cell differentiation in thymus	4/85	58/11693	0,00081 8	0,044372	0,040058	CD28/BCL11B/ GATA3/CCR7	4	9,487221

GO:005 0678	regulation of epithelial cell proliferation	7/85	212/11693	0,00087	0,045733	0,041287	PTPRK/BCL11B /MAGED1/NOG/ GATA3/WNT7A/ IFT80	7	4,542231
GO:004 8872	homeostasis of number of cells	7/85	214/11693	0,00091 9	0,046899	0,042339	CCR4/ETS1/TN FRSF13C/GATA 3/CCR7/GPR18 3/CACNA1F	7	4,49978
GO:003 2633	interleukin-4 production	3/85	27/11693	0,00095 6	0,047388	0,042781	CD28/LEF1/GA TA3	3	15,28497
GO:000 6935	chemotaxis	9/85	365/11693	0,00129 7	0,060875	0,054957	CCR4/MMP28/L EF1/BCL11B/N OG/GATA3/CC R7/FPR3/GPR1 83	9	3,392006
GO:000 7423	sensory organ development	8/85	294/11693	0,00130 6	0,060875	0,054957	LEF1/DCHS1/B CL11B/NOG/GA TA3/WNT7A/SO X8/SDK2	8	3,743257
GO:004 2330	taxis	9/85	367/11693	0,00134 7	0,060875	0,054957	CCR4/MMP28/L EF1/BCL11B/N OG/GATA3/CC R7/FPR3/GPR1 83	9	3,373521
GO:004 5165	cell fate commitment	5/85	113/11693	0,00136 8	0,060875	0,054957	BCL11B/GATA3 /WNT7A/CHD5/ SOX8	5	6,086934
GO:004 6631	alpha-beta T cell activation	5/85	115/11693	0,00147 9	0,062916	0,056799	CD28/LEF1/BCL 11B/GATA3/GP R183	5	5,981074
GO:007 2676	lymphocyte migration	4/85	68/11693	0,00148 7	0,062916	0,056799	GATA3/CCR7/G PR15/GPR183	4	8,092042
GO:000 1822	kidney development	6/85	175/11693	0,00169 8	0,068561	0,061895	DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8	6	4,716504
GO:003 0900	forebrain development	7/85	238/11693	0,00169 9	0,068561	0,061895	SUN1/ETS1/BC L11B/NOG/WNT 7A/CHD5/PAX5	7	4,046021
GO:000 1503	ossification	7/85	242/11693	0,00186 8	0,073673	0,06651	SUN1/LEF1/DC HS1/NOG/TPH1 /SOX8/IFT80	7	3,979144
GO:005 0673	epithelial cell proliferation	7/85	245/11693	0,00200 4	0,075726	0,068364	PTPRK/BCL11B /MAGED1/NOG/ GATA3/WNT7A/ IFT80	7	3,93042
GO:007 2001	renal system development	6/85	181/11693	0,00201 4	0,075726	0,068364	DCHS1/KLHL3/ MAGED1/NOG/ GATA3/SOX8	6	4,560156
GO:006 0688	regulation of morphogenesis of a branching structure	3/85	35/11693	0,00205 1	0,075726	0,068364	MAGED1/NOG/ SOX8	3	11,79126
GO:002 1533	cell differentiation in hindbrain	2/85	11/11693	0,00275 3	0,099495	0,089821	NOG/WNT7A	2	25,01176

Anexo 7: Genes diferencialmente expressos na comparação ENH + TAL x ENH. Genes upregulados estão destacados em verde e genes downregulados estão destacados em vermelho na coluna de Log₂ foldchange, que apresenta os níveis de expressão gênica. Basemean – média das contagens nornalizadas de todas as amostras. IfcSE – log do erro padrão de fold change. padj – p value ajustado.

Símbolo	ENTREZ ID	Nome do gene	baseMean	log2 foldchange	lfcSE	pvalue	padj
ATP2C2	9914	ATPase secretory pathway Ca2+ transporting 2	38,87986	2,086112	0,473589	6,21E-08	9,41E-05
TMEM92	162461	transmembrane protein 92	19,43625	2,068786	0,619237	5,96E-07	0,000625
IGFBP2	3485	insulin like growth factor binding protein 2	126,9839	2,015317	0,365957	6,02E-10	2,74E-06
CHIT1	1118	chitinase 1	86,47662	1,625288	0,392691	5,23E-07	0,000595
CAMP	820	cathelicidin antimicrobial peptide	385,4026	1,598815	0,292811	3,47E-09	7,9E-06
ALOX15	246	arachidonate 15-lipoxygenase	121,3054	1,578395	0,449904	2,01E-06	0,001441
SLC2A5	6518	solute carrier family 2 member 5	66,98229	1,479105	0,363169	8,24E-07	0,000709
DUSP13	51207	dual specificity phosphatase 13	18,52267	1,34346	0,605557	1,79E-05	0,00692
CRISP3	10321	cysteine rich secretory protein 3	113,4427	1,333392	0,360646	2,18E-06	0,001486
CLEC5A	23601	C-type lectin domain containing 5A	146,2688	1,268847	0,310489	1,01E-06	0,000809
FPR3	2359	formyl peptide receptor 3	13,86943	1,156097	0,608162	3,79E-05	0,011363
MYBPH	4608	myosin binding protein H	31,93798	1,151324	0,845263	5,14E-05	0,014318
LTF	4057	lactotransferrin	1935,669	1,150887	0,718019	5,01E-05	0,014238
CLC	1178	Charcot-Leyden crystal galectin	342,2489	1,141517	0,20517	4,17E-09	8,12E-06
IL5RA	3568	interleukin 5 receptor subunit alpha	70,97009	1,079553	0,401453	1,38E-05	0,006094
RNASE2	6036	ribonuclease A family member 2	230,1093	1,031371	0,16694	1,17E-10	8E-07
RETN	56729	resistin	139,3519	0,980665	0,330409	8,47E-06	0,004621
PI3	5266	peptidase inhibitor 3	1399,682	0,935558	0,285735	4,39E-06	0,002854
CDT1	81620	chromatin licensing and DNA replication factor 1	35,59431	0,931382	0,413007	2,92E-05	0,009258
CHI3L1	1116	chitinase 3 like 1	2705,217	0,919278	0,848778	0,000109	0,022322
LCN2	3934	lipocalin 2	697,0216	0,912935	0,603202	9,53E-05	0,020978
CXCL8	3576	C-X-C motif chemokine ligand 8	33,17064	0,881991	0,63047	0,000117	0,023116
SLC9A3R1	9368	SLC9A3 regulator 1	30,93843	0,881503	0,717133	0,000134	0,026196
RNASE3	6037	ribonuclease A family member 3	56,95307	0,860011	0,582174	0,00011	0,022322
ZNF692	55657	zinc finger protein 692	171,6064	0,855694	0,204601	2,99E-07	0,00037
DEFA3	1668	defensin alpha 3	3954,875	0,839476	0,660815	0,000147	0,027826
ABCA13	154664	ATP binding cassette subfamily A member 13	49,12187	0,832385	0,633941	0,000143	0,027451
MARVELD1	83742	MARVEL domain containing 1	114,8083	0,820796	0,285616	8,2E-06	0,004621
B4GALNT3	283358	beta-1,4-N-acetyl- galactosaminyltransferase 3	24,4817	0,816062	0,701616	0,000169	0,030764
VSIG4	11326	V-set and immunoglobulin domain containing 4	41,96444	0,793158	0,718157	0,000186	0,031153
OLFM4	10562	olfactomedin 4	331,2211	0,779419	0,687142	0,000192	0,031153
TCN1	6947	transcobalamin 1	165,3942	0,777842	0,500539	0,000107	0,022322
KIAA0319L	79932	KIAA0319 like	905,1572	0,70247	0,160755	4,12E-08	7,02E-05
MYO5A	4644	myosin VA	262,6595	0,699614	0,340695	4,04E-05	0,011729
LGALS12	85329	galectin 12	67,76581	0,675614	0,379772	7,19E-05	0,01856
CLEC10A	10462	C-type lectin domain containing 10A	92,68439	0,661528	0,405694	9,86E-05	0,021351
LILRA3	11026	leukocyte immunoglobulin like receptor A3	872,5771	0,657004	0,265095	1,52E-05	0,006303
ALDH2	217	aldehyde dehydrogenase 2 family member	906,2497	0,652163	0,254215	1,23E-05	0,005805
CEACAM6	4680	carcinoembryonic antigen related cell adhesion molecule 6	102,9955	0,633453	0,669791	0,000334	0,047453

PPFIA4	8497	PTPRF interacting protein alpha 4	18,41382	0,608153	0,684766	0,000368	0,050508
ELAPOR1			748,3939	0,587848	0,257055	2,31E-05	0,008075
SLC8A1	6546	solute carrier family 8 member A1	216,9479	-0,60517	0,352161	8,29E-05	0,020199
C4BPA	722	complement component 4 binding protein alpha	89,95444	-0,61514	0,534084	0,000273	0,040876
SLC46A2	57864	solute carrier family 46 member 2	68,10937	-0,63579	0,358231	7,28E-05	0,01856
MPZL1	9019	myelin protein zero like 1	602,8406	-0,6424	0,183068	8,31E-07	0,000709
NLRP6	171389	NLR family pyrin domain containing 6	218,3876	-0,65586	0,360667	6,61E-05	0,017688
VASH1	22846	vasohibin 1	153,733	-0,72486	0,318419	2,56E-05	0,008729
CYP1B1	1545	cytochrome P450 family 1 subfamily B member 1	249,661	-0,74179	0,328475	2,7E-05	0,008972
TDRD9	122402	tudor domain containing 9	49,71637	-0,74242	0,474268	0,000108	0,022322
ARHGAP23	57636	Rho GTPase activating protein 23	12,98967	-0,75136	0,667422	0,000209	0,033584
RNA5SP202	1008734 63	RNA, 5S ribosomal pseudogene 202	264,2229	-0,80675	0,487102	8,73E-05	0,020477
TK2	7084	thymidine kinase 2	196,105	-0,86591	0,284099	6,18E-06	0,003805
ENAH	55740	ENAH actin regulator	213,4145	-0,90377	0,588256	9,4E-05	0,020978
FMO5	2330	flavin containing monooxygenase 5	22,68214	-1,03173	0,457969	2,8E-05	0,009104
PEG10	23089	paternally expressed 10	22,97229	-1,07041	0,702396	6,6E-05	0,017688
C11orf95	65998	chromosome 11 open reading frame 95	19,78132	-1,18961	0,655044	3,83E-05	0,011363
SPCS1	28972	signal peptidase complex subunit 1	142,9382	-1,2465	0,530484	1,88E-05	0,00692
ZNF608	57507	zinc finger protein 608	42,65866	-1,26658	0,460248	1,07E-05	0,005198
RNA5SP389	1064807 66	RNA, 5S ribosomal pseudogene 389	672,9608	-1,35247	0,232393	9,17E-10	3,13E-06
MYH10	4628	myosin heavy chain 10	86,57123	-1,48323	0,588164	9,29E-06	0,004872
MRAS	22808	muscle RAS oncogene homolog	32,7048	-1,63821	0,467377	1,75E-06	0,00133
HAPLN3	145864	hyaluronan and proteoglycan link protein 3	128,7202	-1,64471	0,230095	6,75E-14	9,21E-10
КСИНЗ	23416	potassium voltage-gated channel subfamily H member 3	54,40734	-1,95284	0,365976	1,9E-09	5,19E-06
CELSR2	1952	cadherin EGF LAG seven-	14,76562	-2,37228	0,941362	2,19E-07	0,000298

