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Abstract:
Accumulating evidence into the pathogenesis of COVID-19 highlight a hypercoagulability state with
high risk of life-threatening thromboembolic complications. However, the mechanisms of
hypercoagulability and their link to hyperinflammation remain poorly understood. Here we
investigate functions and mechanisms of platelet activation and platelet-monocyte interactions in
inflammatory amplification during SARS-CoV2 infection. We used a combination of immunophenotyping,
single cell analysis, functional assays and pharmacological approaches to gain insights on
mechanisms. Critically ill COVID-19 patients exhibited increased platelet-monocyte aggregates
formation. We identified a subset of inflammatory monocytes presenting high CD16 and low HLA-DR
expression as the subset mainly interacting with platelets during severe COVID-19. Single cell
RNAseq analysis indicated enhanced fibrinogen receptor Mac-1 in monocytes from severe COVID-19
patients. Monocytes from severe COVID-19 patients displayed increased platelet binding and
hyperresponsiveness to P-selectin and fibrinogen with respect to TFN-α and IL-1β secretion.
Platelets were able to orchestrate monocyte responses driving TF expression, inflammatory
activation and inflammatory cytokines secretion in SARS-CoV-2 infection. Platelet-monocyte
interactions ex-vivo and in SARS-CoV-2 infection model in vitro reciprocally activated monocytes
and platelets, inducing the heightened secretion of a wide panel of inflammatory mediators. We
identified platelet adhesion as a primary signaling mechanism inducing mediator secretion and TF
expression, while TF signaling played major roles in amplifying inflammation by inducing
proinflammatory cytokines, especially TNF-α and IL-1β. Our data identify platelet-induced TF
expression and activity at the crossroad of coagulation and inflammation in severe COVID-19.
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Key points 55 

Platelet-monocyte interaction engages a reciprocal activation loop that feeds 56 

thromboinflammation in COVID-19. 57 

Platelet adhesion is a primary signaling mechanism for monocyte activation that is 58 

amplified by tissue factor–dependent signaling. 59 
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Abstract 62 

Accumulating evidence into the pathogenesis of COVID-19 highlight a 63 

hypercoagulability state with high risk of life-threatening thromboembolic complications. 64 

However, the mechanisms of hypercoagulability and their link to hyperinflammation 65 

remain poorly understood. Here we investigate functions and mechanisms of platelet 66 

activation and platelet-monocyte interactions in inflammatory amplification during 67 

SARS-CoV2 infection. We used a combination of immunophenotyping, single cell 68 

analysis, functional assays and pharmacological approaches to gain insights on 69 

mechanisms. Critically ill COVID-19 patients exhibited increased platelet-monocyte 70 

aggregates formation. We identified a subset of inflammatory monocytes presenting 71 

high CD16 and low HLA-DR expression as the subset mainly interacting with platelets 72 

during severe COVID-19. Single cell RNAseq analysis indicated enhanced fibrinogen 73 

receptor Mac-1 in monocytes from severe COVID-19 patients. Monocytes from severe 74 

COVID-19 patients displayed increased platelet binding and hyperresponsiveness to P-75 

selectin and fibrinogen with respect to TFN-α and IL-1β secretion. Platelets were able 76 

to orchestrate monocyte responses driving TF expression, inflammatory activation and 77 

inflammatory cytokines secretion in SARS-CoV-2 infection. Platelet-monocyte 78 

interactions ex-vivo and in SARS-CoV-2 infection model in vitro reciprocally activated 79 

monocytes and platelets, inducing the heightened secretion of a wide panel of 80 

inflammatory mediators. We identified platelet adhesion as a primary signaling 81 

mechanism inducing mediator secretion and TF expression, while TF signaling played 82 

major roles in amplifying inflammation by inducing proinflammatory cytokines, 83 

especially TNF-α and IL-1β. Our data identify platelet-induced TF expression and 84 

activity at the crossroad of coagulation and inflammation in severe COVID-19. 85 

Keywords: Thromboinflammation, COVID-19, platelet-monocyte interaction, 86 

tissue factor signaling, inflammatory amplification. 87 
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5 
 

Introduction 89 

Hypercoagulability is central in pathophysiology and also a significant determinant of 90 

mortality in COVID-19 patients1–4. Pulmonary and extrapulmonary microvascular 91 

thrombosis is associated with multiorgan failure5–7 occurring more frequently in COVID-92 

19 than in influenza pneumonia7,8. While heparin treatment may be beneficial9, 93 

persistent hypercoagulability and thromboinflammatory tissue damage have been 94 

reported despite prophylactic anticoagulation5,10,11. Markers of coagulation and 95 

inflammation, including D-dimers, TNF-α and IL-6 are early predictors of respiratory 96 

distress and mortality during COVID-1912–16. Overwhelming inflammatory activation 97 

(“cytokine storm”) may both sustain and be amplified by hypercoagulability17,18. 98 

Nevertheless, the mechanisms of hypercoagulability in COVID-19 patients and how it is 99 

linked to hyperinflammation are still to be determined. 100 

Platelets are blood cells classically known by their roles in thrombosis and 101 

hemostasis19. Beyond their hemostatic activities, platelets orchestrate inflammatory 102 

response, secreting inflammatory mediators and forming heterologous aggregates with 103 

leukocytes19–22. Activated platelets adhere to leukocytes reprogramming cellular 104 

functions through juxtracrine signals from P-selectin and fibrinogen-bearing integrins23–105 

25. Severe COVID-19 evolves with platelet hyperactivity and increased platelet-106 

monocyte, lymphocyte and neutrophil aggregates formation26–29. COVID-19 post 107 

mortem pathological findings show extensive areas of microvascular tissue thrombosis 108 

containing platelet-neutrophil complexes and NETosis5,6. Intravascular and airways 109 

NETosis is associated with case severity and mortality6, and activated platelets in 110 

