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Virulence determinants in genetically heterogeneous

populations of Aeromonads recovered from an urban

lagoon
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ABSTRACT
The diversity and distribution of Aeromonas spp. associated with virulence profiles from the Rodrigo

de Freitas Lagoon were investigated using phylogenetic analysis of gyrB/rpoB gene sequences for

speciation. The concatenated gyrB/rpoB gene sequences clustered into five species: Aeromonas

punctata/caviae (n¼ 37), A. hydrophila (n¼ 10), A. dhakensis (n¼ 16), A. jandaei (n¼ 1) and

A. enteropelogenes/trota (n¼ 3). The virulence genes (atc/aerA/hlyA/asp/amp) resulted in

19 virulence profiles, distributed heterogeneously among the five Aeromonas species. Out of the

67 isolates, 16% presented five distinct profiles carrying four virulence genes and 7% showed all

genes investigated. The hemolytic genes were detected as follows: act 54% (37/67), aerA

36% (24/67), hlyA 26% (18/67) and proteolytic genes such as asp 36% (24/57) and amp in 85% (57/67)

were widely distributed in lagoon sampling stations. Meanwhile, 88% (59/67) and 92% (62/67) of the

isolates showed hemolytic and proteolytic activity, respectively. Our results demonstrated that

concatenated sequences of the gyrB and rpoB genes showed to be an adequate approach for the

Aeromonas speciation and prevalence. The high heterogeneity of virulence genes among the species

resulted in several virulence profiles, as well as high percentages of hemolytic and proteolytic

activity, demonstrating the necessity of further epidemiological surveys of Aeromonas species

pathogenicity in an aquatic recreational lagoon.
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INTRODUCTION
Aeromonas species are Gram-negative facultative anaerobic

bacilli and are ubiquitous in aquatic environments, such

as freshwater, coastal waters, drinking water, wastewater,

estuaries, marine waters, and even chlorinated drinking

water (Piotrowska & Popowska ). This genus composed

of 31 species and 12 subspecies are considered as opportu-

nistic pathogens. Aeromonas hydrophila, A. caviae, and

A. veronii biovar sobria strains are important human patho-

gens that could be involved in gastroenteritis, respiratory,
and genitourinary problems, wounds, eye, skin, and soft

tissue infections, sepsis, and meningitis (Piotrowska &

Popowska ). Besides, Aeromonas spp. are included in

the group of emerging pathogens due to their increasingly

frequent presence in local and systemic infections of immu-

nologically competent hosts (Seshadri et al. ; Igbinosa

& Okoh ).

The taxonomy of Aeromonas spp. is complex. For this

reason, conventional phenotypic tests do not necessarily
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correspond to results achieved by genetic methods, and this

is especially evident in environmental isolates (Puthucheary

et al. ). In addition, the 16S rRNA gene proved to be

an unsuccessful phylogenetic marker for Aeromonas species

identification due to their low taxonomic resolution (Nagar

et al. ). Therefore, sequencing of the housekeeping genes

gyrB and rpoB has been used as a suitable means for the

identification and phylogenetic analysis of Aeromonas spp.

(Soler et al. ; Küpfer et al. ; Persson et al. ).

Aeromonas spp. can express several virulence factors,

such as enterotoxins, hemolysins, proteases, lipases, adhe-

sins, hydrolases, surface proteins, flagellum, and pilus. In

this way, an infection caused by Aeromonas spp. can be

multifactorial and multifaceted (Rasmussen-Ivey et al. ;

Igbinosa et al. ). It may include the expression or

secretion of a number of different virulent determinants

acting collectively or independently. The ascF determinant,

which expresses type III secretion as well as the flagellin

gene (fla), also plays a significant role in Aeromonas spp.

pathogenicity (Körkoca et al. ). Also, the ability of

Aeromonas species to acquire novel virulence and antimi-

crobial resistance genes has been increasing the spread of

virulence genes and resistance determinants that are

another issue of significant public health concern (Scoaris

et al. ; Moura et al. ).