Anexo 8: Vias enriquecidas dos genes diferencialmente expressos pela análise de ORA em ENH + TAL x ENL. ID- identificação da via no gene ontology. Gene ratio – número de genes associado a via / total de genes significativos. BgRatio – número total de genes associado a via / número total de genes identificados no RNAseq. padj – p value ajustado. qvalue – pvalue ajustado pela taxa de falsa descoberta (false discovery rate – FDR). GeneID – descrição dos genes associados com a via. Contagem – Número de genes associados com a via.

ID	Descrição	Gene Ratio	Bg Ratio	pvalue	p.adjust	qvalue	genelD	# de genes	Odd Ratio
GO:004 2119	neutrophil activation	17/37	475/12906	2,54E- 15	1,51E- 12	1,3E-12	RNASE2/CAMP/CHI T1/SLC2A5/CLEC5 A/CRISP3/RETN/LIL RA3/LTF/LCN2/CHI 3L1/RNASE3/TCN1/ CXCL8/ABCA13/OL FM4/CEACAM6	17	12,48376
GO:003 6230	granulocyte activation	17/37	481/12906	3,12E- 15	1,51E- 12	1,3E-12	RNASE2/CAMP/CHI T1/SLC2A5/CLEC5 A/CRISP3/RETN/LIL RA3/LTF/LCN2/CHI 3L1/RNASE3/TCN1/ CXCL8/ABCA13/OL FM4/CEACAM6	17	12,32803
GO:004 3312	neutrophil degranulation	16/37	463/12906	3,75E- 14	1E-11	8,6E-12	RNASE2/CAMP/CHI T1/SLC2A5/CLEC5 A/CRISP3/RETN/LIL RA3/LTF/LCN2/CHI 3L1/RNASE3/TCN1/ ABCA13/OLFM4/CE ACAM6	16	12,05394
GO:000 2283	neutrophil activation involved in immune response	16/37	466/12906	4,15E- 14	1E-11	8,6E-12	RNASE2/CAMP/CHI T1/SLC2A5/CLEC5 A/CRISP3/RETN/LIL RA3/LTF/LCN2/CHI 3L1/RNASE3/TCN1/ ABCA13/OLFM4/CE ACAM6	16	11,97634
GO:000 2446	neutrophil mediated immunity	16/37	473/12906	5,23E- 14	1,01E- 11	8,67E- 12	RNASE2/CAMP/CHI T1/SLC2A5/CLEC5 A/CRISP3/RETN/LIL RA3/LTF/LCN2/CHI 3L1/RNASE3/TCN1/ ABCA13/OLFM4/CE ACAM6	16	11,7991
GO:001 9730	antimicrobial humoral response	6/37	56/12906	1,06E- 08	1,71E- 06	1,47E- 06	CAMP/PI3/LTF/LCN 2/RNASE3/DEFA3	6	37,37259
GO:000 2385	mucosal immune response	4/37	18/12906	1,7E-07	2,35E- 05	2,01E- 05	CAMP/LTF/RNASE3 /DEFA3	4	77,51351
GO:000 2251	organ or tissue specific immune response	4/37	20/12906	2,68E- 07	3,24E- 05	2,78E- 05	CAMP/LTF/RNASE3 /DEFA3	4	69,76216
GO:001 9731	antibacterial humoral response	4/37	22/12906	4,03E- 07	4,33E- 05	3,71E- 05	CAMP/LTF/RNASE3 /DEFA3	4	63,42015
GO:006 1844	antimicrobial humoral immune response mediated by antimicrobial peptide	4/37	23/12906	4,87E- 07	4,7E-05	4,04E- 05	CAMP/LTF/RNASE3 /DEFA3	4	60,66275
GO:000 6959	humoral immune response	7/37	197/12906	1,21E- 06	0,00010 6	9,14E- 05	CAMP/PI3/LTF/LCN 2/RNASE3/DEFA3/V SIG4	7	12,39429

GO:004 2742	defense response to bacterium	5/37	136/12906	4,01E- 05	0,00323	0,00277 3	CAMP/LTF/LCN2/R NASE3/DEFA3	5	12,82393
GO:003 1640	killing of cells of other organism	3/37	35/12906	0,0001 33	0,00919 6	0,00789 6	CAMP/LTF/DEFA3	3	29,89807
GO:004 4364	disruption of cells of other organism	3/37	35/12906	0,0001 33	0,00919 6	0,00789 6	CAMP/LTF/DEFA3	3	29,89807
GO:005 1181	cofactor transport	3/37	36/12906	0,0001 45	0,00934 5	0,00802 4	LCN2/TCN1/SLC9A 3R1	3	29,06757
GO:000 9617	response to bacterium	7/37	422/12906	0,0001 67	0,01010 1	0,00867 3	CAMP/CHIT1/LTF/L CN2/RNASE3/CXCL 8/DEFA3	7	5,785961
GO:005 0830	defense response to Gram-positive bacterium	3/37	45/12906	0,0002 83	0,01609 8	0,01382 3	CAMP/RNASE3/DE FA3	3	23,25405
GO:009 8542	defense response to other organism	6/37	338/12906	0,0003 61	0,01939	0,01664 9	RNASE2/CAMP/LTF /LCN2/RNASE3/DE FA3	6	6,191908
GO:003 4116	positive regulation of heterotypic cell- cell adhesion	2/37	13/12906	0,0006 12	0,03109 1	0,02669 7	ALOX15/CEACAM6	2	53,6632
GO:003 4114	regulation of heterotypic cell- cell adhesion	2/37	21/12906	0,0016 23	0,07258 5	0,06232 6	ALOX15/CEACAM6	2	33,22008
GO:004 2759	long-chain fatty acid biosynthetic process	2/37	21/12906	0,0016 23	0,07258 5	0,06232 6	ALOX15/MYO5A	2	33,22008
GO:007 0663	regulation of leukocyte proliferation	4/37	179/12906	0,0016 53	0,07258 5	0,06232 6	IGFBP2/CLC/IL5RA/ VSIG4	4	7,794655
GO:001 0811	positive regulation of cell-substrate adhesion	3/37	88/12906	0,0020 13	0,08454 6	0,07259 7	ALOX15/OLFM4/CE ACAM6	3	11,89128

Anexo 9 : Genes diferencialmente expressos na comparação ENH + TAL x LL. Genes upregulados estão destacados em verde e genes downregulados estão destacados em vermelho na coluna de Log₂foldchange, que apresenta os níveis de expressão gênica. Basemean – média das contagens normalizadas de todas as amostras. IfcSE – log do erro padrão de fold change. padj – p value ajustado.

Símbolo		Nome do gene	baseMean	log2 foldchange	lfcSE	pvalue	padj
CHIT1	1118	chitinase 1	109,4198	3,991677	0,610566	5,94E- 15	8,53E-11
CAMP	820	cathelicidin antimicrobial peptide	479,6293	3,000596	0,509798	2,55E- 11	1,22E-07
IGFBP2	3485	insulin like growth factor binding	120,5821	2,968817	0,699629	6,75E-	9,71E-05
TMEM92	162461	transmembrane protein 92	24,55208	2,927916	0,64004	2,42E-	3,87E-05
OLFM4	10562	olfactomedin 4	418,0209	2,714613	0,790248	1,21E-	0,000769
CA1	759	carbonic anhydrase 1	1595,348	2,695895	0,99551	2,77E-	0,001207
DUSP13	51207	dual specificity phosphatase 13	23,48187	2,693332	0,635598	2,03E-	0,000208
ATP2C2	9914	ATPase secretory pathway Ca2+	49,15461	2,674575	0,625319	1,91E-	0,000208
LCN2	3934	lipocalin 2	880,0154	2,59335	0,583363	1,43E-	0,000172
RETN	56729	resistin	165,1732	2,493004	0,480468	7,93E-	1,43E-05
MMP8	4317	matrix metallopeptidase 8	445,9731	2,479861	0,788839	4,12E-	0,001599
LTF	4057	lactotransferrin	2435,002	2,471682	0,617694	8,32E-	0,000583
HP	3240	haptoglobin	401,8575	2,465475	0,646582	1,34E-	0,000769
AGO2	27161	argonaute RISC catalytic	112,2744	2,394403	0,718274	4,08E-	0,001599
RUNDC3 A	10900	RUN domain containing 3A	703,5586	2,337876	0,614	1,94E- 06	0,000996
ACKR1	2532	atypical chemokine receptor 1 (Duffy blood group)	30,40362	2,265916	0,852613	1,38E- 05	0,003146
TMEM158	25907	transmembrane protein 158 (gene/pseudogene)	139,0007	2,240544	0,69755	7,51E- 06	0,002452
CHI3L1	1116	chitinase 3 like 1	3392,203	2,210816	0,485417	2,95E- 07	0,000282
ABCA13	154664	ATP binding cassette subfamily A member 13	54,93289	2,208465	0,588712	3,02E- 06	0,001277
CRISP3	10321	cysteine rich secretory protein 3	143,555	2,185715	0,545172	1,72E- 06	0,000918
OSBP2	23762	oxysterol binding protein 2	981,0611	2,176231	0,725792	1,2E-05	0,002924
SFRP2	6423	secreted frizzled related protein 2	51,0809	2,140619	0,643528	7,92E- 06	0,002524
ХК	7504	X-linked Kx blood group	232,496	2,126862	0,757605	1,74E- 05	0,003776
COL17A1	1308	collagen type XVII alpha 1 chain	29,14028	2,11678	0,61941	7,12E- 06	0,00238
GFAP	2670	glial fibrillary acidic protein	8,293072	2,102389	0,928701	3,07E- 05	0,00526
ALAS2	212	5'-aminolevulinate synthase 2	24661,08	2,088813	0,827639	2,62E- 05	0,004823
SMIM5	643008	small integral membrane protein 5	149,9708	2,088774	0,546173	3,3E-06	0,001354
MCEMP1	199675	mast cell expressed membrane protein 1	770,3254	2,080634	0,523438	2,33E- 06	0,001117
SPTB	6710	spectrin beta, erythrocytic	512,6733	2,067491	0,639639	1,08E- 05	0,00277
RAP1GAP	5909	RAP1 GTPase activating protein	304,6315	2,050709	1,127419	3,69E- 05	0,005901
TCN1	6947	transcobalamin 1	208,543	2,041855	0,484281	1,29E- 06	0,000769
AC007325 .1			51,81658	2,032888	0,452804	5,43E- 07	0,000459
OLR1	4973	oxidized low density lipoprotein receptor 1	35,15174	1,999958	0,692379	2,09E- 05	0,004223
CDCP1	64866	CUB domain containing protein 1	27,34556	1,981245	0,587879	1E-05	0,00269
CLEC5A	23601	C-type lectin domain containing 5A	184,4721	1,940858	0,440818	8,52E- 07	0,000583