COVID-19 are a determinant to NET extrusion5,30. We have recently shown that 111 

increased platelet activation and platelet-monocyte interaction in severe COVID-19 112 

induce pathologic expression of tissue factor (TF)26, the main trigger of coagulation 113 

activation and thrombosis31. Interestingly, TF-expressing monocytes represent a subset 114 

of inflammatory monocytes highly expressing proinflammatory cytokines in people 115 
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6 
 

living with HIV18, but the participation of platelets in this monocyte subset 116 

reprogramming remains unknown. Our central hypothesis is that platelet-induced 117 

procoagulant and proinflammatory signaling in monocytes are linked, amplifying 118 

inflammation and hypercoagulability in COVID-19. 119 

Here we identified platelet and monocyte activation mechanisms involved in 120 

reciprocal loops of cellular communication that feed the thromboinflammatory process 121 

in COVID-19. We report new mechanisms of platelet-monocyte signaling involving 122 

adhesion-mediated TF expression and activity, which drives activation and 123 

proinflammatory cytokine secretion in monocytes. We stablish signaling pathways 124 

linking coagulation and inflammation in severe COVID-19 by identifying novel 125 

mechanisms of thromboinflammation associated with severity and mortality in critically 126 

ill patients. 127 

  128 
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Material and methods 129 

 130 

Human subjects 131 

We prospectively enrolled a cohort of 68 RT-PCR confirmed mild (n = 22) to severe (n 132 

= 46) COVID-19 patients and 25 SARS-CoV-2-negative control subjects. Blood was 133 

obtained from the 46 patients with severe COVID-19 within 72 hours from ICU 134 

admission in three reference centers (Instituto Estadual do Cérebro Paulo Niemeyer, 135 

Hospital Copa Star and Leblon Campaign Hospital, all in Rio de Janeiro, Brazil). 136 

Severe COVID-19 was defined as those critically ill patients, presenting viral 137 

pneumonia on computed tomography scan and requiring oxygen supplementation 138 

through either a nonrebreather mask or mechanical ventilation. Twenty-two outpatients 139 

presenting mild self-limiting COVID-19 syndrome were also included. All patients had 140 

SARS-CoV-2 confirmed diagnostic through RT-PCR of nasal swab or tracheal 141 

aspirates. Peripheral blood samples were collected from 25 SARS-CoV-2-negative 142 

control volunteers. The characteristics of mild, severe and control participants are 143 

presented in Table 1. Mild and severe COVID-19 patients presented differences 144 

regarding the age and the frequency of comorbidities (Table 1), which is consistent 145 

with previous reports32–34. Subjects of older age and chronic noncommunicable 146 

diseases were also recruited in the SARS-Cov-2-negative control group to matched 147 

with mild and severe COVID-19 patients, except for hypertension and diabetes (Table 148 

1). 149 

All ICU-admitted patients received usual supportive care for severe COVID-19, 150 

including either noninvasive oxygen supplementation (n= 16) or mechanical ventilation 151 

(n= 30) (Table S1). Clinical information from all severe COVID-19 patients was 152 

collected using a standardized form - ISARIC/WHO Clinical Characterization Protocol 153 

for Severe Emerging Infections (CCP-BR)35. Clinical and laboratory data were 154 
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prospectively recorded and the primary outcome analyzed was 28-day mortality (n = 28 155 

survivors and 18 nonsurvivors, Table S2). Sex, age and the frequency of comorbidities 156 

were not different between severe patients requiring mechanical ventilation or 157 

noninvasive oxygen supplementation neither between survivors and nonsurvivors 158 

(Table S1 and S2). All clinical investigations were conducted according to the 159 

principles of the Declaration of Helsinki. The study protocol was approved by the 160 

National Review Board (Comissão Nacional de Ética em Pesquisa – CONEP 161 

30650420.4.1001.0008), and informed consent was obtained from all participants or 162 

patients’ representatives. 163 

 164 

Monocyte adhesion on immobilized P-selectin or Fibrinogen 165 

Monocyte adhesion assays were performed as previously described36. Briefly, 8-wells 166 

Lab-Tek plates were incubated overnight at 4 °C with PBS containing recombinant 167 

human albumin, P-selectin (10 µg/ml) or fibrinogen (100 µg/ml) and then blocked with 168 

albumin (10 mg/ml) for 4 hours at room temperature. The plates were washed twice 169 

with PBS containing 0.05 % Tween-20 and three times with PBS. Monocytes (1 x 105) 170 

from severe COVID-19 patients or control subjects were resuspended in 100 µL of 171 

M199 containing 10 mg/ml polymyxin B, plated on the coated surfaces and incubated 172 

overnight at 37 °C in a 5 % CO2 atmosphere. After 12 hours post-plating, the 173 

supernatants were harvested, centrifuged to remove loose cells (500 x g for 15 min) 174 

and stored for further quantification of inflammatory mediators. Adherent cells were 175 

fixed with 4 % paraformaldehyde and the nuclei were stained with DAPI (1 µg/mL) and 176 

analyzed by fluorescence microscopy. 177 

 178 

Platelet-monocyte ex vivo interaction 179 
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To examine whether platelets from COVID-19 patients modulate thromboinflammatory 180 

responses in monocytes from healthy volunteers, purified platelets and monocytes 181 

were incubated ex vivo at 37 °C in a 5% CO2 atmosphere. Each experimental point 182 

contained 2 x 105 monocytes from a COVID-19 patient with 2 x 107 platelets from a 183 

healthy volunteer, or 2 x 105 monocytes from a healthy volunteer with 2 x 107 platelets 184 

from a COVID-19 patient. Control monocytes plus platelets from a different healthy 185 

volunteer were used as control. In selected experiments, platelet-monocyte interactions 186 

were performed in the presence of neutralizing antibodies against P-selectin (BBA30, 187 

R&D Systems) (20 µg/mL), TF (clone 10H10 or 5G9) (50 µg/mL), the anti-integrin αIIbβ3 188 

monoclonal antibody abciximab (50 µg/mL), or isotype-matched IgG (50 µg/mL). 189 

Platelet-monocyte interactions were also performed in the presence of aspirin (100 µM, 190 