The hlyA, aerA, and act genes are the most prevalent

genes expressing the production of hemolytic toxins in

Aeromonas spp. Aerolysin encoded by the aerA gene is

an important determinant of virulence that confers high

invasiveness as epithelial cells and gastroenteritis (Körkoca

et al. ; Soltan-Dallal et al. ). The presence of these

determinants of hemolytic virulence may be indicative of a

clinical condition related to diarrhea (Igbinosa et al. ).

Combined with the virulence hemolytic factors, extra-

cellular proteases produced by Aeromonas spp. play an

important role in the invasion and establishing the infection

(Kobayashi et al. ). The serine protease (Aeromonas

sobria serine protease, ASP) produced by Aeromonas

species is a member of the kexin subfamily of serine pro-

teases. It induces the destruction of the protein structure,

compromising essential functions for host defense (Takaha-

shi et al. ; Kobayashi et al. ).

The ASP is considered a powerful virulence factor that

participates in the pathogenesis causing edema and septic
://iwaponline.com/jwh/article-pdf/17/3/380/639192/jwh0170380.pdf
shock (Imamura et al. ). In contrast, Aeromonas metal-

loprotease (AMP) produced by Aeromonas spp. is shown to

be involved in elastin degradation, an insoluble protein

constituent. Metalloproteases are enzymes that require a

divalent metal ion for their activity. In addition to the elasto-

lytic action, AMP presents a hydrolytic action to casein

(Takahashi et al. , ).

The distribution of Aeromonas in aquatic environments

makes emerging reservoirs in the environment of interest

to public health due to their ability to contribute to the

spreading of virulence and antimicrobial resistance determi-

nants (Igbinosa et al. ; Piotrowska et al. ).

Additionally, Aeromonas species can adhere to biotic or

abiotic surfaces forming biofilms (Dias et al. ). These

microorganisms have developed regulatory mechanisms

for the formation of biofilms that are also associated with

the production of virulence factors and offer advantages in

microbial resistance (Rasmussen-Ivey et al. ).

The Rodrigo de Freitas Lagoon is an urban lagoon

designed to protect aquatic communities, the natural

landscape, artisanal fishing and recreational activities such

as rowing, sailing, and water skiing. For decades, this lagoon

has suffered several environmental impacts, mainly due to

anthropogenic activities (Crespo & La Rovere ; Gonzalez

et al. ). The constant expansion of the population has had

negative impacts on the aquatic ecosystems mainly due to the

disposal of domestic and chemical residues such as hormones

and antibiotics widely used in human and veterinary clinics

(Barba-Brioso et al. ; Nascimento et al. ). Conse-

quently, this has severely compromised these environments

and may thus expose animals and humans to pathogenic

microorganisms (Staggemeier et al. ).

The main objective of this study was to investigate the

distribution of Aeromonas species and the prevalence of

virulence genotypes of the isolates from the Rodrigo de

Freitas Lagoon, Rio de Janeiro, Brazil.
MATERIAL AND METHODS

Studied area and sample collection

The Rodrigo de Freitas Lagoon is located in the southern

region of Rio de Janeiro (22�57002″S; 043�11009″W) and
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had its origin in the drowning of old fluvial basins generated

by transgressive–regressive variations of sea level that

occurred in the past 6,000 years along the Rio de Janeiro

State coast. It possesses a water surface area of 2.2 km2,

an average depth of 2.8 m, a perimeter of 7.8 km, and an

approximate water volume of 6,200,000 m3. Two collections

were carried out on March 11, 2015, and March 8, 2016,

both during the morning hours, from six collection points

(Figure 1). Sampling (1.0 L) was done in triplicate at a

depth of approximately 15–20 cm below the surface in a

sterile polyethylene bottle. All samples were stored on

ice and transferred to the laboratory within 4 h. The physico-

chemical parameters such as temperature, pH, conductivity,

dissolved oxygen (DO), turbidity, and salinity of the samples

were analyzed through Water Quality Checker U-10

(HORIBA). The enumeration of total coliforms and

Escherichia coli was carried out by the defined substrate

method (Colilert, IDEXX). About 3 L of each collection

point were concentrated through filtration on cellulose

membranes of 0.22 μM porosity (Millipore) for the

Aeromonas spp. analyses. In the event of filter clogging,

additional filters were added.
Figure 1 | Geographical location of the Rodrigo de Freitas Lagoon (22�57022″S/43�11009″W) in

om http://iwaponline.com/jwh/article-pdf/17/3/380/639192/jwh0170380.pdf
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Aeromonas spp. identification