SLC6A9	6536	solute carrier family 6 member 9	50,24996	1,93533	0,776324	3,95E- 05	0,006112
RBM38	55544	RNA binding motif protein 38	85,80531	1,920582	0,549541	8,73E-	0,002609
DMTN	2039	dematin actin binding protein	7194,47	1,911253	0,471982	2,53E-	0,001154
AC105052			83,23631	1,871799	0,621788	2,19E-	0,004307
RAB3IL1	5866	RAB3A interacting protein like 1	59,6696	1,869433	0,591457	1,72E-	0,003776
GSPT1	2935	G1 to S phase transition 1	3325,827	1,864769	0,536222	9,75E-	0,00269
SLC25A3	51629	solute carrier family 25 member	1265,558	1,856508	0,527527	9,08E-	0,002609
TMCC2	9911	transmembrane and coiled-coil	575,0879	1,854204	0,763754	5,07E- 05	0,007216
DNAI4			9,328351	1,850944	1,087301	7,72E- 05	0,008948
PLEK2	26499	pleckstrin 2	141,8099	1,844998	0,601091	2,07E- 05	0,004223
GYPB	2994	glycophorin B (MNS blood group)	90,54908	1,843084	0,928285	7,81E- 05	0,008979
SELENBP 1	8991	selenium binding protein 1	543,2848	1,836654	0,743512	4,99E- 05	0,007167
FAXDC2	10826	fatty acid hydroxylase domain containing 2	43,09794	1,828882	0,578793	1,82E- 05	0,003844
FAM210B	116151	family with sequence similarity 210 member B	3474,84	1,814588	0,535255	1,22E- 05	0,002934
МҮВРН	4608	myosin binding protein H	39,46228	1,805052	0,601582	2,44E- 05	0,004686
AHSP	51327	alpha hemoglobin stabilizing protein	854,7943	1,803848	0,916946	8,8E-05	0,00953
ARHGEF3 7	389337	Rho guanine nucleotide exchange factor 37	28,55828	1,803154	0,937283	9,03E- 05	0,009617
BPGM	669	bisphosphoglycerate mutase	1350,679	1,780447	0,930137	9,67E- 05	0,009919
TLCD4			53,24148	1,778251	0,804174	7,57E- 05	0,008869
KLF1	10661	Kruppel like factor 1	324,0658	1,762157	0,753069	6,73E- 05	0,008129
SMOX	54498	spermine oxidase	324,0972	1,739853	0,65889	4,64E- 05	0,006808
RAB6B	51560	RAB6B, member RAS oncogene family	33,06588	1,737415	0,654823	4,57E- 05	0,006774
TRIM58	25893	tripartite motif containing 58	3698,917	1,736072	0,807375	8,82E- 05	0,00953
SLC14A1	6563	solute carrier family 14 member 1 (Kidd blood group)	533,4972	1,711333	0,954347	0,00012 4	0,011647
TENT5C	54855	terminal nucleotidyltransferase 5C	1537,215	1,70354	0,7946	9,47E- 05	0,009861
M1AP	130951	meiosis 1 associated protein	7,913008	1,703033	0,577452	2,99E- 05	0,005186
HSD17B1 0	3028	hydroxysteroid 17-beta dehydrogenase 10	8,784265	1,685256	0,757363	8,88E- 05	0,00953
BCL2L1	598	BCL2 like 1	6514,993	1,6843	0,621293	4,48E- 05	0,006702
NPRL3	8131	NPR3 like, GATOR1 complex subunit	1536,77	1,680912	0,561318	2,83E- 05	0,00503
CR1L	1379	complement C3b/C4b receptor 1 like	18,36683	1,663298	0,940492	0,00014 4	0,012641
GMPR	2766	guanosine monophosphate reductase	964,3031	1,649565	0,721178	8,67E- 05	0,00953
MFSD2B	388931	major facilitator superfamily domain containing 2B	117,9412	1,647537	0,641498	5,81E- 05	0,007588
STRADB	55437	STE20 related adaptor beta	3382,874	1,647277	0,790216	0,00011 3	0,010857
NFIX	4784	nuclear factor I X	449,5565	1,646791	0,640909	5,8E-05	0,007588
SLC2A5	6518	solute carrier family 2 member 5	84,34914	1,643338	0,501484	1,76E- 05	0,003776
BPI	671	bactericidal permeability increasing protein	406,2658	1,64161	0,775035	0,00010 9	0,010717
IGF2BP2	10644	insulin like growth factor 2 mRNA binding protein 2	512,2684	1,629724	0,642226	6,21E- 05	0,007894
TMOD1	7111	tropomodulin 1	509,1474	1,622385	0,857952	0,00014	0,012641

MARCO	8685	macrophage receptor with collagenous structure	161,924	1,616728	0,346286	4,66E- 07	0,000418
TSPO2	222642	translocator protein 2	15,42464	1,616075	1,009792	0,00017	0,013288
S100A12	6283	S100 calcium binding protein A12	1500,895	1,611206	0,532513	2,83E- 05	0,00503
TNS1	7145	tensin 1	1095,036	1,607967	0,816247	0,00013 8	0,012336
SLC4A1	6521	solute carrier family 4 member 1	1197,552	1,603392	0,925384	0,00017	0,013288
SLC28A3	64078	solute carrier family 28 member 3	9,963331	1,602793	0,690633	8,83E-	0,00953
NEDD4L	23327	NEDD4 like E3 ubiquitin protein ligase	114,2248	1,599435	0,610761	5,64E- 05	0,007588
ANKRD9	122416	ankyrin repeat domain 9	321,8188	1,596898	0,774867	0,00012 6	0,011647
GFUS			883,2742	1,588549	0,613195	5,95E- 05	0,007712
SNCA	6622	synuclein alpha	4042,926	1,583785	0,87935	0,00017 1	0,013288
EPB42	2038	erythrocyte membrane protein band 4.2	1312,141	1,578379	0,838184	0,00016	0,013137
BLVRB	645	biliverdin reductase B	2254,4	1,57348	0,521141	2,93E- 05	0,005128
RAB13	5872	RAB13, member RAS oncogene family	56,57412	1,573163	0,358644	1,24E- 06	0,000769
C4A	720	complement C4A (Rodgers blood group)	68,43427	1,549659	0,673327	9,66E- 05	0,009919
TAL1	6886	TAL bHLH transcription factor 1, erythroid differentiation factor	327,1257	1,545826	0,650611	8,66E- 05	0,00953
PGLYRP1	8993	peptidoglycan recognition protein 1	580,7197	1,542712	0,396464	4,87E- 06	0,001794
GYPC	2995	glycophorin C (Gerbich blood group)	9066,774	1,523638	0,519898	3,5E-05	0,005648
TMEM176 A	55365	transmembrane protein 176A	203,153	1,52061	0,70199	0,00012 2	0,011535
HAGH	3029	hydroxyacylglutathione hydrolase	1766,765	1,511833	0,578433	6,07E- 05	0,00779
RILP	83547	Rab interacting lysosomal protein	599,8189	1,509536	0,416523	8,99E- 06	0,002609
ANK1	286	ankyrin 1	621,2324	1,504531	0,884019	0,00022 1	0,0156
AC139495 .2			1852,697	1,497823	0,505613	3,33E- 05	0,005468
MPP1	4354	membrane palmitoylated protein 1	3107,287	1,484029	0,518591	4E-05	0,006118
AC012435			263,2257	1,473333	0,574112	6,71E- 05	0,008129
GPX1	2876	glutathione peroxidase 1	5870,992	1,442191	0,586486	8,16E- 05	0,009169
BSG	682	basigin (Ok blood group)	7816,557	1,441347	0,540147	5,69E- 05	0,007588
DSC2	1824	desmocollin 2	391,7119	1,440931	0,540846	5,73E- 05	0,007588
BNIP3L	665	BCL2 interacting protein 3 like	3679,802	1,435303	0,628939	0,00011	0,010717
HPS1	3257	HPS1 biogenesis of lysosomal organelles complex 3 subunit 1	1009,147	1,424368	0,415314	1,33E- 05	0,003084
TMBIM6	7009	transmembrane BAX inhibitor motif containing 6	303,3504	1,421823	0,727596	0,00018 7	0,01407
GLRX5	51218	glutaredoxin 5	1515,33	1,421248	0,790869	0,00023 3	0,015997
STEAP3	55240	STEAP3 metalloreductase	50,2348	1,420452	0,376201	6,16E- 06	0,00216
SLC1A5	6510	solute carrier family 1 member 5	801,977	1,411128	0,557948	7,32E- 05	0,008768
VSIG4	11326	V-set and immunoglobulin domain containing 4	51,63945	1,410183	0,794322	0,00024 3	0,016615
TGM2	7052	transglutaminase 2	137,754	1,406689	0,664367	0,00014 7	0,01272
RNF10	9921	ring finger protein 10	7021,032	1,394681	0,520914	5,64E- 05	0,007588
ERFE	151176	erythroferrone	28,68173	1,391664	1,10583	0,00030	0,019125
HTRA3	94031	HtrA serine peptidase 3	14,0419	1,383718	0,932001	0,00034	0,020364