A5376, Sigma), clopidogrel (300 µM, PHR1431, Sigma), Ixolaris or DMSO (vehicle). 191 

After 0.5, 2 or 18 hours of interaction, cells were centrifuged, the supernatants were 192 

harvested and cells were fixed with 4 % paraformaldehyde for flow cytometry analysis 193 

as described above. The experiment was repeated using monocytes from 2-3 194 

independent healthy volunteers with similar results, and a representative data from one 195 

of the donors is shown. Monoclonal anti-TF antibodies were kindly provided by Dr. 196 

Wolfram Ruf (Johannes Gutenberg University Medical Center, Mainz, Germany; and 197 

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, 198 

CA). Ixolaris was expressed and purified as described37. 199 

 200 

Platelet-monocyte infection in vitro 201 

SARS-CoV-2 was originally isolated from nasopharyngeal swabs of a confirmed case 202 

from Rio de Janeiro/Brazil (GenBank accession no. MT710714). The virus was 203 

amplified for 2 to 4 days in Vero E6 cell cultures in high glucose Dulbecco′s Modified 204 

Eagle′s Medium supplemented with 2% fetal bovine serum at 37˚C in 5% CO2 205 

atmosphere. Virus titers were determined by the tissue culture infectious dose at 50% 206 
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(TCID50/mL) and the virus stocks kept in -80˚C freezers until use. All procedures 207 

involving SARS-CoV-2 culture were performed in a biosafety level 3 (BSL3) facility. 208 

Platelets (2 x 107) and monocytes (2 x 105) were infected with SARS-CoV-2 separately 209 

or in combination (multiplicity of infection = 0.01 virus per monocyte). In selected 210 

experiments, platelet-monocyte co-cultures were infected in the presence of abciximab, 211 

anti-TF antibodies (clone 10H10 or 5G9), or isotype-matched IgG (50 µg/mL), or the 212 

PAR-1 inhibitor SCH79797 (5 µM, Tocris 1592), PAR-2 inhibitor AZ3451 (10 µM, 213 

Sigma SML2050) or DMSO (vehicle). After 12 h of infection, supernatants were 214 

harvested and stored for future analysis, and cells were fixed with 4 % 215 

paraformaldehyde for flow cytometry analysis as described in supplemental material. 216 

 217 

Statistical analysis 218 

Statistics were performed using GraphPad Prism software version 7. All the numerical 219 

variables were tested regarding their distribution using the Shapiro-Wilk test. One-way 220 

analysis of variance (ANOVA) was used to compare differences among 3 or more 221 

groups following a normal (parametric) distribution, and Tukey’s post-hoc test was used 222 

to locate the differences between the groups. Comparisons between 2 groups were 223 

performed using the Student t-test for parametric distributions or the Mann-Whitney U 224 

test for nonparametric distributions. 225 

  226 
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Results 227 

 228 

Platelet-monocyte interaction associates with monocyte activation and immune 229 

dysfunction in COVID-19 230 

We have recently described novel mechanisms of platelet activation and platelet-231 

induced monocyte TF expression that were associated with hypercoagulability and 232 

mortality in severe COVID-19 patients26. We then investigated the relationship of 233 

platelet-monocyte aggregate formation and monocyte inflammatory phenotypes during 234 

severe COVID-19. Interaction with platelets was assessed by the expression of the 235 

platelet marker CD41 on the classical (CD14+CD16-), intermediate (CD14highCD16+) 236 

and nonclassical (CD14lowCD16+) monocyte subsets. As shown in Figure 1A, COVID-237 

19 patients presented increased levels of platelet-monocyte aggregates specifically in 238 

CD16-positive intermediate and nonclassical monocytes. In addition, platelet-monocyte 239 

aggregates formed preferentially with HLA-DR-negative monocytes (Figure 2B and 240 

Supplemental Figure S1). These data highlight a strong association of platelet-241 

monocyte aggregate formation with monocyte inflammatory activation and immune 242 

dysfunction in severe COVID-19. 243 

 244 

Monocytes from COVID-19 patients secrete proinflammatory cytokines in 245 

response to P-selectin and fibrinogen  246 

Considering the relationship between monocyte immunoinflammatory phenotype and 247 

interaction with platelets in severe COVID-19 (Figure 1 A-B), we investigated the 248 

expression of monocyte adhesion molecules that mediate platelet-leukocyte aggregate 249 

formation. Single cell RNA analysis has shown that the fibrinogen receptor Mac-1 250 

subunits integrin αM (ITGAM) and integrin β2 (ITGB2) transcripts are increased in 251 
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monocytes from severe COVID-19 patients (Figure 1C and Supplemental Figure S2). 252 

We confirmed through flow cytometry that Integrin αM (CD11b) expression is increased 253 

on monocytes from severe COVID-19 patients compared to patients with mild COVID-254 

19 or control subjects (Figure 1D), indicating increased Mac-1 expression. Importantly, 255 

Mac-1 expression was higher in mechanically ventilated patients compared to patients 256 

under noninvasive oxygen supplementation (Figure 1E), and in patients that evolved 257 

with mortality compared to hospital discharge (Figure 1F). 258 

To gain insights on how monocytes from severe COVID-19 patients respond to 259 

the molecules that mediate platelet-monocyte aggregate formation, we performed 260 

monocyte adhesion assays on P-selectin or fibrinogen coated surfaces. As expected, 261 

monocytes from healthy volunteers showed increased adhesion to recombinant P-262 

selectin and fibrinogen when compared to recombinant human albumin (Figure 2A). 263 

Monocytes from severe COVID-19 patients, on the other hand, were more adhesive 264 

and secreted higher levels of IL-6, IL-10 and MCP-1/CCL2 regardless of the surface on 265 

which they were adhered (Figure 2A-B and Supplemental Figure S3A-B). 266 

Importantly, monocytes from severe COVID-19 patients were more responsive to P-267 

selectin and fibrinogen coated surfaces regarding the secretion of TNF-α, IL-1β, IL-8, 268 

