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Abstract
Due to its impact, COVID-19 has been stressing the academy to search for curing, 
mitigating, or controlling it. It is believed that under-reporting is a relevant factor 
in determining the actual mortality rate and, if not considered, can cause signifi-
cant misinformation. Therefore, this work aims to estimate the under-reporting of 
cases and deaths of COVID-19 in Brazilian states using data from the InfoGripe. 
InfoGripe targets notifications of Severe Acute Respiratory Infection (SARI). The 
methodology is based on the combination of data analytics (event detection meth-
ods) and time series modeling (inertia and novelty concepts) over hospitalized SARI 
cases. The estimate of real cases of the disease, called novelty, is calculated by 
comparing the difference in SARI cases in 2020 (after COVID-19) with the total 
expected cases in recent years (2016–2019). The expected cases are derived from 
a seasonal exponential moving average. The results show that under-reporting rates 
vary significantly between states and that there are no general patterns for states in 
the same region in Brazil. The states of Minas Gerais and Mato Grosso have the 
highest rates of under-reporting of cases. The rate of under-reporting of deaths is 
high in the Rio Grande do Sul and the Minas Gerais. This work can be highlighted 
for the combination of data analytics and time series modeling. Our calculation of 
under-reporting rates based on SARI is conservative and better characterized by 
deaths than for cases.
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Introduction

In January 2020, the new coronavirus (COVID-19) was considered a Public 
Health Emergency of International Importance by the World Health Organiza-
tion (WHO). Later, in March, WHO characterized the disease as a pandemic. Due 
to its relevance, many efforts are being made to combat COVID-19, either by 
discovering the characteristics of the virus, methods of prevention, treatment, or 
directing public policy action [5].

In Brazil, interventional measures such as the creation of field hospitals, sur-
veillance information systems, and actions to reduce the economic impact are 
being adopted to mitigate the effects caused by COVID-19. Among the main 
objectives is to slow down the spread of the virus to avoid overloading the health 
system. In this sense, policies to encourage prevention are adopted, such as, for 
example, the recommendation or imposition of physical isolation and quarantine 
[32].

Decision-making for the adoption of public policies in this pandemic scenario is 
a challenging task. Part of the difficulty comes from the lack of specific information 
about essential characteristics such as the total number of people infected. There is 
a lack of availability of tests to confirm the infection by SARS-CoV-2, which ends 
up being performed only in more severe cases of the disease, with exceptions. Such 
a scenario makes the capacity of the health system to monitor the evolution of the 
number of cases uncertain. The discrepancy between the actual amount of infected 
and diagnosed individuals constitutes under-reporting [21].

It is estimated that under-reporting is a relevant factor in determining the 
actual mortality rate and, if not considered, can cause significant misinforma-
tion [20]. Therefore, this work aims to estimate the under-reporting of cases and 
deaths of COVID-19 in Brazilian states. Since the possibility of testing the entire 
population is not viable, data from the InfoGripe is used. InfoGripe targets notifi-
cations of Severe Acute Respiratory Infection (SARI).

Our paper stands out for adopting a methodology based on the combination 
of data analytics (event detection methods) and time series modeling (inertia and 
novelty). Data analytics is applied to determine the parameters to be used for time 
series modeling. The estimated parameters consider time series analysis through 
event detection methods.

The estimate of real cases of the disease, called novelty, is calculated by com-
paring the difference in SARI cases in 2020 (after COVID-19) with the total 
expected cases in recent years (2016–2019). The expected cases are derived from 
a seasonal exponential moving average. The novelty is based on inertial concepts. 
That is, there is a strength to maintain the values of a time series in a stable state 
through time [12]. Inertia remains until a rupture occurs. In this case, the rupture 
is the influence of the COVID-19. Under-reporting, then, is given by the differ-
ence between the novelty and the number of reported cases. In the end, under-
reporting (cases and deaths) is presented as a rate for each state in Brazil.

For the sake of clarity, it is important to introduce some background for time 
series, moving averages, and event detection used in the context of this work.



New Generation Computing 

123

Time Series

A time series is a sequence of observations collected in time. Usually, a time series 
y can be considered as a stochastic process, i.e., a sequence of n random varia-
bles<y1, y2,… , yn> [11, 28]. A specific observation of a time series is represented as 
yi , indexed in time by i = 1,… , n , where y1 represents the first observation, and yn is 
the most recent observation.

The ith subsequence of size p in a time series y, represented as seqi,p(y) , is a continu-
ous sequence of values < yi−(p−1), yi−(p−2), … , yi > , where |seqi,p(y)| = p e p ≤ i ≤ |y| . 
The sequence contains ith observation and its p − 1 predecessors.

The ith subsequence seasonally outdated for time series y, is represented as seqs
i,p
(y) , 

is an ordered sequence of values < yi−(p−1)⋅s, yi−(p−2)⋅s, … , yi > , where p corresponds to 
the size of the sequence ( |seqs

i,p
(y)| = p, with p ≤ i ≤ |y| ), and s corresponds to the sea-

sonality ( s ≪ |y| ). The sequence contains i-th observation and its p − 1 predecessors 
outdated seasonally.

Seasonal Moving Averages

The ith moving average yi,p of p terms in a time series y is calculated by the average of 
tk observations in the sequence seqi,p(y) , as shown in Eq. 1. The ith exponential mov-
ing average ŷi,p of p terms in a time series y is calculated by the weighted average of tk 
observations in the sequence seqi,p(y) and the weights �k . The ŷi,p is described in Equa-
tion 2, where there is more emphasis on the most recent observations.