CREB3L2	64764	cAMP responsive element	45,44959	1,379193	0,636497	0,00013	0,012336
CDC34	997	cell division cycle 34	1951,326	1,377622	0,506996	5,24E-	0,007384
SLC2A1	6513	solute carrier family 2 member 1	731,1793	1,363677	0,823663	0,00030	0,019125
DCAF10	79269	DDB1 and CUL4 associated	358,9	1,357578	0,471525	3,85E-	0,006089
KEL	3792	Kell metallo-endopeptidase (Kell	91,37084	1,356663	0,838832	0,00032	0,019851
SLC6A8	6535	solute carrier family 6 member 8	140,6132	1,332398	0,740482	0,00026	0,017336
DCAF12	25853	DDB1 and CUL4 associated factor 12	4395,943	1,311623	0,677919	0,00021	0,015343
PINK1	65018	PTEN induced kinase 1	2088,249	1,297713	0,472854	4,87E-	0,007064
TMEM121 B	27439	transmembrane protein 121B	296,8417	1,296332	0,369591	1,01E- 05	0,00269
CTNNAL1	8727	catenin alpha like 1	68,17613	1,283201	0,831732	0,00039	0,022314
PRDX2	7001	peroxiredoxin 2	940,0412	1,270055	0,653091	0,00021	0,015407
SLC25A3	51312	solute carrier family 25 member	23934,13	1,255291	0,592645	0,00015	0,013137
BBOF1	80127	basal body orientation factor 1	90,03211	1,249011	0,708271	0,00029	0,019125
PBX1	5087	PBX homeobox 1	85,7358	1,246451	0,592129	0,00016	0,013137
RPL21P1	729402	ribosomal protein L21	300,2357	1,242698	0,61098	0,00018	0,01407
KLC3	147700	kinesin light chain 3	180,2567	1,236615	0,89588	0,00051	0,026159
TSPAN7	7102	tetraspanin 7	16,64846	1,233267	1,06509	0,00050	0,025713
SCARF1	8578	scavenger receptor class F member 1	1064,564	1,231189	0,589183	0,00016	0,013219
PCGF5	84333	polycomb group ring finger 5	1878,209	1,229402	0,631675	0,00021	0,015525
INSC	387755	INSC spindle orientation adaptor	12,58537	1,229398	0,834583	0,00047	0,02531
AC000120		p. etc	15,53903	1,222096	0,690263	0,00030	0,019125
GPR84	53831	G protein-coupled receptor 84	77,95123	1,220635	0,78274	0,00042	0,023582
ZER1	10444	zyg-11 related cell cycle regulator	1239,762	1,220083	0,431749	3,9E-05	0,006096
CHPT1	56994	choline phosphotransferase 1	750,8129	1,212355	0,577905	0,00016 5	0,013175
GUK1	2987	guanylate kinase 1	6261,863	1,210441	0,595703	0,00018 7	0,01407
SLAMF8	56833	SLAM family member 8	4,984437	1,209892	1,052887	0,00054 4	0,026486
IGF2	3481	insulin like growth factor 2	29,05365	1,209352	1,165515	0,00038 9	0,021959
RIOK3	8780	RIO kinase 3	1433,013	1,204985	0,668532	0,00028	0,01875
FRMD4A	55691	FERM domain containing 4A	69,74366	1,201136	0,90717	0,00058	0,027063
MXI1	4601	MAX interactor 1, dimerization	807,3335	1,19444	0,839039	0,00053	0,026381
UBB	7314	ubiquitin B	24201,71	1,189474	0,82249	0,00052	0,026159
ELOB	6923	elongin B	248,2159	1,189256	0,412593	3,35E-	0,005468
YPEL4	219539	yippee like 4	42,18157	1,18413	0,929909	0,00062	0,028443
ZNF366	167465	zinc finger protein 366	28,22228	1,18213	0,52949	0,00012	0,011647
ATP5F1E	514	ATP synthase F1 subunit epsilon	959,8257	1,16871	0,509493	0,00011	0,010717
FCGR1B	2210	Fc fragment of IgG receptor Ib	647,3251	1,168247	0,68988	0,00036	0,020532
FAM117A	81558	family with sequence similarity 117 member A	1100,661	1,161346	0,493508	9,73E- 05	0,009919
CCDC149	91050	coiled-coil domain containing 149	129,1745	1,152672	0,524059	0,00013	0,012079
TRIM10	10107	tripartite motif containing 10	91,22573	1,142614	0,846281	0,00064	0,028782

ITGA2B	3674	integrin subunit alpha 2b	715,1208	1,140795	0,725413	0,00045 7	0,024526
DPY19L2 P2	349152	DPY19L2 pseudogene 2	75,90744	1,134588	0,530149	0,00014	0,012731
MAF1	84232	MAF1 homolog, negative	225,8216	1,130147	0,697341	0,00042	0,023362
SESN3	143686	sestrin 3	1501,859	1,125802	0,733304	0,00049	0,025713
ADIPOR1	51094	adiponectin receptor 1	95,46132	1,121855	0,535573	0,00016	0,013137
VTI1B	10490	vesicle transport through	858,9408	1,120171	0,539555	0,00016	0,013276
SLFN14	342618	schlafen family member 14	13,35665	1,108139	1,096728	0,00062	0,028437
OPTN	10133	optineurin	1376,714	1,107411	0,583685	0,00024	0,016615
SUCNR1	56670	succinate receptor 1	22,16052	1,098991	0,638485	0,00035	0,020387
VSIG10	54621	V-set and immunoglobulin	10,64591	1,093586	0,635345	0,00035	0,020387
SERPINB	5273	serpin family B member 10	29,03831	1,092968	0,763011	0,00061	0,028117
IQGAP3	128239	IQ motif containing GTPase	6,193104	1,092544	0,829491	0,00072	0,030984
CYP27A1	1593	cytochrome P450 family 27 subfamily A member 1	710,4015	1,086422	0,449205	7,89E-	0,009003
STON2	85439	stonin 2	20,46411	1,084488	0,556879	0,00021	0,015525
SIGLEC7	27036	sialic acid binding Ig like lectin 7	29,99919	1,084132	0,280871	2,57E- 06	0,001154
CREG1	8804	cellular repressor of E1A stimulated genes 1	973,7887	1,077795	0,558812	0,00022	0,015864
MICAL2	9645	microtubule associated monooxygenase, calponin and LIM domain containing 2	1778,903	1,073756	0,469932	0,00010 4	0,010417
SLC38A5	92745	solute carrier family 38 member 5	554,6816	1,064951	0,660793	0,00044	0,024105
RANBP10	57610	RAN binding protein 10	601,8426	1,057787	0,531291	0,00019	0,014504
SYN2	6854	synapsin II	6,944989	1,057077	0,819603	0,00080	0,033118
GRB10	2887	growth factor receptor bound protein 10	263,1748	1,052061	0,778586	0,00073	0,03123
FKBP8	23770	FKBP prolyl isomerase 8	35776,59	1,043247	0,67854	0,00052	0,026159
DLEU7	220107	deleted in lymphocytic leukemia 7	35,09813	1,040675	0,481487	0,00013	0,012079
DUSP23	54935	dual specificity phosphatase 23	117,9562	1,037078	0,183614	2,8E-09	5,75E-06
FOXO4	4303	forkhead box O4	1038,873	1,026873	0,574132	0,00030 6	0,019125
TSPAN5	10098	tetraspanin 5	540,3779	1,02504	0,67362	0,00054 7	0,026571
SIAH2	6478	siah E3 ubiquitin protein ligase 2	1147,913	1,021784	0,592045	0,00035 2	0,020387
TPGS2	25941	tubulin polyglutamylase complex subunit 2	662,7808	1,021516	0,676556	0,00056 2	0,026829
AC139495 .1			67,93696	1,021482	0,734044	0,00071	0,030792
ZNF692	55657	zinc finger protein 692	210,2735	1,021005	0,176474	1,28E- 09	3,08E-06
SIGLEC22 P	114195	sialic acid binding Ig like lectin 22. pseudogene	12,75738	1,014888	0,4146	6,64E- 05	0,008129
RETREG2	79137	reticulophagy regulator family member 2	1794,983	1,005686	0,350167	2,37E- 05	0,004602
MBNL3	55796	muscleblind like splicing regulator 3	894,2567	1,002938	0,615305	0,00043 6	0,023736
BEND2	139105	BEN domain containing 2	27,4176	1,001553	0,606823	0,00041 6	0,02311
RNF11	26994	ring finger protein 11	908,6738	0,997356	0,630575	0,00048 6	0,02549
PI3	5266	peptidase inhibitor 3	1346,91	0,997202	0,645655	0,00052 7	0,026159
GPX1P1	441481	glutathione peroxidase pseudogene 1	13,99302	0,993925	0,953293	0,00109	0,039823
ARHGEF1 2	23365	Rho guanine nucleotide exchange factor 12	283,4582	0,984285	0,548389	0,00029 8	0,019125
SNX3	8724	sorting nexin 3	439,7152	0,984063	0,530114	0,00025	0,017218
---------------	--------	--	----------	----------	----------	--------------	----------
YBX3	8531	Y-box binding protein 3	6710,239	0,982662	0,850142	0,00108	0,039823
CARM1	10498	coactivator associated arginine	595,2567	0,982623	0,515282	0,00022	0,015864
HMBS	3145	hydroxymethylbilane synthase	207,4345	0,9823	0,685083	0,00067 4	0,02971
FAH	2184	fumarylacetoacetate hydrolase	90,62763	0,970281	0,291614	6,59E-	0,002257
UBBP4	23666	ubiquitin B pseudogene 4	7,870894	0,96954	0,930931	0,00118	0,041643
MYL4	4635	myosin light chain 4	418,826	0,968048	0,752488	0,00091	0,036499
FIS1	51024	fission, mitochondrial 1	711,7655	0,964282	0,559644	0,00035	0,020387
MARVEL	83742	MARVEL domain containing 1	117,1136	0,963968	0,299915	8,65E- 06	0,002609
MARCHF			2455,986	0,956118	0,634142	0,00057	0,027063
KLHDC8B	200942	kelch domain containing 8B	217,3846	0,954143	0,583597	0,00043	0,023632
SLC7A5	8140	solute carrier family 7 member 5	237,6214	0,952249	0,627679	0,00056	0,026931
OSBPL6	114880	oxysterol binding protein like 6	14,13455	0,946674	0,893696	0,00126	0,043481
GRINA	2907	glutamate ionotropic receptor NMDA type subunit associated protein 1	3163,126	0,945469	0,457779	0,00015	0,012742
TPH2	121278	tryptophan hydroxylase 2	52,39803	0,944804	0,777358	0,00106 7	0,039823
NINJ2	4815	ninjurin 2	215,3408	0,939545	0,341251	2,62E-	0,004823
ELOF1	84337	elongation factor 1 homolog	499,8454	0,937836	0,538233	0,00033	0,019903
KYAT1	883	kynurenine aminotransferase 1	54,48686	0,931162	0,292208	8,08E- 06	0,002524
DZIP1L	199221	DAZ interacting zinc finger	8,142799	0,931135	0,844513	0,00127	0,043629
FUNDC2	65991	FUN14 domain containing 2	301,4642	0,92936	0,614511	0,00057	0,027063
ММР9	4318	matrix metallopeptidase 9	3492,728	0,926687	0,614261	0,00058	0,027063
PAQR9	344838	progestin and adipoQ receptor family member 9	6,653122	0,921987	1,199109	0,00033	0,019903
ANKH	56172	ANKH inorganic pyrophosphate transport regulator	574,6682	0,912998	0,619346	0,00063 3	0,0287
STOM	2040	stomatin	1182,944	0,912945	0,439981	0,00014	0,012401
GABARA PL2	11345	GABA type A receptor associated protein like 2	1141,307	0,908642	0,520734	0,00032 3	0,019851
CTSE	1510	cathepsin E	17,15664	0,90794	0,937624	0,00140 4	0,046617
PSMF1	9491	proteasome inhibitor subunit 1	2759,071	0,905123	0,58835	0,00054 2	0,026486
CYB5R3	1727	cytochrome b5 reductase 3	770,4518	0,903654	0,428622	0,00012 6	0,011647
HEMGN	55363	hemogen	204,8475	0,901406	0,902444	0,00145	0,047664
ТМС5	79838	transmembrane channel like 5	22,12055	0,895283	1,020557	0,00121	0,04236
KAZN	23254	kazrin, periplakin interacting	129,8554	0,892822	0,574028	0,00051	0,026159
SHISA7	729956	shisa family member 7	10,78281	0,887382	0,962584	0,00143	0,047095
NME8	51314	NME/NM23 family member 8	52,97691	0,883295	0,570513	0,00052	0,026159
C2orf88	84281	chromosome 2 open reading frame 88	133,3529	0,881394	0,617327	0,00071	0,030792
LYL1	4066	LYL1 basic helix-loop-helix family member	1704,858	0,87854	0,558859	0,00049	0,025713
PRSS36	146547	serine protease 36	17,4444	0,873785	0,513837	0,00035	0,020387
TMEM40	55287	transmembrane protein 40	45,5662	0,871815	0,668703	0,00096	0,037584
LAG3	3902	lymphocyte activating 3	65,88853	0,866284	0,432589	0,00015	0,013137