The cellulose membranes were inoculated in alkaline

peptone water broth (APW; Oxoid) and incubated at 37 �C

for 24 h. The culture growth was seeded on the Aeromonas

isolation agar (AIA; Sigma-Aldrich) medium at 30± 2 �C for

24 h. Approximately four colonies per sample with typical

Aeromonas morphology (green colonies with dark end

centers) were inoculated in tryptone soy agar (TSA; Sigma-

Aldrich) and incubated at 30± 2 �C for 24 h for further

identification. Bacterial strains were morphologically

identified using the Gram-staining reaction and standard bio-

chemical tests including sulfide-indole motility, lysine iron

agar, catalase, and cytochrome oxidase activity, according to

Bergey’s Manual of Systematic Bacteriology (Martin-Carnahan

& Joseph ). Genomic DNA of the isolates was obtained

through the Dneasy Tissue Kit (Qiagen GmgH, Hildeitialln,

Germany) according to the manufacturer’s instructions. Poly-

merase chain reaction (PCR) targeting a specific region of

16S rRNA gene was carried out to confirm the suggestive

Aeromonas spp. isolates using the reaction conditions and

primers (AERF: 50-CTACTTTTGCCGGCGAGCGG-30 and
the state of Rio de Janeiro.
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AERR: 50-TGATTCCCGAAGGCACTCCC-30) according to

Lee et al. ().

Hemolytic and proteolytic activities

Hemolytic and proteolytic activities were evaluated according

to Takahashi et al. (). Briefly, the cultures were spread-

plated on nutrient agar plates containing 5% sheep blood and

incubated at 37 �C for 48 h, and the presence of clear zones

around bacterial cultures indicated hemolytic activity. For

proteolytic activity, the cultures were lawn-seeded onto nutri-

ent agar with 1% skim milk at 37 �C for 24 h and the clear

zones around bacterial cultures indicate proteolytic activity.

Known protease and hemolysin-positive strain A. hydrophila

ATCC 7966, as well as negative strain Escherichia coli ATCC

25922, were included as controls. The reproducibility of the

data for all isolates was demonstrated in triplicate.

ERIC typing and gyrB/rpoB taxonomic analysis

The genotypic analysis of the strains was investigated by

amplification of the Enterobacterial Repetitive Intergenic

Consensus sequence (ERIC-PCR). The ERIC2 primer was

used for amplification and the conditions used were

described previously (Versalovic et al. ). The amplicons

were analysed by electrophoresis for 2 h at 50 V in 2% (v/v)

agarose gel in 1× TAE buffer (40 mmol L�1 Tris base,

20 mmol L�1, 1 mmol L�1 sodium acetate, EDTA, pH 8.0)

and the standard molecular weight 100 bp DNA standard

(Invitrogen Co., Carlsbad, CA, USA). The gel was photo-

graphed and analysed using ImageQuant300 (GE,

Oppsala, Sweden). Fingerprint patterns were analysed

using the BIONUMERICS ver. 6.6 (Applied Maths, Kortrijk,

Belgium) using the Dice coefficient and the unweighted pair

group method with an arithmetic mean pair group method

with arithmetic average. Isolates with 100% level of similarity

were considered clonally related. Subsequently, the Aeromo-

nas isolates gDNA were submitted to PCR of the gyrB

gene (gyrB-F2: 50-GAGGACTACAGCAAGAAGGCCA-30

and gyrB-R2: 50-GACTTGGCCTTCTTGCTGTAGTC-30) and

rpoB gene (rpoB-F2: 50-CAACTTCGTCGGTGATCACA-30

and rpoB-R2: 50-TGTGATCACCGACGAAGTGG-30) (Persson

et al. ), resulting in fragments of 650 bp and 560 bp,

respectively. The PCR mixture was 1× MasterMix PCR
://iwaponline.com/jwh/article-pdf/17/3/380/639192/jwh0170380.pdf
(Promega Corporation); 15 pmol of each primer and approxi-

mately 20 ng of template DNA. The reactions were performed

in a Mastercycler® EP (Eppendorf) thermocycler and using

94 �C for 5 min; 30 cycles at 94 �C for 40 s, 67 �C and 65 �C

for 50 s, respectively, and 72 �C for 40 s and 72 �C for 5 min.