The i-th seasonal moving average ys
i,p

 and the i-th seasonal exponential moving aver-
age ŷs

i,p
 of p terms in a time series y are similarly calculated replacing the continuous 

sequence seqi,p(y) with the seasonal sequence seqs
i,p
(y) (see “Time series”), respec-

tively, in Eqs. 1 and 2, as shown in the Eqs. 3 and 4.

(1)yi,p =

∑p

k=1
tk

p
� tk ∈ seqi,p(y), p ≤ i ≤ �y�

(2)ŷi,p =

∑p

k=1
𝛼k ⋅ tk

∑p

k=1
𝛼k
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�
1 −
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(y), p ≤ i ≤ �y�
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p + 1
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, p ≤ i ≤ �y�



 New Generation Computing

123

Event Detection

Event detection methods include the discovery of anomalies and change points. 
Anomalies are observations that stand out because they do not appear to have been 
generated by the same process as the other observations in the time series [19]. 
Change points characterize a transition between different states in a process that 
generates the time series data [9, 30].

There are several methods to address the detection of anomalies [6, 13] and 
change points [1]. Among them, some methods consider the effects of inertia on 
time series data. As this work is based on inertial concepts [12], two methods of this 
group are presented.

Anomaly by Adaptive Normalization

Adaptive normalization [23] is used to detect anomalies. This technique uses inertia 
to address heteroscedastic non-stationary series. Given a time series y, the outlier 
removal process consists of three stages: (i) inertia calculation, (ii) noise calculation, 
and (iii) anomaly identification. In the inertia calculation, a moving average for the 
series yi,p with p terms is calculated, as described by Eq. 1. The higher the value of 
p, the greater the inertia and the lower the adaptation speed. The noise �i is calcu-
lated by the difference between yi and yi,p , i.e., �i = yi − yi,p . Finally, the observa-
tions �i classified as outliers by boxplot correspond to anomalies in Eq. 5.

Change Points by Change Finder

Change Finder is a technique that detects change points in univariate time series 
data [30]. Given a time series y, the event detection process consists of two phases. 
In the first phase, outliers are detected. For this, a learning model � is adjusted to the 
time series y, resulting in ŷi = 𝜉(y)i.1 Next, a score si is calculated for each observa-
tion in the series related to its deviation from the learned model. This calculation 
produces a time series s, as presented in Eq. 6. The highest scores for s, classified 
according to Eq. 5, indicate anomalies.

In the second phase, change points are detected. For this, a new time series sp is 
produced, composed of moving averages of s with p terms, according to Eq. 1. The 
detection of change points is then reduced to the outlier detection problem in sp like 
the first phase.

(5)anomaly(y) = {i},∀i | yi ∉ [Q1(y) − 3 ⋅ IQR(y),Q3(y) + 3 ⋅ IQR(y)]

(6)si =
(
ŷi − yi

)2
, ŷi = 𝜉(y)i

1 in this work, linear regression was used for adjustment.
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Related Work

Due to its relevance and recent outbreak, COVID-19 has been attracting much 
interest in the academy. Therefore, many works on COVID-19 have been pub-
lished since the beginning of 2020 until today. However, there are still few studies 
focused on under-reporting estimates. This low number of related publications 
can be a consequence of the time spent on the execution, review, editing, and 
publication of papers in scientific journals.

Krantz et  al. [17] used harmonic analysis and wavelets to model the under-
reporting of COVID-19 in several countries worldwide. They developed suscep-
tibility and infection equations with parameters varied according to the charac-
teristics of each country to build adaptive models. The under-reporting rate was 
calculated by the difference between the numbers predicted by the model and 
reported numbers. The result provided the ratio between reported and unreported 
cases in the format (1 to x) in seven countries. The authors concluded that the 
results are not entirely accurate due to the lack of some important information 
that should be included in the model and was not available.

Similarly, to review the numbers of reported COVID-19 cases in several coun-
tries, Lachmann et  al. [20] also estimated expected cases. For this, the author 
used demographic data and fixed mortality rates of the countries and the paired 
comparison with the reference country (South Korea). It presented and discussed 
estimates of the number of people infected with COVID-19, considering a set of 
situations that must be true to justify the model.

Ribeiro et  al. [25] used regression techniques on hospitalization data in Bra-
zil with a type of acute respiratory syndrome as the cause. They analyzed the 
time evolution of hospitalizations for each month in the period between 2012 and 
2019. They created a mathematical function that replicates the typical behav-
ior of cases of hospitalization for SARI. This function was compared with data 
from 2020 in the same months to estimate under-reporting. The results showed an 
under-reporting rate of 7.7:1 for Brazil.

Bastos and Cajueiro [3] modeled and predicted the initial evolution of the 
COVID-19 pandemic in Brazil using about a month of data provided by the Min-
istry of Health of Brazil. They sought to model the spread of the virus and evalu-
ate existing countermeasures. For that purpose, they use two variations of the SIR 
model and we include a parameter that comprises the effects of social distanc-
ing measures. They conclude that social distancing policy can fatten the infection 
pattern of the COVID-19 but that it is only effective if it lasts until mid-June, 
according to predictions. They also point out the importance of testing the popu-
lation based on the proportion of asymptomatic individuals.

Silva et al. [29] fitted curves growth models using a Bayesian approach to cal-
culate the total number and daily new cases in the state of Goias, Brazil. Results 
from the analysis also investigate the possible date of the outbreak peak to the 
state. The study did not take into consideration possibles changes in government 
control measures.
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Saulo et al. [4] discussed the role of uncertainty in the prediction of the number 
of infected individuals and deaths. They proposed an adapted susceptible-infected-
recovered (SIR) model, which explicitly incorporates the under-reporting and the 
response of the population to public policies to cast short-term and long-term pre-
dictions. As a contribution, it seeks to comprise the role that sub-notification uncer-
tainty plays in the model-based predictions of the COVID-19 contagion, harshly 
affecting the outlooks for its evolution spread in Brazil.