TMEM176 B	28959	transmembrane protein 176B	144,5141	0,861451	0,935807	0,00159 7	0,050073
TRGV5P	6979	T cell receptor gamma variable 5P (pseudogene)	4,102324	0,858987	0,856219	0,00164	0,050695
PADI4	23569	peptidyl arginine deiminase 4	1826,855	0,857413	0,390857	9,23E- 05	0,009681
FECH	2235	ferrochelatase	573,4418	0,854283	0,852568	0,00166 5	0,050826
FBXO9	26268	F-box protein 9	649,8534	0,85318	0,585892	0,00066	0,029448
CEBPE	1053	CCAAT enhancer binding protein	88,74439	0,849255	0,55631	0,00055 4	0,026644
NAPRT	93100	nicotinate	521,6043	0,84903	0,223217	7,69E- 07	0,000582
SLC26A8	116369	solute carrier family 26 member 8	165,2216	0,846255	0,610974	0,00079	0,033094
PDZK1IP1	10158	PDZK1 interacting protein 1	687,6912	0,84621	0,628225	0,00087 9	0,035288
MED9	55090	mediator complex subunit 9	204,0651	0,842729	0,321501	2,68E- 05	0,004879
ACHE	43	acetylcholinesterase (Cartwright blood group)	23,96993	0,840242	0,828895	0,00170 9	0,051741
PIM1	5292	Pim-1 proto-oncogene, serine/threonine kinase	2986,703	0,837958	0,438813	0,00019 5	0,014503
ACSL6	23305	acyl-CoA synthetase long chain family member 6	197,0519	0,822831	0,632812	0,00099 7	0,038418
CXCL1	2919	C-X-C motif chemokine ligand 1	67,78051	0,816989	0,527236	0,00051 6	0,026159
PTTG1	9232	PTTG1 regulator of sister chromatid separation, securin	9,766866	0,81357	1,140886	0,00048 3	0,025431
LILRB5	10990	leukocyte immunoglobulin like receptor B5	412,7024	0,811294	0,718081	0,00149 5	0,048476
CYSTM1	84418	cysteine rich transmembrane module containing 1	493,6313	0,811018	0,663884	0,00121 7	0,042362
NECTIN2	5819	nectin cell adhesion molecule 2	107,5089	0,801694	0,762236	0,00175 8	0,052629
DYRK3	8444	dual specificity tyrosine phosphorylation regulated kinase 3	38,93653	0,801521	0,826134	0,00195 3	0,05592
WDR45	11152	WD repeat domain 45	988,0445	0,800574	0,410901	0,00016 5	0,013175
TBC1D22 B	55633	TBC1 domain family member 22B	167,6341	0,800519	0,492102	0,00041 3	0,023001
ST6GALN AC4	27090	ST6 N-acetylgalactosaminide alpha-2,6-sialyltransferase 4	107,4307	0,792679	0,747293	0,00175 7	0,052629
RNASE3	6037	ribonuclease A family member 3	67,99498	0,792518	0,726188	0,00165 8	0,050695
TRPM4	54795	transient receptor potential cation channel subfamily M member 4	16,99247	0,792472	0,515294	0,00052 8	0,026159
TIMP2	7077	TIMP metallopeptidase inhibitor 2	108,2313	0,790685	0,56151	0,00075 6	0,031875
PNP	4860	purine nucleoside phosphorylase	543,4075	0,785464	0,563155	0,00078 4	0,032728
IFIT1B	439996	interferon induced protein with tetratricopeptide repeats 1B	399,315	0,779108	0,898865	0,00208 9	0,057277
KIF20A	10112	kinesin family member 20A	11,84716	0,772864	0,641193	0,00130 2	0,044343
MARCHF 2			941,4167	0,765221	0,455664	0,00034 5	0,020387
ASCC2	84164	activating signal cointegrator 1 complex subunit 2	2466,966	0,763041	0,627761	0,00127 7	0,043629
MKNK1	8569	MAPK interacting serine/threonine kinase 1	1327,034	0,756839	0,47901	0,00045 9	0,024526
CTSB	1508	cathepsin B	3636,378	0,755913	0,404153	0,00019 3	0,014486
AC010627 .1			10,32383	0,755546	0,473841	0,00043 9	0,023839
SMIM24	284422	small integral membrane protein 24	84,18571	0,754804	0,756323	0,00209 2	0,057277
RTN2	6253	reticulon 2	137,349	0,754028	0,498594	0,00055 9	0,026762
RFNG	5986	RFNG O-fucosylpeptide 3-beta- N-acetylglucosaminyltransferase	267,7802	0,753873	0,407007	0,00020 4	0,01479
SNX15	29907	sorting nexin 15	233,5941	0,752383	0,337203	6,39E- 05	0,007982

MAPK10	5602	mitogen-activated protein kinase	72,43189	0,752339	0,514709	0,00064	0,028947
SLC22A2	63027	solute carrier family 22 member	71,58008	0,748812	0,758551	0,00215	0,058333
DEFA4	1669	defensin alpha 4	242,9005	0,748699	0,89437	0,00228	0,060129
AK1	203	adenylate kinase 1	289,8026	0,745898	0,710986	0,00192	0,055525
PDCD1LG	80380	programmed cell death 1 ligand 2	32,52594	0,740912	0,819142	0,00240	0,062147
AC018755			560,5135	0,740892	0,531632	0,00078	0,032728
RFXANK	8625	regulatory factor X associated	317,6179	0,739479	0,227155	2,07E-	0,001025
ABCC13	150000	ATP binding cassette subfamily C member 13 (pseudogene)	76,22502	0,734549	0,812875	0,00245	0,0631
DOK4	55715	docking protein 4	61,50369	0,733444	0,574154	0,00109	0,039823
DPM2	8818	dolichyl-phosphate mannosyltransferase subunit 2, regulatory	493,9419	0,728429	0,630805	0,00153	0,048767
AL445524 .2		<u> </u>	56,49346	0,727964	0,626667	0,00150 3	0,048476
MKLN1	4289	muskelin 1	30,06061	0,726507	0,557477	0,00101 9	0,038858
ATOH8	84913	atonal bHLH transcription factor 8	31,06258	0,725235	0,801726	0,00251 7	0,063922
C9orf78	51759	chromosome 9 open reading frame 78	3397,508	0,724913	0,69744	0,00202 9	0,056623
GPX3	2878	glutathione peroxidase 3	59,63402	0,722083	0,727241	0,00224	0,059509
YPEL3	83719	yippee like 3	5001,836	0,715421	0,388331	0,00019 9	0,014504
SCN7A	6332	sodium voltage-gated channel alpha subunit 7	7,308443	0,71378	0,913287	0,00239	0,061842
IRAG1			746,7729	0,707164	0,420706	0,00032 6	0,019851
LTB4R	1241	leukotriene B4 receptor	1212,762	0,704089	0,383067	0,00019 8	0,014504
S100A6	6277	S100 calcium binding protein A6	3646,897	0,700452	0,293399	3,31E- 05	0,005468
ATG9A	79065	autophagy related 9A	549,4195	0,699001	0,258298	1,11E- 05	0,00277
S100A9	6280	S100 calcium binding protein A9	36683,93	0,692712	0,511039	0,00087 7	0,035288
ZNF788P	388507	zinc finger family member 788, pseudogene	16,05769	0,691861	0,671675	0,00216 6	0,058427
TXN	7295	thioredoxin	273,5216	0,687059	0,442807	0,00048	0,025358
PHOSPH O1	162466	phosphoethanolamine/phosphoc holine phosphatase	4362,956	0,68175	0,578615	0,00148	0,048246
AC116353 .6			28,13487	0,681328	0,515685	0,00097 3	0,03786
EMC3	55831	ER membrane protein complex subunit 3	805,2017	0,673653	0,554173	0,00133 4	0,04513
CLIC2	1193	chloride intracellular channel 2	48,37377	0,671195	0,753327	0,00293 7	0,070502
KREMEN 1	83999	kringle containing transmembrane protein 1	1416,333	0,668355	0,651226	0,00225 3	0,059525
POLL	27343	DNA polymerase lambda	503,5259	0,666185	0,514935	0,00105 9	0,039657
BATF2	116071	basic leucine zipper ATF-like transcription factor 2	438,2043	0,665728	0,777725	0,00309 2	0,07251
FRMD3	257019	FERM domain containing 3	79,93095	0,665723	0,545536	0,00132	0,044764
CETP	1071	cholesteryl ester transfer protein	9,700579	0,663999	0,628577	0,00209 7	0,057321
CYB5A	1528	cytochrome b5 type A	102,9442	0,661524	0,57694	0,00164	0,050695
AC011043			15,96319	0,657878	0,725398	0,00295 7	0,070502
NUDT4	11163	nudix hydrolase 4	840,0966	0,65777	0,614619	0,00203	0,056625
NR2E1	7101	nuclear receptor subfamily 2 group F member 1	4,26405	0,651601	1,050451	0,00072 4	0,030943
MEF2B	1002718 49	myocyte enhancer factor 2B	38,02414	0,649855	0,390541	0,00032	0,019877