MIP-1α and MIP-1β, as compared to control monocytes (Figure 2C-D and Figure 269 

S3D-F). These data indicate that monocytes from severe COVID-19 patients present 270 

higher responsiveness to P-selectin and fibrinogen regarding inflammatory cytokine 271 

secretion, especially TNF-α, IL-1β and IL-8. 272 

 273 

Platelet adhesion and induction of TF expression precede monocyte 274 

inflammatory activation 275 

We have recently shown that activated platelets from severe COVID-19 patients induce 276 

monocyte TF expression26. We hypothesized that besides procoagulant pathways, 277 
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platelet-monocyte interaction also orchestrates inflammation in COVID-19. To confirm 278 

this hypothesis, we incubated monocytes from healthy volunteers with platelets from 279 

severe COVID-19 patients ex vivo (Figure 3A), and evaluated the kinetics of monocyte 280 

TF and CD16 expression. Platelets from severe COVID-19 patients rapidly formed 281 

aggregates with control monocytes and induced TF expression up to 2 hours post-282 

interaction, as compared to platelets from heterologous healthy volunteers (gray and 283 

red lines in Figure 3B-C). The interaction with platelets from severe COVID-19 patients 284 

also increased CD16 expression on control monocytes, even though at a later time-285 

point (Figure 3D). 286 

As previously reported, monocytes from severe COVID-19 patients present 287 

increased aggregation with platelets and higher TF expression at baseline (white 288 

symbols in Figure 3B-C) 26. Interestingly, when monocytes from severe COVID-19 289 

patients were exposed to platelets from healthy volunteers, platelet-monocyte 290 

aggregates formation and TF expression were further enhanced (black lines in Figure 291 

3B-C), indicating that platelet-monocyte aggregates from severe COVID-19 patients 292 

recruit resting platelets to amplify TF expression. Even though the addition of control 293 

platelets potentiated aggregate formation and TF expression by COVID-19 monocytes, 294 

these were transient responses, while the interaction of control monocytes with COVID-295 

19 platelets was sustained (Figure 3B-C). Collectively, these data suggest that 296 

platelet-mediated monocyte procoagulant and proinflammatory activation follow 297 

different kinetics and involve a complex set of signals influenced by infection-driven 298 

phenotypes of both platelets and monocytes. 299 

 300 

Platelet-monocyte interaction drives inflammatory mediator secretion in COVID-301 

19 302 
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Previous studies from our group and others have demonstrated the ability of activated 303 

platelets to regulate monocyte transcription and secretion of inflammatory 304 

mediators36,38–40. To characterize the pattern of inflammatory mediator secretion by 305 

platelet-monocyte aggregates in COVID-19, monocytes from healthy volunteers were 306 

exposed to platelets from severe COVID-19 patients or platelets from a different 307 

healthy volunteer. Monocytes from severe COVID-19 patients were also incubated with 308 

platelets from control participants (Figure 4A). The levels of cytokines and eicosanoids 309 

were quantified at 18-hours post-interaction. As shown in Figure 4A-C and 310 

Supplemental Figure S4A, increased secretion of the proinflammatory cytokines TNF-311 

α, IL-1β and IL-8/CXCL8 was observed in monocytes from healthy volunteers that 312 

interacted with platelets from severe COVID-19 patients, but not with control platelets. 313 

Furthermore, monocytes from healthy volunteers exposed to platelets from COVID-19 314 

patients, or monocytes from COVID-19 patients exposed to platelets from healthy 315 

volunteers secreted heightened levels of IL-10 and PGE2, which was not observed 316 

when control monocytes were exposed to control platelets (Figure 4D-E). Platelet-317 

monocyte interactions also increased the secretion of the cytokines IL-1RA and IL-6, 318 

the chemokine CCL2/MCP-1 and the platelet-derived factors PF4/CXCL4 and PDGF 319 

regardless the source of the cells (from COVID-19 or from healthy donors) (Figure 4F-I 320 

and Supplemental Figure S8C-D). These data highlight an inflammatory cytokine 321 

pattern that is characteristic of platelet-monocyte interactions involving platelets or 322 

monocytes from COVID-19 patients (Figure 4A). 323 

 324 

Platelets respond to SARS-CoV-2 and orchestrate monocyte activation in vitro 325 

We next investigated the platelet and monocyte responses to SARS-CoV-2 separately 326 

and in combination. Platelets, monocytes or platelet-monocyte co-cultures (100 327 

platelets per monocyte) were incubated with SARS-CoV-2 in vitro (MOI of 0.01 virus 328 

per monocyte and 0.0001 virus per platelet) (Figure 5A). Platelet exposure to SARS-329 
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CoV-2 significantly increased platelet activation and secretion of granule-stored factors 330 

(Figure 5B-C). Importantly, the conjunct cytokines secreted by monocytes incubated in 331 

the presence of platelets showed increased diversity compared to monocytes infected 332 

alone (Figure 5D). While monocytes exposed to SARS-CoV-2 alone enhanced the 333 

secretion of TNF-α, MIP-1α and MIP-1β, monocytes incubated in the presence of 334 

platelets showed higher secretion of the inflammatory cytokines IL-1β, IL-18 and IL-335 

1RA, and the chemokines IL-8/CXCL8, MIG/CXCL9, IP10/CXCL10, MCP-1/CCL2 and 336 

MCP-3/CCL7 (Figure 5D and Supplemental Figure S9C-I). Monocytes infected in the 337 

presence of platelets also displayed increased CD16 and TF expression as compared 338 

to monocytes alone (Figure 5D). HLA-DR downregulation was a monocyte response to 339 

SARS-CoV-2 independent on the presence of platelets (Figure 5D). These data 340 

highlight platelet recognition and response to SARS-CoV-2 and platelet ability to 341 

reprogram monocyte responses to virus. 342 

 343 

Platelet-monocyte interaction reciprocally activates platelets 344 

An important step of our investigation was to examine whether platelet-monocyte 345 

interaction could also impact on the secretion of platelet-derived mediators. 346 