Our work stands out for estimating the under-reporting of COVID-19 in Brazilian 
states weekly. The estimate considers the weighted historical record (in which most 
recent years have more weight than less recent ones) to predict expected SARI cases 
in 2020. It enriches the analysis allowing an estimate closer to reality. This work can 
also be highlighted for focusing on time series and using event detection tools in the 
study. Furthermore, except for the article by Ribeiro et al. [25], as far as we know, 
the data used in this work to obtain under-reporting rates were not used in any other 
work with the same or similar purpose.

Methods

In seasonal phenomena, time series are generated by superimposing a seasonal pro-
cess and random noises. Based on this premise, Eq. 7 models the seasonal compo-
nent of the time series, where yi is an observation, ŷs

i−s,p
 is the seasonal exponential 

moving average (SEMA) in the previous season, and �i is the random noise. The 
obtained seasonal component brings up the inertia concept in time series. It enables 
the analysis of the intrinsic random noise of the observed phenomenon. At the same 
time, the influences that determine the behavior of the series are not changed [12].

In the case of rupture (i.e., a “break” in inertial behavior), we adopt the concept of 
novelty � . The novelty is the influence introduced in each interval resulting from a 
rupture in a time series. Once the novelty begins, the modeled SEMA from past data 
is no longer the only representative process of the new behavior of the time series. 
In this context, Eq. 7 is expanded to Eq. 8, that expresses novelty �i and error 𝜖i . 
We have that 𝜖i is approximated by the average error � observed in the pre-novelty 
period, i.e., 𝜖i is expected to be inside the interval confidence for � ( [�min − �max]).

Until the seasonal component ŷs
i−s,p

 incorporates the novelty �i , �i defines a new phe-
nomenon in the time series. Regarding SARI, we assume that �i is directly associ-
ated with COVID-19, i.e., the new known phenomenon.

From this concept, we first compute the inertial behavior of the time series to 
estimate under-reporting. Let t be the period in which the rupture yt occurs. In nov-
elty period (i.e., t ≤ i ≤ |y| ), �i is the subtraction of the observations of the time 
series yi by the values of SEMA from the previous period ŷs

i−s,p
 and the error 𝜖i 

(7)yi − ŷs
i−s,p

− 𝜖i = 0

(8)yi − ŷs
i−s,p

− 𝜂i − 𝜖i = 0, 𝜖i ≈ 𝜖, 𝜖i ∈ [𝜖min − 𝜖max]
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(approximated by � ). Equation 8 shows the calculation of the time series with �i for 
each i in the novelty period. The novelty �i estimates the brute number of observa-
tions that exceed the expected according to the inertial behavior of the time series 
and its fundamental error.

To estimate the brute number of under-reported time series, we use the number 
of observations classified as SARS-CoV-2 (Severe Acute Respiratory Infection Cor-
onavirus 2) in the novelty period. Equation 9 presents the calculation of the time 
series with absolute numbers of under-reported observations, where covi are obser-
vations classified as SARS-CoV-2.

As we assume that the modeled novelty in time series �i represents COVID-19 
cases, the time series subi defines the number of under-reported observations per 
week. Then, the estimates subi are added together to form the accumulated number 
of under-reported observations in the period, represented as curi in Equation 10.

The under-reporting rate is estimated by dividing the accumulated number of under-
reported time series curi by the accumulated number of total time series covi for the 
period. Equation 11 describes the under-reporting rate, denoted as txi , where tx|y| is 
the final rate. In this work, this calculation provides the estimated under-reporting 
rates for cases and deaths of COVID-19 for each Brazilian state individually. Thus, 
these rates allow for a comparable interpretation between the states.

Experimental Setup

This section discusses the experimental setup of the scenario in which the methodol-
ogy was applied. The next section presents the process of data acquisition and prep-
aration, whereas the following section describes the methods and parameters applied 
in the analysis. The next section presents the implementation details.

Data Acquisition and Preparation

InfoGripe is the principal data source used for the analysis and development of the 
work.2 It is an initiative of the Oswaldo Cruz Foundation (Fiocruz) with the Getu-
lio Vargas Foundation (FGV) and the Brazilian Health Surveillance System of the 
Ministry of Health. It records weekly SARI reported cases since January 2009. The 

(9)subi = �i − covi, t ≤ i ≤ |y|

(10)curi =

|y|∑

i=t

subi, t ≤ i ≤ |y|

(11)txi =
curi

covi

2 Data collected on July 27th, 2020.
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data comes from the Influenza Epidemiological Surveillance Information System 
(SIVEP-Gripe). It presents the cases following the criteria: (fever) AND (cough 
OR sore throat) AND (dyspnoea OR oxygen saturation < 95% OR respiratory diffi-
culty) AND (hospitalization OR death), symptoms equivalent to SARI international 
records [16]. For the sake of simplicity, we are calling the dataset DT_SARI.

To keep only the relevant data, we apply the following filter: type = “State” ∧ 
gender = “Total” ∧ scale = “Cases”. The resulting dataset shows the number of 
cases or deaths per epidemiological week of a given year for each state. Besides, it 
specifies the number of observations that correspond to Influenza A, Influenza B, 
SARS-CoV-2, Respiratory Syncytial Virus (RSV), Parainfluenza 1, Parainfluenza 2, 
Parainfluenza 3, and Adenovirus.

It is then performed the differentiation of the case observations that evolved 
to death. For this, we apply a second filter that resulted in two datasets, one with 
cases ( DT_SARI_c ) and another with deaths ( DT_SARI_d ). Finally, five attrib-
utes of interest are selected: Year, Week, State, total, and SarS-CoV-2. Table 1 
describes these attributes.