OR2W3	343171	olfactory receptor family 2 subfamily W member 3	267,3904	0,648753	0,771969	0,00329	0,075184
CYP4F8	11283	cytochrome P450 family 4 subfamily F member 8	7,52581	0,645985	0,551121	0,00153 8	0,048899
NOD2	64127	nucleotide binding oligomerization domain containing 2	683,5637	0,645734	0,39284	0,00034 9	0,020387
GRAMD1 A	57655	GRAM domain containing 1A	1762,313	0,643703	0,368978	0,00025 1	0,016831
CDIPT	10423	CDP-diacylglycerolinositol 3-	146,0253	0,64223	0,479696	0,00092	0,036729
MTRNR2L	1004629 77	MT-RNR2 like 1	1261,366	0,640953	0,341582	0,00016	0,013137
BCL2L15	440603	BCL2 like 15	48,83956	0,640325	0,595092	0,00203	0,056625
FBX07	25793	F-box protein 7	6163,562	0,639878	0,610856	0,00220	0,058869
RNASE2	6036	ribonuclease A family member 2	280,5053	0,639474	0,496479	0,00108	0,039823
ARG1	383	arginase 1	180,6609	0,637987	0,690725	0,00298	0,070991
TMEM86B	255043	transmembrane protein 86B	260,291	0,635898	0,579667	0,00192 7	0,055525
FAM83A	84985	family with sequence similarity 83 member A	23,41592	0,63525	1,006702	0,00123 5	0,042865
DEFA8P	449491	defensin alpha 8, pseudogene	2,405466	0,635012	1,042166	0,00072 5	0,030943
FAM104A	84923	family with sequence similarity 104 member A	764,972	0,634738	0,551722	0,00165 1	0,050695
GATA1	2623	GATA binding protein 1	305,5131	0,633782	0,602906	0,00219 5	0,058869
LIPH	200879	lipase H	8,87825	0,63294	0,658244	0,00276 7	0,068001
PPM1A	5494	protein phosphatase, Mg2+/Mn2+ dependent 1A	1470,466	0,632888	0,486961	0,00104 7	0,039373
PVR	5817	PVR cell adhesion molecule	104,2141	0,630698	0,343569	0,00018 3	0,013985
IL17RC	84818	interleukin 17 receptor C	37,90909	0,625705	0,408259	0,00049 7	0,025713
TNFRSF9	3604	TNF receptor superfamily member 9	134,949	0,625572	0,519757	0,00141 4	0,046838
NATD1	256302	N-acetyltransferase domain containing 1	1456,346	0,624088	0,462934	0,00090 1	0,036067
ATP6V0C	527	ATPase H+ transporting V0 subunit c	4254,237	0,620999	0,447427	0,00079 4	0,03297
RILPL1	353116	Rab interacting lysosomal protein like 1	68,02101	0,619795	0,35507	0,00024 5	0,016615
ZBTB44	29068	zinc finger and BTB domain containing 44	588,3662	0,619404	0,454858	0,00086 3	0,034949
DENND2B			7,70426	0,617896	0,838386	0,00355 1	0,078523
NFE2	4778	nuclear factor, erythroid 2	3371,818	0,617472	0,418474	0,00059 8	0,027645
RAD51	5888	RAD51 recombinase	14,08644	0,616967	0,544848	0,00176 4	0,052629
CCNY	219771	cyclin Y	1141,534	0,615953	0,221227	5,91E- 06	0,002123
ISCA1	81689	iron-sulfur cluster assembly 1	277,5075	0,613843	0,615431	0,00259 8	0,065281
RNF123	63891	ring finger protein 123	115,1954	0,613256	0,554689	0,00191 5	0,055394
HES2	54626	hes family bHLH transcription factor 2	10,42135	0,61184	0,537112	0,00173 5	0,052272
DPCD	25911	deleted in primary ciliary dyskinesia homolog (mouse)	43,73774	0,610729	0,688316	0,00338 4	0,076012
H4C3			5,485987	0,608956	0,805927	0,00380 8	0,082322
TPM1	7168	tropomyosin 1	218,6098	0,605991	0,480106	0,00118 9	0,041788
RHD	6007	Rh blood group D antigen	44,00512	0,601382	0,814149	0,00386 6	0,083181
RGS10	6001	regulator of G protein signaling 10	527,7491	0,600794	0,54675	0,00197 4	0,0561
ROPN1L	83853	rhophilin associated tail protein 1 like	144,5291	0,599335	0,43278	0,00080 4	0,033129

EIF1B	10289	eukaryotic translation initiation	686,6654	0,597378	0,469495	0,00115	0,041102
SVBP	374969	small vasohibin binding protein	123,3947	0,595134	0,527343	0,00181	0,053644
TLR5	7100	toll like receptor 5	402,3507	0,591311	0,531589	0,00191	0,05539
ALOX5AP	241	arachidonate 5-lipoxygenase	3086,767	0,589896	0,406411	0,00064	0,028947
HEPACA	253012	HEPACAM family member 2	12,04288	0,58985	0,915763	0,00264	0,065919
CISD2	493856	CDGSH iron sulfur domain 2	163,8173	0,588139	0,677931	0,00368	0,080482
FOXM1	2305	forkhead box M1	34,99169	0,585243	0,424005	0,00082	0,033523
IQSEC3	440073	IQ motif and Sec7 domain 3	10,81693	-0,61225	0,863513	0,00338	0,076012
AC240274			57,99504	-0,62237	0,38047	0,00035 4	0,020387
DAB2	1601	DAB adaptor protein 2	18,72249	-0,62362	0,61208	0,00242	0,062444
ZNF154	7710	zinc finger protein 154	37,34747	-0,62779	0,414526	0,00052	0,026159
TAMALIN			36,61709	-0,63018	0,474075	0,00095	0,037409
NBPF1	55672	NBPF member 1	75,01912	-0,63217	0,372981	0,00029	0,018954
SPIB	6689	Spi-B transcription factor	135,8837	-0,63511	0,50103	0,00115	0,041102
VASH1	22846	vasohibin 1	187,888	-0,63524	0,571264	0,00184	0,054179
ATP13A4	84239	ATPase 13A4	7,797485	-0,65052	0,811006	0,00330	0,075387
CTTNBP2	83992	cortactin binding protein 2	3,617914	-0,67483	0,912926	0,00256 9	0,064798
SDK2	54549	sidekick cell adhesion molecule 2	35,0308	-0,67605	0,673999	0,00235	0,061712
HERC6	55008	HECT and RLD domain containing E3 ubiquitin protein ligase family member 6	20,74156	-0,6791	0,635736	0,00200 2	0,056309
TMEM191 B	728229	transmembrane protein 191B	8,815727	-0,6972	0,655399	0,00198	0,056164
ADAM23	8745	ADAM metallopeptidase domain 23	22,68957	-0,69918	0,823977	0,00279 1	0,068269
BCL9	607	BCL9 transcription coactivator	69,94786	-0,72229	0,35072	0,00010	0,010219
COL1A1	1277	collagen type I alpha 1 chain	5,451003	-0,73314	0,900236	0,00235 5	0,061712
TNFRSF2	27242	TNF receptor superfamily member 21	8,46417	-0,74558	0,647739	0,00152 3	0,048679
ZNF860	344787	zinc finger protein 860	5,933374	-0,75207	0,720296	0,00193 1	0,055525
ARHGAP 23	57636	Rho GTPase activating protein 23	11,55713	-0,77422	0,692078	0,0016	0,050073
NPTX1	4884	neuronal pentraxin 1	3,221671	-0,77782	0,904905	0,00208 1	0,057198
ZNF285	26974	zinc finger protein 285	9,398179	-0,77868	0,491123	0,00045	0,024526
FCGBP	8857	Fc fragment of IgG binding	72,00148	-0,77883	0,710994	0,00167	0,050983
LMO7	4008	LIM domain 7	44,94573	-0,80311	0,437438	0,00022	0,015864
KIF5A	3798	kinesin family member 5A	4,450005	-0,81756	0,64278	0,00107	0,039823
CD300H	1001305 20	CD300H molecule	66,65866	-0,82675	0,708957	0,00136	0,045479
CDH2	1000	cadherin 2	6,531637	-0,83632	0,720319	0,00136	0,045479
CYP4F22	126410	cytochrome P450 family 4 subfamily F member 22	29,28464	-0,84603	0,638449	0,00092 7	0,036729
GIMAP1	170575	GTPase, IMAP family member 1	692,4818	-0,85087	0,238325	1,65E- 06	0,000914
ATP5F1C	509	ATP synthase F1 subunit gamma	33,1793	-0,86019	0,598239	0,00069 7	0,030406
PTPRK	5796	protein tyrosine phosphatase	16,49853	-0,86328	0,612149	0,00074	0,031589
MMP28	79148	matrix metallopeptidase 28	6,482047	-0,88259	0,748109	0,00123	0,042875