Interestingly, the secretion of PDGF, PF4 and TXB2, mediators produced exclusively by 347 

platelets, was increased when platelets from healthy volunteers interacted with 348 

monocytes from severe COVID-19 patients or from different control subjects (Figure 349 

4H-I and Supplemental Figure S4D). Platelets from COVID-19 patients were also 350 

responsive to the interaction with monocytes from healthy volunteers by releasing 351 

PF4/CXCL4 and PDGF, as compared to platelets alone (Figure 4H-I). Similarly, 352 

platelets exposed to SARS-CoV-2 in vitro in the presence of monocytes secreted 353 

higher levels of PF4/CXCL4, sCD62P, PDGF and RANTES/CCL5 than platelets 354 

exposed to SARS-CoV-2 only (Figure 5 E-F). Comparable results were observed with 355 

platelets from healthy volunteers stimulated with thrombin in vitro (Supplemental 356 
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Figure 5K-M), indicating that platelet activation by interaction with monocytes is not a 357 

COVID-19 exclusive feature. These data show that platelet-monocyte adhesion 358 

induces two-way signals that impact not only the monocytes but also the platelets, 359 

increasing the secretion of stored and newly-synthesized platelet factors. 360 

 361 

Platelets from COVID-19 patients activate monocytes through TF-dependent and 362 

independent signaling 363 

We have recently shown that P-selectin and integrin αIIb/β3 play major roles in platelet-364 

induced TF expression in monocytes in severe COVID-1926. Besides its roles in 365 

coagulation, monocyte TF expression and activity have been implicated in 366 

inflammatory cytokine production and immune activation18. Considering the earlier 367 

kinetics of platelet-induced TF compared to CD16 expression on monocytes (Figure 368 

3), we hypothesized that platelet-induced TF expression might contribute to monocyte 369 

inflammatory responses during platelet-monocyte aggregate formation. To investigate 370 

whether TF is involved on platelet-monocyte signaling, we performed ex vivo platelet-371 

monocyte coculture in the presence of a neutralizing anti-P-selectin antibody, the anti-372 

αIIb/β3 abciximab, and a pair of isotype-matched antibodies against distinct epitopes of 373 

TF that impair TF direct signaling (clone 10H10) or coagulation activation (clone 374 

5G9)41. In addition, we performed ex vivo platelet-monocyte interaction in the presence 375 

of the anti-platelet drugs aspirin and clopidogrel. As shown in Figure 6A, we identified 376 

patterns of platelet-induced monocyte activation depending not only on P-selectin- and 377 

integrin αIIb/β3-mediated adhesion, but also on TF activity, leading to increased CD16 378 

expression and TNF-α and IL-1β secretion (Figure 6A). We have also identified 379 

platelet-mediated monocyte responses depending only on P-selectin- and integrin 380 

αIIb/β3, regardless of TF activity, leading to the secretion of IL-10, IL-8/CXCL8, MIP-381 

1α/CCL3 and MCP-1/CCL2 (Figure 6A and Supplemental Figure 6). Even though 382 

aspirin treatment effectively inhibited platelet TXA2 synthesis and PF4 secretion, aspirin 383 
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or clopidogrel were both unable to impair platelet-induced monocyte activation and 384 

secretion (Figure 6B-C and Supplemental Figure S7). Importantly, the secretion of 385 

the platelet-derived mediators PDGF, basic FGF and HGF were inhibited by anti-P-386 

selectin and/or abciximab (Figure 6A), reassuring the notion that platelet-monocyte 387 

adhesion reciprocally signals to platelets, activating platelet secretion. 388 

We then investigated whether Ixolaris, a small molecule from the saliva of the 389 

tick Ixodes scapularis that blocks TF coagulant and signaling activities18,42, also inhibit 390 

monocyte activation during platelet-monocyte aggregate formation. Exposure of control 391 

monocytes to platelets from severe COVID-19 patients in the presence of Ixolaris 392 

significantly impaired platelet-induced CD16 expression (Figure 6C). In addition, 393 

treatment with Ixolaris completely blunted P-selectin- or fibrinogen-induced TNF-α 394 

secretion in monocytes from severe COVID-19 patients (Figure 6D), while the 395 

secretion of MIP-1α, MIP-1β and G-CSF was enhanced (Supplemental Figure S8). 396 

 397 

Platelet-monocyte interaction activates monocytes and platelets through TF-398 

PAR1/2 signaling 399 

Finally, we investigated TF-mediated platelet-monocyte signaling in response to 400 

SARS-CoV-2 infection in vitro. Similar to monocytes exposed to platelets from COVID-401 

19 patients, TF expression in response to SARS-CoV-2 was dependent on integrin-402 

mediated platelet adhesion (Figure 7A). Enhanced expression of CD16, TNF-α and IL-403 

1β in platelet-monocyte cocultures were dependent on both integrin αIIb/β3 and TF-404 

dependent signaling, while MCP-1/CCL2 secretion depended only on integrin signaling 405 

but not TF activity (Figure 7B). The secretion of the platelet-derived mediators PDGF 406 

and sCD62P was also inhibited by blocking the integrin αIIb/β3 and TF coagulation 407 

activity with anti-TF 5G9 clone (Figure 7B). To gain insights on the mechanisms of TF-408 

mediated signaling in platelet-monocyte interaction, we exposed platelet-monocyte co-409 
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cultures to SARS-CoV-2 in the presence of the PAR1 and PAR2 selective inhibitors 410 

SCH79797 and AZ3451, respectively. As shown in Figure 7C, monocyte activation and 411 

proinflammatory cytokine secretion depended majorly on PAR1, while CD16 412 

expression and IL-1β secretion also dependent on PAR2 activation. Importantly, PAR-1 413 

inhibition also reduced platelet-monocyte aggregate formation (CD41+ monocytes), 414 

PDGF and sCD62P secretion, indicating a role in platelet activation (Figure 7C). 415 

Collectively, these data dissect novel pathways of platelet-delivered proinflammatory 416 

signaling to monocytes through P-selectin- and integrin αIIb/β3, that amplifies platelet 417 

and monocyte activation by driving TF expression and signaling through PAR1 and 2 418 