In addition to these data, we use the number of confirmed cases ( DT_MH_c ) and 
confirmed deaths ( DT_MH_d ) from COVID-19 by state, provided by the Ministry 
of Health.3 These numbers are updated daily on the COVID-19 Portal, the official 
communication channel on the epidemiological situation of COVID-19 in Brazil 
[14]. The values are used for purposes of comparison with the results obtained in 
this work.

Method and Parameter Selection

The method and parameter selection are a determining factor for the quality of the 
results obtained in the research. This section aims at justifying the applied method-
ology, which includes the choice of the used dataset, and the methods and param-
eters adopted in the data analysis.

Datasets. The most severe cases of COVID-19 manifest respiratory symptoms, 
such as difficulty in breathing or shortness of breath, and chest pain or pressure [27]. 
These symptoms are also present in Acute Respiratory Infection (ARI). Fever is 

Table 1  Attributes of processed datasets DT_SARI_c and DT_SARI_d

Attribute Description

Year The epidemiological year of first symptoms
Week The epidemiological week of first symptoms
State The state name
total The total number of recorded cases ( DT_SARI_c ) / deaths ( DT_SARI_d)
SARS-CoV-2 The total number of cases with positive results for COVID-19 

( DT_SARI_c ) / deaths by COVID-19 ( DT_SARI_d)

3 Data collected on July 09th, 2020.
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another common symptom, even in mild cases of the disease. It is the reason for 
choosing SARI data ( DT_SARI ) instead of ARI data ( DT_ARI ). DT_SARI is a sub-
set of DT_ARI . They differ only in the manifestation of fever. Therefore, we con-
sider that the probable cases of COVID-19 with severe symptoms also present fever, 
making DT_SARI the most suitable dataset to estimate the under-reporting of the 
disease [18, 26].

SEMA for Inertial Model. It is necessary to identify the SARI observations that 
correspond to the COVID-19 to compute the under-reporting of COVID-19 in Bra-
zil. For this, data from years predating COVID-19 should be observed to model the 
expected inertial behavior if there was no pandemic. Thus, it is possible to estimate 
the COVID-19 case number as the value exceeding the expected for the same period 
in the year.

SEMA provides an appropriate method to create the inertial function since it is a 
trend indicator that assigns more weight to the most recent data considering a sea-
sonal pattern. It is efficient to estimate an inertial behavior of a time series if the 
series has not undergone any significant behavior change in the period.

First, we define the time series for which SEMA is calculated. For this, three 
parameters are required: p, i, and s (see “Introduction” section). The i represents the 
time index of the reference time series, p is the number of predecessors, and s is the 
seasonality to be considered. Note that p and s are defined based on the locality of i.

The s is chosen based on the seasonal variation of respiratory viral diseases. The 
annual epidemics of the common cold and the flu affect the human population of 
temperate regions in the winter season [7, 10, 22, 31]. Therefore, s is defined as 52, 
since 52 corresponds to the number of weeks in the year. In this way, we guarantee 
the analysis of comparable observation sequences in the SARI series.

The parameters p and i are based on the response of the event detection algo-
rithms in each state. The event detection (targeting both change points and 

Table 2  Change point (CP) dates that occurred in 2020

State Cases Deaths State Cases Deaths

Acre Mar. 28 Feb. 08 Paraíba Mar. 14 Mar. 14
Alagoas Mar. 14 Mar. 21 Pernambuco Mar. 07 Mar. 07
Amazonas Mar. 14 Mar. 14 Piauí Feb. 29 Mar. 07
Amapá Mar. 14 Mar. 07 Paraná – Mar. 14
Bahia Mar. 07 Mar. 07 Rio de Janeiro Mar. 14 Mar. 07
Ceará Mar. 07 Mar. 07 Rio G. do Norte Mar. 21 Mar. 14
Dirito Federal Mar. 07 Mar. 07 Rondônia Mar. 28 Mar. 28
Espírito Santo Mar. 14 Mar. 14 Roraima Mar. 14 Mar. 14
Goiás Mar. 14 Mar. 14 Rio G. do Sul Mar. 21 Mar. 21
Maranhão Feb. 01 Feb. 08 Santa Catarina Mar. 28 Mar. 14
Minas Gerais Mar. 14 Mar. 14 Sergipe Mar. 14 Mar. 07
Mato G. do Sul Mar. 14 Mar. 14 São Paulo Mar. 07 Mar. 07
Mato Grosso Mar. 07 Mar. 14 Tocantins Mar. 07 Feb. 08
Pará Mar. 14 Feb. 29
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anomalies) in the series DT_SARI_c and DT_SARI_d evidence consistently, in sev-
eral states, behavior change in two periods: (i) between the end of 2015 and the 
beginning of 2016, and (ii) between February and March 2020. Table 2 shows the 
dates of events detected in 2020 for each state.

The events detected in 2020 are a consequence of COVID-19 in Brazil. These 
events coincide with the first record of the disease in the country, considering the 
time for the disease spread and the manifestation of symptoms [2, 15]. The events 
appear for most of the states from March 07 and March 14. They correspond, respec-
tively, to the 11th and 12th epidemiological week, two or three weeks after the first 
confirmed case of COVID-19 in Brazil.

It is possible to identify the beginning period (t) of the novelty for a determined 
state.4 The online method consists of seeking a change point in 2020, running it 
weekly since the first week of 2020 until it detects a change point in the year. When 
the change point is detected, the method stops and considers that week as the begin-
ning of the period. So, for each state, the parameter i admits values after t and 
extended until the last week of data (|y|), which corresponds the week 26 of 2020 
(i.e., June 27, 2020).