ABHD6	57406	abhydrolase domain containing 6	42,76799	-0,88878	0,322191	2,17E- 05	0,004307
AGRN	375790	agrin	52,0773	-0,93115	0,612759	0,00056 6	0,026931
MS4A7	58475	membrane spanning 4-domains A7	507,24	-0,93889	0,389812	6,28E- 05	0,007915
SOX4	6659	SRY-box 4	72,50674	-0,94299	0,229304	5,84E- 07	0,000467
FMO5	2330	flavin containing monooxygenase 5	27,47376	-0,95192	0,386774	5,66E- 05	0,007588
СКВ	1152	creatine kinase B	34,81368	-0,95368	0,569211	0,00039 1	0,021959
AL358113 .1			12,66485	-0,96372	0,716618	0,00082 1	0,033523
LRRC26	389816	leucine rich repeat containing 26	2,494009	-0,98828	0,97518	0,00108 6	0,039823
BMPR1A	657	bone morphogenetic protein receptor type 1A	50,27413	-1,06905	0,596781	0,00030 6	0,019125
CCDC171	203238	coiled-coil domain containing 171	4,826413	-1,15849	0,899815	0,00065 8	0,029202
GSTA4	2941	glutathione S-transferase alpha 4	5,386569	-1,16106	0,825558	0,00057 9	0,027063
RET	5979	ret proto-oncogene	4,616431	-1,17315	0,776109	0,00048 9	0,025574
SCAMP5	192683	secretory carrier membrane protein 5	23,30118	-1,27039	0,575582	0,00013 4	0,012079
NR4A1	3164	nuclear receptor subfamily 4 group A member 1	66,03552	-1,28924	0,39357	1,66E- 05	0,003723
XKRX	402415	XK related X-linked	4,126738	-1,33483	0,592462	0,00012 1	0,011535
CDKN1C	1028	cyclin dependent kinase inhibitor 1C	234,3125	-1,38406	0,548758	7,45E- 05	0,008853
CFD	1675	complement factor D	1165,653	-1,45992	0,423378	1,3E-05	0,003053
HES4	57801	hes family bHLH transcription factor 4	21,23811	-1,48772	0,55889	5,66E- 05	0,007588
AL357143 .1			7,19412	-1,5042	0,852988	0,00020 9	0,015117
MID1	4281	midline 1	3,505402	-1,54374	0,801256	0,00016 3	0,013137
VMO1	284013	vitelline membrane outer layer 1 homolog	14,19114	-1,55929	0,68358	9,85E- 05	0,009976
HMGB1P5	10354	high mobility group box 1 pseudogene 5	24,72902	-1,57153	1,023445	0,00019 7	0,014504
MRAS	22808	muscle RAS oncogene homolog	36,31653	-1,57711	0,437327	9,32E- 06	0,002626
KRT5	3852	keratin 5	3,687455	-1,73631	0,823801	9,21E- 05	0,009681
KCNH3	23416	potassium voltage-gated channel subfamily H member 3	68,9344	-1,77533	0,511228	1,09E- 05	0,00277
C11orf95	65998	chromosome 11 open reading frame 95	25,01769	-1,8811	0,314726	4,63E- 10	1,66E-06
HAPLN3	145864	hyaluronan and proteoglycan link protein 3	155,27	-1,95955	0,289806	2,51E- 12	1,81E-08
SLC41A2	84102	solute carrier family 41 member 2	10,07688	-2,33465	0,690829	4,48E- 06	0,001696
CELSR2	1952	cadherin EGF LAG seven-pass G-type receptor 2	13,76232	-2,99926	0,574618	9,57E- 10	2,75E-06

Anexo 10: Vias enriquecidas dos genes diferencialmente expressos pela análise de ORA em ENH + TAL x LL. ID- identificação da via no gene ontology. Gene ratio – número de genes associado a via / total de genes significativos. BgRatio – número total de genes associado a via / número total de genes identificados no RNAseq. padj – p value ajustado. qvalue – pvalue ajustado pela taxa de falsa descoberta (*false discovery rate – FDR*). GeneID – descrição dos genes associados com a via. Contagem – Número de genes associados com a via.

ID	Descrição	Gene Ratio	Bg Ratio	pvalue	p. adjust	qvalue	genelD	# de genes	Odd Ratio
GO:004 3312	neutrophil degranulation	37/291	457/11693	1,99E- 10	3,29E- 07	3,14E-07	CHIT1/CAMP/RETN/LCN2/ CHI3L1/NAPRT/CLEC5A/LT F/HP/OLFM4/TCN1/CRISP3 /MCEMP1/ABCA13/MMP8/P GLYRP1/SLC2A5/OLR1/S1 00A12/BPI/CYB5R3/STOM/ CTSB/CREG1/GPR84/CXC L1/MMP9/SERPINB10/TIMP 2/PNP/ATP6V0C/S100A9/R NASE2/CYSTM1/RNASE3/ DEFA4/ARG1	37	3,2532 58
GO:000 2283	neutrophil activation involved in immune response	37/291	460/11693	2,39E- 10	3,29E- 07	3,14E-07	CHIT1/CAMP/RETN/LCN2/ CHI3L1/NAPRT/CLEC5A/LT F/HP/OLFM4/TCN1/CRISP3 /MCEMP1/ABCA13/MMP8/P GLYRP1/SLC2A5/OLR1/S1 00A12/BPI/CYB5R3/STOM/ CTSB/CREG1/GPR84/CXC L1/MMP9/SERPINB10/TIMP 2/PNP/ATP6V0C/S100A9/R NASE2/CYSTM1/RNASE3/ DEFA4/ARG1	37	3,2320 41
GO:000 2446	neutrophil mediated immunity	37/291	467/11693	3,67E- 10	3,29E- 07	3,14E-07	CHIT1/CAMP/RETN/LCN2/ CHI3L1/NAPRT/CLEC5A/LT F/HP/OLFM4/TCN1/CRISP3 /MCEMP1/ABCA13/MMP8/P GLYRP1/SLC2A5/OLR1/S1 00A12/BPI/CYB5R3/STOM/ CTSB/CREG1/GPR84/CXC L1/MMP9/SERPINB10/TIMP 2/PNP/ATP6V0C/S100A9/R NASE2/CYSTM1/RNASE3/ DEFA4/ARG1	37	3,1835 95
GO:004 2119	neutrophil activation	37/291	469/11693	4,14E- 10	3,29E- 07	3,14E-07	CHIT1/CAMP/RETN/LCN2/ CHI3L1/NAPRT/CLEC5A/LT F/HP/OLFM4/TCN1/CRISP3 /MCEMP1/ABCA13/MMP8/P GLYRP1/SLC2A5/OLR1/S1 00A12/BPI/CYB5R3/STOM/ CTSB/CREG1/GPR84/CXC L1/MMP9/SERPINB10/TIMP 2/PNP/ATP6V0C/S100A9/R NASE2/CYSTM1/RNASE3/ DEFA4/ARG1	37	3,1700 19
GO:003 6230	granulocyte activation	37/291	475/11693	5,91E- 10	3,77E- 07	3,59E-07	CHIT1/CAMP/RETN/LCN2/ CHI3L1/NAPRT/CLEC5A/LT F/HP/OLFM4/TCN1/CRISP3 /MCEMP1/ABCA13/MMP8/P GLYRP1/SLC2A5/OLR1/S1 00A12/BPI/CYB5R3/STOM/ CTSB/CREG1/GPR84/CXC L1/MMP9/SERPINB10/TIMP 2/PNP/ATP6V0C/S100A9/R NASE2/CYSTM1/RNASE3/ DEFA4/ARG1	37	3,1299 76
GO:004 3299	leukocyte degranulation	37/291	494/11693	1,76E- 09	9,32E- 07	8,89E-07	CHIT1/CAMP/RETN/LCN2/ CHI3L1/NAPRT/CLEC5A/LT F/HP/OLFM4/TCN1/CRISP3 /MCEMP1/ABCA13/MMP8/P GLYRP1/SLC2A5/OLR1/S1 00A12/BPI/CYB5R3/STOM/ CTSB/CREG1/GPR84/CXC L1/MMP9/SERPINB10/TIMP 2/PNP/ATP6V0C/S100A9/R NASE2/CYSTM1/RNASE3/ DEFA4/ARG1	37	3,0095 93

GO:001 9730	antimicrobial humoral response	10/291	49/11693	2,72E- 07	0,0001 24	0,000118	CAMP/LCN2/LTF/PGLYRP1 /S100A12/BPI/PI3/S100A9/ RNASE3/DEFA4	10	8,2004 35
GO:004 8821	erythrocyte development	8/291	30/11693	4,86E- 07	0,0001 85	0,000176	DMTN/FAM210B/TAL1/TRI M58/BPGM/EPB42/SLC4A1 /GATA1	8	10,715 23
GO:004 2742	defense response to bacterium	15/291	126/11693	5,22E- 07	0,0001 85	0,000176	CAMP/LCN2/LTF/HP/PGLY RP1/S100A12/BPI/OPTN/N OD2/SLAMF8/CEBPE/S100 A9/RNASE3/TLR5/DEFA4	15	4,7835 87
GO:006 1844	antimicrobial humoral immune response mediated by antimicrobial peptide	7/291	22/11693	6,81E- 07	0,0002 17	0,000207	CAMP/LTF/PGLYRP1/S100 A12/S100A9/RNASE3/DEF A4	7	12,785 22
GO:003 0218	erythrocyte differentiation	12/291	102/11693	8,24E- 06	0,0021 97	0,002096	DMTN/FAM210B/ALAS2/KL F1/TAL1/TRIM58/BPGM/EP B42/SLC4A1/TRIM10/DYRK 3/GATA1	12	4,7273 09
GO:004 2737	drug catabolic process	10/291	70/11693	8,28E- 06	0,0021 97	0,002096	CHIT1/HP/FAH/KYAT1/SM OX/GPX1/SNCA/PRDX2/AC HE/GPX3	10	5,7403 04
GO:004 2744	hydrogen peroxide catabolic process	5/291	13/11693	1,01E- 05	0,0024 69	0,002355	HP/GPX1/SNCA/PRDX2/GP X3	5	15,454 67
GO:003 4101	erythrocyte homeostasis	12/291	109/11693	1,64E- 05	0,0037 26	0,003554	DMTN/FAM210B/ALAS2/KL F1/TAL1/TRIM58/BPGM/EP B42/SLC4A1/TRIM10/DYRK 3/GATA1	12	4,4237 21
GO:006 1515	myeloid cell development	9/291	62/11693	2,06E- 05	0,0043 82	0,004179	LTF/DMTN/FAM210B/TAL1/ TRIM58/BPGM/EPB42/SLC 4A1/GATA1	9	5,8328 9
GO:005 0832	defense response to fungus	6/291	25/11693	2,68E- 05	0,0053 37	0,005091	LTF/S100A12/IL17RC/S100 A9/DEFA4/ARG1	6	9,6437 11
GO:004 2743	hydrogen peroxide metabolic process	6/291	27/11693	4,3E- 05	0,0080 52	0,00768	HP/PINK1/GPX1/SNCA/PR DX2/GPX3	6	8,9293 62
GO:009 8542	defense response to other organism	21/291	323/11693	5,75E- 05	0,0101 73	0,009703	CAMP/LCN2/LTF/HP/PGLY RP1/S100A12/BNIP3L/BPI/ OPTN/RIOK3/NOD2/IL17RC /SLAMF8/CEBPE/S100A9/R NASE2/RNASE3/TLR5/DEF A4/ARG1/BATF2	21	2,6124 61
GO:003 1640	killing of cells of other organism	6/291	30/11693	8,1E- 05	0,0128 93	0,012297	CAMP/LTF/PGLYRP1/S100 A12/DEFA4/ARG1	6	8,0364 26
GO:004 4364	disruption of cells of other organism	6/291	30/11693	8,1E- 05	0,0128 93	0,012297	CAMP/LTF/PGLYRP1/S100 A12/DEFA4/ARG1	6	8,0364 26
GO:005 1187	cofactor catabolic process	6/291	31/11693	9,83E- 05	0,0147 63	0,014081	HP/BLVRB/GPX1/SNCA/PR DX2/GPX3	6	7,7771 87
GO:000 2262	myeloid cell homeostasis	12/291	131/11693	0,0001 02	0,0147 63	0,014081	DMTN/FAM210B/ALAS2/KL F1/TAL1/TRIM58/BPGM/EP B42/SLC4A1/TRIM10/DYRK 3/GATA1	12	3,6808 06