The PCR product was analysed on electrophoresis gel for

1 h at 50 V on 1% (v/v) agarose gel without 1× TAE

(40 mmol L�1 Tris base, 20 mmol L�1 sodium acetate,

1 mmol L�1 EDTA, pH 8.0) buffer and a 100 bp DNA

ladder as the molecular weight standard (Invitrogen Co., Carls-

bad, CA, USA). The gel was photographed and analysed using

the ImageQuant 300 (GE). Sequencing reactions of gyrB and

rpoB fragments were performed using the Big Dye Terminator

kit by capillary electrophoresis on an ABI 3730 DNAAnalyzer

(Applied Biosystems, Foster City, CA, USA). Phred score

sequences greater than or equal to 20 were included in the

subsequent analyses. The sequence similarity analysis was per-

formed by the BLASTn software at GenBank.

Phylogenetic analysis

The Aeromonas spp. isolates were initially screened by ERIC-

PCR to check the individuality of lineages and to determine

the clonal variation among them. Subsequently, concatenated

gyrB and rpoB genes (1,008 bp) were aligned by ClustalW of

MEGA 7 software (Kumar et al. ). The phylogenetic tree

was carried out by the neighbor-joining algorithm (Saitou &

Nei ) based on the distance calculated by the Kimura-2

method (Kimura ). Bootstrap analysis, with 1,000 replica-

tions, provided confidence estimates for tree topologies.

Detection of virulence genes

The virulence genes were screened by PCR using primers

and reaction conditions listed in Table 2. PCR analysis

was carried out in 25 μl amplification reaction mixtures con-

taining 1× PCR MasterMix (Promega Corporation), 15 pmol

of each primer, and about 20 ng of DNA template. The

cycling conditions consisted of an initial step of 95 �C for

5 min and 30 cycles of amplification at 95 �C for 30 s,

an annealing temperature specific for each primer set

(Table 1) for 30 s, 72 �C for 1 min, and a final elongation

at 72 �C for 6 min. The reference strain A. hydrophila

ATCC 7966 and Klebsiella pneumoniae ATCC 13883 were



Table 1 | Sequences of specific primers for virulence genes detection (act, aerA, hlyA, asp and amp)

Primers Sequence (50–30) Target gene Annealing (�C) Fragment size (bp) Reference

act-F AGAAGGTGACCACCAAGAACA act 55 232 Khor et al. ()

act-R AACTGACATCGGCCTTGAACTC

aer-F CCTATGGCCTGAGCGAGAAG aerA 55 431 Körkoca et al. ()

aer-R CCAGTTCCAGTCCCACCACT

hlyA-F GGCCGGTGGCCCGAAGATACGGG hlyA 62 597 Igbinosa & Okoh ()

hlyA-R GGCGGCGCCGGACGAGACGGG

AP-165 CCCTCCAACAGCAACTTCTGGAACCTGGTG asp 58 322 Takahashi et al. ()

AP-166 TCCGGGTAGGCGGACATCAGCAGCGCCATG

ASMP-03 AGGACGCCACCGGCCCGGGGGGCAA amp 60 550 Takahashi et al. ()

ASMP-04 GACCAGCCAGTCGTTGCTCCCCTT
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used as positive and negative PCR control, respectively. PCR

products were loaded onto a 1% agarose gel and were separ-

ated by electrophoresis at 50 V for 1 h in 1× TAE buffer with

a 100 bp DNA ladder as the molecular weight standard

(Invitrogen Co., Carlsbad, CA, USA). The gels’ analyses

were done as described above.
RESULTS

Physicochemical and microbiological parameters

In both collections, the pH values varied between 7.36 and

8.20 among the six points. The turbidity presented a higher

elevation at the LRF 1 point and a lower one at LRF 6, and

levels of DO varied between 4.41 and 6.70 mg/L. The

temperature remained between 21.5 �C and 27.4 �C, and

the salinity showed values between 0.9% and 1.32%.