Figure 1 shows the events detected in the SARI cases curve in Brazil. In addi-
tion to 2009 (H1N1) and 2020 (COVID-19), events are observed in the 2016 period. 
Events presented in Fig.  1 correspond to abnormal behavior. They can affect the 
previous inertial behavior of the series. For this reason, the value attributed to p is 4, 
meaning that the previous 4 years (2016–2019) are considered.

The model errors (random noise) for this period for both the cases and deaths in 
each state are, respectively, described in Tables 3 and 4. Since �i follows a non-nor-
mal distribution, the interval confidence for � is computed by bootstrap with 1000 
repetitions. These values are important to determine the novelty calculation, reduc-
ing the chance of an increase generated by a random event.

Implementation

The adopted methodology was implemented in R [24]. The code description and 
Jupyter notebook also developed in R complements this work.5 In it, it is possible 

Fig. 1  Anomalies (yellow) and 
change points (red) detected in 
SARI cases of Brazil

4 According to the corresponding epidemiological week identified by change points. They are presented 
in Table 2. For the state of Paraná, the date detected for deaths was used instead.
5 Available at https:// eic. cefet- rj. br/ ~dal/ covid- 19- under- report/.

https://eic.cefet-rj.br/%7edal/covid-19-under-report/
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to check the entire process on the calculation of the under-reporting rates and all 
numerical and graphical results. The graphics with the cases and deaths series from 
the DT_SARI and the marking of the detected events are presented in this notebook 
for all states. Also, the site contains graphics with the evolution of under-reported 
records over the weeks after COVID-19 for each state. There it is possible to see 
whether under-reported records increase, decrease or remain constant over time.

The Harbinger6 framework was used for detecting events in time series (adap-
tive normalization and change finder). It receives the time series and parameters and 
returns the detected events. The parameters used are those defined in “method and 
parameter selection” section.

Table 3  Errors of the models 
(cases)

State � [�
min

, �
max

]

Acre 1.727 [1.177, 2.305]
Paraíba 2.198 [1.740, 2.855]
Alagoas 1.482 [0.972, 2.028]
Pernambuco 11.537 [9.336, 13.903]
Amazonas 9.770 [6.689, 14.797]
Piauí 26.50 [1.735, 3.796]
Amapá 0.299 [0.163, 0.457]
Paraná 24.465 [19.121, 31.052]
Bahia 10.211 [7.582, 13.304]
Rio de Janeiro 9.788 [6.700, 13.761]
Ceará 6.967 [4.397, 10.813]
Rio Grande do Norte 1.230 [0.705, 1.833]
Distrito Federal 13.036 [11.223, 14.998]
Rondônia 0.502 [0.141, 0.959]
Espírito Santo 4.021 [2.853, 5.709]
Roraima −0.012 [−0.119, 0.117]
Goiós 6.349 [3.413, 10.248]
Rio Grande do Sul 7.516 [2.343, 14.642]
Maranhão 9.80 [6.35, 14.58]
Santa Catarina 4.396 [1.655, 7.998]
Minas Gerais 6.320 [1.580, 12.928]
Sergipe 1.851 [1.370, 2.341]
Mato Grosso do Sul 9.276 [6.377, 12.874]
São Paulo 49.934 [22.327, 91.296]
Mato Grosso 1.515 [0.843, 23.07]
Tocantins 1.172 [0.889, 1.454]
Pará 6.403 [4.842, 8.280]

6 Available at https:// eic. cefet- rj. br/ ~dal/ harbi nger/.

https://eic.cefet-rj.br/%7edal/harbinger/
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For each state, two time series were submitted to the process described in 
“Methods” section, both from the InfoGripe dataset on hospitalizations for SARI 
( DT_SARI ). The first is the weekly series with information on the number of reg-
istered SARI cases in the state. The second is the weekly series with information 
on the number of SARI deaths in the state.

Under-reporting rates were calculated for states where it was found that there 
were, in fact, novelty and under-reported notification. For this, two independent 
tests were carried out using the Wilcoxon test. The average error observed in the 
pre-novelty period ( � ) was compared with the novelty ( �i ) to check if there was 
a novelty. To check if there was an under-reported notification, the number of 
novelty calculated ( �i ) was compared with the number classified as SARS-CoV-2 
at InfoGripe data ( covi ) in a paired test. Then, in both cases, only when there is a 
relevant difference at a significance level of 0.05, the under-reporting rates were 
calculated.

Table 4  Errors of the models 
(deaths)

State � [�
min

, �
max

]

Acre 0.480 [0.284, 0.683]
Paraíba 0.585 [0.402, 0.816]
Alagoas 0.293 [0.146, 0.452]
Pernambuco 0.325 [0.128, 0.552]
Amazonas 0.670 [0.391, 1.075]
Piauí 0.185 [0.024, 0.417]
Amapá 0.047 [0.007, o.102]
Paraná 3.015 [2.086, 4.005]
Bahia 0.847 [0.571, 1.142]
Rio de Janeiro 1.066 [0.531, 1.660]
Ceará 0.670 [0.381, 1.107]
Rio Grande do Norte 0.409 [0.238, 0.634]
Distrito Federal 0.422 [0.271, 0.618]
Rndônia 0.056 [−0.025, 0.155]
Espírito Santo 0.381 [0.150, 0.661]
Roraima 0.009 [−0.020, 0.053]
Goiós 0.940 [0.496, 1.454]
Rio Grande do Sul 0.902 [0.175, 1.870]
Maranhão 0.093 [0.029, 0.186]
Santa Catarina 0.632 [0.247, 1.054]
Minas Gerais 0.993 [0.147, 2.085]
Sergipe 0.119 [0.047, 0.210]
Mato Grosso do Sul 0.976 [0.451, 1.592]
São Paulo 3.941 [1.178, 8.057]
Mato Grosso 0.246 [0.076, 0.457]
Tocantins 0.302 [0.197, 0.432]
Pará 0.449 [0.225, 0.694]
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Results

This work focuses on estimating under-reporting rates for cases and deaths of 
COVID-19. In “Data analytics” section, exploratory analysis is conducted. It con-
tains discussions based on event detection (change points and anomaly) over the 
SARI time series. These findings bring valuable information to help understand 
the disease scenario in the most affected states. Besides, they helped to evaluate the 
choice of the method and the confidence of the estimates. Then, “Under-reporting 
rates” section briefly discusses the characteristics of the under-reporting rates calcu-
lated. Finally, “Evolution of the under-reporting rates” section presents the evolution 
of under-reporting in the period considered in this work.