(Figure 7D).  419 
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Discussion 420 

A state of hypercoagulability with high frequency of thromboembolic complications has 421 

emerged as a key pathological feature of COVID-192,3. Even though coagulation 422 

disturbances are common features of critically ill patients, their frequencies are 423 

particularly higher in severe COVID-191,7,12,43–46. Histopathological analysis of COVID-424 

19 deaths or nonhuman primate infection models have revealed lung 425 

thromboinflammatory features including neutrophil and macrophage infiltration, NET-426 

containing pulmonary microvascular thrombosis, and endothelial inflammation with 427 

platelet-fibrin deposition5–7,47–49. These thromboinflammatory vascular occlusions are 428 

almost ten times increased in lungs from COVID-19 fatalities compared to those from 429 

influenza pneumonia7,8,49. Importantly, interaction with platelets is key for monocyte and 430 

neutrophil thromboinflammatory activities in COVID-19, including in driving TF 431 

expression contributing to hypercoagulability state5,26,30. Here, we provide novel 432 

evidence of a platelet-induced proinflammatory amplification program in monocytes 433 

through adhesion molecules and TF-dependent signaling. Moreover, activated 434 

monocytes from COVID-19 patients recruit and activate platelets, consistent with a 435 

dysregulated amplification loop that is associated with severity and mortality in COVID-436 

19 patients. 437 

Immune profiling of severe COVID-19 patients has revealed an expansion of 438 

intermediate and nonclassical monocytes that fail to engage the adaptive immunity due 439 

to lower HLA-DR expression12,50,51. This monocyte inflammatory program was also 440 

associated with poor outcomes in the COVID-19 patients in our cohort (data not 441 

shown). Our findings support the idea that these monocyte subsets are the ones 442 

preferentially interacting with platelets during severe COVID-19. Consistently, 443 

combined single-cell transcriptome and surface proteome approaches have shown the 444 

expansion of CD16+ nonclassical monocytes highly expressing complement and type I 445 

IFN transcripts and forming aggregates with platelets52. By single-cell RNA-seq and 446 
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flow cytometric analysis we identified monocytes highly expressing the leukocyte 447 

integrin Mac-1 heterodimer, a fibrinogen receptor that participates in platelet-monocyte 448 

aggregate formation16. These monocyte phenotypic changes may explain the 449 

increased affinity to platelets and higher responsiveness to P-selectin and fibrinogen 450 

during severe COVID-19, leading to TF expression and proinflammatory cytokines 451 

secretion. 452 

While monocytes from severe COVID-19 patients are highly responsive to 453 

platelets, the platelet activation status in COVID-19 also contributes to interaction with 454 

monocytes leading to TF expression and inflammatory activation. We and others have 455 

previously reported the ability of activated platelets to modulate monocyte 456 

secretion36,38–40. We have demonstrated beforehand that platelet-monocyte aggregates 457 

formation reprogram monocyte cytokine production in dengue36,40. We now report 458 

similar results in monocytes interacting with platelets in SARS-CoV-2 infection, except 459 

for a more proinflammatory profile marked by higher levels of TNF-α and IL-1β. 460 

Interestingly, differential signaling was required for the secretion of distinct cytokines 461 

and chemokines in this model. Platelet adhesion through P-selectin and integrin αIIb/β3 462 

is a primary signal for the secretion of a wide range of mediators, including pro- and 463 

anti-inflammatory cytokines and chemokines and monocyte TF expression. TF, in its 464 

turn, signals to foster monocyte CD16 expression and pro-inflammatory cytokine 465 

production through PAR1 and PAR2 activation. TF-dependent PAR1 signaling was 466 

also involved in platelet activation during platelet-monocyte aggregate formation 467 

(Figure 7D). In addition to platelet-monocyte interaction, proinflammatory factors may 468 

also contribute to hyperinflammation and hypercoagulability, including in driving TF 469 

expression in monocytes17,18. Our data describe complex mechanisms of platelet-470 

monocyte interaction that depend on contact-mediated signaling and are amplified by 471 

TF-driven inflammatory signaling. 472 
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The mechanisms underlying platelet activation in severe COVID-19 are not yet 473 

completely understood. Our data demonstrate that platelets are responsive to SARS-474 

CoV-2 in vitro, even though to a lower extent compared to platelets from COVID-19 475 

patients. Of note, SARS-CoV-2 RNA, proteins and virions have been detected in 476 

platelets from infected patients, indicating the feasibility of SARS-CoV-2-induced 477 

platelet activation in natural infections53–55. Previous studies have described that 478 

exposure to SARS-CoV-2 activates platelets in vitro56,57, which may involve canonical 479 

interaction through ACE-256,58, but also alternative receptors as CD42 and CD14758–60. 480 

Similar to previously reported observations61,62, monocytes were also responsive to 481 

SARS-CoV-2 in vitro in the present work. Importantly, our experiments revealed that 482 

monocytes infected together with platelets display amplified inflammatory activation 483 

and secrete higher levels of inflammatory cytokines. Reports from our group and others 484 

have indicated that the inflammatory mediators in COVID-19 patients’ plasma also 485 

activate platelets26,28,63. In whole blood from healthy volunteers reconstituted with 486 