The total coliform and E. coli counts presented values

above the limits of Brazilian water quality guidelines

(<2,500 MPN/100 mL) (Table 2).
Identification of Aeromonas spp.

A total of 154 possible Aeromonas colonies, based on

morphological characters in the AIA medium, were isolated

from six water samples from the Rodrigo de Freitas Lagoon,

Rio de Janeiro, Brazil. The conventional biochemical tests

showed that 56% (87/154) of isolates were Gram-negative
om http://iwaponline.com/jwh/article-pdf/17/3/380/639192/jwh0170380.pdf
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rod-shaped and facultative, oxidase, catalase, lysine decarbox-

ylase, and indole positive, all suggestive of the Aeromonas

genus. Out of the 87 isolates, 88% (77/87) were motile and

47% (41/87) produced H2S. Subsequently, the confirmation

of putative Aeromonas spp. by 16S rRNA-PCR showed a

single fragment of approximately 954 bp in 87% (76/87) of

the isolates, also revealed in the reference strainA. hydrophila

ATCC 7966, used as a positive control of the reaction.
ERIC-PCR of isolates

ERIC-PCR profiles of the 76 isolates revealed five clusters

with 20 strains at the 100% level of similarity. The strains

within each group with identical fingerprints obtained at

the same point and with the same virulence profile were

considered belonging to the same clone and were excluded

from the phylogenetic analysis (9/76). Out of the 11 isolates,

four (P5803, P5809, P5795 and P5819) from different

collection sites but with the same virulence profile were

maintained. In addition, five other isolates (P5758, P5802,

P5740, P4753 and P4752) from the same point and two

others (P5091 and P5090) from different sites presented

close ERIC types; however, different virulence profiles

were also used in the analysis (Figure 2).
Detection of virulence genes

Among the 67 (100%) isolates, the occurrence of the hemo-

lytic genes demonstrated the presence of the act gene 55%
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Table 2 | Physical–chemical and microbiological parameters of collection points

Parameters

LRF 1 LRF 2 LRF 3 LRF 4 LRF 5 LRF 6

Standard CONAMA 357/05
class II brackish water Collect 1 Collect 2 Collect 1 Collect 2 Collect 1 Collect 2 Collect 1 Collect 2 Collect 1 Collect 2 Collect 1 Collect 2

pH 6.5 and 8.5 7.6 7.8 7.5 8 7.65 8 7.43 7.5 7.36 7.5 7.36 8.2

Temperature (�C) – 27.4 23.4 27.2 24.5 27.1 23.3 27.1 23.3 23.7 23.3 21.5 22.7

Dissolved oxygen (mg/L) >4.0 4.77 4.7 4.75 6.7 5.21 5.2 4.52 4.6 4.41 4.9 4.7 5

Conductivity (mS/cm) – 21.8 15.4 21.2 15.8 21.2 15.4 21.4 15.4 21.3 15.5 20.7 15.3

Turbidity (UNTa) – 17 13 11 4 12 6 8 8 8 4 6 3

Salinity (%) �0.5 and 30 1.32 0.9 1.27 0.9 1.27 0.9 1.28 0.9 1.28 0.9 1.26 0.9

Total coliforms (MPN/100 mL)b 2,500 6,867 10,112 24,196 10,112 7,915 10,112 19,863 10,112 10,112 10,112 11,199 9,606

E. coli (MPN/100 mL)b 2,500 4,106 10,112 5,794 10,112 3,725 10,112 24,196 10,112 7,215 10,112 8,664 9,606

aNephelometric turbidity units.
bMost probable number.
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Figure 3 | Prevalence of virulence genes according to collection points.
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and amp gene in 85% (57/67) from all six points. Seven per-

cent (5/67) of the isolates presented all five genes and

1% (1/67) did not reveal either of them (Figure 3).