Data Analytics

The detection of change points and anomalies in the time series of SARI hospitali-
zation in Brazil was an important aspect to understand the beginning process of the 
pandemic situation of COVID-19 in the country. It also enabled the analyses of epi-
demic moments over the last years. In Figs. 2 and 3, it is possible to observe the 
behavior of data and specificity of the most affected Brazilian state.7

Amazonas state is the epidemic center in the North region, and its capital, 
Manaus, was the first capital from Brazil to suffer from a wave of deaths. The state 
presented in 2019 an increase in the number of hospitalizations. This increase is also 
observed in other states from 2016 until 2019. The Amazonas time series shows 
some anomalies, but just one change point for both the number of cases and deaths. 
The change point in the number of cases and deaths is marked in the 11th epidemio-
logical week of 2020. The state reaches its peak of hospitalizations and deaths at the 
17th epidemiological week and now presents a decrease in the curve.

In the Northeast region, it is possible to highlight the cases and deaths at Ceará, 
Pernambuco, and Bahia. Both Ceará and Pernambuco displayed the highest numbers 
in the region. All three states present both of the change points in the 10th week. 
Pernambuco and Ceará, respectively, reached their peaks of hospitalizations in the 
18th (more than 1000 cases) and 19th week (more than 1800 cases). The peak for 
deaths for both of these states is located in the 18th week. In Bahia and Pernambuco, 
the number of cases and deaths show, between 2016 and 2019, a similar increase 
and decrease in shaping a curve between March and July.

Distrito Federal, located in the Central-West region of Brazil, was then consid-
ered one of the main focuses of COVID-19 contagion beside Rio de Janeiro and São 
Paulo. Previously, the peak of the number of cases in Distrito Federal was August 
of 2009, during the H1N1 epidemic. The pandemic superseded this high number in 
2020. Besides, when analyzing the number of deaths caused by H1N1, it was not as 
expressive as the number of deaths registered by COVID-19.

7 The graphics for all states are available at https:// eic. cefet- rj. br/ ~dal/ covid- 19- under- report/.

https://eic.cefet-rj.br/%7edal/covid-19-under-report/
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The Southeast is the most populous region and the most infected area in the coun-
try. São Paulo was the first state to register a case (February) and death (March) by 
COVID-19. It is still the epicenter of the disease in Brazil. The state has the mark of 
the change point for cases and deaths in the 10th week.

Rio de Janeiro, also in the Southeast region, was impacted by SARS-CoV-2. It is 
possible to observe in cases two change points. The first one is 2009 and the second 
in 2020. However, the number of observed change points for the number of deaths 
occurred only once, in 2020, showing the seriousness of this pandemic.

Fig. 2  Event detection in time series of cases
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Another state in the Southeast is Minas Gerais. It registered outliers in 2015 and 
more stable behavior between 2017 and 2019 for the numbers of cases and deaths. 
In 2020 the change point was detected in the 11th epidemiological for both cases 
and deaths.

The 2009 H1N1 crisis also impacted the states in the south region. According to 
the time series, it is noticeable that Paraná and the Rio Grande do Sul were affected 
in the number of cases. On the other hand, if we compare the number of deaths, we 
can observe and analyze the lethality between these two epidemic moments. Paraná 

Fig. 3  Event detection in time series of deaths
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is an example of that analysis, where the maximum point of cases in 2009 surpasses 
5,000 records. Meanwhile, the top of 2020 cases (until the current moment) is less 
than 1000. Nonetheless, when observing the number of deaths, the highest numbers 
occur in 2020, during the COVID-19 pandemic.

Under‑Reporting Rates

The under-reporting rates were computed according to the proposed methodology. 
Tables 5 and 6 show the values of the under-reporting rates of cases and deaths for 
the 27 states of Brazil (columns cases rate and deaths rate, respectively). The rates 

Table 5  Under-reporting rates of cases of COVID-19 for the states of Brazil

∙ The difference between computed novelty and reported values as SARS-CoV-2 was not statistically 
significant

State Cum. novelty 
( DT_SARI_c)

Cum. cases 
( DT_SARI_c)

Cases rate Disclosed 
cum. cases 
( DT_MH_c)