GO:000 9620	response to fungus	6/291	35/11693	0,0001 99	0,0276 05	0,02633	LTF/S100A12/IL17RC/S100 A9/DEFA4/ARG1	6	6,8883 65
GO:004 3249	erythrocyte maturation	4/291	13/11693	0,0002 25	0,0298 54	0,028475	FAM210B/TAL1/TRIM58/EP B42	4	12,363 73
GO:000 9617	response to bacterium	22/291	390/11693	0,0003	0,0378 28	0,036081	CHIT1/CAMP/LCN2/LTF/HP /PGLYRP1/S100A12/GPX1/ BPI/SNCA/PRDX2/OPTN/S NX3/NOD2/SLAMF8/CEBP E/S100A9/RNASE3/TLR5/D EFA4/SCN7A/ARG1	22	2,2666 84
GO:001 0310	regulation of hydrogen peroxide metabolic process	4/291	14/11693	0,0003 09	0,0378 28	0,036081	HP/PINK1/SNCA/PRDX2	4	11,480 61
GO:000 1906	cell killing	10/291	108/11693	0,0003 52	0,0400 79	0,038228	CAMP/LTF/PGLYRP1/S100 A12/CR1L/LAG3/PVR/NECT IN2/DEFA4/ARG1	10	3,7205 68
GO:005 5080	cation homeostasis	22/291	395/11693	0,0003 57	0,0400 79	0,038228	LCN2/LTF/STEAP3/XK/ALA S2/NEDD4L/TGM2/GRINA/ EPB42/SLC25A37/SLC4A1/ SNCA/TMBIM6/ERFE/KEL/ FIS1/TRPM4/SLAMF8/ATP6 V0C/S100A9/SCN7A/CLIC2	22	2,2379 92
GO:009 8869	cellular oxidant detoxification	8/291	71/11693	0,0003 65	0,0400 79	0,038228	HP/GPX1/PRDX2/TXN/ALO X5AP/S100A9/GPX3/CLIC2	8	4,5275 64
GO:003 0099	myeloid cell differentiation	19/291	321/11693	0,0004 28	0,0437 06	0,041687	CLEC5A/LTF/DMTN/FAM21 0B/ALAS2/KLF1/TAL1/TRIM 58/BPGM/EPB42/SLC4A1/I TGA2B/CEBPE/MMP9/NFE 2/TRIM10/DYRK3/GATA1/B ATF2	19	2,3783 82
GO:009 8771	inorganic ion homeostasis	22/291	402/11693	0,0004 54	0,0437 06	0,041687	LCN2/LTF/STEAP3/XK/ALA S2/NEDD4L/TGM2/GRINA/ EPB42/SLC25A37/SLC4A1/ SNCA/TMBIM6/ERFE/KEL/ FIS1/TRPM4/SLAMF8/ATP6 V0C/S100A9/SCN7A/CLIC2	22	2,1990 22
GO:000 6959	humoral immune response	13/291	176/11693	0,0004 55	0,0437 06	0,041687	CAMP/LCN2/LTF/PGLYRP1 /S100A12/C4A/BPI/CR1L/V SIG4/PI3/S100A9/RNASE3/ DEFA4	13	2,9679 98
GO:001 7001	antibiotic catabolic process	5/291	27/11693	0,0004 75	0,0437 06	0,041687	HP/GPX1/SNCA/PRDX2/GP X3	5	7,4411 35
GO:004 2168	heme metabolic process	5/291	27/11693	0,0004 75	0,0437 06	0,041687	SLC25A39/ALAS2/BLVRB/H MBS/FECH	5	7,4411 35
GO:001 0466	negative regulation of peptidase activity	11/291	133/11693	0,0004 8	0,0437 06	0,041687	LTF/SFRP2/GPX1/C4A/SN CA/SIAH2/PTTG1/PI3/PSM F1/MMP9/TIMP2	11	3,3233 34
GO:199 0748	cellular detoxification	8/291	77/11693	0,0006 35	0,0561 53	0,053559	HP/GPX1/PRDX2/TXN/ALO X5AP/S100A9/GPX3/CLIC2	8	4,1747 67
GO:005 0801	ion homeostasis	23/291	441/11693	0,0006 61	0,0569 09	0,054281	LCN2/LTF/STEAP3/XK/ALA S2/NEDD4L/TGM2/GRINA/ EPB42/SLC25A37/SLC4A1/ SNCA/TMBIM6/ERFE/KEL/ FIS1/TRPM4/SLAMF8/ATP6 V0C/S100A9/CETP/SCN7A/ CLIC2	23	2,0956 67

GO:009 8754	detoxification	8/291	79/11693	0,0007 54	0,0631 93	0,060274	HP/GPX1/PRDX2/TXN/ALO X5AP/S100A9/GPX3/CLIC2	8	4,0690 77
GO:200 1242	regulation of intrinsic apoptotic signaling pathway	11/291	142/11693	0,0008 33	0,0680 46	0,064903	SFRP2/BCL2L1/PINK1/GPX 1/GRINA/TMBIM6/FIS1/UBB /MMP9/S100A9/YBX3	11	3,1127
GO:200 1243	negative regulation of intrinsic apoptotic signaling pathway	8/291	81/11693	0,0008 91	0,0709 15	0,06764	SFRP2/BCL2L1/PINK1/GPX 1/GRINA/TMBIM6/MMP9/Y BX3	8	3,9686 05
GO:005 5072	iron ion homeostasis	7/291	63/11693	0,0009 24	0,0717 44	0,068431	LCN2/LTF/STEAP3/ALAS2/ EPB42/SLC25A37/ERFE	7	4,4646 81
GO:000 6865	amino acid transport	8/291	82/11693	0,0009 66	0,0732 57	0,069873	XK/SLC6A9/SLC1A5/SNCA/ SLC6A8/SLC38A5/SLC7A5/ ARG1	8	3,9202 08
GO:003 1349	positive regulation of defense response	21/291	400/11693	0,0010 39	0,0757 28	0,072231	MARCO/LTF/MMP8/PGLYR P1/S100A12/TGM2/LAG3/S NCA/PVR/CTSB/OPTN/RIO K3/NOD2/SUCNR1/IL17RC/ UBB/PSMF1/S100A9/NECTI N2/TLR5/ARG1	21	2,1095 62
GO:000 6778	porphyrin- containing compound metabolic process	5/291	32/11693	0,0010 7	0,0757 28	0,072231	SLC25A39/ALAS2/BLVRB/H MBS/FECH	5	6,2784 58
GO:005 0829	defense response to Gram- negative bacterium	5/291	32/11693	0,0010 7	0,0757 28	0,072231	LTF/BPI/OPTN/RNASE3/DE FA4	5	6,2784 58
GO:003 3013	tetrapyrrole metabolic process	6/291	49/11693	0,0012 83	0,0888 49	0,084746	TCN1/SLC25A39/ALAS2/BL VRB/HMBS/FECH	6	4,9202 61
GO:001 0951	negative regulation of endopeptidas e activity	10/291	128/11693	0,0013 35	0,0904 35	0,086258	LTF/SFRP2/GPX1/C4A/SN CA/SIAH2/PTTG1/PI3/PSM F1/MMP9	10	3,1392 29
GO:005 5065	metal ion homeostasis	19/291	354/11693	0,0013 85	0,0918 9	0,087646	LCN2/LTF/STEAP3/XK/ALA S2/NEDD4L/TGM2/GRINA/ EPB42/SLC25A37/SNCA/T MBIM6/ERFE/KEL/FIS1/TR PM4/S100A9/SCN7A/CLIC2	19	2,1566 68
GO:001 0035	response to inorganic substance	20/291	383/11693	0,0014 52	0,0943 82	0,090023	IGFBP2/LCN2/HP/DMTN/PI NK1/BSG/NEDD4L/GPX1/S NCA/PRDX2/FIS1/SUCNR1/ TXN/MMP9/SLFN14/ALOX5 AP/MAPK10/TPH2/CYB5A/ ARG1	20	2,0982 84
GO:004 6501	protoporphyri nogen IX metabolic process	3/291	10/11693	0,0016 08	0,0985 68	0,094015	ALAS2/HMBS/FECH	3	12,054 64
GO:001 9731	antibacterial humoral response	4/291	21/11693	0,0016 09	0,0985 68	0,094015	CAMP/LTF/RNASE3/DEFA4	4	7,6537 39
GO:003 2469	endoplasmic reticulum calcium ion homeostasis	4/291	21/11693	0,0016 09	0,0985 68	0,094015	TGM2/GRINA/TMBIM6/FIS1	4	7,6537 39