Phylogenetic analysis associated with virulence profiles

The concatenated gyrB/rpoB gene sequences are clustered

into five different species (A. punctata/caviae (n¼ 37),

A. hydrophila (n¼ 10), A. dhakensis (n¼ 16), A. jandaei

(n¼ 1) and A. enteropelogenes/trota (n¼ 3)). The

sequences were assigned to any species if the best matching

reference sequence available in the database showed �97%

homology. The virulence genes (atc, aerA, hlyA, asp, and

amp) resulted in 19 profiles with heterogeneous distri-

bution among the isolates. The profile IV (amp) was the

most prevalent among the isolates 22% (15/67) followed

by profile IX (act/amp) 18% (12/67) which were present

only in A. punctata/caviae strains from LRF1 (n¼ 5),

LRF 2 (n¼ 1), LRF 3 (n¼ 4), LRF 5 (n¼ 15) and LRF 6

(n¼ 2). The profiles XIX (aerA/hlya/act/asp/amp), XIII

(aerA/act/amp), XIV (hlyA/act/asp/amp), and III (aerA)

from points LRF 5, LRF 3 and LRF 1 showed distribution

among the four species (Figure 4). A. hydrophila presented

five profiles, 33% (3/10) of the strains exhibited the profile

XIX (aerA/hlya/act/asp/amp), followed by profiles XIV

(hlya/act/asp/amp), XII (act/asp/amp), XV(hlya/asp/

amp), and X (act/asp) from points LRF1, LRF 2, LRF 3,

LRF 4, and LRF 5. A. dhakensis also showed great diversity
om http://iwaponline.com/jwh/article-pdf/17/3/380/639192/jwh0170380.pdf
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of virulence profiles (XIX, XVIII, XVI, XIV, XIII, XII, XI,

VI, V, III, I) from different collection points. It is note-

worthy that strains containing profiles XIX and I were

isolated from the LRF 5. The three strains of A. enteropelo-

genes/trota presented profiles V (act/aerA) and III (aerA)

and both of them from LRF 5. A unique strain of A. jandaei

belonging to profile XV was isolated from LRF 1 (Figures 4

and 5).

Hemolytic and proteolytic activities

The hemolytic and proteolytic activities presented het-

erogeneous results among the five Aeromonas species

identified (Table 3). Eighty-eight percent (59/67) of isolates

had hemolytic activity. Of these 59, 83% (49/59) exhibited

at least one of the three hemolytic genes studied and 17%

(10/59) did not reveal the investigated genes. The remaining

12% (8/67) had neither hemolytic activity nor any of

the three genes studied (A. punctata/caviae (n¼ 7);

A. dhakensis (n¼ 1)). Ninety-three percent (62/67) of

isolates showed proteolytic activity. Ninety-two percent

(62/67) revealed at least one of the two genes investigated

and 7% (5/67) did not present any genes. Of the five

remaining isolates that did not present proteolytic activity,

80% (4/5) did not present any of the two proteolytic

genes (A. dhakensis (n¼ 2); A. enteropelogenes/trota

(n¼ 2)) and 20% (1/5) exhibited the two genes studied

(A. hydrophila).



Figure 4 | Neighbor-joining tree constructed from concatenated partial gyrB–rpoB (1,008 bp) sequences obtained from environmental Aeromonas spp. from the Rodrigo de Freitas

Lagoon, compared to reference sequences obtained from GenBank. The colorful points indicated the virulence profiles. Numbers at the nodes indicate bootstrap values as the

percentage of 1,000 replicates. The scale bar indicates 5% sequence divergence. Please refer to the online version of this paper to see this figure in color: http://dx.doi.10.

2166/wh.2019.288.
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Figure 5 | Distribution of virulence profiles according to collection points. (I) no gene; (II) act; (III) aerA; (IV) amp; (V) act/aerA; (VI) aerA/amp; (VII) hlyA/amp; (VIII) asp/amp; (IX) act/amp; (X)

act/asp; (XI) act/asp/amp; (XII) hlyA/asp/amp; (XIII) aerA/act/amp; (XIV) hlyA/act/asp/amp; (XV) aerA/act/asp/amp; (XVI) aerA/hlyA/asp/amp; (XVII) aerA/hlyA/act/amp; (XVIII)

aerA/hlyA/act/asp; (XIX) aerA/hlyA/act/asp/amp.