Acre 356 297 0.198 ± 0.027 12913
Alagoas 2856 1520 0.879 ± 0.006 33521
Amazonas 7453 5080 0.467 ± 0.016 69022
Amapá 488 337 0.450 ± 0.008 27901
Bahia 4416 2936 0.504 ± 0.018 65244
Ceará 13,028 7804 0.669 ± 0.008 106628
Distrito Federal 2569 2094 0.227 ± 0.016 42766
Espírito Santo 1039 924 0.124 ± 0.029 41652
Goiás 2298 1306 0.760 ± 0.048 21620
Maranhão 3144 1597 0.969 ± 0.007 78115
Minas Gerais 10,076 3584 1.811 ± 0.029 40966
Mato Grosso do Sul 852 530 –∙ 7307
Mato Grosso 1945 884 1.200 ± 0.015 13805
Pará 10,924 7449 0.467 ± 0.004 99313
Paraíba 2213 1272 0.740 ± 0.009 44242
Pernambuco 8987 5418 0.659 ± 0.008 57089
Piauí 2558 1535 0.666 ± 0.013 18665
Paraná 4000 2238 0.787 ± 0.047 19819
Rio de Janeiro 18,786 11483 0.636 ± 0.006 108803
Rio Grande do Norte 1873 1361 0.376 ± 0.006 24253
Rondônia 631 523 0.207 ± 0.012 19273
Roraima 401 260 0.541 ± 0.008 13078
Rio Grande do Sul 4896 2515 0.947 ± 0.043 25000
Santa Catarina 1767 1101 0.605 ± 0.046 23808
Sergipe 810 558 0.451 ± 0.014 23319
São Paulo 57,546 37,025 0.554 ± 0.019 265581
Tocantins 630 389 0.619 ± 0.013 9966
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shown are calculated for the period between the week detected by the event detec-
tion methods (see Table 2) and the epidemiological week 26 (which corresponds to 
the date 27/06/2020). Thus, the periods considered vary for cases and deaths and 
between states.

The second column of both tables (cum. novelty) presents the novelty values 
( �i ) computed according to the methodology. In the third column (cum. cases 
DT_SARI_c and cum. deaths DT_SARI_d ) are the number of cases/deaths classi-
fied as SARS-CoV-2 in InfoGripe data. In the fifth column (disclosed cum. cases 
DT_MH_c and disclosed cum. deaths DT_MH_d ) are the number of cases/deaths 
reported by the Ministry of Health, for comparison purposes. The information 

Table 6  Under-reporting rates of deaths by COVID-19 for the states of Brazil

∙ The difference between computed novelty and reported values as SARS-CoV-2 was not statistically 
significant

State Cum. novelty 
( DT_SARI_d)

Cum. deaths 
( DT_SARI_d))

Death rate Disclosed 
cum. deaths 
( DT_MH_d)

Acre 135 160 –∙ 351
Alagoas 1082 797 0.357 ± 0.003 993
Amazonas 3288 2169 0.516 ± 0.003 2772
Amapá 242 154 0.574 ± 0.006 406
Bahia 1523 1133 0.345 ± 0.005 1697
Ceará 4437 3543 0.252 ± 0.002 5981
Distrito Federal 595 465 0.280 ± 0.007 537
Espírito Santo 689 643 0.072 ± 0.007 1507
Goiás 585 454 0.288 ± 0.018 429
Maranhão 1480 1080 0.371 ± 0.002 1943
Minas Gerais 1582 853 0.855 ± 0.021 882
Mato Grosso do Sul 104 89 –∙ 68
Mato Grosso 238 198 0.202 ± 0.017 527
Pará 4176 3263 0.280 ± 0.002 4834
Paraíba 789 629 0.255 ± 0.006 896
Pernambuco 3520 2773 0.269 ± 0.002 4708
Piauí 457 352 0.297 ± 0.011 592
Paraná 761 471 0.616 ± 0.034 575
Rio de Janeiro 5573 4170 0.337 ± 0.003 9789
Rio Grande do Norte 646 546 0.184 ± 0.007 909
Rondônia 206 187 0.102 ± 0.007 476
Roraima 307 195 0.574 ± 0.003 281
Rio Grande do Sul 984 496 0.983 ± 0.029 554
Santa Catarina 334 250 0.337 ± 0.027 304
Sergipe 222 194 0.143 ± 0.008 605
São Paulo 13,253 9458 0.401 ± 0.007 14263
Tocantins 160 136 0.177 ± 0.020 191
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published by the Ministry of Health is all confirmed cases/deaths of COVID-19. 
They are presented regardless of whether there was hospitalization for SARI or 
not, so they capture a broader number of reported records.

The under-reporting rates presented in this paper can be applied to compute 
the under-reported cases or deaths of COVID-19 in each state. It is calculated 
by multiplying the under-reporting rates with the number of confirmed cases or 
deaths of COVID-19. The result can be added to reported cases/deaths to estimate 
the expected number of cases or deaths of COVID-19 in the state.

The under-reporting rates of cases vary between 0.124 and 1.811, while the 
under-reporting rates of deaths vary between 0.072 and 0.983. Among the states 
for which it was possible to calculate the two rates, most had a higher under-
reporting rate of cases than under-reporting rate of deaths. Only the states of 
Rio Grande do Sul, Roraima, Distrito Federal, Amazonas, and Amapá behaved 
differently.

There is no dominant pattern between states in each region of Brazil. It sug-
gests that under-reporting is a characteristic of each state. The regional similar-
ity is not a relevant factor. The states of Minas Gerais and Mato Grosso have the 
highest rates of under-reporting of cases. The rate of under-reporting of deaths is 
high in the Rio Grande do Sul and the Minas Gerais.

The Distrito Federal, São Paulo, and Rio de Janeiro are identified as the focus 
of the contagion of COVID-19 in Brazil. Nevertheless, these states are not among 
the ones with the highest rates of under-reporting. It may be because they might 
be better structured and less susceptible to reporting failures. This same observa-
tion is not valid for the states Mato Grosso and Minas Gerais. They are respec-
tively from the mid-west and Southeast regions. They have the highest rates of 
under-reporting of cases across Brazil.

The proposed model did not capture the under-reporting of cases in the Mato 
Grosso do Sul. Similar behavior occurred for under-reporting deaths in the states 
of Acre and Mato Grosso do Sul. These are the cases in which under-reporting 
cannot be observed ( ∙).

Regarding the margin of error considered for the case rates, the states of the 
south region are highlighted. A factor that may have been determinant for this 
result is their historical temperature. As they have low temperatures, they gener-
ally, a higher number of SARI records. Thus, the novelty modeled in this work 
takes longer to be noticed, as it needs to reach even higher values to provide sta-
tistically significant changes.