COVID-19 plasma, IL-6 receptor blocking by tocilizumab inhibits platelet activation, 487 

platelet-leukocyte aggregates formation and TF expression28. Therefore, viral and 488 

inflammatory factors clearly contribute to platelet activation, which in turns amplifies 489 

inflammation in COVID-19 by reprogramming monocyte responses. We show that 490 

platelet-monocyte interaction activates both platelets and monocytes through 491 

mechanisms requiring TF-mediated PAR1 and 2 signaling, feeding hyperinflammation 492 

and hypercoagulability in a reciprocal amplification loop. 493 

In summary, we describe a monocyte proinflammatory program depending on 494 

platelet-induced TF-mediated signaling during COVID-19. These platelet-monocyte 495 

responses were associated with severity and mortality in a cohort of ICU-admitted 496 

patients. However new studies are still necessary to unravel the clinical relevance of 497 

these mechanisms. Based on the potential involvement of these cellular and molecular 498 

events in pathophysiological mechanisms of hyperinflammation and hypercoagulability, 499 
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TF-mediated initiation of coagulation and inflammatory signaling may represent a target 500 

for therapeutic intervention in future clinical research in COVID-19. 501 

  502 
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Figure legends: 533 

Figure 1: Platelet monocyte interaction associate with monocyte inflammatory 534 

activation in COVID-19. (A) The percentage of platelet-monocyte complexes among 535 

classical, intermediate and nonclassical monocyte subsets from SARS-CoV-2-negative 536 

control participants and patients with mild to severe COVID-19 syndrome. (B) The 537 

percentage of platelet-monocyte complexes in HLA-DR-positive or negative monocytes 538 

from severe COVID-19 patients. (C) The Log2 fold change of the transcripts for P-539 

selectin and fibrinogen receptors P-selectin glycoprotein ligand 1 (SELPG), integrin β1 540 

(ITGB1), integrin β2 (ITGB2), integrin αX (ITGAX) and Integrin αM (ITGAM) in 541 

monocytes from severe COVID-19 patients. * Means p < 2.5x10-13. (D-F) The 542 

percentage of CD11b-positive monocytes in blood from (D) SARS-CoV-2-negative 543 

control participants and patients with mild to severe COVID-19 syndrome; or from 544 

severe COVID-19 patients stratified according to (E) the requirement of invasive 545 

mechanical ventilation or noninvasive O2 supplementation or (F) the 28-day mortality 546 

outcome as survivors or nonsurvivors. The horizontal lines in the box plots represent 547 

the median, the box edges represent the interquartile ranges and the whiskers indicate 548 

the minimal and maximal value in each group. * indicates p < 0.05 compared to control 549 

in the same monocyte subset; # indicates p < 0.05 between selected groups. 550 

 551 

Figure 2: Monocytes from severe COVID-19 patients are hyperresponsive to P-552 

selectin and fibrinogen regarding inflammatory cytokine secretion. Monocytes (1 553 

x 105) from severe COVID-19 patients or control participants were plated on 554 

recombinant human albumin, P-selectin or fibrinogen coated surfaces. (A) The number 555 

of monocytes (DAPI, nuclei) adhered on each condition is shown. Scale bar represents 556 

100 µm. (B-D) The concentration of (B) MCP-1/CCL2, (C) TNF-α and (D) IL-1β in each 557 

condition. Bars represent mean ± standard error of the mean of monocytes from 5 558 

independent control participants and 6 independent severe COVID-19 patients. # 559 
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indicates p < 0.05 compared to monocytes from control participants in the same 560 

condition; * indicates p < 0.05 compared albumin. 561 

 562 

Figure 3: Platelet-monocyte aggregates formation, TF expression and CD16 563 

expression follows differential kinetics in COVID-19. (A) Monocytes from healthy 564 

volunteers (control monocyte) were incubated in the absence of platelets (open circles) 565 

or with platelets from severe COVID-19 patients (COVID-19 platelets, red circles) or 566 

from a different healthy volunteer (control platelets, gray circles) for the indicated time-567 

points. Monocytes from COVID-19 patients (COVID-19 monocyte) were also incubated 568 

in the absence of platelets (open squares) or with platelets from healthy volunteers 569 

(control platelets, black squares). The percentage of (B) platelet-monocyte aggregates 570 

formation, (C) TF-expressing monocytes and (D) CD16-positive monocytes are shown. 571 

Dots represent mean ± standard error of 4-6 platelet and monocyte combinations from 572 

COVID-19 patients or control participants. All experiments were repeated with cells 573 

from at least 2 independent control participants exposed to platelets or monocytes from 574 

the same COVID-19 patients with similar results, and a representative data from one of 575 

the donors is shown. # indicates p < 0.05 compared to baseline; * indicates p < 0.05 576 

compared to control monocytes exposed to control platelets. 577 

 578 

Figure 4: Platelet-monocyte interactions increase the secretion of inflammatory 579 

mediators in COVID-19. (A) Monocytes from healthy volunteers (control monocyte) 580 

were incubated with platelets from severe COVID-19 patients (COVID-19 platelets) or 581 

from a different healthy volunteer (control platelets) for 18 hours and the indicated 582 

inflammatory mediators were quantified in the supernatants. Monocytes from COVID-583 

19 patients (COVID-19 monocyte) were also incubated with platelets from healthy 584 

volunteers (control platelets). The concentration of (B) TNF-α (C) IL-1β, (D) IL-10, (E) 585 
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PGE2, (F) IL-6, (G) MCP-1/CCL2, (H) PDGF and (I) PF4/CXCL4 are shown. Bars 586 

represent mean ± standard error of the mean of 6-12 platelet and monocyte 587 

combinations from COVID-19 patients or control participants. All experiments were 588 

repeated with cells from 2 independent control participants exposed to platelets or 589 

monocytes from the same COVID-19 patients with similar results, and a representative 590 

data from one of the donors is shown. * indicates p < 0.05 between selected groups. 591 

 592 

Figure 5: Platelets respond to SARS-CoV-2 and modulate monocytes activation 593 

in vitro. (A) Platelets, monocytes and platelet-monocyte cocultures were kept 594 

uninfected or exposed to SARS-CoV-2 overnight. (B) The percentage of P-selectin in 595 

uninfected and SARS-CoV-2-infected platelets. (C) The fold change in platelet 596 

activation markers and mediator secretion after SARS-CoV-2 infection as compared to 597 

uninfected platelets. (D) The fold change in platelet and monocyte activation markers 598 

and mediator secretion after SARS-CoV-2 infection as compared between infected and 599 

uninfected monocytes (left panel), infected and uninfected platelet-monocyte cocultures 600 

(middle panel) or in infected co-cultures compared to monocytes infected alone (right 601 

panel). (E) The fold change in platelet activation markers and mediator secretion in 602 