Table 3 | Hemolytic and proteolytic activity of Aeromonas spp. strains

No. of positive strains (%)

Species
Hemolytic
activity

Proteolytic
activity

A. hydrophila (n¼ 10) 100 92

A. dhakensis (n¼ 16) 94 89

A. enteropelogenes/trota (n¼ 3) 100 33

A. jandaei (n¼ 1) 100 100

A. punctata/caviae (n¼ 37) 76 100
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DISCUSSION

The wide distribution of Aeromonas species in aquatic

environments indicates that their possible interactions

with animals and humans are continuous and inevitable,

allowing their opportunistic pathogenicity.

In this paper, we demonstrated that the isolation by

Aeromonas selective culture media, as well as the pheno-

typical identification of Aeromonas spp., revealed limitations

since of the 154 initial isolates, only 76 were confirmed as

belonging to this genus by PCR amplification of the 16S

rRNA gene. Conventional phenotypic tests do not necess-

arily correspond to the results obtained by the molecular

methodology, as already evidenced in Aeromonas spp.

(Ørmen et al. ; Puthucheary et al. ). Discrepancies

in the identification of Aeromonas spp. resulting from a
om http://iwaponline.com/jwh/article-pdf/17/3/380/639192/jwh0170380.pdf

er 2021
poor correlation between phenotypic schemes and molecu-

lar approaches are well documented in the literature

(Kozinska ; Beaz-Hidalgo et al. ).

The physical–chemical parameters analysed showed

small variations in temperature, pH, OD, and conductivity

(Table 2). However, these variations do not alter the

growth of Aeromonas spp., considering that although the

optimum growth temperature is around 28 �C, they can

multiply in more extreme temperatures between 5 �C and

41 �C (Popoff ). Additionally, studies have shown that

the Aeromonas spp. prevalence was higher in the highest

water temperature, where the maximum count was 4.0 ×

105 CFU/g (gram) in sediment samples (Seidler et al. ;

Pathak et al. ). Other relevant data in our study are

related to salinity, where its decrease during the second

collection may be associated with the intensification of

freshwater inflow due to the rainfall season. This issue

may also be related to the upsurge of E. coli levels in five

of the six points investigated. In addition, the decrease in

salinity levels may also justify the growth of Aeromonas

spp. from LRF 1, 3, and 5.

Also, the hemolytic activity occurred in 88% (59/67) of

the isolates. Out of these 59 isolates, 10 did not present any

of the hemolytic genes investigated. The other 12% (8/67)

that did not show hemolytic activity were identified as

A. punctata/caviae and A. dhakensis. It is important to

emphasize that negative PCR results for both the hemolytic
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and proteolytic genes analyzed do not exclude pathogen-

icity, since at least some strains of Aeromonas have a wide

range of virulence factors not evaluated by us that allow

them to overcome host defenses and establish an infection.

Hoel et al. () demonstrated the presence of β-hemolysis

in 91% of their isolates, and this result was highly related

to the species identified. Besides, not all A. media and

A. punctate/caviae isolates had hemolytic activities includ-

ing the A. punctata/caviae reference strain.

In our study, the proteolytic virulence genes screened

asp and amp were present in 87% (66/71) and 94%

(71/76) isolates with proteolytic activity, respectively. This

activity was also shown in the majority of isolates of

A. hydrophila, A. veronii bv. sobria, and A. punctata/

caviae from patients hospitalized with acute gastroenteritis

in Rio Grande do Sul, Brazil (Guerra et al. ).

Our results revealed data not yet shown regarding the diver-

sity of Aeromonas spp. in the waters of the Rodrigo de Freitas

Lagoon, Rio de Janeiro, Brazil. The phylogenetic position of

concatenated sequences of gyrB and rpoB genes clustered the

isolates with reference sequences of the respective species.