Evolution of the Under‑Reporting Rates

To create a better characterize the behavior of underrates-report, we analyze them 
week by week. It is important to have in mind that the COVID-19 tests were not 
available in most states at the beginning of the pandemic (11th week). Therefore, 
aiming for a better comparison, we present the analysis from the 12th week for all 
states.
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The lack of tests for the population results in an increased rate of under-report 
in the beginning. Over time, tests are expected to occur more, and the rates start 
to decrease. This explanation can be observed in the weekly rates graphs (Fig. 4).

As it can be observed, under-report rates tend to stabilize throughout time. This 
convergence enables more confidence in computed under-report rates. Besides, it 

Fig. 4  Under-report rates
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shows that even when more tests for COVID-19 are available, there is still a high 
under-reporting rate for some states like Minas Gerais and the Rio Grande do Sul.

Discussion

The three sections of the results complement each other. Data analytics (with 
results presented in “Data analytics”) is used to set the parameters to be applied 
in the modeling of time series and determinant to calculate under-reporting rates. 
The subsequent analysis (with results presented in “Evolution of the under-
reporting rates” section) shows the trend towards stability for the behavior of the 
calculated under-reporting rates. When rates are stable, the long-term estimation 
is more reliable, as there is no significant change in rate values over time.

Limitations should be noted. One limitation is inherent to the dataset used. 
In times of epidemic, health services tend to be more sensitive and report more 
occurrences. Thus, the increase in the number of SARI cases in 2020 is partially 
justified by the over-notification of health units. This super notification, however, 
is mitigated when only hospitalized cases are observed.

Another limitation is due to random noise �i . The states with higher �i are 
slower to characterize the novelty �i . Again, the computed under-reporting rates 
presented in this paper are conservative. They can be improved by predicting �i 
using autoregressive models.

Since the under-reporting is inferred from SARI data, estimates are limited to 
cases of COVID-19, who were hospitalized from the specific symptoms: fever, 
cough or sore throat, dyspnoea, or oxygen saturation below 95% and difficulty to 
breathe. It corresponds to a portion of the cases of COVID-19, as many individu-
als have milder symptoms or are even asymptomatic. Thus, we can consider the 
computed under-reporting rates as conservative since it only considers sympto-
matic and hospitalized disease cases.

For this same reason, we believe that the results are better characterized for 
under-reporting of deaths than cases. It is reasonable since people who died are 
much more likely to have been hospitalized and, therefore, present in SARI data. 
It is quite clear when looking at Tables 5 and 6. The cases reported by the Min-
istry of Health mostly account for more cases than those determined by novelty. 
Conversely, the number of deaths found by novelty is sometimes even higher than 
the ones presented by the Ministry of Health.

An important observation that must be highlighted is the occurrence of under-
reporting with the impact of COVID-19 on the Health System. From the moment 
that health surveillance fails to identify cases—due to under-reporting at times—
it becomes more difficult to control its dissemination. With that, the dynamics 
and the complexity of the disease changes, and the Health System is overloaded. 
A consequence of that is to preclude people from getting the proper treatment not 
just for COVID-19 but also for other diseases, leading to an increase of deaths 
without medical assistance and ill-defined causes compared to last years [8].
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Conclusions

This paper estimates the rates of under-reporting of cases and deaths in the states 
of Brazil. The methodology studies the time series of hospitalized SARI cases as 
a proxy variable for COVID-19. The paper contributes by combining data ana-
lytics (event detection methods) and time series modeling (inertia and novelty 
concepts). Data analytics ensures transparency and consistency in the choice of 
the adopted parameters. In contrast, novelty and inertia enable an understandable 
approach to estimate under-report.

COVID-19 causes a rupture in the SARI series inertial behavior, changing the 
statistical properties of the time series. Event detection techniques identify this 
rupture. Assuming that the change that occurred is due to COVID-19, the com-
puted novelty then corresponds to estimates of the values of cases and deaths 
from the disease. From this, under-reporting rates were computed for both cases 
and deaths.

The rates of under-reporting of cases were estimated for all states except for 
Mato Grosso do Sul. The values vary between 0.124 (Espírito Santo) and 1.811 
(Minas Gerais), thus reaching almost two under-reported cases for each notified 
case. The novelty observed by our SARI analysis in the states is lower, in their 
majority, compared to the cases reported by the Ministry of Health. It is expected 
since many diagnosed cases of COVID-19 are asymptomatic.

Under-reporting rates for deaths were estimated for 25 of the 27 states in Bra-
zil. For the states of Acre and Mato Grosso do Sul, the under-report was not veri-
fied, and, therefore, death rates were not calculated for these states. Rates vary 
between 0.072 (Espírito Santo) and 0.983 (the Rio Grande do Sul), thus indicat-
ing that there may be more than twice as many deaths as reported. The novelties 
for death cases using SARI analysis in the states are commonly higher than those 
notified by the Ministry of Health. It helps to corroborate the justification that the 
death rates are better estimated since SARI covers most of the individuals who 
die.

No pattern of behavior was observed for the events detected or for the evolution 
and values of under-reporting rates between states in the same Brazilian region. 
Therefore, it is observed that the states behave in different and independent ways 
concerning the occurrence/notification of COVID-19. The analysis for each state 
allows heads of state to make strategic decisions about avoiding the spread of the 
disease in each geographic area.

The methodology developed in this paper can be adapted to support the under-
report rate for other diseases as long as it exists a proxy variable that presents an 
inertial behavior. Besides, the methodology can also support the detection of out-
breaks, as it uses both the combination of event detection and inertia concepts.
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