SARS-CoV-2 infected co-cultures compared to platelets infected alone. (F) Soluble P-603 

selectin (sCD62P) concentration in platelets, monocytes or platelet-monocyte 604 

cocultures after SARS-CoV-2 infection. Bars represent mean ± standard error of the 605 

mean of platelets and/or monocytes from 4 independent donors. * indicates p < 0.05 606 

compared to uninfected platelets or between selected groups. 607 

 608 

Figure 6: Platelets from COVID-19 patients activate monocytes through surface 609 

interaction and TF mediated signaling. (A) Monocytes from healthy volunteers were 610 

incubated with platelets from severe COVID-19 patients for 18 hours in the presence of 611 
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anti-P-selectin (anti-CD62P) neutralizing antibody, the anti-αIIb/β3 antibody abciximab, 612 

anti-TF clone 10H10, anti-TF clone 5G9 or isotype matched IgG. The percent inhibition 613 

on platelet-monocyte aggregate formation (CD41+ monocytes), monocyte CD16 614 

expression and on cytokine release is shown for each condition. (B-C) Control 615 

monocytes were exposed to platelets from severe COVID-19 patients in the presence 616 

of the anti-platelet drugs aspirin, clopidogrel, the TF inhibitor Ixolaris or DMSO 617 

(vehicle). The percent inhibition on platelet-monocyte aggregate formation, monocyte 618 

CD16 expression and on cytokine release (B) and the percentage of monocytes 619 

expressing CD16 (C) are shown for each condition. (D) Monocytes from severe 620 

COVID-19 patients were adhered on recombinant human albumin, P-selectin or 621 

fibrinogen-coated surfaces in the presence of Ixolaris or vehicle. The concentration of 622 

TNF-α secreted at each condition is shown. Bars represent mean ± standard error of 623 

the mean of monocytes of monocytes exposed to platelets from 3-6 independent 624 

COVID-19 patients. * indicates p < 0.05 compared to isotype-matched IgG (A), vehicle 625 

(B) or albumin (C). # indicates p < 0.05 between selected groups. 626 

 627 

Figure 7: Platelet-monocyte interaction induces monocyte and platelet activation 628 

through TF-dependent PAR signaling. Platelet-monocyte cocultures were exposed 629 

to SARS-CoV-2 overnight in the presence of the anti-αIIb/β3 antibody abciximab, anti-TF 630 

clone 10H10, anti-TF clone 5G9 or isotype matched IgG.  (A) The percentage of 631 

monocytes expressing TF in platelet-monocyte cocultures exposed SARS-CoV-2 in the 632 

presence of abciximab or isotype control IgG. (B) The percent inhibition on platelet-633 

monocyte aggregate formation (CD41+ monocytes), monocyte CD16 expression and 634 

cytokine release from platelets and monocytes is shown for each condition. (C) 635 

Platelet-monocyte cocultures were exposed to SARS-CoV-2 overnight in the presence 636 

the PAR1 inhibitor SCH79797, the PAR2 inhibitor AZ3451 or DMSO (vehicle). The 637 

percent inhibition on platelet-monocyte aggregate formation, monocyte CD16 638 
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expression and cytokine release from platelets and monocytes is shown for each 639 

condition. (D) Schematic representation of platelet-monocyte signaling through P-640 

selectin and integrin αIIb/β3 surface interaction and TF-mediated inflammatory 641 

amplification through PAR1 and PAR2 during severe COVID-19.642 
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Table 1: Characteristics of COVID-19 patients and control donors. 643 

Characteristics1 
Control 

(n=25) 
Mild (n=22) Severe (n=46) 

Age, years 48 (39 – 58) 41 (32 – 50) 58 (47 – 66) 

Sex, male 10 (40 %) 9 (41 %) 23 (50 %) 

Respiratory support    

   Oxygen supplementation 0 (0 %) 0 (0 %) 16 (35 %) 

   Mechanical ventilation 0 (0 %) 0 (0 %) 30 (65 %) 

SAPS II – – 60 (47 – 68) 

PaO2/FiO2 ratio – – 152 (127 – 280) 

Vasopressors2 0 (0 %) 0 (0 %) 16 (35 %) 

Time from symptom onset to 

blood sample, days 
 8 (6 – 16) 11 (7 – 16) 

28-day mortality 0 (0 %) 0 (0 %) 18 (39 %) 

Comorbidities    

Obesity  2 (8 %) 1 (5 %) 10 (22 %) 

Hypertension 2 (8 %) 4 (18 %) 25 (54 %)* 

Diabetes 0 (0 %) 1 (5 %) 16 (35 %)* 

Cancer 0 (0 %) 0 (0 %) 4 (9 %) 

Heart disease3 0 (0 %) 0 (0 %) 3 (7 %) 

Presenting symptoms     

Cough 0 (0 %) 8 (36 %) 26 (57 %) 

Fever 0 (0 %) 8 (36 %) 29 (63 %) 

Dyspnea 0 (0 %) 3 (14 %) 29 (63 %) 

Headache 0 (0 %) 7 (32 %) 5 (11 %) 

Anosmia  0 (0 %) 6 (27 %) 11 (24 %) 

Laboratory findings at 

admission 
   

Leukocytes, x 1000/µL – 7,6 (6,2 – 15,5) 13 (9,1 – 18,4) 

Lymphocytes, cells/µL – 2,156 (2,015 – 2933) 1,057 (567 – 1540) 

Monocytes, cells/µL – 447 (308 – 620) 672 (473 – 848) 

Platelet count, x 1000/µL – 188 (26 – 198) 194 (155 – 268) 
1Numerical variables are represented as the median and the interquartile range, and 644 
qualitative variables are represented as the number and the percentage. 645 
2Dopamine, epinephrine/norepinephrine, vasopressin or phenylephrine. 646 
3Coronary artery disease or congestive heart failure. 647 
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*p < 0.05 compared to control. The qualitative variables were compared using the 648 
two tailed Fisher exact test, and the numerical variables using the t test for 649 
parametric and the Mann Whitney U test for nonparametric distributions.  650 
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