Aeromonas punctata (formally A. caviae) was prevalent with

37 isolates (55%) followed by 10 isolates (15%) ofA. hydrophila,

16 isolates (24%) of A. dhakensis (formally A. aquariorum),

three isolates (4%) of A. enteropelogenes (formally A. trota),

and one isolate (2%) of A. jandaei (Figure 3). As in our study,

the concatenated sequence of rpoD/gyrB genes increased the

resolution and allowed anunequivocal speciation of the isolates

from aquarium water in Sri Lanka (Jagoda et al. ).

Of the 31 recognized species of the genus Aeromonas, a

subgroup of four species is most frequently implicated in

human infections and comprises the species A. hydrophila,

A. caviae, A. veronii bv. sobria, and A. dhakensis (Janda

& Abbott ; Teunis & Figueras ). Aeromonas punc-

tata/caviae was also prevalent in studies in Europe, the

United States, and India, followed by A. hydrophila and

A. veroni bv. sobria (Albert et al. ; Sinha et al. ;

Borchardt et al. ). These data are in agreement with a

study in Spain, where between 1989 and 1999 these three

species were responsible for 90% of Aeromonas associated

with gastroenteritis (Velasco-Muñoz et al. ). It is impor-

tant to emphasise that our study revealed the prevalence of

these same potentially pathogenic species in the lagoon,

which indicates a possibility of risks to human health.
://iwaponline.com/jwh/article-pdf/17/3/380/639192/jwh0170380.pdf
Although our sampling points were distinct, the isolation

of these five species from all collection points suggests that

they are widely spread in this lagoon. These data are worrying

since recently a study showed evidence suggestive of coloni-

zation and successful infection by lineages Aeromonas

genus in humans, transmitted by water (Khajanchi et al.

). Voss et al. () also found that 13 of 28 wound and

soft tissue infections over a 4-year period were associated

with water-related infection and 43% of the total infection

could be directly related to lakes or river water.

In this study, the spreading of virulence genes into five

species of Aeromonas genus showed that 99% (66/67) of

the isolates presented at least one of the genes studied,

whereas 12% (5/67) including A. hydrophila and A. dhaken-

sis presented all virulence genes studied. A survey carried

out in ornamental fish breeding sites showed results similar

to those presented here, where all isolates had hetero-

geneous virulence profiles (three to seven virulence genes)

(Guerra et al. ). Studies of virulence genes have been

used as a practical approach to evaluate the genetic potential

of Aeromonas spp. expressing virulence factors (Puthucheary

et al. ). Here, we demonstrated high heterogeneity of

virulence factors among the five species identified, which

resulted in 19 virulence profiles. This diversity was also

demonstrated in different geographic regions such as Sri

Lanka, China, United States, and Korea (Nawaz et al. ;

Hu et al. ; Yi et al. ; Jagoda et al. ).

Due to the complex pathogenesis of species of Aeromo-

nas genus, none of the factors associated with virulence

should be exclusively responsible for symptoms or early

infections (Albert et al. ). In our study, the heterogeneity

of virulence profiles mainly in A. hydrophila, A. caviae, and

A. dhakensis leads us to suggest the high pathogenicity of

these species in the lagoon waters. In fact, the presence of

the aerA, alt, act, eprCAI, and ahp genes could be seen as

an indicator of virulence in both clinical and environmental

isolates (Sha et al. ; Wang et al. ).
CONCLUSION

In conclusion, our results revealed that gyrB and rpoB genes’

concatenated sequences proved to be an adequate approach

for genetic identification of Aeromonas species as well as in
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their prevalence in the urban lagoon. The heterogeneity in

the distribution of genes associated with virulence among

the species resulted in several profiles and high percentages

of hemolytic and proteolytic activity, indicating the

pathogenic potential of these species.

Finally, our data suggest that the lagoon waters must

fulfill high-quality requirements aiming at the improvements

of preventive actions regarding possible negative impacts

on public health. The occurrence of species frequently

implicated in human infections and their high probability

of transmission in aquatic environments reinforce the

relevance and continuity of this investigation.
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